

### Origine, évolution et mise en place d'un pluton alcalin récent en contexte intraplaque océanique : exemple du complexe sud de Rallier du Baty, Kerguelen (T.A.A.F.)

Léandre Ponthus

#### ▶ To cite this version:

Léandre Ponthus. Origine, évolution et mise en place d'un pluton alcalin récent en contexte intraplaque océanique : exemple du complexe sud de Rallier du Baty, Kerguelen (T.A.A.F.). Sciences de la Terre. Université Paul Sabatier - Toulouse III, 2018. Français. NNT : 2018TOU30052 . tel-02057605

#### HAL Id: tel-02057605 https://theses.hal.science/tel-02057605

Submitted on 5 Mar 2019  $\,$ 

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



Université de Toulouse



#### En vue de l'obtention du

## DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE

Délivré par :

Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

#### Présentée et soutenue par : Léandre Ponthus

Le mardi 20 mars 2018

Titre :

Origine, évolution et mise en place d'un pluton alcalin récent en contexte intraplaque océanique. Exemple du complexe sud de Rallier du Baty, Kerguelen (T.A.A.F.)

ED SDU2E : Sciences de la Terre et des Planètes Solides

Unité de recherche :

Géosciences Environnement Toulouse - UMR5563

Directeur(s) de Thèse : Michel Grégoire, DR CNRS, GET (Toulouse) Damien Guillaume, PR UJM, LMV (St Etienne) Michel de Saint Blanquat, DR CNRS, GET (Toulouse) Rapporteurs :

Lukas Baumgartner, PR Lausanne, Jean-Yves Cottin, PR St Etienne, Gaelle Prouteau, MCF Orléans

#### Autre(s) membre(s) du jury :

Valérie Bosse, MCF Orléans, Guillaume Delpech, MCF Orsay, Olivier Vanderhaeghe, PR Toulouse





#### En vue de l'obtention du

## DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE

Délivré par :

Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

#### Présentée et soutenue par : Léandre Ponthus

le 20 mars 2018

Titre :

Origine, évolution et mise en place d'un pluton alcalin récent en contexte intraplaque océanique.

Exemple du complexe sud de Rallier du Baty, Kerguelen (T.A.A.F.)

École doctorale et discipline ou spécialité :

ED SDU2E : Sciences de la Terre et des Planètes Solides

Unité de recherche :

Géosciences Environnement Toulouse - UMR 5563

Directeur/trice(s) de Thèse :

Michel GREGOIRE - GET Damien GUILLAUME - LMV (Saint Etienne) Michel de SAINT BLANQUAT - GET

Jury :

L. BAUMGARTNER J-Y. COTTIN G. PROUTEAU V. BOSSE G. DELPECH O. VANDERHAEGHE

Rapporteur Rapporteur Rapporteure Examinatrice Examinateur Examinateur

# Remerciements

Tant de personnes ont contribué à ce travail qu'il aurait fallu, pour les nommer ici, faire comme pour le manuscrit : griffonner leurs noms dès le début. Malheureusement, ça ne s'est pas fait comme ça. Je ne prends donc pas le risque d'être ingrat et injuste en faisant l'énumération d'une kyrielle de noms qui serait non-exhaustive. Il n'est pas non plus question de dresser ici un classement non objectif de l'implication de chacun.

Ce travail est le fruit d'innombrables collaborateurs, petites mains, grands penseurs, supports psychologiques et supports financiers qui ont permis d'aboutir à ce manuscrit, qui je l'espère, est à la hauteur de leur investissement. Aussi, à travers les différentes structures nationales et étrangères où j'ai eu la chance de travailler, je remercie pour leur apports scientifiques : les adjoints techniques, techniciens, assistants ingénieurs, ingénieurs, maîtres de conférences, chargés de recherche, professeurs des universités, directeurs de recherche, professeurs certifiés, chercheurs émérites et membres du jury, sans qui cette thèse n'aurait pu être achevée. Amicalement, je voudrais remercier pour leur aide tous ceux, de près ou de loin, qui m'ont permis de commencer, faire avancer et finir ce long travail. Enfin, c'est avec révérence que je remercie tous ceux dont je pense qu'ils le méritent simplement parce qu'ils étaient là. A tous, merci !

Au lieu de m'étendre en plus de flatteries, je vous invite plutôt, comme prélude, à la lecture de deux récits de marins, lesquels méritent également d'être remercier. Ces brefs extraits relatent la découverte et le débarquement sur l'île de Kerguelen en 1772, à l'anse du Gros Ventre (là où vous le verrez plus tard dans ce manuscrit tout a effectivement commencé...) :

Le canot du « Gros ventre », malgré la force du courant et du vent, doubla plusieurs pointes (...). Le canot s'approcha dont de la terre, nous crumes voir une quantité d'habitant rangé en ordre de bataille pour soposer à notre desente. Mais nous fûmes bien surpris lorsque nous reconnûmes ces habitans pour de gros oiseaux d'une singulière estracteures. Ils vont sy droït sur leur pate qu'on les prendroit pour des hommes. Ils ont près de trois pied de haut, pezant vingt cinq à trente livre. Leur plumage est comme celui d'un canard sauvage. Ils ont des nassoir comme des poissons, en place d'ailles, ne volle point, vivent des mouche sur le rivage et s'éloigne de dix lieu en mer. Il y plonge et se nourissent des poissons. Ses oiseaux se nomme painquoin. A laproche de la terre, nous vîmes une quantité prodisieuse d'oiseau qui plongoit dans la mer. Il nous semblait voir que ces oiseaus ce ravigotait de notre arrivée. Il nous suivait jusqu'à terre et sen retournait plongent, se faisant voir de temps en temps. Il faisoit des cabriolle de droit à gauche. En un mot, il nous ravigotoit de la voir cabrioller dans la mer. Ces les mêmes que nous avions vû à terre. Il y a quantité de lyon marin ausy gros qu'un anne. Ils ont deux nageoir devant aux patte en nageoir d'errier. Le poil luissant, court, huilleux, la tête fort grosse et longue, des grandes oreilles des loup marin dont la peau bluatre et luissante font des eudulasion semblables à la gorge des pigeons. Aucun de ces animaux ne sont dangereux ny nuisible à l'homme. Nous en avons mangé beaucoup.

Extrait du Journal du Sergent Lafortune embarqué sur le canot qui mis pied à terre

A midy et demy, nous nous sommes trouvés à l'entrée d'une baye qui paraissoit nous prometre un mouillage assuré. On a mis le canot à la mer. M. de Saint Aloüarn ma envoyé prendre connoissance des sondes de cette baye, savoir s'il prometoit y mouiller. Comme la mer étoit trop grosse pour un canot, j'ay mis deux heures et demy pour y arriver [...]. Après avoir sondé la baye, j'ay fait metre à terre. En y arrivant jay fait arborer le pavillon et pris possession au nom du Roy mon mètre, en faisant crier trois fois Vive le Roy et tirer trois décharges de mousqueterie.

Extrait du Journal de vaisseau de Charles Marc de Boisguehenneuc (second du Gros Ventre)

Je dédie ce travail à m'Père et m'Mère, Tigrou, Léon le professionnel, le Quatrième brigand, le Sherpa, MyGM et JYC.

## Résumé

Le but de cette thèse est de porter un nouveau regard sur la formation des complexes plutoniques alcalins intraplagues à partir de l'étude du complexe intrusif sud de la péninsule de Rallier du Baty (SRBIC) sur l'archipel de Kerguelen (Terres Australes et Antarctiques Françaises - TAAF). Ce corps plutonique, qui est un des très rares exemples de pluton essentiellement felsique accessibles en domaine océanique, est majoritairement constitué de syénites et d'une faible proportion de roches intermédiaires. La présence de quartz dans les roches felsiques classe ce complexe dans la série des plutons alcalins sursaturé en silice. Ce complexe intrusif est une cible privilégiée pour étudier et contraindre les processus : (i) à l'origine de ces magmas alcalins différenciés, (ii) responsables de leurs évolutions depuis leurs sources mantelliques jusqu'à leur mise en place, (iii) et qui contrôlent cette mise en place en contexte intraplaque océanique. Ce travail permet en particulier d'apporter de nouvelles contraintes (i) sur le rôle d'une croûte océanique épaissie dans la mise en place des corps plutoniques, (ii) sur la participation de la croûte continentale dans la formation des roches alcalines sursaturées et (iii) sur l'évolution du magmatisme lié à la présence du point chaud de Kerguelen reconnue depuis 140 Ma, lequel a permis de former la seconde plus grande province magmatique terrestre de type Large Igneous Province (LIP). L'approche employée est multidisciplinaire et mêle, observations et mesures sur le terrain, Anisotropie de Susceptibilité Magnétique (ASM) réalisée pour la première fois sur un pluton océanique, pétrographie, minéralogie, géochimie des éléments majeurs et traces sur roche totale, géochimie isotopique Rb/Sr et Sm/Nd sur roche totale et géochronologie U-Pb sur zircon réalisée pour la première fois sur ce pluton. Ces différentes études démontrent la participation d'un manteau subcontinental métasomatisé relativement ancien ainsi que celle d'un fragment de croûte continentale dans la genèse de ces magmas principalement issus d'une source asthénosphérique typique du plume de Kerguelen. Les roches issues de ces magmas contaminés forment la plus ancienne série magmatique exclusivement calcique du SRBIC, laquelle a évoluée par cristallisation fractionnée dans un système dynamique caractérisé par des épisodes répétés de recharge magmatique. La seconde et plus jeune série magmatique a évoluée selon les mêmes processus dans un système magmatique clos formant des roches à caractère de plus en plus agpaïtique au cours de la différenciation. La mise en place des intrusions plutoniques a commencée il y a 13,7 Ma sur la péninsule tandis que celle du plus gros volume de magma s'est déroulée entre 11,7 (au sud) et 7,9 Ma (au nord) formant le SRBIC. Le mode de construction de ce pluton en fait un exemple unique connu de laccolithe en contexte intraplaque océanique. Ce travail met en évidence la participation de plusieurs sources magmatiques reconnues ou suspectées dans la construction du plateau océanique de Kerguelen et la double fonction de la croûte océanique épaissie qui agit de la même façon que la croûte continentale sur le mode de construction mais qui influe également sur l'évolution pétrochimique au sein d'un complexe et de ses satellites formés en moins de 6 Ma au Miocène supérieur.

# Abstract

The aim of this PhD is to bring new insights on the formation of intraplate alkaline plutonic complexes based on the study of the southern complex of the Rallier du Baty Peninsula (SRBIC) located in the Kerguelen Archipelago (TAAF, France). This plutonic body, which is one of the only examples of felsic pluton accessible in the oceanic domain, mostly consists of quartz-bearing syenites. This alkaline complex therefore belongs to the silica-oversaturated series. It constitutes a perfect target for studying and constraining the processes: (i) at the origin of the differentiation of alkaline magmas, (ii) responsible for their evolution from their mantle sources to their emplacement levels, (iii) and that control their emplacement in an oceanic within-plate setting. In particular, this work provides new constraints (i) on the role of a thickened oceanic crust for the emplacement of plutonic bodies, (ii) on the involvement or not of the continental crust in the formation of oversaturated alkaline plutonic rocks and (iii) on the evolution of the magmatism linked to the activity of the Kerguelen plume. Evidenced since 140 Ma, this activity in particular built the second largest LIP ("Large Igneous Province") on Earth. I used in this study a multidisciplinary approach: fields observations and measurements, ASM (anisotropy of magnetic susceptibility) performed for the first time on an oceanic pluton, petrography, mineralogy, geochemistry of major and trace elements on whole rock, isotopic geochemistry Rb/Sr and Sm/Nd on whole rock and U-Pb geochronology through in-situ measurements on zircon acquired for the first time on this pluton. These different approaches demonstrate (i) that the main source of the parental magmas is the Kerguelen plume, (ii) the involvement of a relatively old metasomatised subcontinental mantle and (iii) the contribution of a continental fragment in the genesis of some syenitic melts. Those contaminated magmas formed the oldest rocks of the SRBIC. Forming a strictly calcic magmatic series, they evolved by fractional crystallization in an active magmatic environment characterized by repeated magmatic pulses. The second and youngest magmatic series evolved in a more closed magmatic system leading to the formation of more and more agpaitic rocks with differentiation. The first intrusions emplaced at around 13.7 Ma on the peninsula while the largest volume of magma emplaced between 11.7 (to the south) and 7.9 Ma (to the north). The process of building of this pluton makes it a unique example of laccolith in oceanic within-plate settings. This work highlights the involvement of several previously known or suspected magmatic sources for the construction of the Kerguelen oceanic plateau and the dual function of the thickened oceanic crust. This latter act indeed such as the continental crust on the building process, but also influences the petrochemical features of a single large igneous complex and its satellites emplaced in less than 6 Ma during the Upper Miocene.

# Sommaire

| Remerciemen    |                                                                                          | 3  |
|----------------|------------------------------------------------------------------------------------------|----|
| Résumé         |                                                                                          | 4  |
| Abstract       |                                                                                          | 5  |
| Sommaire       |                                                                                          | 6  |
| Table des fiqu | Ires                                                                                     | 8  |
| 0              |                                                                                          |    |
| 1. Chapit      | re 1 : Introduction et zone d'étude                                                      | 15 |
| 1.1 Pro        | oblématique                                                                              | 16 |
| 1.1.1          | Introduction générale                                                                    | 16 |
| 1.1.2          | Motivations et intérêts scientifiques                                                    | 17 |
| 1.1.2.         | 1 Processus de construction des corps plutoniques                                        | 17 |
| 1.1.2.         | 2 Processus de formation des roches alcalines différenciées                              | 17 |
| 1.1.2.         | 3 Evolution du plateau océanique de Kerguelen                                            | 18 |
| 1.1.3          | Questions spécifiques et méthode de travail                                              | 19 |
| 1.2 Co         | ntexte géologique                                                                        | 20 |
| 1.2.1          | Edification du « Grand » plateau de Kerguelen                                            | 20 |
| 1.2.2          | Archipel de Kerguelen                                                                    | 22 |
| 1.2.3          | Caractéristiques géochimiques et isotopiques des roches de plateau                       | 23 |
| 1.2.4          | Caractéristiques géochronologiques, géochimiques et isotopiques des roches de l'archipel | 24 |
| 1.2.5          | La péninsule de Rallier du Baty                                                          | 27 |
|                |                                                                                          |    |
| 2. Chapit      | re 2 : Relations de terrain et structure du SRBIC                                        | 29 |
| 2.1 Int        | roduction                                                                                | 30 |
| 2.2 Le         | s relations de terrain                                                                   | 31 |
| 2.2.1          | Les textures rencontrées                                                                 | 31 |
| 2.2.1.         | 1 Les basaltes de plateau                                                                | 31 |
| 2.2.1.         | 2 Les roches felsiques plutoniques                                                       | 32 |
| 2.2.1.         | 3 Les roches intermédiaires et mafiques                                                  | 34 |
| 2.2.1.         | 4 Les filons                                                                             | 35 |
| 2.2.2          | Structure et orientation des basaltes                                                    | 37 |
| 2.2.3          | Le contact SRBIC – Basaltes de plateau                                                   | 38 |
| 2.2.4          | Les contacts internes à grande échelle                                                   | 42 |
| 2.3 Str        | ructure interne à l'échelle des unités structurales                                      | 48 |
| 2.3.1          | Coupe détaillée                                                                          | 48 |
| 2.3.2          | Structure interne                                                                        | 52 |
| 2.3.3          | Déformations ductiles et cassantes                                                       | 55 |
| 2.4 Str        | ructure d'ensemble                                                                       | 58 |
| 2.4.1          | Litages et contacts magmatiques                                                          | 58 |
| 2.4.2          | Zones de cisaillement et failles                                                         | 60 |
| 2.4.3          | Filons basaltiques et trachytiques                                                       | 61 |
| 2.5 Qu         | antification des fabriques                                                               | 64 |
| 2.5.1          | Microstructures                                                                          | 64 |
| 2.5.2          | ASM                                                                                      | 65 |

| 2.5.2.1    | Minéralogie magnétique                                                                                                    |               |
|------------|---------------------------------------------------------------------------------------------------------------------------|---------------|
| 2.5.2.2    | 2 Orientation de la fabrique magnétique                                                                                   |               |
| 2.5.2.3    | 8 Paramètres intensifs                                                                                                    |               |
| 2.5.3      | Synthèse de l'analyse des fabriques                                                                                       | 73            |
| 2.6 Syr    | nthèse structurale                                                                                                        | 73            |
|            |                                                                                                                           |               |
| 3. Chapitr | e 3 : Géochronologie et couplage avec l'étude structurale                                                                 | 77            |
| 3.1 Pro    | tocole de séparation minérale                                                                                             | 78            |
| 3.2 Ca     | ractéristiques internes et externes des zircons du SRBIC                                                                  | 79            |
| 3.2.1      | Coloration et morphologie                                                                                                 | 79            |
| 3.2.2      | Structures internes                                                                                                       |               |
| 3.2.3      | Inclusions                                                                                                                |               |
| 3.3 Pro    | otocole d'analyse et traitement des données U-Pb                                                                          | 85            |
| 3.4 Re     | sultats                                                                                                                   |               |
| 3.5 Etu    | ide structurale et géochronologique : synthèse des chapitres 2 et 3                                                       |               |
| 4          | Ponthus et al., "Mechanism and duration of plutonic processes in oceanic plateau crus                                     | st: the South |
|            | Rallier du Baty Intrusive Complex, Kerguelen Archipelago" article soumis à Geology                                        | 93            |
| 4 Chapitr  | e 4 · Pétrographie et minéralogie                                                                                         | 111           |
| 4 1 De     | scription pétrographique                                                                                                  | 112           |
| 4.1.1      | Roches mafigues et intermédiaires                                                                                         |               |
| 4.1.1.1    | Basaltes de plateau                                                                                                       |               |
| 4.1.1.2    | Monzo-gabbro de l'anse du Gros Ventre                                                                                     |               |
| 4.1.1.3    | Monzo-gabbro et monzo-diorite de l'unité la plus externe                                                                  |               |
| 4.1.1.4    | Roches intermédiaires de l'intrusion de la Plage jaune                                                                    |               |
| 4.1.2      | Roches plutoniques felsiques                                                                                              |               |
| 4.1.2.1    | Syénites calciques (groupe pétrographique CaS)                                                                            |               |
| 4.1.2.2    | 2 Syénites sodiques (groupe pétrographique NaS)                                                                           |               |
| 4.1.2.3    | <i>Syénites calco-sodiques (groupe pétrographique intermédiaire CaNaS)</i>                                                |               |
| 4.1.3      | Filons et dykes tardifs                                                                                                   | 143           |
| 4.1.3.1    | Filons de basalte                                                                                                         |               |
| 4.1.3.2    | Pilons de trachyte                                                                                                        |               |
| 4.2 Mir    | néralogie des minéraux ferro-magnésiens                                                                                   | 145           |
| 4.2.1      | Pyroxènes                                                                                                                 |               |
| 4.2.1.1    | Pyroxènes des syénites du groupe CaS                                                                                      |               |
| 4.2.1.2    | Pyroxènes des syénites du groupe NaS                                                                                      |               |
| 4.2.1.3    | Pyroxènes des syénites du groupe CaNaS                                                                                    |               |
| 4.2.1.4    | Evolution des pyroxènes à l'échelle du complexe et de ses satellites                                                      |               |
| 4.2.1.5    | Synthese sur la mineralogie des pyroxenes                                                                                 |               |
| 4.2.2      | Les amphiboles                                                                                                            |               |
| 4.2.2.1    | Amphiboles des rocnes plutoniques majiques et intermediaires                                                              |               |
| 4.2.2.2    | Amphiboles des syénites du groupe Cas                                                                                     |               |
| 4.2.2.3    | Amphiboles des syénites du groupe CaNas                                                                                   |               |
| 4.2.2.4    | <ul> <li>Finipliboles des syclifies du groupe cuivas</li> <li>Evolution des amphiboles à l'échelle du complexe</li> </ul> | 150 150       |
| 4226       | 5 Synthèse sur la minéralogie des amphiboles                                                                              |               |
| 4.3 Svr    | nthèse sur la pétrographie et la minéralogie                                                                              |               |
|            |                                                                                                                           |               |

| 4.4 Relation pétrographie-structure-géochronologie                                     |     |
|----------------------------------------------------------------------------------------|-----|
| 5. Chapitre 5 : Geochimie                                                              |     |
| 5.1 Geochimie des elements majeurs                                                     |     |
| 5.1.1 Classification et nomenclature                                                   |     |
| 5.1.1.1 Roches mafiques et intermediaires                                              |     |
| 5.1.1.2 Roches felsiques                                                               |     |
| 5.1.2 Evolution à l'échelle de l'ensemble des roches plutoniques                       |     |
| 5.1.3 Evolution a l'échelle des syenites                                               |     |
| 5.2 Geochimie des elements traces                                                      |     |
| 5.2.1 Analyse elementaire                                                              |     |
| 5.2.2 Relation elements majeurs - elements traces                                      |     |
| 5.3 Elude des spectres en elements traces                                              |     |
| 5.3.1 Caracteristiques generales des spectres des roches du SRBIC et de ses satellites |     |
| 5.3.1.1 Spectres des roches intermediaires (monzo-gabbro/alorite)                      |     |
| 5.3.1.2 Spectres des roches Intermediaires (monzonites)                                |     |
| 5.3.1.3 Spectres des syenites du groupe Cas                                            |     |
| 5.3.1.4 Spectre des syénites du groupe Calvas                                          |     |
| 5.3.1.5 Spectre des syerilles du groupe Nas :                                          | 200 |
| 5.3.1.6 Evolution des éléments traces en jonction de la dijjerenciation                |     |
| 5.3.1.7 Evolution des éléments tracés dans le temps                                    | 201 |
| 5.4 Synthese de l'étude des éléments majeurs et traces                                 |     |
| 6 Chapitre 6 : Géochimie isotopique                                                    | 211 |
| 6.1 Système Rh/Sr                                                                      | 212 |
| 6.1.1 Résultats à l'actuel                                                             |     |
| 6.1.2 Résultats à l'état initial                                                       |     |
| 6.2 Système Sm/Nd                                                                      | 216 |
| 6.3 Corrélation des deux systèmes isotopiques                                          | 220 |
|                                                                                        |     |
| 7. Chapitre 7 : Synthèse et discussion                                                 |     |
| 7.1 Le SRBIC : un complexe plutonique composite                                        |     |
| 7.2 Origines et sources des roches plutoniques du SRBIC et de ses satellites           |     |
| 7.3 Les deux suites plutoniques du SRBIC                                               |     |
| 7.4 La construction du SRBIC                                                           |     |
| 7.4.1 Comparaison avec les études antérieures                                          |     |
| 7.4.2 Précédent modèle de construction : subsidence en chaudron                        |     |
| 7.4.3 Arguments en défaveur du modèle de subsidence en chaudron                        |     |
| 7.4.4 Arguments en faveur d'un modèle de construction alternatif : laccolithe          |     |
| 7.4.5 Questions en suspens                                                             |     |
| 7.4.6 Modèle de formation du SRBIC à l'échelle de la lithosphère                       |     |
| 2 Conclusions of noncostings                                                           | 050 |
| o. Conclusions et perspectives                                                         |     |
| o. I     Conclusions generales                                                         |     |
| 8.2 Perspectives                                                                       |     |
| Références                                                                             |     |

# Table des figures

| • Figure 1.1: Carte de localisations des Large Igneous Province                                              | 16         |
|--------------------------------------------------------------------------------------------------------------|------------|
| Figure 1.2 : Reconstruction du démantèlement du Gondwana au point triple entre l'Antar                       | 20         |
| Figure 1.3 : Cartographie physique et données géochronologiques dans l'océan Indien, entre l'Asie,           |            |
| l'Australie et l'Antarctique, l'Inde et l'Australie depuis 150Ma.                                            | 21         |
| Figure 1.4 : Imagerie tomographique actuelle sous l'archipel de Kerguelen                                    | 22         |
| Figure 1.5 : Carte géologique simplifiée de l'archipel de Kerguelen illustrant les différents systèmes       |            |
| intrusifs dans les basaltes de plateau ainsi que les données géochronologiques associées                     | 24         |
| Figure 1.6 : Photos d'enclaves mafiques et ultramafiques retrouvées dans les laves alcalines récentes c      | Je         |
| l'archipel de Kerguelen                                                                                      | 27         |
| Figure 1.7: Carte des différents complexes intrusifs de la province plutonique de Rallier du Baty et         |            |
| données géochronologiques associées                                                                          | 28         |
| • Figure 2.1: Planche photographique des basaltes de plateau                                                 | 31         |
| Figure 2.2: Planche photographique des quatres grands types de textures rencontrées dans les syénite         | 25         |
| du SRBIC                                                                                                     | 32         |
| Figure 2.3: Relations chronologiques entre les différentes textures de syénites                              | 33         |
| Figure 2.4 : Les différents faciès mafigues et intermédiaires à l'affleurement et relations avec les faciès  | 5          |
| felsiques                                                                                                    | 35         |
| Figure 2.5 : Planche photographique des différents types de filons observés et de leur chronologie rela      | ative      |
| par rapport aux roches encaissantes                                                                          | 36         |
| Figure 2.6 : Photos des épanchements basaltiques de la péninsule de Rallier du Baty                          | 37         |
| Figure 2.7 : Photo du contact intrusif du SRBIC avec les basaltes de plateau                                 | 38         |
| Figure 2.8 : Photo du contact intrusif du SRBIC avec les basaltes de plateau sur le flanc O du mont de V     | /olz       |
| (Plage Jaune)                                                                                                | 39         |
| Figure 2.9 : Photo du contact intrusif externe du SRBIC sur le flanc S du mont Léon Lutaud recoupant a       | vec        |
| un fort pendage les épanchements basaltiques                                                                 | 39         |
| Figure 2.10 : Photo du contact intrusif du complexe satellite de « l'anse syénite » sur le flanc NE du mo    | ont        |
| Léon Lutaud                                                                                                  | 40         |
| Figure 2.11 : Photos détaillées du contact externe SRBIC- basaltes de plateau sur le mont du Command         | dant<br>41 |
| Figure 2.12 : Image satellite Pléiades, centrée sur l'unité centrale du SRBIC avec la localisation des prise | es         |
| de vues du contact majeur de la Figure 2.13                                                                  | 42         |
| Figure 2.13 : Vues du contact majeur (unité 2/unité 3) ; a) du flanc S du Pic Chastaing; b) du flanc N du    |            |
| massif des Deux Frères, c) du flanc SW de ce même massif et du flanc NE du massif du Portillon               | 43         |
| Figure 2.14 : Photo d'un échantillon de roche (13TK68) bleutée, avec une croûte oxydée caractéristiqu        | le,        |
| située sous le contact majeur du massif du Portillon                                                         | 44         |
| Figure 2.15 : Photos des injections de magmas provenant de l'unité centrale, s'injectant dans les roche      | 32         |
| de l'unité supérieure par conséquent plus ancienne                                                           | 44         |
| Figure 2.16 : Exemple de contact franc et continu à grande échelle dans la vallée de Larmor                  | 45         |
| Figure 2.17 : Détails photographiques du contact entre l'unité 1 et l'unité 2, formé par une zone très       |            |
| déformée en base de l'unité 1                                                                                | 46         |
| Figure 2.18 : Panorama et interprétation du massif NE au pied de la coulée de Vulcain, face ouest            | 47         |
| Figure 2.19 : Photo générale et interprétation de l'affleurement caractéristique de l'unité 1                | 49         |
| Figure 2.20 : (ci-dessus) Détails de l'attleurement précédent et des relations syénite / monzo-diorite       | 50         |
| Figure 2.21 : (ci-contre) Partie nord de l'affleurement représenté en Figure 2.19.                           | 50         |
| Figure 2.22 : Details des relations entre la syénite porphyrique et les autres lithologies, illustrant son   |            |
| caractere tardit sur cet attleurement                                                                        | 51         |
| Figure 2.23 : Details des relations entre la syénite porphyrique et les autres lithologies, suite            | 51         |
| Figure 2.24 : Exemples d'alternance texturale des syénites au travers des différentes unités et à plusier    | urs        |
| ecnelles.                                                                                                    | 52         |

| Figure 2.25 : Exemples d'alternance grenue – fine aux contacts clairs dans différentes unités à l'échelle<br>l'affleurement. | de<br>53 |
|------------------------------------------------------------------------------------------------------------------------------|----------|
| Figure 2.26 : Exemples détaillés de contacts plus ambigus entre syénite microgrenue et grenue                                | 53       |
| Figure 2.27 : Exemples de ségrégation pegmatitiques injectés dans les syénites grenues sous formes de                        | 2        |
| veines et filons pouvant formés des zones de concentration et des réseaux anastomosés.                                       | 54       |
| Figure 2.28 : Marqueurs de déformation au sein du SRBIC                                                                      | 55       |
| Figure 2.29 : Margueur de déformation. suite.                                                                                | 56       |
| Figure 2.30 : Chronologie relative entre les zones de cisaillement et les différents filons                                  |          |
| Figure 2.31 : Coupe synthétique SSE-NNO de la première unité structurale                                                     | 57       |
| Figure 2.32 : Carte et et stáráo des mesures de terrains                                                                     | 58       |
| Figure 2.22: Carte et el siereo des mésures de terrains                                                                      |          |
| Figure 2.35. Calle structurale synthetique du complexe sud de Railler du Baty                                                |          |
| Figure 2.24 : Synthese des stereogrammes.                                                                                    | 00       |
| Figure 2.35 : Stereos des zones de cisamement et fames avec cinematique.                                                     | 01       |
| Figure 2.36 : Carte illustrant les mésures de filons basaitiques et trachytiques observes sur le terrain                     | 62       |
| Figure 2.37 : Stereogrammes des filons de basaltes et trachytes syn a post-plutoniques.                                      | 62       |
| Figure 2.38: Coupe synthetique SSO-NNE du SRBIC                                                                              | 63       |
| Figure 2.39 : Exemples des microstructures des syénites                                                                      | 64       |
| Figure 2.40 : Planche du signal de susceptibilité magnétique par échantillon en fonction de la températi                     | ure      |
|                                                                                                                              | 66       |
| Figure 2.41 : Planche photographique des différents habitus de la minéralogie magnétique en imagerie                         | !        |
| électronique (MEB)                                                                                                           | 67       |
| Figure 2.42 : Carte des trajectoires de foliations                                                                           | 68       |
| Figure 2.43: Cartes interprétatives des trajectoires de foliation à l'échelle du complexe                                    | 69       |
| Figure 2.44: Carte des linéations.                                                                                           | 70       |
| Figure 2.45 : Carte des trajectoires de linéations interprétées                                                              | 70       |
| Figure 2.46 : Fréquences des différents paramètres intensifs (Km, P%, T)                                                     | 71       |
| Figure 2.47 : Carte de répartition de la susceptibilité magnétique mesurée sur le SRBIC                                      | 71       |
| Figure 2.48 : Corrélation des paramètres intensifs d'anisotropie magnétique en fonction des textures                         |          |
| rencontrées                                                                                                                  | 72       |
| Figure 2.49: Diagramme d'occurrences des différentes lithologies et déformations au sein des unités                          |          |
| structurales du SRBIC.                                                                                                       | 74       |
|                                                                                                                              |          |
| • Figure 3.1: Photos prises à différentes échelles (a, b et c) et schémas de zircons caractéristiques du                     |          |
| SRBIC                                                                                                                        | 79       |
| Figure 3.2: Classification morphologique qualitative des zircons de Rallier-du-Baty                                          | 80       |
| Figure 3.3: Exemples de morphologies et structures internes des zircons du SRBIC sous lumière polarisé                       | ée       |
| et cathodoluminescence                                                                                                       | 82       |
| Figure 3.4: Photos en lumière naturelle (a, c, e) et cathodoluminescence (b, d, f) de plusieurs zircons                      |          |
| caractéristiques du SRBIC illustrant les différent types de structures internes rencontrées                                  | 83       |
| Figure 3.5: Exemples d'inclusions rencontrées au sein des zircons du SRBIC                                                   | 85       |
| Figure 3.6: Rapport Th/U des roches plutoniques de Rallier du Baty et valeur moyenne utilisée pour la                        |          |
| correction de <sup>230</sup> Th                                                                                              | 87       |
| Figure 3.7: Exemple de diagrammes Tera-Wasserburg par échantillon illustrant les résultats de                                |          |
| géochronologie in-situ U-Ph sur les zircons du complexes sud de Rallier du Baty                                              | 88       |
| Figure 3.8. Diagramme et tableau synthétiques des données géochronologies in-situ sur les zircons du                         |          |
| SRBIC (triées par âges décroissants)                                                                                         | 91       |
| Figure 3.9. Carte des datations obtenues nar mesures LI-Ph in-situ sur les zircons du complexe sud de                        |          |
| Rallier du Raty                                                                                                              | ٩J       |
| Figure 3 10: Carte structurale du SBBIC avec une géologie simplifiée et detetions U. Phiotopues sur                          |          |
| zircons sánarás at sur lamas ánaissas                                                                                        | 104      |
| Eigure 2 11: Contact intrusif du SPDIC dans les basaltes de plateau montrant une géométrie d'accordant.                      | 100      |
| rigure 5.11. Contact intrusir un Skole dans les pasaites de plateau montrant une geometrie discordante                       | e<br>107 |
| El cultur udille.                                                                                                            | 100      |
| FIGURE 2.12. COUPE SYNCHEDIQUE 220-INIVE ON 2KBIC ET DONNEES REOCULODOIOSIDUES ASSOCIEES                                     | τυδ      |

| Figure 3.13: Exemple caractéristique de contact magmatique penté vers le sud entre deux intrusions syénitiques de textures différentes. Les deux syénites sont recoupées par un filon de basalte tardif<br>Figure 3.14: Modèle de laccolithe du SRBIC.                                                                                                                                                                                                                                                                                            | . 109<br>. 110                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| • Figure 4.1 : a) Basaltes de plateau au contact avec le SRBIC<br>Figure 4.2: Photo au microscope en LSP (a) et LPA (b) de cornéenne à albite-épidote<br>Figure 4.3 : Echantillon scié du monzo-gabbro du massif de l'anse du Gros Ventre<br>Figure 4.4 : Lame mince en LSP (a) et en LPA (b) de l'échantillon de monzo-gabbro de l'anse du Gros<br>Ventre                                                                                                                                                                                        | . 113<br>. 114<br>. 115<br>. 116 |
| Figure 4.5 : Zoom en lame mince en LSP (a) et LPA (b) ; (c) zoom sur la texture symplectique des oxyde<br>Fer dans une couronne de clino-enstatite entourant un crystal d'olivine<br>Figure 4.6 : Echantillons sciés des intrusions intermédiaires au front de la coulée du Vulcain<br>Figure 4.7 : Lame mince en LSP (a) et LPA (b) du monzo-gabbro à biotite formant l'intrusion la plus au<br>nord au front de la Coulée du Vulcain<br>Figure 4.8 : Zoom en LSP (a) et LSP (b) du monzo-gabbro au front de la Coulée de Vulcain, illustrant la | es de<br>116<br>118<br>118       |
| texture graphique du clinopyroxène et de la biotite<br>Figure 4.9 : Lame mince en LSP (a) et LPA (b) de la monzo-diorite à biotite formant l'intrusion la plus a<br>sud au front de la coulée de Vulcain (13TK43).                                                                                                                                                                                                                                                                                                                                | . 119<br>u<br>. 120              |
| Figure 4.10 : Zoom en LSP (a), LPA (b) et LR (c) illustrant le remplacement partiel du clinopyroxène par<br>l'amphibole dans la monzo-diorite au front de la Coulée de Vulcain (13TK43)<br>Figure 4.11 : Photographies en LSP (a) et LPA (b) d'un fantôme de minéral précoce remplacé par un                                                                                                                                                                                                                                                      | . 120                            |
| agrégat de différents minéraux formant une texture coronitique<br>Figure 4.12 : Echantillon scié (13TK47) de la monzonite de la Plage Jaune<br>Figure 4.13 : Lame mince en LSP (a) et LPA (b) de monzonite du complexe de la Plage Jaune (13TK47)<br>Figure 4.14 : Photographie en LSP (a) et LPA (b) d'un exemple de structure concentrique formée de<br>l'assemblage successif de plusieurs minéraux et indicatrice de la transformation complète d'un minéra<br>précoce dans la monzonite de la Plage Jaune (13TK47).                          | 121<br>122<br>122<br>122<br>al   |
| Figure 4.15 : Texture graphique du quartz avec les feldspaths perthitiques dans la monzonite de la Pla<br>Jaune (13TK47)<br>Figure 4.16 : Planche photographique de lames minces de svénites appartenant au groupe CaS                                                                                                                                                                                                                                                                                                                            | ge<br>. 124<br>. 126             |
| Figure 4.17 : Photographies au microscope optique des habitus typiques des clinopyroxènes au sein de syénites du groupe CaS                                                                                                                                                                                                                                                                                                                                                                                                                       | es<br>. 128                      |
| groupe CaS<br>Figure 4.19 Photographie d'amphiboles de la série Actinolite-Trémolite dans les syénites du groupe Ca                                                                                                                                                                                                                                                                                                                                                                                                                               | . 129<br>3S<br>130               |
| Figure 4.20 : Photographie en LSP de figures de remplacement d'un minéral précoce formées par de l'actinolite, des oxydes de Fe-Ti et une couronne de biotite                                                                                                                                                                                                                                                                                                                                                                                     | . 131                            |
| Figure 4.22 : Photographie en LSP des différents habitus des amphiboles présentes au sein des syénite<br>groupe NaS.                                                                                                                                                                                                                                                                                                                                                                                                                              | es du<br>134                     |
| rigure 4.25 . Photographie en LSP des principales textures du cimopyroxene sourque observables au microscope au sein du groupe NaS<br>Figure 4.24 : Photographies en LSP des habitus d'arfvedsonites isolées et de quartz au sein des syénite groupe NaS                                                                                                                                                                                                                                                                                          | . 135<br>es du                   |
| Figure 4.25 : Photographies des principaux minéraux accessoires du groupe NaS<br>Figure 4.26 : Photographie en LSP des habitus typiques de clinopyroxènes observés dans les Syénites o<br>groupe CaNaS                                                                                                                                                                                                                                                                                                                                            | . 137<br>du<br>. 139             |
| Figure 4.27 : (a et b) Photographies en LSP des figures de remplacement de l'olivine au sein des syénit<br>du groupe CaNaS                                                                                                                                                                                                                                                                                                                                                                                                                        | es<br>. 140                      |
| SRBIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 143                            |

| Figure 4.29 : Lame mince en LSP (a) et LPA (b) de l'échantillon 13TK52. Dyke de basalte recoupant le        |
|-------------------------------------------------------------------------------------------------------------|
| SKBIC                                                                                                       |
| Figure 4.30 : Sulfures de Fer et sulfures de Fer-Cuivre dans les filons basaltiques tardifs du complexe sud |
| Figure 4.31 : Lame mince en LSP (a) et en LPA (b) d'une trachyte recourant le SBBIC et contenant des        |
| zircons (13TK08)                                                                                            |
| Figure 4.32 · Diagramme Enstatite-Ferrosilite-Wollastonite (d'anrès Morimoto, 1989) dans lequel sont        |
| reportés les pyroxènes des syénites du groupe CaS, ainsi que les compositions du monzogabbro                |
| (13TK002) de l'anse du Gros Ventre                                                                          |
| Figure 4.33 : Diagramme Quad-Jadéite-Aegirine d'après (Morimoto, 1989) où sont reportés les pyroxènes       |
| des svénites du groupe NaS                                                                                  |
| Figure 4.34 : Diagrammes de classification des pyroxènes (d'après Morimoto, 1989) où ont été reportées      |
| les compositions de pyroxènes des syénites du groupe CaNaS                                                  |
| Figure 4.35 : Photographies et diagrammes Di-Aeg-Hd illustrant l'évolution des compositions chimiques       |
| des pyroxènes au sein de deux échantillons du groupe pétrographique CaNaS                                   |
| Figure 4.36 : Diagramme Di-Hd-Aeg des pyroxènes du groupe CaNaS (a), évolution chronologique au sein        |
| de ce groupe (b), diagramme Di-Hd-Aeg de l'ensemble des pyroxènes de Rallier du Baty (c), chemin            |
| d'évolution idéal des pyroxènes de Rallier du Baty                                                          |
| Figure 4.37 : Diagramme de composition des amphiboles calciques (d'après Hawthorne et al2012) où            |
| sont reportées les analyses du monzo-gabbro de l'Anse du Gros Ventre et celles de la monzonite de la        |
| Plage Jaune                                                                                                 |
| Figure 4.38 : Composition des amphiboles analysées des syénites du groupe CaS                               |
| Figure 4.39 : Diagrammes de caractérisation minéralogique (ternaire Ca-Al-Na en %, Ca vs Si, Na vs #Mg)     |
| des amphiboles des roches du groupe CaS                                                                     |
| Figure 4.40 : Composition des amphiboles des syénites du groupe NaS                                         |
| Figure 4.41 : Diagrammes de caractérisation minéralogique (ternaire Ca-Al-Na en %, Ca vs Si, Na vs #Mg)     |
| des amphiboles des roches du groupe NaS                                                                     |
| Figure 4.42 : Diagramme de classification des amphiboles des syénites du groupe CaNaS (d'après              |
| Hawthorne et al., 2012)                                                                                     |
| Figure 4.43 : Diagrammes de caractérisation minéralogique (ternaire Ca-Al-Na en %, Ca vs Si, Na vs #Mg)     |
| des amphiboles des roches du groupe CaNaS159                                                                |
| Figure 4.44 : Diagrammes d'évolution des compositions (ternaire Ca-Al-Na en %, Ca vs Si) d'amphiboles (a    |
| et b) du monzo-gabbro de l'anse du Gros Ventre et intermédiaire de la Plage Jaune, et (c et d) des roches   |
| du groupe CaS                                                                                               |
| Figure 4.45 : Diagrammes d'évolution des compositions (ternaire Ca-Al-Na en %, Ca vs Si) d'amphiboles       |
| des roches du groupe (e et f) du groupe CaNaS et (g et h) du groupe NaS161                                  |
| Figure 4.46: Diagrammes synthétiques de l'évolution des amphiboles au travers des 3 grands ensembles        |
| pétrographiques. a et b) ternaire Ca-Al-Na en %, et (c et d) Ca vs Si162                                    |
| Figure 4.47: Diagramme synthétique des caractéristiques pétrographiques permettant de distinguer les 3      |
| grands ensembles de roches plutoniques formant le complexe sud de Rallier du Baty165                        |
| Figure 4.48: Carte pétrographique du complexe sud de Rallier du Baty167                                     |
| Figure 4.49: Carte géologique du SRBIC169                                                                   |
| Figure 4.50: Comparaison des données structurales, pétrographiques et géochronologiques sur la coupe        |
| SSO-NNE                                                                                                     |
| Figure 4.51: Diagramme synthétique des grands ensembles structuraux et pétrographiques du complexe          |
| plutonique représentés en fonction des données géochronologiques (à 20)                                     |
| Figure 4.52: Corrélation des paramètres intensifs d'anisotropie magnétique en fonction des différentes      |
| groupes pétrographique du complexe sud de RdB173                                                            |

| • Figure 5.1 : Diagramme TAS (Total Alcalins versus SiO <sub>2</sub> ) pour les roches plutoniques étudiées (modifié d'après Middlemost, 1994)                                                                                                                                             | .76       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Figure 5.2 : Diagramme de classification MALI (Modified Alkaline Lime Index) pour les roches plutonique<br>de la péninsule de Rallier du Baty auxquelles ont été ajoutées les compositions des basaltes de plateau l<br>plus proches du complexe (massif des Trois Ménestrels (Diop, 2008) | es<br>.77 |
| Figure 5.3 : Diagrammes de Harker en %poids d'oxydes de l'ensemble des roches plutoniques étudiées.                                                                                                                                                                                        | .79       |
| Figure 5.4 : Diagrammes de Harker des roches plutoniques felsiques (Syenites, Qz-monzonites, Granites)                                                                                                                                                                                     | )<br>.81  |
| Figure 5.5: Interprétation des évolutions des éléments majeurs en fonction des groupes pétrographique                                                                                                                                                                                      | s.<br>84  |
| Figure 5.6 : Diagrammes Rb. U et Ce versus Nb                                                                                                                                                                                                                                              | .88       |
| Figure 5.7: Diagrammes de Harker pour certains élément traces représentés en fonction des groupes                                                                                                                                                                                          |           |
| pétrographiques Cas, CaNaS, NaS.                                                                                                                                                                                                                                                           | .91       |
| Figure 5.8: Interprétation des évolutions des éléments traces en fonction des groupes pétrographiques,                                                                                                                                                                                     |           |
| illustrée dans les diagrammes de Harker1                                                                                                                                                                                                                                                   | .92       |
| Figure 5.9: Zoom et interprétation des diagrammes Harker de Ba et Sr, représenté en fonction des                                                                                                                                                                                           |           |
| groupes pétrographiques 1                                                                                                                                                                                                                                                                  | .93       |
| Figure 5.10: Spectres étendus normalisés aux chondrites, représentés en fonction des différents groupes<br>pétrographiques du SRBIC et de ses satellites                                                                                                                                   | s<br>.97  |
| Figure 5.11: Diagrammes de terres rares normalisées aux chondrites                                                                                                                                                                                                                         | 01        |
| Figure 5.12: Evolution des spectres normalisé aux CI le long d'une coupe SSO-NNE : Anse du Gros Ventre                                                                                                                                                                                     | э —       |
| Pic Chastaing                                                                                                                                                                                                                                                                              | .04       |
| • Figure 6.1: Diagramme isochrone actuelle du Rh/Sr 2                                                                                                                                                                                                                                      | 12        |
| Figure 6.2: Diagramme isochrone initiale du Rb/Sr.                                                                                                                                                                                                                                         | 14        |
| Figure 6.3: Diagramme de compositions isotopiques initiales en Sr reportées en fonction des âges de                                                                                                                                                                                        |           |
| chaque échantillon                                                                                                                                                                                                                                                                         | 15        |
| Figure 6.4: Carte de répartition des compositions isotopiques initiales en strontium corrigés de l'âge U-P                                                                                                                                                                                 | 'n        |
| des échantillons 2                                                                                                                                                                                                                                                                         | 15        |
| Figure 6.5: Diagramme isochrone actuelle en Sm/Nd 2                                                                                                                                                                                                                                        | 16        |
| Figure 6.6 : Diagramme isochrone initiale en Sm/Nd 2                                                                                                                                                                                                                                       | 17        |
| Figure 6.7 : Diagramme des compositions initiales en Nd reportées en fonction de l'âge de chaque<br>échantillon                                                                                                                                                                            | 18        |
| Figure 6.8 : Carte de répartition des valeurs initiales en Nd sur la péninsule de Rallier du Baty 2                                                                                                                                                                                        | 19        |
| Figure 6.9: Diagramme de corrélation Nd <sub>initial</sub> et Sr <sub>initial</sub> des données provenant du LIP lié à la présence du                                                                                                                                                      | I         |
| panache de Kerguelen                                                                                                                                                                                                                                                                       | 21        |
| Figure 6.10: Diagramme de corrélation Nd <sub>initial</sub> vs Sr <sub>initial</sub> centré sur les données obtenues de péninsule de<br>RdB                                                                                                                                                | ؛<br>21   |
| Figure 6.11: haut) Diagramme de corrélation Ndinitial vs. Srinitial avec toutes les compositions recalculées à                                                                                                                                                                             | í .       |
| 14Ma (exceptées les plus jeunes), bas) résultats de modélisation AFC entre le panache de Kerguelen et l                                                                                                                                                                                    | е         |
| gneiss d'Elan Bank et mélange entre le panache de Kerguelen et le manteau métasomatisé à l'origine de                                                                                                                                                                                      | 32        |
| lamproïtes du Gaussberg                                                                                                                                                                                                                                                                    | 23        |
| Figure 6.12: Diagramme de corrélation Nd <sub>initial</sub> vs Sr <sub>initial</sub> illustrant les résultats de l'AFC (avec r=0.4) des                                                                                                                                                    |           |
| roches CaS vieillies (jusqu'à 6Ma) par les suivantes                                                                                                                                                                                                                                       | 24        |
| de péninsule de RdB                                                                                                                                                                                                                                                                        | .s<br>25  |
| • Figure 7.1: Données isotopiques Lu/Hf sur zircon, corrigés de l'âge de chaque échantillon et reportés é                                                                                                                                                                                  | en        |
| fonction du temps                                                                                                                                                                                                                                                                          | 37        |
| Figure 7.2: Diagramme de corrélation ɛNd vs ɛHf à l'état initial des roches étudiées et comparées aux                                                                                                                                                                                      |           |
| donnees existantes sur le plateau de Kerguelen                                                                                                                                                                                                                                             | 38        |
| Figure 7.3: Diagramme de correlation Nd <sub>initial</sub> VS Sr <sub>initial</sub> (corriges a 14Ma), centre sur les données                                                                                                                                                              | 20        |
| isotopiques obtenues                                                                                                                                                                                                                                                                       | 22        |

| Figure 7.4: Exemples et comparaison d'évolution des pyroxènes (a et b) et des amphiboles (c et d) au sein                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| de complexes alcalins sur-saturés et sous saturés de par le monde241                                                                                          |
| Figure 7.5: Coupes W-E extraites de la thèse de J.Nougier (1969)246                                                                                           |
| Figure 7.6: Représentation schématique des mécanismes responsables des géométries discordantes au                                                             |
| contact SRBIC-basaltes de plateau (opérants à plusieurs échelles)247                                                                                          |
| Figure 7.7: Représentation schématique des contraintes subies par l'encaissant lors de la propagation                                                         |
| a un sili                                                                                                                                                     |
| Figure 7.8 : Impact de la sur-représentation des données dans une aire spécifique de la zone d'étude et                                                       |
| compatibilité avec le modèle de construction du SRBIC                                                                                                         |
| Figure 7.9: Structure de la croute océanique épaissie sous l'archipel de Kerguelen, a) d'après Grégoire et al. (1998) ; (b) détaillée sous le complexe de RdB |
| Figure 7.10 : Modèle de la formation du SRBIC à l'échelle de la lithosphère, à travers 3 schémas évolutifs                                                    |
| Figure 7.11: Modèle alternatif à l'échelle de la lithosphère, impliquant une Deep Hot Zone en domaine océanique                                               |
| Figure 7.12: Position du fragment continental reportée (par une flèche en a) sur les cartes de                                                                |
| reconstruction de l'ouverture de l'Océan indien d'après Gibbons et al., (2013)258                                                                             |

# Chapitre 1 : Introduction et zone d'étude

#### 1.1 Problématique

#### 1.1.1 Introduction générale

Les roches alcalines représentent moins de 1% du volume estimé des roches ignées (Fitton and Upton, 1987). Même si ces roches ont été observées dans la plupart des contextes géodynamiques (Bailey, 1974), elles sont caractéristiques des îles océaniques et plus globalement des Large Igneous Province (LIP). Ces roches sont donc symptomatiques de l'expression d'une activité magmatique intraplaque océanique ou continentale dont l'origine est reliée à de grands panaches mantelliques profonds. Même si l'expression la plus visible du magmatisme est le magmatisme volcanisme, il est clair que le magmatisme plutonique en est l'expression dominante en terme de volumes produits (Crisp, 1984; Shaw, 1985; White et al., 2006). Toutefois, de par leur mise en place sous la surface, les roches plutoniques ne sont disponibles à l'affleurement que grâce au jeu couplé de la tectonique et de l'érosion. Malgré cette rareté relative, les études sur les plutons alcalins sont nombreuses. La minéralogie exotique riche en éléments traces-incompatibles qui caractérise ces termes évolués leur confère un intérêt économique de premier ordre. Si les plutons alcalins sont rares, les exemples de roches plutoniques felsiques en domaine océanique le sont d'autant plus. Ces roches se retrouvent principalement en tant que xénolithes dans plusieurs îles océaniques comme les Azores (Widom et al., 1993); l'Ile de l'Ascension (Harris, 1983) ; les Seychelles (Tucker et al., 2001), Tahiti (Bartindzeff et al., 1988) ou bien sous forme de complexes intrusifs dont l'Islande (Burchardt et al., 2010; Furman et al., 1992) et l'archipel de Kerguelen sont les seuls exemples (Nougier, 1969). L'extrême rareté de ces objets en fait à elle seule un centre d'attention particulier. De plus, les magmas alcalins issus de panaches mantelliques (ou points chauds) sont également riches en enclaves du manteau. Ils représentent donc une fenêtre sur le transfert de matière et de chaleur à travers les différentes enveloppes terrestres depuis des niveaux relativement profonds jusque dans les hauts niveaux supérieurs de la croûte et ayant également un impact significatif sur l'atmosphère et l'hydrosphère (Verneshot events, Morgan et al., 2004). L'étude des plutons alcalins en contexte intra-plaque représente un intérêt majeur pour comprendre les processus d'évolution du magmatisme issus de panaches mantelliques profonds.



Figure 1.1: Carte de localisations des Large Igneous Province (adaptée d'après Uenzelmann-Neben, 2013 et modifiée d'après Coffin and Eldholm, 1994).

#### 1.1.2 Motivations et intérêts scientifiques

#### 1.1.2.1 Processus de construction des corps plutoniques

Les plutons alcalins intra-plaques ont fait l'objet de nombreuses études intensives dans les années 70 et 80 pour être progressivement délaissés au profit des plutons de contexte orogénique dans les décennies suivantes (voir reviews : Eby (1990); Bonin (2007); Marks and Markl (2017) et références inclues). L'étude de ces plutons orogéniques, notamment en contexte de subduction, a permis l'émergence d'un nouveau modèle de formation et de construction de ces objets en domaine continental. Contrairement, au modèles classiques de remontée par diapir (mécanisme actif) ou par subsidence en chaudron (mécanisme passif) largement admis durant cette période (Jacobson et al., 1958; Bonin and Lameyre, 1978; Black et al., 1985; Vail, 1985; Bowden et al., 1987; Bonin et al., 1998), ce modèle récent a mis en lumière la forme majoritairement tabulaire des plutons continentaux. De plus, ce modèle a permis de démontrer que la mise en place de ces corps se fait en grande partie ou totalement grâce aux déplacements des roches encaissantes. Couplés à ces observations, les progrès réalisés en géochronologie absolue ont permis de montrer que la construction des plutons se fait de manière épisodique à différentes échelles de temps (Cruden, 1998; Tikoff et al., 1999; Petford et al., 2000; Coleman et al., 2004; Glazner et al., 2004; Horsman et al., 2009; Menand et al., 2011; Leuthold et al., 2012 parmi d'autres). Une des conséquences de ce nouveau modèle est que les mécanismes enregistrés par construction de ces corps plutoniques en domaine continental sont probablement le reflet de processus magmatiques profonds agissant depuis la source de ces magmas (St Blanquat et al., 2011; Annen et al., 2015). L'un des enjeux majeur est désormais de comprendre le(s) rôle(s) du « filtre » crustal dans la production magmatique, le transport de ces magmas et leur mise en place finale. Cette implication de la croûte dépend de nombreux paramètres plus ou moins interdépendants tels que son épaisseur, sa composition, sa rhéologie, sa structuration...etc.

Afin de répondre à cet enjeu actuel majeur, l'étude de la formation d'un pluton en contexte intra-plaque océanique est un point clé donnant la possibilité de comparer l'influence de ces différents paramètres avec ceux plus accessibles et plus étudiés des domaines continentaux.

#### 1.1.2.2 Processus de formation des roches alcalines différenciées

Les complexes alcalins (qu'ils soient plutoniques ou volcaniques) sont souvent composés de deux séries magmatiques : l'une dite « sous-saturée » en silice l'autre dite « sur-saturée ». Dans les stades assez évolués pour permettre leur formation, les minéraux caractéristiques de ces lignées sont la néphéline et le quartz respectivement. Ces deux séries alcalines distinctes se retrouvent souvent dans au sein d'un même complexe alcalin. Plusieurs exemples s'observent dans les grandes provinces alcalines suivantes : Gardar province (Stevenson et al., 1997), Cameroon Line (Fitton, 1987), White Mountains (Henderson et al., 1989), Kola Province (Kramm and Kogarko, 1994) ou encore Malawi (Eby et al., 1998). Les évidences de terrains et les études isotopiques ont montré que dans la plupart des cas, ces deux lignées sont cogénétiques (e.g. Larsen and Sørensen, 1987). Cette caractéristique est étonnante car une fois passée une certaine limite thermodynamique le quartz et la néphéline ne peuvent coexister au sein d'un même magma. Scientifiquement, l'observation de ces deux séries structuralement associées pose donc de nombreuses questions quant à leur mode de formation. Les termes les plus évolués de ces deux séries partagent également les minéralisations exotiques d'intérêt économique. Ces questions sur l'origine de ces deux séries ne sont pas encore résolues. Toutefois, l'ensemble des études menées sur les roches felsiques alcalines s'accordent pour invoquer une source primaire mantellique commune à partir de laquelle le magma parent de ces deux lignées est extrait. Grâce aux progrès réalisés notamment dans la mesure et la compréhension des systèmes isotopiques, deux grands mécanismes sont proposés pour expliquer la coexistence de ces deux séries magmatiques.

Le premier de ces mécanismes de formation suggère des processus influant sur le magma parent et permettant d'outrepasser ou de supprimer la limite thermique qui sépare les deux lignées. Ces processus pourraient impliquer des variations des éléments volatiles (Kogarko, 1974), des variations de saturation en eau (Pankhurst et al., 1976) ou des variations dans les processus de cristallisation fractionnée (Foland and Henderson, 1976; Giret et al., 1980).

Le second mécanisme suggère des interactions entre le magma parent et l'environnement dans lequel celui-ci va être transporté et évoluer. Cette hypothèse suppose que le magma parent initial soit plutôt sous saturé en silice. Via des processus d'assimilation de matériel plus riche en Si (généralement la croûte continentale), ce magma évoluant par cristallisation fractionnée (modèle AFC, DePaolo, 1981) finirait par produire les roches sur-saturées (Brooks, 1982; Davies and Macdonald, 1987; Fitton, 1987). Une variante de ce modèle, pourrait impliquer une fusion anatectique de la base de croûte créant des liquides magmatique sursaturés et interagissant avec les magmas parents mantelliques (e.g. Barker et al., 1975; Martin, 2006).

Ces deux grandes interprétations montrent donc bien la dichotomie entre des modèles magmatiques fermés et des modèles d'évolution en système ouvert avec une implication de la croûte continentale. Toutefois, le second mécanisme n'exclut pas totalement la participation du premier ce qui semble corroboré pas les études récentes (Foland et al., 1993; Harris et al., 1999; Mingram et al., 2000; Marks et al., 2003; Riishuus et al., 2008; Estrade et al., 2014). Ces études montrent donc que la contribution de la croûte continentale est importante en domaine intraplaque continental. C'est pourquoi, l'étude d'un pluton alcalin en domaine océanique présente un intérêt crucial qui est d'apporter des contraintes sur l'origine des plutons alcalins dans un contexte pour lequel la croûte continentale ne semble a priori pas être impliquée. De plus, Kerguelen est un endroit clé où les deux séries de roches plutoniques alcalines existent mais ne sont jamais (jusqu'à preuve du contraire) en relation directe à l'affleurement. L'étude des roches plutoniques de l'archipel permet donc de tester les hypothèses invoquées pour la formation et le lien co-génétique de ces deux séries alcalines.

#### 1.1.2.3 Evolution du plateau océanique de Kerguelen

Finalement, l'étude des plutons de Kerguelen revient à s'intéresser à une des phases d'évolution récentes du plateau océanique formé par l'activité d'un point chaud, dont l'archipel représente la partie émergée. Cette phase voit se former, dans une croûte océanique, des blocs constitutifs (plutons) caractéristiques du domaine continental (Wedepohl, 1991). Aussi, comme souligné par M. Grégoire dans sa thèse (1994), les cumulats basiques rééquilibrés en faciès granulitique tels qu'il en existe dans la croûte inférieure continentale, l'épaisseur du plateau entre 15 et 20 Km mis en évidence à l'aide de profils sismiques (Recq et al., 1990; Charvis et al., 1995) et les nombreuses intrusions de roches plutoniques de compositions intermédiaires et felsiques (Nougier, 1969) font de ce plateau océanique une portion de croûte océanique de composition « anomalique » et « insubductable » (Kroenke, 1974; Nur and Ben-Avraham, 1982; Saunders et al., 1996; White et al., 1999).

Ainsi, de par ces caractéristiques acquises au cours du temps via l'activité du panache de Kerguelen, le plateau océanique de Kerguelen se place dans le large débat concernant l'origine et la formation de la croûte continentale. En effet, grâce à ses caractéristiques physico-chimiques, il est possible que ce plateau puisse représenter le stade embryonnaire du développement d'un micro-continent attesté/formé par refusion de croûte. Ce mode de création tel qu'il est débattu en Islande (voir Bindeman et al., 2012 et

références inclues), n'est pas reconnu (à l'heure actuelle) sur l'archipel de Kerguelen dont il est le plus proche exemple. Il est également possible que ce plateau océanique de faible densité puisse être un analogue récent de plateau océanique développé dans un contexte intraplaque qui, avec le jeu de la tectonique des plaques et de la dynamique lithosphérique, ait pu être incorporé dans les contextes orogéniques, et donc contribuer directement à la croissance continentale. Les exemples témoins de tels processus se retrouvent par exemple au sein du craton ouest-africain (Boher et al., 1992), du bouclier arabo-nubien (Claesson et al., 1984), le craton australien (Nesbitt and Talbot, 1966), le craton nordaméricain (Scott et al., 1992), ou encore plus récemment sous la cordillère péruvienne avec la subduction du Plateau Inca (e.g. Gutscher et al., 1999). C'est pourquoi, l'étude d'un pluton de l'archipel de Kerguelen permet également d'approcher une des étapes magmatiques envisagées comme ayant participé à un mode de croissance continentale en domaine océanique (e.g. White et al., 1999; Martin et al., 2008 et références inclues)

#### 1.1.3 Questions spécifiques et méthode de travail

Ce travail de thèse s'est donc focalisé sur l'étude du pluton alcalin du sud de la péninsule de Rallier du Baty sur l'archipel de Kerguelen (T.A.A.F.). Ce pluton fait partie d'une plus large province plutonique qui s'étend jusqu'à la calotte Cook. Le complexe sud concentre la majorité des roches grenues disponibles à l'affleurement de l'archipel. Il est majoritairement constitué de roches plutoniques felsiques (syénites) et sur-saturées en quartz. En raison de sa taille, de ses qualités d'affleurement et des possibilités logistiques permettant son étude (comparés aux autres complexes de cette province), ce complexe est une cible idéale pour l'étude de pluton en domaine océanique.

Le principale objectif de ce travail de thèse est de revisiter ce complexe plutonique, déjà étudié dans les années 1970 et 1980, au regard des progrès réalisés dans l'analyse et la compréhension des systèmes magmatiques plutoniques. Cet objectif qui s'inscrit dans les problématiques précédentes peut se traduire sous forme de 4 questions simples :

→ Quelle est l'origine des magmas ?
 ↔ Comment ont-ils évolué pour former les roches plutoniques ?
 ↔ Comment ce complexe syénitique s'est-il mis en place ?
 ↔ En combien de temps ?

La stratégie mise en place pour atteindre les objectifs de ce travail de thèse fut pluridisciplinaire associant observations et mesures sur le terrain, pétrographie et minéralogie, géochimie élémentaire (majeurs et traces) sur roches totales, géochimie isotopique (Rb/Sr et Sm/Nd) sur roche totale et géochronologie U-Pb sur zircon. Cette dernière méthode est utilisée pour la première fois sur ce complexe plutonique. D'autre part, l'analyse d'anisotropie de susceptibilité magnétique utilisée pour l'étude structurale est la première étude de ce type menée sur un pluton en contexte océanique.

Le manuscrit s'organise autour des questions précédentes en commençant par les bases, c'est à dire la structure et la pétrographie du complexe. La première partie du manuscrit s'oriente donc sur la construction du pluton et les roches en présence. La géochronologie a été intégrée à l'étude structurale donnant lieu à une publication soumise à la revue « Geology ». La seconde partie du manuscrit est consacrée à l'étude géochimique élémentaire et isotopique permettant d'identifier l'évolution et l'origine des roches qui constituent ce complexe. Enfin, la dernière partie est dédiée à la discussion des résultats obtenus et des interprétations qui en découlent.

#### 1.2 Contexte géologique

#### 1.2.1 Edification du « Grand » plateau de Kerguelen

Le « Grand Plateau de Kerguelen » est la seconde plus grande province ignée (LIP) au monde après le plateau océanique d'Ontong Java (Coffin and Eldholm, 1994). La formation de ce plateau est considérée comme la conséquence directe de la présence du panache (ou plume) de Kerguelen depuis le démantèlement du Gondwana. Cette hypothèse est supportée par les similitudes géochronologiques, géochimiques et isotopiques observées entre certaines laves basaltiques du sud du plateau de Kerguelen (SKP; âge le plus ancien à 119 Ma ; Duncan, 2002) et des lamprophyres d'Antarctique (115 Ma; Coffin et al., 2002; Sushchevskaya et al., 2014), des basaltes d'Australie (137-130 Ma, Bunbury ; Olierook et al., 2016), des basaltes d'Inde et du Tibet (province du Rajmahal, 118 Ma ; Kent et al., 2002); province de Comei, 132 Ma ; Zhu et al., 2009).



Abréviations: ASP: Amsterdam-and Saint Paul islands, C : Crozet islands, CR : Conrad Rise, G : Gaussberg volcano, K: Kerguelen archipelago. PE: Prince Edouard islands

Les études géochronologiques de roches magmatiques, échantillonnées au cours de plusieurs programmes de dragage et de forage, ont montré une diminution des âges de mise en place du plancher basaltique au travers du « Southern Kerguelen Plateau » et du « Central Kerguelen Plateau » en allant vers le nord jusqu'à 85 Ma (SKP : Leclaire et al., 1987; CKP : Whitechurch et al., 1992; Coffin et al., 2002; Duncan, 2002). Le plateau de Broken Ridge (BR, 95 Ma : Duncan, 2002) s'est également formé durant cette période. Plus tard, l'activité magmatique a permis de construire une partie du plateau nord de Kerguelen (Skiff Bank, 68 Ma : Duncan, 2002) et les monts sous-marins de la Ninetyeast Ridge (77 Ma : Pringle, 2008). Ces derniers se sont progressivement éloignés et répartis le long du plancher océanique entraîné par le mouvement de la plaque indienne vers l'Asie.



Figure 1.3 : Cartographie physique et géochronologiques données dans l'océan Indien, entre l'Asie, l'Australie et l'Antarctique (adaptée de Mahoney et al., 1995). Seuls les numéros de sites IODP dont les roches sont attribuées au point chaud de Kerguelen ont été représentés. Les âges du plateau de Wallaby, du plateau Naturaliste et des basaltes de Bundury (BB) sont de Olierook et al. (2015, 2016, 2017). Les âges de la Ninetyeast-Ridge sont de Pringle (2007, 2008). Les âges du Chagos-Laccadive Ridge sont de (Baksi, 2005). Les âges du plateau des Mascareignes, des plus vieux aux Seychelles jusqu'aux plus jeunes à l'île Maurice, sont de Ganerod et al. (2011); Baksi (2005); Moore et al. (2011). Les âges indiens pour les trapps du Rajmahal sont de Coffin et al. (2002); Kent et al. (2002) et ceux des roches mafiques de la province de Comei de Zhu et al. (2009). Les âges antarctiques pour les lamprophyres sont de Coffin et al. (2002) et ceux des lamproïtes du volcan du Gaussberg sont de Sushchevskaya et al. (2014). Les âges du plateau de Kerguelen sont de Coffin et al. (2002): sites 738 et 750; de Duncan (2002): Sites 747, 1136, 1137, 1138, 1139, 1140; et de Whitechurch et al., (1992): Site 749. Les âges du Broken Ridge sont de Duncan (2002): Sites 1141 and 1142.

L'anomalie magnétique 18, reconnue à la fois sur le flanc océanique du plateau de Kerguelen et sur celui de Broken Ridge (42,7 Ma, Kent and Gradstein, 1986; Royer and Sandwell (1989) ainsi que l'âge des plus jeunes basaltes de la Ninetyeast Ridge (43 Ma, Pringle, 2008; Frey et al., 2015) confirment l'existence d'un unique plateau formé par le plateau de Kerguelen et celui du Broken Ridge avant son morcellement. Cette séparation met en évidence la propagation de la ride Sud Est Indienne (SEIR) au travers de l'océan indien à environ 43 Ma (Royer and Coffin, 1988; Tikku and Cande, 2000). Après cette division, la mise en place du NKP (« Northern Kerguelen Plateau ») a continué pendant que l'ensemble du plateau de Kerguelen s'éloignait de la SEIR (site ODP 1140, 34 Ma ; Duncan, 2002) jusqu'à ce qu'il atteigne son emplacement actuel (Figure 1.3). Les données géochronologiques montrent donc que la formation du plateau océanique résulte d'une production magmatique qui dure depuis au moins 119Ma.

#### 1.2.2 L'archipel de Kerguelen

L'archipel de Kerguelen constitue la partie émergée du NKP. Les roches les plus anciennes datées au niveau de l'archipel sont les basaltes de plateau qui forment environ 80-85% des affleurements. Les âges proposés s'échelonnent principalement entre 28-29 Ma dans le nord-ouest (Annell, 2005; Doucet et al., 2002; Nicolaysen et al., 2000) et 24.5 Ma dans le sud-est (Nicolaysen et al., 2000). Différents types de roches magmatiques intrusives au sein de ces basaltes de plateau s'observent partout dans l'archipel. Elles ont été datées entre 24,25 Ma (Val Gabbro ; Scoates et al., 2007) et 4,9 Ma (RdB-Igneous Province, Dosso et al., 1979). Des roches basaltiques draguées au niveau de certains centres volcaniques localisés entre l'archipel des Kerguelen et les îles Heard (sur le CKP) semblent avoir été mises en place au cours de la même période (18-22Ma ; Weis et al., 2002). Enfin, les roches les plus jeunes observées au niveau de l'archipel de Kerguelen sont des produits volcaniques datés entre 1 Ma (Mont Ross ; Weis et al., 1998) et moins de 26 Ka (Gagnevin et al., 2003; Nougier, 1969).



Figure 1.4 : Imagerie tomographique actuelle sous l'archipel de Kerguelen ; a) d'après Zhao (2009), b) d'après Montelli (2004).

L'activité magmatique actuelle est supposée être centrée sous les îles Heard et McDonald (Clarke, 1983; Duncan et al., 2016; Quilty and Wheller, 2000). Toutefois, la présence de fumerolles dans la partie sudouest ainsi que de sources hydrothermales dispersées dans tout l'archipel indiquent la persistance d'une anomalie thermique sous ce dernier. Du fait de sa position isolée, il existe peu de données sur la structure profonde terrestre sous le plateau de Kerguelen. Seuls quelques modèles de tomographie sismiques ont permis à ce jour d'imager cette structure (Montelli, 2004; Zhao, 2009). Les images tomographiques disponibles (Figure 1.4) montrent bien que le nord plateau de Kerguelen est à l'aplomb d'une grande zone d'anomalie thermique. Cette anomalie (<1000Km) représente le point chaud actuel de Kerguelen. Cette anomalie se propage dans les niveaux terrestres profonds et permet d'imager le plume ou panache de Kerguelen à proprement dit. L'origine de cette anomalie se localise actuellement au NW de Kerguelen entre la limite manteau-noyau (Core-Mantle-Boundary/ CMB) et 2350Km de profondeur (Montelli, 2004; Zhao, 2015). La propagation thermique du plume de Kerguelen actuel n'est donc pas verticale au-delà de 1000Km et semble diminuer de largeur entre 1500 et 1000Km de profondeur. Cette caractéristique illustre la structure d'un panache comme composée d'une tête et d'une queue (Griffiths and Campbell, 1990; Morgan, 1971).

#### 1.2.3 Caractéristiques géochimiques et isotopiques des roches plateau

De nombreuses études géochimiques et isotopiques ont été menées sur les roches magmatiques de l'ensemble du plateau de Kerguelen afin de caractériser leurs sources et de mieux contraindre la nature, l'origine et l'évolution de ce vaste plateau océanique dans le temps. Les coulées de basaltes du SKP (Coffin et al., 2002; Duncan, 2002) et du CKP (Frey et al., 2000) sont essentiellement tholéiitiques et présentent des forts enrichissements en éléments incompatibles (notamment légères LREE). Associée aux données isotopiques, ces caractéristiques d'OIB ont permis à une majorité de la communauté scientifique de relier la formation de ces basaltes précoces à l'expression majoritaire du plume panache de Kerguelen (références précédentes). Ces basaltes tholeiitiques proviendrait donc majoritairement de fort degré de fusion partielle d'un manteau enrichi. Toutefois, les compositions isotopiques des basaltes provenant de plusieurs endroits du SKP et du CKP ont mis en évidence des processus de contamination impliquant un composant continental (site ODP 738 : Mahoney et al., 1995 ; sites ODP 747, 749 et 750 : Frey et al., 2002b). Sur la base de mesures sismiques, il a été proposé qu'un fragment continental pourrait être situé à la base du SKP (Operto and Charvis, 1995, 1996; Gladczenko and Coffin, 2001) supportant de fait ces résultats isotopiques. Cette hypothèse a été définitivement accepté suite à la découverte de clastes de gneiss d'âge protérozoïque provenant d'un conglomérat fluviatile, intercalés avec des coulées basaltiques et, échantillonnés au niveau de l' « Elan Bank »(site ODP 1137 : Nicolaysen et al., 2001; Ingle et al., 2002). La présence d'un fragment continental sous Elan Bank est également compatible avec les données sismiques (Charvis et al., 1995). L' « Elan Bank » aurait fait partie de la marge indienne avant d'être incorporé au plateau de Kerguelen par un saut de ride après 124 Ma (Nicolaysen et al., 2001; Weis et al., 2001; Gaina et al., 2003). Toutefois, une récente compilation et modélisation isotopique montre que le plume de Kerguelen n'aurait pu jouer qu'un rôle thermique dans la formation des premiers produits magmatique du plateau <95Ma (Olierook et al., 2017). Des interactions entre un manteau asthénosphérique et un manteau hétérogène métasomatisé ± croûte continentale suffiraient à expliquer les données géochimiques et isotopiques de ces premiers produits tholeiitiques. L'alcalinité des roches magmatiques augmente depuis le SKP jusqu'au NKP (e.g. Frey et al., 2003) comme en témoignent les basaltes alcalins trouvés au niveau de Broken Ridge (Neal et al., 2002) et de la NinetyEast Ridge (Frey et al., 2011), ainsi que par la rhyolite échantillonnée au niveau du Skiff Bank (Kieffer et al., 2002). Cette évolution semble refléter une diminution du degré de fusion partielle du manteau source des basaltes devenant de plus en plus transitionnels (e.g. Chen and Frey, 1985; Bardintzeff et al., 1994) au cours du temps. D'autre part, l'implication continentale semble diminuer de concert puisqu'aucune preuve d'une telle contamination continentale n'a été clairement mise en évidence depuis env. 100Ma (site 747 : Frey et al., 2002b; Bénard et al., 2010). Bien que les compositions en éléments majeurs des roches basaltiques de la base du NKP (site 1140) montrent plutôt des similitudes avec les basaltes de la base du SKP (Weis et al., 2002), leurs signatures isotopiques sont bien différentes de ces derniers. Ces caractéristiques les relient aux basaltes de l'archipel abordés dans la section suivante.

1.2.4 Caractéristiques géochronologiques, géochimiques et isotopiques des roches de l'archipel



Figure 1.5 : Carte géologique simplifiée de l'archipel de Kerguelen illustrant les différents systèmes intrusifs dans les basaltes de plateau ainsi que les données géochronologiques associées (modifiée d'après Nicolaysen et al. (2000). Les orientations des basaltes sont de J.Nougier (1969). a) J.Nougier (1972); b) Dosso et al.(1979); c) Nougier et al.(1983) ; d) Giret and Lameyre (1983); e) H.Leyrit (1992); f) Weis et al. (1993); g) Nicolaysen et al. (2000); h) Doucet et al. (2002); i) H.Annell (2005); j) Scoates et al. (2007) et k) T.Loftus (2011).

Les basaltes de plateau apparaissent comme des coulées successives légèrement inclinées de 2 à 5 degrés vers le SE (Nougier, 1969). Plusieurs sections de basaltes réalisées sur l'archipel ont mis en évidence une augmentation de l'alcalinité au cours du temps (Weis et al., 1993; Yang et al., 1998) depuis les plus anciennes localisées au NO (e.g. Mont de la Fontaine, 28-29 Ma : Doucet et al., 2002) aux plus récentes situées au SE de l'archipel (e.g. Ravin du Charbon, 25 Ma et Mont Crozier, 24.5Ma : Nicolaysen et al., 2000). Bien que les compositions en éléments majeurs des basaltes les plus anciens de l'archipel présentent des similitudes avec les basaltes du SKP et du CKP, ils sont considérés comme des basaltes transitionnels tandis que les plus récents sont moyennement alcalins (Gautier, 1987; Gautier et al., 1990). Au nord de l'archipel, un des basaltes échantillonné en mer au niveau du NKP (site 1140, 34 Ma : (Mattielli et al., 2002; Weis and Frey, 2002) est interprété comme formé de l'interaction du plume et d'une source appauvrie identique à celle des MORB de la ride sud-est indienne. Les caractéristiques isotopiques des basaltes de plateau les plus anciens de la péninsule Loranchet, située au nord de l'archipel des Kerguelen, et datés entre 29 et 26 Ma mettent également en évidence l'implication d'une composante appauvrie. Ce composant a été expliqué soit par la source des MORB de la SEIR (Doucet et al., 2002), soit par un composant intrinsèque de la source du panache de Kerguelen (Frey et al., 2002a), ou encore par un processus d'assimilation dans la lithosphère océanique peu profonde de cumulats gabbroiques de la SEIR (Yang et al., 1998). La première hypothèse suggère des processus d'interaction ride-plume se déroulant jusqu'à environ 350 à 400 km de la SEIR (Royer and Sandwell, 1989). Après 26 Ma, la source des basaltes de plateau est considérée comme étant dominée par la signature du panache de Kerguelen. Les basaltes du Mont Crozier (24.5Ma ; Nicolaysen et al., 2000), situés sur la péninsule de Courbet, ont été considérés comme l'expression la plus pure de ce panache en raison de leurs compositions isotopiques extrêmes en Pb et Hf (Mattielli et al., 2002; Weis and Frey, 2002). L'étude des basaltes de l'archipel a donc montré qu'une interaction complexe (≥ 43 Ma) entre la SEIR et le panache de Kerguelen a eu lieu avant que ce dernier ne devienne la source dominante des basaltes transitionnels à moyennement alcalins tandis que le plateau de Kerguelen s'éloignait de la ride pour se positionner dans sa situation intraplaque actuelle (Gautier et al., 1990; Yang et al., 1998).

Les roches magmatiques intrusives dans les basaltes de plateau ont été subdivisées en trois groupes en fonction de leurs caractéristiques géochimiques et géochronologiques (Giret and Lameyre, 1983; Giret, 1983; Beaux, 1986; Weis and Giret, 1994). Les plus anciennes roches plutoniques forment des sills intrusifs intercalées dans les basaltes de plateaux, et correspondent principalement à des roches gabbroïques qui ont été décrites dans la péninsule Loranchet (Mont Lacroix :Giret and Lameyre, 1983) la péninsule de Courbet (Mont des Mamelles : Nougier, 1969; Giret and Lameyre, 1983) et la péninsule Jeanne d'Arc (Val Gabbro : Giret, 1983; Giret et al., 1988; Gautier et al., 1990). L'incohérence des âges proposés pour les roches du mont des Mamelles (précédemment 39-38Ma K-Ar method, Giret and Lameyre, 1983) avec ceux des basaltes hôtes (Mont Crozier, 24.5 Ma : Nicolaysen et al., 2000) laisse à penser que le complexe plutonique du Val Gabbro est bien le plus ancien de l'archipel (24,25 ±0,15 Ma ; Scoates et al., 2007). Le second groupe de roches plutoniques à avoir été mis en place appartient à la suite alcaline sous saturé en silice (Montagnes Vertes, 23-26 Ma : Giret and Lameyre, 1983; Mont Ballons, 17-13 Ma : Giret and Lameyre, 1983; Loftus et al., 2011; Société de Géographie, 13,7 Ma : Giret and Lameyre, 1983; Weis and Giret, 1994). Les roches de ce groupe sont principalement des gabbros, des monzonites et des syénites à néphéline. A la même époque, des basaltes modérément alcalins ont été mis en place au niveau du plancher océanique situés entre l'île Heard et l'archipel des Kerguelen (Weis et al., 2002). Enfin, le dernier groupe de roches plutoniques intrusives est composé de corps plutoniques appartenant à la série alcaline sursaturé en silice et affleurant principalement dans la partie occidentale de l'archipel (lles Nuageuses, lle de l'Ouest, Rallier du Baty : Nougier, 1969; Marot and Zimine, 1976; Giret, 1983). Ils se sont mis en place entre 18.9 Ma (Righi :Weis and Giret, 1994) et 4,9 Ma (NE Rallier du Baty ; Lameyre et al., 1976; Dosso et al., 1979). Ils sont constitués de roches évoluant depuis des gabbros jusqu'à des granites alcalins avec une prédominance de syénites à quartz. La péninsule de Rallier-du-Baty, qui rassemble la majorité des roches de ce groupe disponibles à l'affleurement, constitue la zone d'étude de ces travaux de thèse. Cette dernière sera détaillée dans la section suivante. Bien que les roches volcaniques recoupant les basaltes de l'archipel des Kerguelen soient le plus souvent observées en association avec leurs intrusions plutoniques connexes (voir références ci-dessus), un événement majeur a permis la mise en place de roches volcaniques bien localisées dans la partie sud-est de l'archipel (phonolites et trachytes) datés entre 10,2 à 6,6 Ma (Nougier, 1969; Leyrit, 1992). Après une période de quiescence, plusieurs volcans centrés se sont mis en place dont le Mont Ross, qui est le plus haut sommet de l'île (1850 m). Ce dernier est principalement composé de roches effusives de la série alcaline sous saturée en silice allant de trachybasaltes à des trachytes à néphéline datés entre 1.02 et 0,1 Ma (Weis et al., 1998). La plus jeune roche alcaline est une trachyte quartzifère datée à 26 Ka qui provient d'un volcan de la péninsule Rallier-du-Baty (Gagnevin et al., 2003).

Contrairement à celles des basaltes de plateaux de l'archipel, l'ensemble des compositions isotopiques des roches magmatiques intrusives mises en place depuis 25 Ma au niveau de l'archipel, et notamment celles des roches plutoniques (Weis and Frey, 2002) ne peuvent pas s'expliquer par un mélange entre la source enrichie du plume de Kerguelen et une source appauvrie de type MORB (Borisova et al., 2014). Un troisième composant a ainsi été invoqué pour expliquer les valeurs isotopiques montrant une tendance vers des compositions Sr<sup>87</sup>/Sr<sup>86</sup> plus radiogéniques et des rapports Hf-Nd-Pb plus faibles (Ingle et al., 2002; Mattielli et al., 2002). Il a été suggéré que ce composant « crust-like » pourrait provenir de faibles degrés de fusion de matériaux recyclés dans la région du panache de Kerguelen. Ces matériaux pourraient correspondre à des fragments de croûte océanique ou de plateau recyclés via des mécanismes de subduction (Mattielli et al., 2002) plaidant pour une hétérogénéité intrinsèque du plume de Kerguelen ou provenir de l'assimilation de fragments de la lithosphère de la partie crétacée du plateau océanique de Kerguelen (Mattielli et al., 1999; Ingle et al., 2002, 2003; Loftus et al., 2011). Les études géochimiques et isotopiques des roches intrusives de l'archipel ont donc permis d'identifier plusieurs composantes minoritaires mal définies impliquées dans la genèse de ces roches dominées par la signature du panache de Kerguelen.

D'autre part, les xénolites basiques et ultrabasiques remontés par les roches volcaniques alcalines récentes recoupant les basaltes de plateau ont fourni d'importantes informations sur le manteau sousjacent de l'archipel ainsi que sur l'interface croûte-manteau. Les xénolites de péridotites ont permis de mettre en évidence des processus de fusion partielle et de métasomatisme d'un manteau supérieur semblable à celui de la SEIR. Le métasomatisme est relié à la percolation de liquides alcalins voire carbonatitiques probablement relier à l'activité du plume de Kerguelen (Grégoire et al., 2000; Delpech et al., 2004). Certaines données Re-Os ont également montré la présence locale d'un manteau lithosphérique continental probablement crétacé sous l'archipel (Hassler and Shimizu, 1998) alors qu'une étude pétrologique plus récente propose même l'existence, au niveau d'une seule localité, de quelques fragments de manteau similaire au manteau cratonique (Wasilewski et al., 2017). Ces différents xénolites péridotitiques attestent donc de l'hétérogénéité du manteau sous-jacent à l'archipel. De plus, d'autres xénolites montrent des évidences d'équilibration en faciès granulite (Grégoire, 1994; Grégoire et al., 1998). Ces derniers sont considérées comme les marqueurs de l'épaississement progressif du NKP au cours du temps et de l'éloignement progressif par rapport à la ride océanique. L'abondance de ces enclaves sur le terrain, couplée à des expérimentations en laboratoire, ont permis d'identifier une large zone de sous-plaquage magmatique basique et ultrabasique permettant d'expliquer les faibles vitesses d'ondes sismiques qui délimitent la transition croûte-manteau sous l'archipel (Recq et al., 1990; Charvis et al., 1995; Grégoire et al., 2001), laquelle est estimée autour de 18 Km sous l'archipel.



Figure 1.6 : Photos d'enclaves mafiques et ultramafiques retrouvées dans les laves alcalines récentes de l'archipel de Kerguelen (crédit J-Y. Cottin).

#### 1.2.5 La péninsule de Rallier du Baty

La partie sud-ouest de l'archipel de Kerguelen concentre la majorité des roches plutoniques intrusives (Nougier, 1969). Dans la partie occidentale de la péninsule, ces corps plutoniques sont couverts par des coulées volcaniques de nature trachytique qui semblent avoir été émises à partir d'au moins quatre édifices différents (Nougier et al., 1982). Ces roches volcaniques forment une crête orientée NNE-SSW et ne sont pas âgées de plus de quelques siècles (Nougier, 1972; Nougier et al., 1983). La topographie actuelle de la péninsule est principalement gouvernée par l'érosion glaciaire sub-récente, responsable du découpage de la zone en différents massifs et de l'exceptionnelle qualité des affleurements. Ces roches plutoniques forment une série alcaline sursaturée en silice constituée de roches de différentes natures allant de gabbros et de monzo-diorites à des syénites à quartz (type dominant) et des granites alcalins. Ces roches plutoniques sont recoupées par de nombreux dykes de basaltes, de trachy-basaltes et de trachytes (Mathieu et al., 2011). Même si la découverte de ces roches grenues remonte à la découverte même de l'archipel de Kerguelen (débarquement de l'équipage du Gros Ventre commandé par Saint Allouarn : le 13 février 1772), le caractère intrusif dans les basaltes de plateau ne fut confirmé que 200 ans plus tard par J.Nougier en 1963. Plus tard, de nouvelles études de terrains (Marot and Zimine, 1976) ont permis d'observer des roches plutoniques au delà de la péninsule (sensu lacto) vers le Nord et de définir 4 complexes distincts. Le complexe Sud (le plus grand), le complexe intermédiaire, le complexe du nord -ouest et le complexe du Nord-est. La zone d'étude de mes travaux de thèse se limite au complexe Sud de la péninsule ou SRBIC (South Rallier du Baty Igneous Complex).

Toutes les études géochronologiques conduites sur la péninsule Rallier-du-Baty ont été réalisées avant 1980. Les premières datations ont été obtenues par la méthode K-Ar sur des échantillons roche totale et ont fourni un âge de 8,7 ± 0,9 Ma pour une syénite du Mont des Deux Frères et un âge de 11,5 ± 0,2 Ma pour un basalte métamorphisé localisé près d'un contact intrusif (Nougier, 1969). Plus tard, cette méthode a été utilisée à nouveau pour 6 échantillons par Lameyre et al (1976) et Dosso et al (1979). Un gabbro de l'Anse du Gros Ventre a été daté ainsi à 15,4 ± 0,5 Ma (roche totale) et 13,6 ± 0,4 Ma (biotites séparées). Une syénite située près du contact intrusif de l'arête Jérémine a fourni un âge de 12,6 ± 0,4 Ma, un dyke aplitique localisé au pied du Mont du Commandant et une syénite provenant de l'est du Mont Léon Lutaud ont donné des âges respectivement de 9,2 ± 0,4 Ma et 9,1 ± 0,4 Ma. Un granite alcalin échantillonné sur le flanc nord du Massif des Deux Frères et un dyke de dolérite du flanc sud du Pic Chastaing ont été quant à eux datés respectivement à 7,3 ± 0,2 Ma et 7,4 ± 0,2 Ma. A la même époque, la méthode des isochrones Rb-Sr a été également utilisée pour plusieurs échantillons. Cette méthode a permis de définir des zones géographiques concentriques au niveau de Rallier du Baty avec des âges évoluant du nord au sud de 12 Ma à 9,7  $\pm$  2 Ma, 8,6  $\pm$  Ma et enfin à 7,9  $\pm$  2 Ma (Watkins et al., 1974; Dosso et al., 1979). Une carte topographique de la péninsule est fournie en annexe.



Figure 1.7: Carte des différents complexes intrusifs de la province plutonique de Rallier du Baty et données géochronologiques associées (Watkins et al., 1974; Dosso et al., 1979).

Ces premiers travaux géochronologiques ont donc montré que les âges des roches plutoniques sont de plus en plus jeunes en allant vers le nord de la péninsule Rallier-du-Baty, en accord avec les relations de terrain (Marot and Zimine, 1976). En outre, ces études géochronologiques précédentes ont montré que la mise en place de l'ensemble du complexe plutonique de la péninsule Rallier du Baty s'est étalée sur environ 5.3 Ma. Associés aux premières données géochimiques, les études isotopiques en Rb/Sr ont permis d'attribuer l'origine des roches du complexe au panache de Kerguelen. Dosso et al (1979) ont conclu que même si les rapports initiaux <sup>87</sup>Sr/<sup>86</sup>Sr des roches plutoniques étudiées sont élevés par rapport aux rapports initiaux moyens des OIB, la croûte continentale n'a pas été impliquée dans la genèse des magmas parentaux des roches plutoniques.

Enfin, les travaux de structurale de Marot et Zimine, basés sur leur observations de terrains, leur ont permis de proposer un modèle de construction par « subsidence en chaudron » pour expliquer la mise en place des différents complexes intrusifs de la péninsule incluant le complexe sud. Ce modèle n'a été remis en question que très récemment (Mathieu et al., 2011) dans le cas de l'archipel de Kerguelen.

# Chapitre 2 : Relations de terrain et structure du SRBIC

#### 2.1 Introduction

Cette partie représente le ventricule droit du cœur sur lequel est bâtie cette thèse. Les observations de terrain représentent l'une des bases indispensable dans cette étude voulant porter un regard neuf sur ce complexe. Ce travail de thèse n'aurait pu donc se faire sans une campagne de terrain qui fut réalisée de novembre 2013 à janvier 2014. Cette mission de terrain s'est effectuée dans le cadre d'un projet multidisciplinaire plus vaste que la seule étude du SRBIC, conduit sur plusieurs années et visant à étudier les différents transferts et interactions fluides-roches à travers la lithosphère de Kerguelen (IPEV-1077-TALISKER programme). Cette campagne, et les résultats qui en découlent, exposés dans cette partie, n'auraient pas pu non plus se réaliser correctement sans chacun des membres de l'équipe ayant participé à cette mission. C'est pourquoi, accompagné de D.Guillaume, M.de Saint-Blanquat et M. le Romancer j'utiliserai le pronom personnel « nous » dans cette partie tout en assumant la responsabilité de chacun des mots qui suivront. Une trentaine de jours de terrain effectifs fut donc consacré à l'étude des roches du complexe sud de la péninsule. Les conditions météo, souvent contraignantes, sont en parties responsables de la difficulté d'accès à l'ensemble de la péninsule. La zone d'étude se situe surtout autour de la plaine des Sables, de l'anse du Gros Ventre au sud de la péninsule jusqu'au massif des Deux Frères au nord, et de la vallée Fallot à l'ouest jusqu'à la vallée de la Plage Jaune à l'est. Seules 2 journées le long du flanc sud de la vallée de Larmor et sur le flanc sud-est du mont Chastaing respectivement ont pu être réalisées à la fin de notre séjour grâce aux débarquements par bateau via la baie de la Mouche. Naturellement, les données et les échantillons issus d'une campagne précédente (IPEV-444-Dylioker programme) réalisée en 2009-2010 ont été utilisés. Toutefois, nos données ne sont pas réparties de manière homogène sur l'ensemble du SRBIC, ce qui induit un biais d'échantillonnage dans nos observations et dans nos mesures. Nous montrerons que cela n'altère pas nos conclusions principales (voir Discussion - partie 7.4.4).

Nous nous sommes attachés sur le terrain à identifier les lithologies et les textures, à caractériser leurs relations, et à mesurer les différents éléments structuraux observés. Le but étant d'obtenir un calage structural de l'histoire magmatique et d'avoir une chronologie relative entre les différents évènements magmatiques et les différentes déformations syn et post magmatiques. Cette caractérisation temporelle, en plus de la nature des objets, permet de retracer leur histoire magmatique et est un pré-requis nécessaire pour ensuite, aller plus loin dans l'interprétation des données géochronologiques, pétrologiques et géochimiques.

J.Nougier (1969) avait démarré l'étude du complexe au travers d'un travail extraordinaire portant sur tout l'archipel de Kerguelen dont les roches de RdB ne représentent qu'une petite partie. La première étude structurale approfondie du complexe de Rallier du Baty fut conduite par Marot et Zimine (1976), présentée dans leur thèse, et dans laquelle de nombreuses observations de terrains sont consignées. En plus de ces dernières, leur étude était surtout la première étude complète centrée sur la pétrographie des roches du complexe. La campagne de terrain que nous avons menée nous a donc permis de confronter nos observations avec ces précédents travaux, en constituant un jeu de données structurales conséquent, cohérent et représentatif. Associé à des coupes réalisées à différentes échelles, ces données nous permettent de proposer un modèle structural solide, car adossé à de nombreuses données et mesures de terrain.

#### 2.2 Les relations de terrain

#### 2.2.1 Les textures rencontrées

La texture d'une roche magmatique est l'enregistrement de l'histoire récente de sa cristallisation dans son site de mise en place, alors que sa minéralogie et sa composition chimique reflètent l'origine et l'évolution chimique du magma depuis sa source. Ainsi la pétrographie et les textures magmatiques ne sont pas forcément couplées. Les textures des roches mises en place marquent donc l'histoire de la construction du corps plutonique. Le but de cette section est de décrire les différentes textures rencontrées sur le terrain qui ont enregistré cette construction.



#### 2.2.1.1 Les basaltes de plateau

Figure 2.1: Planche photographique des basaltes de plateau , a) de loin, b) à l'affleurement, c) présentant un métamorphisme de contact (Mont du Commandant), d) en xénolithes dans la syénite, e) en écran dans la syénite.

Les basaltes de plateau, dans lesquels le complexe du SRBIC s'est mis en place, ont des textures relativement uniformes. Seule la texture au contact de l'intrusion est nettement différente. Sur une distance inférieure au mètre, les basaltes présentent des textures partiellement recristallisées avec l'apparition de minéraux d'amphibole très visibles à l'œil nu attestant d'un métamorphisme de contact. Lorsqu'ils sont incorporés dans l'intrusion plutonique sous forme de xénolithes (de taille pluri-centimétrique) ou d'écrans basaltiques (de taille pluri-métrique), ils présentent également des textures de recristallisation plus ou moins avancées.

#### 2.2.1.2 Les roches felsiques plutoniques

Les roches plutoniques felsiques constituent la majeure partie des roches du complexe. Elles représentent grossièrement 95% des roches intrusives à l'affleurement. Ces roches sont assez monotones car en grande majorité syénitiques (Nougier, 1969; Marot and Zimine, 1976; Giret, 1983). Les termes granitiques étant proportionnellement faibles, j'emploierai donc le terme de roches syénitiques sensu lato (ou de syénites sensu lato) pour l'ensemble des roches felsiques. Ces roches ont des couleurs relativement homogènes allant du gris au brun pour l'essentiel. Macroscopiquement, les phases minérales majeures que sont les feldspaths, les amphiboles et les pyroxènes qui composent ces roches sont identiques et semblent peu varier en mode d'occurrence. Seule la présence de biotite et/ou de quartz crée une différence minéralogique significative. La monotonie apparente de ces roches est sans conteste due au volume de feldspaths (entre 70 et 80% ; Nougier 1969; Giret 1983) qui les composent et qui masquent également les variations minéralogiques. C'est pourquoi le paramètre macroscopique qui varie le plus et qui marque une nette distinction entre les différentes roches du SRBIC ainsi qu'une bonne description de sa structure sur le terrain est la texture.



Figure 2.2: Planche photographique des 4 grands types de textures rencontrées dans les syénites du SRBIC ; a) texture grenue, b) texture microgrenue ou fine, c) texture (microgrenue) porphyrique, d) texture pegmatitique.



Figure 2.3: Relations chronologiques entre les différentes textures de syénites. a) filon de microsyénite recoupant une syénite grenue, b) microfilons de texture pegmatitique tardifs sur la syénite grenue, c) nombreuses veines ou filons de syénite porphyrique recoupant une syénite grenue, d) ségrégation pegmatitique en forme de poche dans une syénite grenue, e et f) filons de pegmatite tardifs recoupant une syénite grenue.

En effet, indépendamment des variations minéralogiques, les syénites du SRBIC montrent une grande variété de textures à l'affleurement. Parmi cet éventail, quatre textures principales les caractérisent (Figure 2.2) :

- des syénites à texture grenue (grains pluri-millimétriques à centimétriques) dite syénite grenue, notées  $\sigma g$ 

- des syénites à texture microgrenue (grains millimétriques à infra-millimétriques), dite syénite fine ou microsyénite, notées  $\sigma\mu$ 

- des syénites pegmatitiques (grains centimétriques à pluri-centimétriques) résultant de ségrégation locale à différentes échelles des syénites grenues et fines, notées *σpg* 

- des syénites porphyriques, qui montrent une matrice à grain fin et des phénocristaux majoritairement feldspathiques centimétriques, notée *op* 

Les textures de syénites grenues, fines et pegmatitiques ont été observées sur l'ensemble du complexe. Cependant, la syénite de type grenue est de loin la texture la plus représentée sur le complexe. D'autre part, la quantité de microsyénite diminue fortement vers le centre-nord de la péninsule de Rallier du Baty. La syénite porphyrique, très peu importante volumétriquement, n'a été observée que dans les parties les plus externes du complexe.

Il n'y a pas de relation chronologique simple entre syénites grenues et fines (Figure 2.3). Bien qu'il soit plus fréquent d'observer un filon de microsyénite recoupant la grenue, de nombreuses enclaves de microsyénites s'observent également dans la syénite grenue. Ces dernières sont de tailles et de formes variées se qui conduit à supposer, en plusieurs endroits que la syénite grenue recoupe la syénite microgrenue. Les syénites pegmatitiques définissent des accumulations localisées qui évoluent généralement en un réseau anastomosé qui recoupe plus ou moins les syénites grenues et fines. La syénite porphyrique apparait uniquement à des endroits clés et marqueurs structuraux important dans la construction du SRBIC tels qu'a certains endroits du contact SRBIC-Basaltes, contacts roches plutoniques intermédiaires/syénites et zone de déformation intense. Cette syénite montre à la fois des indices de recoupement sur les autres lithologies et une co-structuration en accord avec la structure générale (ces différents éléments seront détaillés plus bas).

#### 2.2.1.3 Les roches intermédiaires et mafiques

Un cortège de roches plutoniques intermédiaires (monzonites et monzodiorites) et mafiques (monzogabbros), à tendance monzonitique, c'est à dire plutôt intermédiaire géochimiquement (voir Chapitre 5), se rencontre uniquement dans la partie externe du SRBIC et les complexes satellites du sud de la péninsule. Les roches les plus basiques (Figure 2.4a) se retrouvent dans le massif intrusif structuralement au dessus SRBIC à l'extrême sud de la péninsule et formant la pointe de l'arête Jérémine, nommé massif de l'anse du Gros Ventre. Les monzonites s'observent uniquement dans le complexe satellite qui forme la première intrusion de la Plage Jaune. Les monzodiorites (Figure 2.4b) s'observent dans la partie la plus externe du SRBIC au sein des syénites. Les textures de ces roches mafiques et intermédiaires sont grenues ou microgrenues. Les relations aves les roches felsiques n'ont pas pu être observées sur le massif de l'anse du Gros Ventre ou les contacts sont enfouis sous les éboulis et la végétation. Il nous est donc impossible de dire si ces roches mafiques forment une enclave transportée par les intrusions felsiques ou une intrusion à part entière dans ce satellite. Toutefois, quelques filons syénitiques microgrenus aplitiques recoupant ces roches laissent penser qu'au moins une partie des syénites qui composent également ce massif sont plus jeunes que les roches mafiques (Figure 2.4d). Au sein du SRBIC, dans les parties externes, les textures de contact entre les syénites et les roches mafiques/intermédiaires montrent une coexistence à l'état magmatique entre ces deux types de roches (Figure 2.4c). La chronologie relative entre ces deux types de roches n'est donc pas toujours claire. Cependant, on observe (i) des indices d'assimilation qui laisse penser que la syénite s'injecte dans les magmas mafiques et intermédiaires, et (ii) de nombreux affleurements montrant des enclaves/xénolites de roches mafiques dans la syénite (Figure 2.4d). Nous n'avons jamais observé d'enclaves syénitiques dans les roches mafiques et intermédiaires.


Figure 2.4 : Les différents faciès mafiques et intermédiaires à l'affleurement et relations avec les faciès felsiques.

#### 2.2.1.4 Les filons

Le SRBIC est recoupé par de nombreux filons (Figure 2.5a et b) majoritairement mafiques mais aussi felsiques syn à post-plutoniques. Nous les avons cartographiés et nous avons systématiquement mesuré leur orientation, mais ils n'ont pas fait l'objet d'une étude pétrologique systématique. On observe essentiellement des filons basaltiques, de couleur noire-verte de texture majoritairement microlitique aphyrique (Figure 2.5c), et des filons trachytiques qui sont eux légèrement plus clairs, vert-noir, et montrant des textures porphyriques avec des tailles variables de phénocristaux de feldspaths (Figure 2.5d). L'altération de ces filons permet également de les distinguer car les filons basaltiques ont tendance à s'assombrir et leur patine devient très sombre avec quelques nuances de bleu tandis que la patine des roches trachytiques tend vers le violet. De rares filonnets intermédiaires de microsyénite-monzonite sont observés et recoupent des zones de cisaillement (Figure 2.5g). Certains filons microgrenus sont qualifiés de composites car sans doute formés d'injections multiples avec des « lits » millimétriques plutôt quartzo-feldspathiques et d'autres très riches en oxydes de Fe-Ti (Figure 2.5h).

La majorité des filons est clairement postérieure à la mise en place des syénites et recoupent ces dernières de façon franche (Figure 2.5a,b,c et d). De rares évidences de syénites recoupant ces filons montrent bien que certains sont syn-plutoniques (Figure 2.5e). Les relations de recoupement complexes entre filons et zones de cisaillement (détaillées plus bas) montrent la présence de plusieurs générations de filons sensu lato et/ou la présence de plusieurs phases de déformation (Figure 2.5e, f, g et Figure 2.30). Il parait donc évident qu'il existe plusieurs générations de filons sécants sur les syénites et tardifs dans l'histoire de la construction du SRBIC. Cependant, bien qu'ils soient tardifs pour la plupart, cela ne signifie pas qu'ils sont tous post-plutonisme. De plus, une datation réalisée sur un filon trachytique (13TK08) clairement sécant sur la syénite (à l'image de la Figure 2.5d) a été daté à 7.93 ± 0.3 Ma, c'est à dire bien

contemporain de la mise en place des syénites et donc de la construction du SRBIC (voir Chapitre 3géochronologie)



Figure 2.5 : Planche photographique des différents types de filons observés et de leur chronologie relative par rapport aux roches encaissantes. a) à grande échelle, b) à l'affleurement, c) filon de basalte transportant des fragments anguleux de syénite, d) filon de trachyte porphyrique à feldspaths, e et f) filons basiques tardifs sur la syénite recoupé par des ségrégations pegmatitique, le tout décalé par des zones de cisaillement, g) filon microgrenu syénitique ou monzonitique recoupant la syénite, h) filon composite montrant de nombreuses injections.

# 2.2.2 Structure et orientation des basaltes

A l'échelle des Kerguelen, les coulées basaltiques montrent une géométrie très régulière et constituent un empilement monoclinal à faible plongement (3-5° en moyenne) vers le sud-est (Figure 1.5 et Figure 2.33) (Nougier, 1969; Marot and Zimine, 1976). La distance maximale parallèle à la direction du pendage général des coulées de basaltes est de 140 km, mesurée entre le nord-ouest de la péninsule Loranchet et le sud-est de la presqu'île de Ronarc'h. L'épaisseur structurale totale des basaltes observable sur l'archipel est donc comprise entre 7 et 12 Km pour 3 et 5° respectivement.

A l'approche des différents complexes intrusifs situés au sud-ouest de l'archipel, les basaltes montrent clairement un changement d'orientation. En s'approchant du SRBIC, quel qu'en soit l'endroit, le pendage augmente jusqu'à atteindre des valeurs de 30-40° (Figure 2.1 et Figure 2.6). Ceci a pu être observé tout autour du SRBIC sauf à l'ouest et au nord-ouest, car le contact y est recouvert par des coulées volcaniques trachytiques récentes (Nougier, 1963). Ce changement d'orientation des basaltes et ce soulèvement a été observé par tous les différents auteurs qui ont travaillé sur cette région (Nougier, 1969; Marot and Zimine, 1976; Giret, 1983; Mathieu et al., 2011).



Figure 2.6 : Photos des épanchements basaltiques de la péninsule de Rallier du Baty : (a) le massif de Castor et Pollux (crédit C. Dekeyser) et (b) une vue à partir du massif des Fumerolles (crédit : M. leRomancer).

Ainsi, l'étude des orientations des basaltes tout autour du SRBIC, met clairement en évidence un changement d'orientation et de pendage des coulées basaltiques qui, du fait de cette coïncidence spatiale, est à mettre en relation directe avec l'intrusion du SRBIC. Cette caractéristique se retrouve également au niveau des intrusions plutoniques situées plus au nord de la péninsule. En effet, l'orientation des basaltes du massif des Restanques montre déjà un soulèvement dont le centre se situe au niveau du Pic Chastaing. Plus au nord au niveau du massif de Castor et Pollux (Figure 2.6), Nougier (1969) avait mesuré l'orientation de basaltes impliquant une perturbation postérieure à leur mise en place par les intrusions plutoniques les plus au nord de la péninsule, proches de la calotte Cook.

L'examen des photos aériennes et satellites montre l'existence de grands linéaments / fractures (?) qui affectent les basaltes régionalement, et qui sont notés sur les cartes géologiques (Nougier, 1969; Mathieu et al., 2011). Soit ce sont des fractures sans déplacement c'est à dire des diaclases, soit ce sont des failles qui devraient montrer des décalages dans les basaltes de plateau. Nos observations sur la péninsule de RdB montrent qu'il est en réalité très difficile d'observer des décalages à grande échelle entre les épanchements basaltiques. Cette observation se vérifie également dans la région du Plateau Central que nous avons pu parcourir du lac Bontemps à Port Jeanne d'Arc. Du fait du litage prononcé et régulier des coulées basaltiques, ainsi que de leur homogénéité d'épaisseur et de couleur, ces décalages ne sont pas facilement visibles. Toutefois, ces derniers semblent bel et bien exister tel que Nougier les a décris (1969), suggérant donc une attention particulière pour être décelés (voir Chapitre 7 - Figure 7.5).

#### 2.2.3 Le contact SRBIC – Basaltes de plateau

Du fait qu'il met en jeu deux roches de composition, de texture, et de couleur très contrastées, le contact entre les syénites et les basaltes de plateau est bien marqué et clairement visible dans le paysage. Sa géométrie est complexe car elle évolue entre deux types de géométrie extrêmes. La première est une géométrie fortement pentée et discordante par rapport à l'orientation des basaltes. La seconde est bien moins pentée et concordante avec les plans d'épanchements basaltiques. Cette géométrie "bipolaire" s'observe à grande échelle tout autour du SRBIC là où le contact est visible, et particulièrement sur le flanc nord du mont du Commandant, le flanc SW du mont Lieutard ou bien le flanc nord de l'arête Jérémine (Figure 2.7; et Figure 2.8).



Figure 2.7 : Photo du contact intrusif du SRBIC avec les basaltes de plateau : a) Mont du Commandant et b) arête Jérémine.



Figure 2.8 : Photo du contact intrusif du SRBIC avec les basaltes de plateau sur le flanc O du Mont de Volz (Plage Jaune).

Le contact intrusif sur le flanc S du mont Léon Lutaud est clairement discordant avec les basaltes sur une centaine de mètres avant que son pendage ne s'horizontalise vers le sommet (Figure 2.9 et Figure 2.33). Cette disposition sécante en bas et concordante dans les parties supérieures se retrouve ça et là autour du SRBIC. Cette observation est un des arguments majeur invoqué par Marot et Zimine (plus tard Giret, 1983 et Bonin, 2004) pour expliquer le modèle proposé de «cauldron subsidence». Cependant, la relation inverse (concordant en bas et discordant dans les parties hautes) s'observe également en de nombreux endroits, ou bien des alternances à différentes échelles. Enfin, la forme en dôme des basaltes suppose que le contact intrusif est globalement concordant (Figure 2.33, Figure 2.38 et Figure 3.14) à l'échelle du SRBIC.



Figure 2.9 : Photo du contact intrusif externe du SRBIC sur le flanc S du Mont Léon Lutaud recoupant avec un fort pendage les épanchements basaltiques.

Les petits complexes satellites qui se répartissent tout autour – c'est à dire structuralement au dessus - du SRBIC (Marot and Zimine, 1976) montrent également ces deux géométries de contacts intrusifs discordantes et concordantes (Figure 2.10). Ce type de géométrie de contact n'est donc pas lié au volume total de liquide magmatique injecté dans les basaltes mais plutôt aux caractéristiques de la mise en place (mécanisme, flux, vitesse d'injection, contraste de température, viscosité du magma...).



Figure 2.10 : Photo du contact intrusif du complexe satellite de « l'Anse syénite » sur le flanc NE du Mont Léon Lutaud.

Le contact externe (ou latéral) du SRBIC présente donc une géométrie particulière, concordante et discordante, et ce à différentes échelles d'observation. Cette géométrie pourrait se schématiser par des marches d'escalier de hauteur et de longueur variables. A l'échelle de l'affleurement, les contacts discordants sont complexes et montrent une bréchification magmatique des basaltes dans la syénite (« stopping »), avec de nombreuses injections (de texture de plus en plus aphyrique dans l'encaissant) qui découpent des blocs de basalte anguleux et de toute taille (Figure 2.1c et Figure 2.11b). Les contacts concordants sont très nets et propres, sans injections ni bréchification des basaltes (Figure 2.11a). Les contacts concordants semblent donc plus passifs, alors que les contacts discordants sont plus dynamiques et témoignent de la progression du magma syénitique dans les basaltes. Ce type de structure intrusive est classique et a été observée à la périphérie de nombreux corps intrusifs en domaine continental (e.g. Henry Mountains, voir (Horsman et al., 2005; St Blanquat et al., 2006; Morgan et al., 2008); Torres del Paine : (Baumgartner et al., 2007; Leuthold et al., 2012).



Figure 2.11 : Photos détaillées du contact externe SRBIC- basaltes de plateau, a) concordant, b) discordant –Mont du Commandant.

## 2.2.4 Les contacts internes à grande échelle

Les observations de terrain associées à la réalisation de plusieurs coupes nord-sud de l'ensemble du complexe sud de RdB (e.g. Figure 2.38) nous a permis d'identifier deux grands types de contacts internes de grande envergure.

Les contacts du premier type sont clairement visibles sur les photos satellites (Figure 2.12) et dans le paysage (Figure 2.13). Ce sont des contacts francs qui s'observent sur une grande distance et ce de façon quasiment continue. Ils séparent des syénites qui diffèrent texturalement et/ou minéralogiquement. Dans notre zone d'étude, le contact de ce type le plus important est celui qui s'observe très clairement (Figure 2.13) au niveau du Pic Chastaing (a), du massif des Deux Frères (b et c) et du massif du Portillon (d). La syénite structuralement en dessous de ce contact a une texture microgrenue (massif du Portillon, flanc N du massif des Deux Frères, Pic Chastaing) comportant une quantité de quartz significative. La syénite structuralement au dessus de ce contact majeur est une syénite grise massive à texture grenue constituée de minéraux majeurs semblables mais d'une trop faible quantité de quartz pour être visible à l'œil nu. Les caractéristiques physiques (différence de couleur, de texture et de résistance à l'érosion) et minéralogiques propres à ces 2 syénites en contact, ainsi que la grande étendue et la quasi-continuité de ce contact particulièrement visible font de cette structure un contact majeur du SRBIC. Ce contact interne majeur sépare donc une unité interne située au centre du SRBIC, au centre – nord de la péninsule de RdB, d'une autre unité périphérique.



Figure 2.12 : Image satellite Pléiades, centrée sur l'unité centrale du SRBIC avec la localisation des prises de vues du contact majeur de la Figure 2.13 suivante.



Figure 2.13 : Vues du contact majeur (unité 2/unité 3) ; a) du flanc S du Pic Chastaing; b) du flanc N du massif des Deux Frères, c) du flanc SW de ce même massif et du flanc NE du massif du Portillon. Les traits en pointillés soulignent la trace extrapolée du contact.

#### Chapitre 2

Sur le terrain comme sur l'image satellite, les roches de l'unité centrale ont une patine à l'affleurement plus orange-brun (voire de couleur rouille) que celles des autres unités. Les études précédentes (Marot and Zimine, 1976; Mathieu et al., 2011) ont attribué cette couleur à une oxydation induite et facilitée par le passage de fluides tardifs dans cette partie du complexe. Les observations pétrographiques réalisées sur cette unité sont en accord avec cette interprétation (voir partie 4.1.2.2). Le passage des fluides responsables de cette altération est clairement tardif, conduisant à la formation d'une croûte d'altération orange-brune en surface. Cette dernière est particulièrement épaisse sous le contact majeur du Portillon (Figure 2.14), ainsi que dans les zones qui sont aujourd'hui des plans de faiblesse dans la roche (diaclases). La syénite qui se trouve sous ce contact est en réalité plutôt bleutée à la cassure (Figure 2.14).



Figure 2.14 : Photo d'un échantillon de roche (13TK68) bleutée, avec une croûte oxydée caractéristique, située sous le contact majeur du massif du Portillon.



Figure 2.15 : Photos des injections de magmas provenant de l'unité centrale, s'injectant dans les roches de l'unité supérieure par conséquent plus ancienne. a et b) massif du Portillon, c) flanc N des Deux Frères.

Ce contact est subhorizontal au centre du complexe intrusif (sommet des Deux Frères) et montre autour de ce massif (au sud de ce massif, sur le Portillon et le Pic Chastaing) un pendage faible (25°) à moyen (40°) toujours vers l'extérieur du complexe (Figure 2.33). L'unité centrale est donc située structuralement au dessous des unités périphériques. A l'échelle de l'affleurement, ce contact est recoupé par des veines et des filons issus de la syénite située sous le contact qui s'injectent la syénite située au dessus (Figure 2.15). Cette caractéristique confirme que l'unité centrale est plus jeune que l'unité située au dessus. Nous pouvons donc, grâce à ce contact, définir une unité centrale que nous appelons unité 3, et une unité plus externe, que nous appelons unité 2.

Ce type de contact franc et bien marqué dans le paysage a été également observé ça et là, par exemple dans l'unité la plus externe du SRBIC, l'unité 1. Dans la vallée de Larmor par exemple, à l'est du complexe, nous avons observé un contact (Figure 2.16) qui ressemble au contact supérieur de l'unité centrale décrit ci-dessus (Figure 2.15). Des injections localisées permettent d'établir le même type de chronologie relative, à savoir que les magmas situés sous le contact sont plus jeunes et intrudent ceux situés au dessus du contact. Ce contact sépare une syénite en position supérieure à texture intermédiaire entre microgrenue et microgrenue porphyrique d'une syénite en position inférieure grenue de même minéralogie.



Figure 2.16 : Exemple de contact franc et continu à grande échelle dans la vallée de Larmor.

Le deuxième type de contact est géométriquement et structuralement plus complexe. Il s'observe exclusivement à environ mi-distance entre le contact majeur de l'unité 2 centrale décrit ci-dessus et le contact externe du complexe intrusif. Ce contact se situe au niveau d'une zone, qui fut également observée par les précédents auteurs et qui définit un arc de cercle sur la carte (Figure 2.33). Elle fut interprétée comme étant une faille conique à pendage interne (« cone-sheet ») représentant un argument majeur en faveur d'un modèle de construction du complexe par subsidence en chaudron (Marot and Zimine, 1976). Cette zone correspond à une aire très déformée (cataclases, bréchification; Figure 2.17), très riche en syénite porphyrique et en filons basaltiques et trachytiques, et qui montre aussi des évidences de circulation tardives (quartzo-feldspathiques). Cette zone est également soulignée par des écrans de basaltes (Figure 2.33). Des marqueurs de déformations (décrits plus bas) montrent que l'intensité de cette déformation augmente progressivement en s'approchant de cette zone depuis l'extérieur du complexe intrusif. Cette progression se fait depuis des syénites externes magmatiques sans zones de cisaillement, jusqu'à des cataclasites et des brèches, et ce sur une distance de 500m environ (Figure 2.17 et Figure 2.18). Cette zone très déformée de couleur verte sombre, d'une épaisseur de l'ordre de la 50aine de mètres, peut se suivre depuis le versant nord de la vallée Fallot à l'ouest du complexe jusqu'au versant est de la vallée de la Plage Jaune au sud-est.

Les grands écrans de basaltes qui marquent la base de cette zone déformée se retrouvent au nord-nordest de la coulée de Vulcain et de part et d'autre de la vallée de l'Armor. Cette zone de déformation plus intense est associée (notamment au niveau des massifs situés juste au nord et nord-est de la coulée de Vulcain) à une syénite porphyrique caractéristique de teinte grise assez sombre comparée à celle qui se retrouve plus au sud au sein de l'unité la plus externe du complexe.



Figure 2.17 : Détails photographiques du contact entre l'unité 1 et l'unité 2, formé par une zone très déformée en base de l'unité 1. a) filon tardif par rapport à la syénite recoupé par de nombreuses zones de cisaillement, b) brèche à fragments anguleux de syénite, c) ségrégation quartzo-feldspathique infiltré sous forme de veines, d) syénite porphyrique caractéristique de ce contact.

A l'échelle cartographique, cette zone de contact, déformée ou non, entoure une grosse moitié sud-sudest du SRBIC, du nord-est (Larmor) à l'est (Fallot). Les pendages des contacts délimitant cette zone déformée varient, plus fort au sud-est (environ 40-45°) et moins fort à l'est (environ 30°), mais toujours vers l'extérieur du SRBIC. Nous interprétons cette zone comme un contact majeur séparant deux unités, une unité externe ou unité 1 et une unité intermédiaire ou unité 2. Ce contact se présente comme une zone de transition formée de syénite porphyrique (±microgrenue) ayant une certaine épaisseur et marquée par une forte déformation tardi à post-magmatique dans l'unité externe (syénite grenue). Nous interprétons cette déformation de la base de l'unité 1 comme l'expression de l'accommodation des déplacements provoqués par l'intrusion des magmas de l'unité 2 ainsi que liée à l'intrusion de nombreux filons dans cette zone.



Figure 2.18 : Panorama et interprétation du massif NE au pied de la coulée de Vulcain, face ouest.

Il existe donc, à l'échelle du SRBIC, deux contacts internes majeurs qui séparent trois unités magmatiques principales, l'unité 1 externe, l'unité 2 intermédiaire, et l'unité 3 centrale. Les relations de terrain montrent sans ambiguïtés que l'unité 1 est plus vieille que l'unité 2, qui est elle même plus vieille que l'unité 3. Les grandes unités structurales sont donc de plus en plus jeunes vers le centre du SRBIC (c'est-àdire le centre-nord de la péninsule).

Les caractères très différents de ces deux types de contacts au sein d'un complexe intrusif relativement homogène pose question. Cette différence - contact magmatique franc sans déformation versus contact plus diffus et avec déformation – pourrait correspondent à un gap (ou silence) magmatique de durée différente. Cette hypothèse supposerait un gap temporel court pour le contact sans déformation et un silence plus long pour le contact avec déformation. En effet, un temps plus long sans injections permettrait à l'unité mise en place de se refroidir de façon plus efficace relativement à une durée plus courte. Cette unité « froide » serait donc plus difficile à déformer ou déplacer à la reprise des injections magmatiques, provoquant la formation des zones de cisaillement, brèches et cataclases. Le temps est donc un des paramètres qui pourrait expliquer la différence entre ces types de contact. Cependant cette hypothèse et les autres paramètres qui pourraient rentrer en compte et leurs rôles seront abordés dans la discussion (voir Chapitre 7).

# 2.3 Structure interne à l'échelle des unités structurales

Les trois unités de syénite montrent sur le terrain une structure interne litée constituée d'une alternance de lentilles voir de sills d'épaisseur métrique à pluri-décamétrique de lithologie et/ou de texture contrastées. Cette structure interne est décrite ci-dessous à l'aide de l'analyse détaillée d'un affleurement spectaculaire situé dans l'unité 1, puis d'une analyse à l'échelle de l'unité de syénite et finalement synthétisé sur une coupe à l'échelle de l'unité 1 (Figure 2.31).

## 2.3.1 Coupe détaillée

Cet affleurement (Figure 2.19) montre très bien la structure interne de l'unité 1 à l'échelle de quelques centaines de mètre. Cet affleurement est constitué au premier ordre d'une structure litée régulière à pendage d'environ 40° vers le sud, formé d'une alternance de niveaux clairs et de niveaux sombres.

Les niveaux clairs sont des niveaux syénitiques à texture grenue avec quelques passées de syénites plus fines. Certains des niveaux beiges clairs, sécants sur l'ensemble des lithologies, correspondent à de la syénite porphyrique. De fines passées blanches sont formées de syénites pegmatitiques. Les niveaux sombres sont principalement constitués de monzo-diorite ou de monzo-gabbros (Figure 2.19 et Figure 2.20), ainsi que de lentilles arrondies discontinues de taille pluri-centimétriques très sombres, correspondant à des enclaves monzo-dioritiques et basaltiques. Les relations texturales entre les monzodiorites/gabbros et les syénites grenues montrent que la syénite est plus jeune que la monzodiorite. Toutefois, les géométries lobées de leurs contacts mutuels (textures en «chou-fleur») indiquent une certaine proximité temporelle de l'intrusion d'un magma dans un autre magma (Figure 2.20).







#### Chapitre 2

Cette texture de contact est surprenante. En effet, ces deux types de roches ayant des compositions, des rhéologies et des cinétiques de refroidissement contrastées, il serait plus logique d'observer des textures réactionnelles aux contacts. Donc, sans pouvoir établir une chronologie nette de la mise en place des différentes roches sur cet affleurement, il semble cependant que celle de la monzo-diorite précède celle de la syénite grenue. Toutefois ces deux mises en place ont du être très rapprochées dans le temps pour former des contacts magmatiques sans figures réactionnelles prononcées. La géochronologie supporte cette hypothèse (voir Chapitre 3). Un contact syénite/monzogabbro situé dans la partie nord de l'affleurement montre une chronologie de mise en place claire (Figure 2.21) avec la syénite grenue qui s'injecte dans le monzogabbro qu'elle fracture et dont quelques xénolites anguleux parsèment le contact.



Figure 2.20 : (ci-dessus) Détails de l'affleurement précédent et des relations syénite / monzo-diorite.

Figure 2.21: (ci-contre) Partie nord de l'affleurement représenté en Figure 2.19. Le contact magmatique montre clairement que la syénite grenue, structuralement en dessous du monzo-gabbro, s'injecte et fracture ce dernier mis en place plus précocement.



Cet affleurement d'alternance monzo-gabbro(diorite)/syénite est également constitué d'une syénite porphyrique, moins abondante que la syénite grenue. Cette dernière recoupe les autres types de syénites et les roches intermédiaires sous forme de filons ou s'injecte au sein ou entre les lithologies précédentes sous la forme de sills d'une épaisseur métrique à décamétrique (Figure 2.19 et Figure 2.22).

Cette syénite porphyrique se retrouve aussi et surtout aux contacts entre les faciès intermédiaires et la syénite grenue plus précoce (Figure 2.22). C'est d'ailleurs souvent cette syénite porphyrique qui découpe et fracture les roches intermédiaires déjà en place, donnant aujourd'hui une impression de puzzle (Figure 2.23). La Figure 2.23 montre également que cette injection plus tardive de syénite porphyrique réagit fortement avec la roche mafique et l'assimile même par endroit. Cette syénite contient également des enclaves monzo-dioritiques et basaltiques en quantité variable arrachées et transportées lors de son ascension et de sa mise en place (Figure 2.23).



Figure 2.22 : Détails des relations entre la syénite porphyrique et les autres lithologies, illustrant son caractère tardif sur cet affleurement. a) recoupant la syénite grenue, b) qui s'injecte au contact entre la syénite grenue et la monzo-diorite ainsi que (a, b, c) dans ces dernières.



Figure 2.23 : Détails des relations entre la syénite porphyrique et les autres lithologies, suite; (a) fracturation intense des monzo-diorites par la syénite porphyrique, (b et c) relations texturales et chronologiques des différentes lithologies qui composent cet affleurement et (d) transport d'enclaves mafiques au sein de la syénite porphyrique recoupant la syénite grenue.

Toutes ces observations mettent en évidence une proximité temporelle entre les faciès mafiques/intermédiaires (monzogabbros et monzodiorites) précoces et les faciès syénitiques (grenus et fins, ± pegmatitiques) qui semblent simplement légèrement plus tardifs par endroits. Ces différents types de roches sont ensuite recoupés par des injections de syénite porphyrique qui peuvent masquer les contacts magmatiques précédents et qui transportent des enclaves mafiques. Cet affleurement est remarquable car malgré ces multiples injections et relations lithologiques complexes, toutes les différentes unités ont la même orientation et forment une alternance magmatique bimodale continue à l'échelle kilométrique (Figure 2.19). Cette structure litée, qui ne s'observe nulle part ailleurs dans le SRBIC, caractérise l'unité la plus externe du complexe intrusif (unité 1).

## 2.3.2 Structure interne

L'alternance la plus fréquente et qui caractérise sans conteste la structure interne de toutes les unités de syénite est celle entre syénite grenue et syénite fine (Figure 2.24), dans lesquelles les volumes les plus importants sont toujours constitués par la syénite grenue.



Figure 2.24 : Exemples d'alternance texturale des syénites au travers des différentes unités et à plusieurs échelles.

On observe en réalité tous les intermédiaires entre des lentilles elliptiques, sphériques ou irrégulières de fine dans la grenue, des sills superposés de fine et de grenue d'échelle décamétrique ou plus, ou des filons de fine traversant la grenue (Figure 2.24 et Figure 2.25). Les contacts entre fine et grenue sont toujours très nets et sont plus ou moins planaires ; ils sont purement magmatiques et ne montrent pas de bordures figées ni traces de recristallisation évidente ou de reprise par une déformation (Figure 2.26).



Figure 2.26 : Exemples détaillés de contacts plus ambigus entre syénite microgrenue et grenue. a) zone de texture microgrenue dans une syénite grenue, b) détails du contact net en (a) où la syénite grenue recoupe la microsyénite, c) contact sinueux, d) contact souligné par une oxydation avancée due à la circulation de fluide(s) tardif(s).

Au sein de ces alternances fines – grenues, les syénites pegmatitiques sont organisées entre deux types : en poches disjointes de taille centimétriques à métriques, ou en réseau de veines centimétriques à décimétriques plus ou moins anastomosées et sub-parallèles au litage magmatique général (Figure 2.27 et Figure 2.32). La syénite porphyrique se retrouve très majoritairement au sein l'unité 1 et forme le contact transitoire avec l'unité 2. Ainsi la quantité de syénite porphyrique au sein de l'unité 1 semble augmenter vers le nord, c'est à dire vers la base (ou zone interne) de cette unité. Dans les unités 2 et 3, aucune syénite porphyrique (excepté au contact avec l'unité 1) ni de roches mafiques et intermédiaires n'ont pu être observées. D'autre part, la proportion de syénite microgrenue diminue fortement au sein de l'unité 3 où elle se retrouve essentiellement au contact avec l'unité 2.



Figure 2.27 : Exemples de ségrégations pegmatitiques injectés dans les syénites grenues sous formes de veines et filons pouvant formés des zones de concentration et des réseaux anastomosés.

Dans l'affleurement détaillé dans la section précédente, il est clair que l'alternance syénites – roches mafiques/intermédiaires est interprétable en terme de litage magmatique primaire et que chaque entité texturale correspond à une injection magmatique (ce résultat est confirmé par la géochronologie, Figure 3.9). De la même manière, nous interprétons ces alternances de syénites fines et grenues comme un litage magmatique primaire correspondant à l'empilement de feuillets de magma mis en place de manière rapprochée dans le temps (contacts magmatiques sans bordures figées) mais diachrone. La différence de texture finale que l'on peut observer sur le terrain serait le résultat d'une histoire de mise en place différente liée aux paramètres d'injections (e.g. volume plus faible donc cristallisation plus rapide, intervalle de temps entre deux injections différent, etc....). Les relations de terrain montrent donc de manière générale une sous accrétion des injections successives, et ce à différentes échelles (Figure 2.19, Figure 2.24 et Figure 2.27). Cependant la présence de filons, par définition sécants sur une injection antérieure, montre que dans certains cas l'histoire est plus complexe, avec des injections à différents niveaux de l'édifice plutonique en cours de construction.

#### 2.3.3 Déformations ductiles et cassantes

Des zones de cisaillement ont été observées dans les unités 1 et 2. L'unité 3, la plus jeune et la plus centrale du SRBIC, en est (jusqu'à preuve du contraire) totalement dépourvue. Les occurrences se trouvant au sein de cette unité s'observent dans un niveau plus ou moins lenticulaire appartenant à l'unité 2 en enclave dans cette unité. La pétrographie, la géochronologie et la présence de ces zones de déformation confirment ce résultat. Ces zones de cisaillement ont des épaisseurs variables (mm à quelques cm), et peuvent se suivre sur des distances atteignant quelques dizaines de mètres. Il en existe plusieurs types : ductiles, ductile-fragiles, voire cataclastique. Elles ont le plus souvent un jeu apparent extensif (Figure 2.28).



Figure 2.28 : Marqueurs de déformation au sein du SRBIC. a) zone de cisaillement marqué par des filonnets cataclastiques sombres transportant des minéraux de la syénite recoupée , b) plus ou moins fins toujours organisé en réseau, c) cisaillement décalant un filon trachytique avec un jeu normal, d) filonnets cisaillant avec un jeu normal, e) linéation d'étirement ; f) zone de cisaillement selon des plans plus ou moins conjugués.

Ces zones de cisaillement localisent la déformation au niveau de microfilons d'épaisseur millimétrique de composition syénitique et de texture variable entre aphyrique, microgrenue et microgrenue porphyrique. Ils sont rarement isolés et généralement organisés en réseaux anastomosés d'étendue variable. Ces filons recoupent les roches encaissantes mais ne sont pas strictement rectilignes et sont parfois tortueux. Ils semblent souvent s'entrecroiser ou se rejoindre et font penser à des « cheveux » étirés (Figure 2.28 et Figure 2.29). Ils traversent et fracturent la syénite encaissante et contiennent souvent des morceaux ou minéraux arrachés à cette dernière leur donnant des textures porphyriques. Ces zones de cisaillement cristallisée. Dans certains cas, cette déformation semble être associée à des injections magmatiques mafiques et trachytiques tardives. La déformation à l'échelle du complexe montre un continuum ductile – cassant. En effet, quelques failles portant des stries ont pu être observées (Figure 2.29c et d). Les orientations, cinématiques et signification de cette déformation sont présentées dans la section suivante.



Figure 2.29 : Marqueur de déformation, suite. a) filonnets cataclastiques, b) un filonnet s'effile à l'approche d'une poche pegmatitique qu'il traverse, c) rare faille à grande échelle sur le flanc sud-ouest de Deux Frères, d) traces de stries et marches d'escalier marqueurs du jeu en faille normal.

En terme de chronologie relative, les zones de cisaillement recoupent tous les faciès syénitiques constituant le litage principal des unités syénitiques 1 et 2. Elles recoupent nettement certains filons trachytiques et basaltique syn-plutoniques, mais sont également recoupées par certains autres filons (Figure 2.30a et b). Dans certains cas, plusieurs générations de zones de cisaillement se recoupent (Figure 2.30c et d), supportant plusieurs phases de déformations.



Figure 2.30 : Chronologie relative entre les zones de cisaillement et les différents filons. a) filon basique décalé en plusieurs endroits par un jeu en faille inverse, b) filon mafique qui recoupe et est recoupé par des zones de cisaillement, c) filon ou veine de pegmatite qui recoupe une première génération de zones de cisaillement, une seconde génération de zones de cisaillement découpe ces premières structures avec un jeu en faille normale.

Les différentes observations de terrains exposées dans les parties précédentes sont synthétisées au travers d'une coupe de l'unité 1.



# 2.4 Structure d'ensemble

La structure d'ensemble du SRBIC a été appréhendée à l'aide de la synthèse de nos données de terrain en coupes et en cartes, ainsi que par l'analyse structurale de nos mesures de terrain en stéréographie.

### 2.4.1 Litages et contacts magmatiques

Sont représentés sur la Figure 2.32a tous les contacts magmatiques entre lithologies différentes, ainsi que les mesures des plans d'alternance des différents types de syénites. Les mesures des filons de microsyénites sur la Figure 2.32b, et les mesures du réseau de ségrégations de pegmatite sur la Figure 2.32c.



Figure 2.32 : Carte et et stéréo des mesures de terrains : a) des contacts ; b) des filons de microsyénite ; c) du réseau de ségrégations pegmatitiques ; d) des données en (a), (b) et (c) synthétisées et définissant le litage magmatique du SRBIC.



Figure 2.33: Carte structurale synthétique du complexe sud de Rallier du Baty, illustrant les différentes unités structurales et les mesures (non-exhaustives) définissant le litage magmatique (voir Figure 2.32).

Bien que toutes les mesures n'aient pu être représentées sur les cartes de la Figure 2.32 ci-dessus, les résultats apparaissent sans perte d'informations. Il faut noter que la mesure de pegmatite sur le massif en forme de molaire dans l'unité 3 centrale n'apparait pas sur la Figure 2.33 précédente car cette orientation (bien que prise en compte dans les stéréogrammes) correspond à une circulation franchement tardive qui ne reflète pas les observations de premier ordre à cet endroit malgré une orientation de plan cohérente avec la structure de cette unité. C'est pourquoi, elle est représentée dans la Figure 2.32 et absente de la Figure 2.33 qui se veut synthétique. Ces différentes mesures combinées permettent de mettre en évidence le litage magmatique révélateur de la construction du complexe (Figure 2.32d et Figure 2.33). Les différentes structures montrent que « ça tourne ». En effet, toutes ces structures sont parallèles au contact externe du complexe intrusif. Elles définissent donc une structure en dôme centrée sur l'unité 3. Le pendage de ces structures diminue également de la bordure vers le centre de l'intrusion.



Figure 2.34 : Synthèse des stéréogrammes.

La sur-représentation dans nos mesures du secteur « Deux-Frères, Portillon, Vulcain, Commandant, Plage-Jaune » explique la pré-dominance des pendages vers le sud sensu lato. Ceci explique la forme et la position des maximums de densité de mesure sur les stéréos (Figure 2.34).

## 2.4.2 Zones de cisaillement et failles

Les mesures de zones de cisaillement soulignent également la structure concentrique de l'intrusion. Ce résultat montre clairement que la déformation qui les a formées est directement liée à la construction du complexe intrusif. La carte présentée en Figure 2.35 met également en évidence une forte concentration des zones de cisaillement autour du contact entre les unités 1 et 2, délimitant la zone la plus déformée du SRBIC (en vert brun sur la Figure 2.33). Les pôles en stéréo montrent une distribution conjuguée, avec une famille de zone de cisaillement subparallèle au litage magmatique général à pendage vers le sud plus fort que ce dernier (pendage moyen de 30-40° pour le litage et de 60-70° pour les zones de cisaillement). L'autre famille est également représentée en termes de nombre de mesures, et est symétrique avec des pendages de l'ordre de 50-60° vers le nord.

Sur le stéréo de la Figure 2.35 ont été reportés les plans de zones de cisaillement et de faille sur lesquels des linéations et stries ont pu être mesurés. Dans le secteur étudié, le signal principal est celui d'une extension de direction NNE-SSO. Ce signal est compatible avec les nombreux jeux apparents en faille normale observés sur le terrain (e.g. Figure 2.28, Figure 2.29, Figure 2.30). Les seules zones de cisaillement qui ont été observées dans l'unité 3, se retrouvent au niveau d'une enclave appartenant à



l'unité 2. La géochronologie, la pétrographie et la présence de ces zones de cisaillement appuient ce résultat.

Figure 2.35 : Stéréos des zones de cisaillement et failles avec cinématique.

#### 2.4.3 Filons basaltiques et trachytiques

Les mesures des orientations des filons de basaltes et trachytes montrent une certaine variabilité (Figure 2.36). Les mesures ne tournent pas. La comparaison entre le stéréo de ces filons et celui des litages magmatiques (Figure 2.34 et Figure 2.36) montre que les filons se distribuent en moyenne sur un grand cercle qui représente un plan dont le pôle a la même orientation que l'orientation moyenne des litages. Ainsi, à l'échelle du SRBIC, les filons basaltiques et trachytiques sont en moyenne perpendiculaires au litage magmatique général (voir Figure 2.5a, Figure 2.18 et Figure 2.25).

Sans logique de continuité cartographique évidente entre les orientations des filons, il apparait toutefois qu'une direction préférentielle de ces filons ressorte à N70-80° avec un pendage moyen vers le nord de 60-70°. Cette orientation et le stéréogramme issus des mesures faites durant la campagne IPEV-Talisker 2013-2014 sont très similaires aux résultats des mesures de la campagne IPEV-Dylioker 2009-2010 (Figure 2.37) publiés par Mathieu et al. (2011). Toutefois, une autre orientation préférentielle de filons à environ N15E80 peut également se dégager de notre jeu de données. Ainsi, une autre interprétation peut être faite au regard de ces mesures et suggérer deux directions dominantes des plans d'injections de dykes autour d'un axe OSO-ENE et d'un autre NNE-SSO. Un travail plus fin mettant en relation orientation et chronologie relative des différents types de filons devrait pouvoir permettre d'affiner ces résultats.



Figure 2.36 : Carte illustrant les mesures de filons basaltiques et trachytiques observés sur le terrain. Par souci de lecture due à la résolution et l'échelle de la carte, toutes les mesures n'ont pu être reportées ici.



Figure 2.37 : Stéréogrammes des filons de basaltes et trachytes syn à post-plutoniques, (a et b) extraits de Mathieu et al., (2011) et (c) des données de la campagne Talisker 2013-2014.

Les différentes mesures présentées ci-dessus sont synthétisées au travers d'une coupe SSO-NNE (Figure 2.38) qui illustre la structure interne du SRBIC.



Figure 2.38: Coupe synthétique SSO-NNE du SRBIC.

# 2.5 Quantification des fabriques

La fabrique est définie comme l'orientation préférentielle de forme des minéraux d'une roche. Les roches magmatiques possèdent toujours une fabrique, aussi ténue soit-elle (voir (Bouchez, 1997) et références incluses). Dans une roche magmatique non déformée à l'état solide, la fabrique est un enregistrement de la déformation subie par le magma lors de ses déplacements à travers la croûte et de sa mise en place. Quantifier la fabrique à l'échelle d'une intrusion, c'est mesurer en de nombreux points répartis sur l'ensemble de sa surface l'orientation de la foliation (plan d'aplatissement) et de la linéation (direction d'étirement) magmatiques. C'est aussi calculer l'intensité et la forme de l'ellipsoïde de la fabrique en chaque point à l'aide des rapports d'intensités entre les trois axes de l'ellipsoïde. Les données ainsi obtenues permettent de définir le champ de déformation à l'échelle de l'intrusion. Combiné à l'étude des microstructures, ces données sont cruciales pour reconstruire l'histoire de la construction d'une intrusion.

Sans doute liée aux paramètres thermodynamiques propres aux injections lors de l'intrusion, la fabrique de forme est très peu développée dans les syénites du SRBIC. Les roches sont très isotropes, et il est très rare de pouvoir mesurer des foliations sur le terrain. Nous n'avons pu mesurer de foliation apparente sur seulement 5 affleurements pendant notre campagne de terrain (voir annexes). Pour cette raison, nous avons réalisé une quantification des fabriques par la méthode maintenant classique de l'anisotropie de susceptibilité magnétique (voir Bouchez 1997 et références incluses). Je présente ci-dessous la première étude des fabriques dans une intrusion plutonique située dans la croûte océanique par ASM.

#### 2.5.1 Microstructures

A l'exception des zones de cisaillement, les textures des roches qui composent le SRBIC sont purement magmatiques et ce dans tous les types de texture, grenue, fine ou porphyrique (Figure 2.39).



Figure 2.39 : Exemples des microstructures des syénites, a) pegmatitiques, b) grenues, c) porphyriques et c) microgrenues.

A l'image des observations sur le terrain, les roches plutoniques en lame mince ne montrent donc aucun signe particulier de déformation, d'étirement minéralogique ou de quelconque changement d'état physico-chimique influant sur leurs microstructures qui soient postérieur à leur histoire magmatique. Seuls quelques échantillons de l'unité 3 centrale montrent des figures d'altération généralisée dues à la circulation de fluides tardifs. Ces échantillons n'ont pas été utilisés pour l'ASM.

# 2.5.2 ASM

Depuis les travaux pionniers menés dans l'équipe 'Pétrophysique et Tectonique' de Toulouse à la fin du siècle dernier (voir Bouchez 1997 et références incluses), la technique de l'ASM s'est propagée dans le monde entier et a été appliquée sur des objets d'âge et de contexte très variés. Sauf erreur de ma part, c'est la première fois qu'elle est appliquée à un complexe intrusif océanique. Le protocole d'échantillonnage et de mesure est développé en annexe. Au total, 65 échantillons ont été analysés, 43 échantillons *13TKXX* prélevés lors de la mission TALISKER et 22 échantillons *TCO9-XX* prélevés lors de la mission Dylioker.

### 2.5.2.1 Minéralogie magnétique

La combinaison des mesures de la susceptibilité magnétique pour tous les échantillons, des mesures de cette susceptibilité en fonction de la température pour une sélection d'entre eux (Figure 2.40) et les observations au MEB (Figure 2.41) indiquent un comportement magnétique qui peut être qualifié de bimodal.

Quelques échantillons provenant de l'unité 3 centrale ont une susceptibilité très faible, entre 18 et 70 x 10<sup>-5</sup> SI, ce qui est typique des roches paramagnétiques sans magnétite. Cependant, l'analyse par imagerie MEB montre que les minéraux magnétiques contenus dans ces roches les plus abondants sont des ilménites associées aux phases ferro-magnésiennes. De petits cristaux de magnétite (bien moins abondant que l'ilménite) sont également présents, plutôt tardifs dans l'histoire de cristallisation de la roche. Ces échantillons sont pauvres voir dépourvus de micas noirs. La courbe de susceptibilité en fonction de la température montre un pic très marqué lors du chauffage juste avant le point de Curie de la magnétite (Tc = 580°C). Ce pic, appelé pic de Hopkinson (Hopkinson, 1890) pourrait provenir d'une néoformation de magnétite à partir du fer contenu dans les minéraux non-ferromagnétique de la roche (comme les amphiboles abondantes) et/ou de la présence de magnétite « single domain ». Le rapport ferromagnétique versus paramagnétique basé sur la modélisation d'hyperbolique de la courbe de susceptibilité (logiciel CureVal8 - AGICO) montre un comportement dominant ferromagnétique. .De plus, bien que les courbes de chauffe et de refroidissement attestent bien de la présence de Fe-Ti oxydes, celles-ci ne sont pas réversibles. Cette caractéristique atteste d'un comportement ferromagnétique perturbé, notamment avec la création de magnétite non stœchiométrique, ou de la transformation d'ilménite lors du refroidissement.

L'essentiel des échantillons ont une susceptibilité plus forte, entre 100 et 5000.10<sup>-5</sup> SI, ce qui est typique de roches ferromagnétiques. Les courbes de susceptibilité en fonction de la température sont toutes réversibles avec une  $T_c$  atteinte autour de 580°C attestant de la présence de magnétite. L'imagerie MEB montre que les phases magnétiques sont toutes des Fe-Ti oxydes. Ils sont généralement subautomorphes et de grande taille (de l'ordre de la 100aine de microns). Ces Fe-Ti oxydes sont caractéristiques car ils présentent toujours des phases d'exsolutions dans les plans de clivages et/ou d'intercroissance d'ilménite dans la magnétite. L'imagerie et l'évolution de la susceptibilité en fonction de la température confirment donc le caractère ferromagnétique de ces roches riches en oxydes de Fe-Ti.



Figure 2.40 : Planche du signal de susceptibilité magnétique par échantillon en fonction de la température. G correspond au groupe pétrographique (voir Chapitre 4).



Figure 2.41 : Planche photographique des différents habitus de la minéralogie magnétique en imagerie électronique (MEB).

La fabrique magnétique des roches du SRBIC et de ses satellites est donc liée à la fabrique de forme des Fe-Ti oxydes. Ces minéraux apparaissent tout au long de la séquence de cristallisation des syénites (voir Chapitre 4). Ils sont donc soit (i) précoces et cristallisés directement à partir du magma sous la forme de grains de grande taille, inclus dans les feldspaths et associés aux phases ferro-magnésiennes, soit (ii) secondaires et liés à des transformations sub-solidus de certaines des ces phases silicatées ferromagnésiennes (iii) soit liés aux dernières phases de cristallisation magmatique. Dans les unités 1 (externe) et 2 (intermédiaires) ces minéraux sont des magnétites « multi-domain » à exsolutions d'ilménite. Tandis que dans la plupart des roches de l'unité 3 (centrale), les plus précoces sont des ilménites et les plus tardifs (moins abondants et plus petits) sont des magnétites. Dans tous les cas,

l'orientation préférentielle de forme des grains magnétiques a donc été acquise en même temps que celle des silicates qui constituent l'essentiel de la roche, et reflète bien la fabrique générale de la syénite.

### 2.5.2.2 Orientation de la fabrique magnétique

L'orientation de la fabrique magnétique est raisonnablement bien définie, avec des moyennes des valeurs propres de la matrice des cosinus directeurs (proche de 1 quand toutes les carottes issues d'un même échantillon donnent les mêmes directions, et proche de 0 quand c'est dispersé) et des demi angles des ellipses de confiance ( $2\sigma$ ) de 0,82, 42°, 15° et 0,84, 39°, 14° pour Kmax et Kmin respectivement. Le détails des mesures est reporté en annexe.

La foliation a un pendage moyen à fort (moyenne de 56°) qui diminue de la périphérie vers le centre du SRBIC. Elle définit donc une structure en dôme centrée sur les faciès inférieurs et centraux qui sont aussi les plus jeunes (Figure 2.42). Les pendages sont le plus souvent vers l'extérieur, mais des contre-pendages existent. Les foliations sont donc en moyenne parallèles aux litages magmatiques observés sur le terrain. L'extrapolation et l'interprétation des trajectoires de foliations au travers de plusieurs cartes met en évidence ce résultat (Figure 2.42). La partie est de la péninsule compte peu de mesures et leur interprétation semble à première vue incohérente avec le reste des trajectoires. Plus de détails permettraient de mieux visualiser ce changement d'orientation ( qui ne remet pas en cause les conclusions de cette étude).



Figure 2.42 : Carte des trajectoires de foliations, stéréo issus de l'ASM et diagramme de fréquence des plongements.



Figure 2.43: Cartes interprétatives des trajectoires de foliation à l'échelle du complexe. a) extrapolation courte des plans mesurés (bleue) ; b) extrapolation à plus grande longueur d'onde (vert) ; c) interprétation issues de a et b, proche des données (noir) et incohérences (rouge) ; d) autre interprétation possible moins précise que la précédente.

La linéation a une orientation plutôt nord-sud au centre du complexe (unité 3). En allant vers l'extérieur du complexe, elle tend à se paralléliser progressivement au contact intrusif du SRBIC/basaltes de plateau, au sein des unités 2 puis 1 (Figure 2.44 et Figure 2.45). Le plongement de la linéation est faible à moyen (moyenne de 31°). Certaines zones montrent des linéations croisées sur des échantillons proches (Figure 2.44).Tout comme pour les foliations, le faible nombre de mesures dans la région du Val de Longue Attente ne permet pas de faire une interprétation satisfaisante des trajectoires des linéations.



Figure 2.44: Carte des linéations, stéréo issus de l'ASM, et diagramme de fréquence des plongements.



Figure 2.45 : Carte des trajectoires de linéations interprétées.

Les foliations à contrependage et les linéations croisées montrent une hétérogénéité spatiale de la déformation interne ('strain') subie par le magma lors de son injection, et donc des différences de déformation finie locales. Ceci pourrait être mis en relation avec les réinjections successives observées sur le terrain, qui impliquent que les fabriques peuvent être diachrones à l'échelle d'un affleurement, et qu'elles n'ont donc pas accumulé la même quantité de déformation.
### 2.5.2.3 Paramètres intensifs

La susceptibilité moyenne (Km = (K1 +K2 + K3)/3) se distribue entre 18 et  $6772.10^{-5}$  SI, avec un maximum de sites entre 1000 et  $1500x10^{-5}$  SI (Figure 2.46) et une moyenne de  $1983.10^{-5}$  SI. La répartition spatiale de la susceptibilité montre une zonation claire avec des susceptibilités très faibles, au centre de l'intrusion dans l'unité 3, et des susceptibilités plus fortes, ferromagnétiques, tout autour dans les unités 1 et 2, sans aucune zonation particulière visible à l'échelle de ces deux unités (Figure 2.47).



Figure 2.46 : Fréquences des différents paramètres intensifs (Km, P%, T).



Figure 2.47 : Carte de répartition de la susceptibilité magnétique mesurée sur le SRBIC.

L'anisotropie totale, exprimée par le paramètre Pp% corrigé du diamagnétisme en raison de susceptibilités faibles (Pp% = 100\*((K1+14)/(K3+14)-1)), se distribue entre 0,46 et 9,86 avec une valeur moyenne de 2,49 et un maximum de sites ayant une valeur comprise entre 1 et 2,5% (Figure 2.46). La distribution spatiale de l'anisotropie totale ne montre aucune répartition particulière à l'échelle du SRBIC, bien que les sites les plus anisotropes semblent appartenir à l'unité 1 la plus externe.

Les relations entre Km et Pp% ne montrent pas de relations particulières à l'échelle du complexe ou à l'échelle des différentes lithologies et textures rencontrées (Figure 2.48).

Le paramètre de forme T varie entre -0,84 et 0,98, avec une valeur moyenne de 0,13 et un maximum de sites ayant un ellipsoïde aplati avec une valeur comprise entre 0,6 et 0,2 (Figure 2.46 et Figure 2.48). La distribution spatiale du paramètre T ne montre aucune répartition particulière à l'échelle du SRBIC. Les relations entre Pp% et T ne montrent pas de relations particulières, ni à l'échelle du complexe ni en fonction des différentes textures rencontrées (Figure 2.48).



Figure 2.48 : Corrélation des paramètres intensifs d'anisotropie magnétique en fonction des textures rencontrées ; a) T vs. Pp% et b) Pp% vs. Km.

# 2.5.3 Synthèse de l'analyse des fabriques

L'étude de la fabrique que j'ai réalisée apporte des informations importantes sur la structure interne du SRBIC révélatrice de sa construction. Les fabriques observées dans le SRBIC sont sans conteste des fabriques magmatiques. Elles constituent donc l'enregistrement de la déformation subie par le magma lors de son injection dans le site de mise en place. Les fabriques magnétiques confirment les observations et mesures de terrain. Les foliations sont parallèles aux contacts externes et internes du SRBIC qui tournent à l'échelle du complexe. Elles confirment donc la structure en dôme centrée sur le faciès le plus jeune qui est quantifiée plus précisément à l'échelle de l'échantillon. Les linéations montrent également une évolution depuis les facies syénitiques centraux (linéation N-S) vers les faciès externes (linéation de plus en plus parallèle au contact SRBIC/basaltes de plateau en s'approchant de ce dernier). Ces fabriques sont diachrones à l'échelle du complexe puisque les relations de terrain montrent un rajeunissement vers le centre du complexe. Les fabriques des unités externes, unité 2 mais surtout unité 1, représentent donc un enregistrement plus long, et donc aussi vraisemblablement une quantité de déformation finie accumulée plus grande. Ceci peut expliquer par exemple l'évolution de la direction de la linéation du centre vers la périphérie du complexe. Les fabriques sont également diachrones à l'échelle d'une unité voire d'un affleurement, puisque les relations de terrain montrent localement des structures de réinjection et de recoupement. Finalement, l'analyse des fabriques montre un message cohérent à l'échelle du SRBIC qui apporte des contraintes sur la dynamique de mise en place des différentes roches qui composent les grands ensembles structuraux. L'interprétation de ces fabriques et la mise en relation avec les résultats dans les différents aspects de ce travail de thèse sont développées dans la discussion (voir discussion, Chapitre 7).

# 2.6 Synthèse structurale

L'ensemble des données de terrain et des données structurales a été intégré sous la forme de coupes géologiques synthétiques (Figure 2.31, Figure 2.38). Ces coupes montrent que le SRBIC est constitué de l'empilement de grandes 3 unités magmatiques principales concentriques, qui sont de la bordure vers le centre, les unités 1, 2 et 3. L'unité 3, située structuralement sous les deux autres, est plus jeune que l'unité 2 qui est plus jeune que l'unité 1.

Ces trois unités principales montrent une structure interne magmatique définie par une alternance de roches de nature et de texture variées (monzogabbros, monzodiorites, syénites grenues, fines, pegmatitiques, et porphyriques). Une telle alternance ne s'observe en réalité qu'au sein de l'unité 1, la plus vielle du complexe (Figure 2.19). Les unités 2 et 3 montrent uniquement des alternances entre syénites grenues et fines, ainsi qu'un réseau de veines pegmatitiques plus ou moins co-structurées (Figure 2.32). La quantité de syénite fine ou microsyénite diminue vers le centre de l'intrusion tandis que la syénite porphyrique s'observe surtout au sein de l'unité 1 et au contact entre unité 1 et 2 (Figure 2.18 et Figure 2.49).

|                                           |                       | Unité 1 | Unité 2 | Unité 3                                                                                                        |     |
|-------------------------------------------|-----------------------|---------|---------|----------------------------------------------------------------------------------------------------------------|-----|
| en sills ou                               | Monzo-gabbro/diorites |         |         |                                                                                                                |     |
| lentilles,<br>formant le<br>pluton (sensu | syénite grenue        |         | 1       |                                                                                                                |     |
|                                           | syénite fine          |         |         |                                                                                                                | -   |
|                                           | syénite pegmatitique  |         |         | i and the second se | +   |
| stricto)                                  | syénite porphyrique   |         |         |                                                                                                                | -   |
|                                           | filons T+B précoces   |         |         |                                                                                                                | 0   |
| dykes                                     | filons intermédiaires |         |         |                                                                                                                | 1.5 |
|                                           | filons T+B tardifs    |         |         |                                                                                                                |     |
| déformation                               | zones de cisaillement |         |         |                                                                                                                |     |

Figure 2.49: Diagramme d'occurrences des différentes lithologies et déformations au sein des unités structurales du SRBIC.

Ces alternances définissent un litage magmatique qui est concentrique et concordant depuis le contact externe avec les basaltes jusqu'au centre du complexe intrusif. Ce litage magmatique montre un pendage vers l'extérieur du complexe qui diminue de la périphérie vers le centre du SRBIC (Figure 2.33). La coupe (Figure 2.38) montre une épaisseur structurale de syénite (sensu lato) d'environ 2,5 km pour les unités 1 et 2, et d'au moins 4 km pour l'unité 3.

La structure du SRBIC peut ainsi être définie comme un empilement de sills / lentilles de magmas concordants et co-structurés, à pendage centripète croissant vers les bordures. La variation progressive de l'âge relatif et du pendage des injections depuis le centre plus jeune et sub-horizontal, jusqu'à la périphérie plus ancienne et parfois fortement pentée, peut être interprétée comme une évolution temporelle. Les injections les plus anciennes auraient été progressivement soulevées et basculées par les injections plus jeunes sous accrétées. Cette hypothèse est confortée par la géométrie des basaltes de plateau et leur changement d'orientation à l'approche du SRBIC. La formation du SRBIC provoquant leur soulèvement est un argument déterminant pour une interprétation alternative au modèle de construction par subsidence en chaudron précédemment proposé par Marot et Zimine (1976) et (Lameyre et al., 1976), lequel fut repris plus tard (Giret, 1983; Bonin et al., 2004).

Malgré cette géométrie au premier ordre assez simple, l'histoire magmatique est compliquée. Les injections multiples formant l'alternance magmatique sont le plus souvent co-structurées mais parfois se recoupent. Ce signal simple à grande échelle est donc perturbé par endroit lorsque l'échelle se réduit à celle de l'affleurement. Les différentes textures de roches formant cette alternance révèlent des variations thermodynamiques de mise en place influant sur les vitesses de refroidissement d'une injection à l'autre. La diminution volumétrique de microsyénite vers le centre du SRBIC semble révélatrice d'une certaine homogénéisation de ces conditions thermodynamiques dans le temps (voir Chapitre 7). La présence de la syénite porphyrique est uniquement associée au contact externe SRBIC/basaltes de plateau, à la zone d'alternance entre injections intermédiaire/mafiques syn à tardi-plutonisme. Cette texture est donc exclusivement observée dans les premiers temps de la construction du SRBIC et ce, dans les zones de forts contrastes structuraux et compositionnels. Sans pouvoir formuler d'explications claires, l'apparition de cette texture semble toutefois liée aux fortes variations de la dynamique magmatique dans les niveaux plus profonds que ceux de la mise en place.

Les caractéristiques des zones de déformations ductiles, ductiles-fragiles et cassantes montrent une liaison évidente avec la construction du SRBIC (e.g. orientation des zones de cisaillement, cinématique). Elles impliquent nécessairement que les injections les plus jeunes déforment et déplacent des injections antérieures déjà parfois largement voire totalement cristallisées. L'existence de plusieurs types de contact magmatiques entre les injections successives montre que ces dernières sont séparées par des périodes de

silence magmatique de durée variable permettant une cristallisation plus ou moins avancée des injections déjà en place. Ceci est cohérent avec des zones où l'intensité de déformation est plus ou moins marquée.

L'orientation des fabriques (Figure 2.42 et Figure 2.43) confirme le schéma général issu des seules observations de terrain et montre le contrôle structural exercé par le contact supérieur sur lequel se moulent les foliations des syénites. La linéation (Figure 2.44 et Figure 2.45) montre une direction nordsud au centre du complexe, qui pourrait être interprétée comme une direction d'injection à partir d'un filon E-O ou ESE-ONO, linéation qui se parallélise ensuite au contact externe par rotation progressive liée à la déformation induite par les injections successives.

Enfin, tous les résultats obtenus sur la structure du SRBIC et présentés dans ce chapitre sont incompatibles avec un modèle de construction par subsidence en chaudron. Ces résultats nous conduisent à proposer un modèle de construction alternatif de type laccolithe. Ce modèle est développé en parallèle des résultats géochronologiques (à la fin du chapitre suivant), dans un article soumis à la revue Geology, ainsi que dans la discussion de cette thèse (voir Chapitre 7).

# Chapitre 3 : Géochronologie et implications

Les datations existantes sur le complexe sud de la péninsule de Rallier du Baty ont toute été réalisées avant 1980 par méthode K-Ar et Rb-Sr. Au vu des problèmes de datations rencontrés sur le reste de l'archipel avec ces mêmes méthodes (notamment sur le massif intrusif des montagnes vertes plus vieux que son encaissant basaltique ou des problèmes de « reset ») ; des premières datations (Lameyre et al., 1976) publiées puis retravaillées (Dosso et al., 1979), il est apparu nécessaire de clarifier la géochronologie des roches plutoniques de Rallier du Baty. Une étude géochronologique par mesure isotopique du système U-Pb a donc été réalisée. La robustesse des datations absolues par U-Pb n'est aujourd'hui plus à démontrer. Les roches plutoniques felsiques étant majoritaires sur la péninsule et contenant bon nombre de zircons, cette méthode a été appliqué in-situ sur zircons séparés et lames épaisses. Cette étude, qui est la première utilisant le système U-Pb sur le complexe sud de Rallier du Baty, s'est révélée nécessaire pour comparer, préciser et affiner les données existantes ainsi que pour contraindre et comprendre la construction de ce pluton.

La préparation de 32 échantillons pour la géochronologie (séparation aux liqueurs denses, séparation magnétique au Frantz et réalisations de lames épaisses 100µm) a été réalisée au laboratoire GET (Toulouse, France). Les zircons ont été extraits à partir de 24 échantillons (entre 3 et 5kg) prélevés sur le terrain (campagne Dylioker 2009 et campagne Talisker 2013). Ces échantillons ont été sélectionnés en tenant compte des observations de terrain et sont considérés représentatifs de l'histoire du complexe plutonique.

# 3.1 Protocole de séparation minérale

Ces échantillons ont subi une série de concassage/broyage et tamisage successifs afin de récupérer une fraction tamisée <500µm. Durant ce processus plusieurs échantillons ont été « sur-broyés ». Ce mauvais réglage est la cause d'un certains nombre de zircons cassés et explique, en plus d'un manque de temps, la non-analyse systématique des cœurs et bordures. La fraction <500µm récupérée a ensuite subi une séparation gravimétrique à l'aide d'une table à secousse. Cette table est un dispositif qui permet, via un flux d'eau constant et un angle de la table adéquat, de séparer l'échantillon en plusieurs fractions contenant chacune des minéraux de densités différentes. Une fois séchée la fraction contenant les zircons subit une première étape de séparation densimétrique. Petit à petit, cette fraction a été mélangée à une liqueur de tetra-bromoethane dans une ampoule à décanter. Le tétra-bromoethane est une liqueur dite « dense » de densité 2,97 g/cm<sup>3</sup> lorsqu'elle est pure. Les minéraux plus lourds comme le zircon (d = 4.85g/cm<sup>3</sup> pur) sont donc récupérés dans une nouvelle fraction « lourde ». Après cette étape, on remarque aisément les nombreux minéraux sombres des roches grenues de Rallier du Baty auparavant noyés dans la masse feldspathique. Ces minéraux sont des minéraux ferromagnésiens comme les amphiboles et des minéraux magnétiques comme la magnétite. C'est pourquoi, la fraction précédemment récupérée a alors subi une étape de séparation magnétique isodynamique. Le Frantz est un appareil constitué de deux électroaimants à l'intérieur desquels se trouve une réglette vibrante où circule l'échantillon et permet aux minéraux magnétiques d'être séparés via l'ampérage des deux électroaimants. La fraction purifiée subit une dernière étape de séparation densimétrique dans une liqueur de di-iodomethane (ou diiodure de méthylène) à d =  $3.3 \text{ g/cm}^3$ . Cette dernière étape permet notamment de séparer les zircons des apatites (d = 3.2 g/cm<sup>3</sup>). Une partie des apatites extraites a partir de ces échantillons ont servit a une étude thermochronologique sur la province plutonique de Rallier du Baty (F.Ahadi et al., in progress). Finalement, les zircons présentant le moins de défauts (externes et internes) ont été sélectionnés et « pickés » pour être disposés et coulés dans l'époxy. Une fois les plots (ou sections) secs, ils ont été polis jusqu'à une taille de poli d'alumine de 3µm, pour laisser apparaitre une surface de zircon satisfaisante.

# 3.2 Caractéristiques internes et externes des zircons du SRBIC

# 3.2.1 Coloration et morphologie

L'un des caractères communs à tous les zircons extraits des roches du SRBIC est leur spectre particulier de couleur qui les classe dans une série de type rose-rouge. En effet, ce spectre s'étend de termes faiblement colorés à des zircons de teintes foncées rose-orangées (Figure 3.1). Définie comme une série rose-rouge en opposition à une série jaune-brune par les joailliers, ce spectre est décrit sous le nom de « hyacinthe » en distinction de celui du « jargon » (Romé De l'Isle (de), 1772). Aujourd'hui, seul le terme de « hyacinthe » est resté dans le vocabulaire des gemmologues (G.Guiliani, communication personnelle). La couleur rose-rouge semblerait être acquise avec les dommages structuraux induits par la désintégration radioactive du thorium et de l'uranium (Fielding, 1970). La désintégration de type *a* induirait un certain désordre interne et activerait certains « centres » de couleur par déplacements électroniques pouvant changer l'absorption lumineuse. Certains de ces centres (Nd<sup>3+</sup>, Dy<sup>3+</sup>, Sm<sup>3+</sup>, Tb<sup>3+</sup>, Gd<sup>3+</sup>, Eu<sup>3+</sup>, Cr<sup>3+</sup>, Y<sup>3+</sup>, Nb<sup>4+</sup>) ont été identifies par cathodoluminescence (Fielding, 1970; Götze et al., 1999; Blanc et al., 2000; Remond et al., 2000; Nasdala et al., 2002; Timms and Reddy, 2009; Klinger et al., 2012) et joueraient donc un rôle dans l'accumulation de la couleur rose. En relation avec la désintégration radioactive, le temps écoulé depuis la cristallisation et le refroidissement serait aussi lié à l'accumulation de la couleur (Garver and Kamp, 2002; Garver, 2014).



Figure 3.1: Photos prises à différentes échelles (a, b et c) et schémas de zircons caractéristiques du SRBIC, montrant le développement préférentiel de la pyramide {101} et du prisme {100}, ainsi qu'un léger développement des faces {211} plus rare.

Il est reconnu depuis longtemps que les zircons ont des morphologies variables et que leurs structures internes ont une signification pétrogénétique (Poldervaart, 1955). L'identification des caractères optiques externes et internes dominants des zircons du SRBIC à été réalisée de façon qualitative à la loupe binoculaire sur les fractions minérales séparées. Leurs morphologies sont relativement bien exprimées par des zircons majoritairement automorphes à sub-automorphes. Ces morphologies correspondent au développement préférentiel de la pyramide {101} et de la face {100} du prisme. Il apparait quelque fois que la face {211} soit aussi légèrement développée (Figure 3.1).

La classification de Pupin, établie en 1980 et basée sur une étude comparative des différentes morphologies de zircons, a permis de distinguer le système magmatique dans lequel ces zircons ont cristallisé grâce a la comparaison avec un indice d'alcalinité. Par effet de réciprocité, la morphologie est donc révélatrice du contexte géodynamique dans lequel les zircons cristallisent. Ainsi, corroborée par leurs morphologies, les zircons du SRBIC issus de roches appartenant à une série plutonique sur-saturée en Si sont donc bien typiques d'un système fortement alcalin et se classent dans la catégorie des zircons de granites hypersolvus à transsolvus (Figure 3.2). De plus, cette classification établit un parallèle entre la température de cristallisation et la morphologie des zircons observés avec une précision relative qui permet toutefois d'estimer des températures de cristallisation comprises entre750 et 950°C pour les zircons du SRBIC.



Figure 3.2: Classification morphologique qualitative des zircons de Rallier-du-Baty, adaptée d'après (Belousova, 2005), modifiée d'après Pupin (1980). Contour noir : domaine des séries alcalines ; contour pointillé rouge : domaine des zircons de granites transsolvus (d'après Pupin, 1980) ; contour plein rouge : domaine des zircons de Rallier-du-Baty.

Les zircons de Rallier-du-Baty ont des tailles qui varient en fonction de l'échantillon considéré, mais majoritairement comprises entre 200 ( $\pm$ 100) et 400 ( $\pm$ 100)  $\mu$ m pour les syénites. Ils sont toujours allongés parallèlement à l'axe c. L'élongation, définie par le rapport longueur/épaisseur, est toutefois relativement faible, majoritairement comprise entre 1.5 et 2. Les études morphologiques sur zircons conduites depuis les années 70 ont montré que l'élongation est dépendante de la vitesse de refroidissement du magma dans lequel le minéral à cristallisé (Corfu et al., 2003). Ainsi, plus la vitesse de refroidissement est rapide plus les zircons sont allongés selon l'axe c (Kostov, 1973). Pour exemple, les zircons aciculaires sont surtout retrouvés dans les laves, mais aussi en moindre abondance dans les intrusions porphyriques, subvolcaniques, granites et gabbros de hauts niveaux crustaux (Zimmerle, 1975; Corfu et al., 2003). Bien que les roches plutoniques du SRBIC puissent se retrouver dans cette description, les très rares zircons aciculaires n'ont été observés qu'au sein des monzo-gabbros/diorites et une seule syénite (TC09-06). Compte tenu du contexte géodynamique du SRBIC et de la faible élongation de ses zircons, il est cohérent d'impliquer des vitesses de refroidissement des roches plutoniques suffisamment lentes pour que les zircons puissent croitre efficacement le long des axes a et b. Cette hypothèse simple basée sur des travaux précoces doit être modérée par les résultats d'études plus récentes utilisant des techniques de cathodoluminescence et d'analyses à la microsonde. Ces dernières invoquent d'autres facteurs (tels que la composition du magma, le taux de saturation en zirconium, la dynamique d'incorporation des éléments traces et le contenu en uranium du milieu; (Vavra, 1990, 1993; Benisek and Finger, 1993 parmi d'autres) pouvant jouer un rôle plus significatif que la température et la vitesse de refroidissement des roches hôtes dans la croissance cristallographique des zircons. Les zircons de plus grandes tailles ont été extraits et observés au sein des roches de l'unité 3, tandis que celles des unités 1 et 2 contiennent des zircons avec une grande variabilité de taille indépendamment de leur localisation et de la texture de leur roche hôte. Seuls les zircons extraits des monzo-gabbros/diorites sont majoritairement plus petits que ceux des syénites. Cette observation pourrait s'expliquer par le fait que la saturation en zirconium n'est atteinte que tardivement dans le cas des roches mafiques/intermédiaires comparativement aux syénites, conduisant à des faces peu développées (Corfu et al., 2003).

# 3.2.2 Structures internes

Les différentes caractéristiques internes (et externes) des zircons du SRBIC sont reportées dans la Figure 3.3 et Figure 3.4 au travers de plusieurs exemples de zircons séparés. Ils montrent tous des zonations oscillatoires superposées à des zonations en secteurs (OZ pour Oscilatory Zoning et SZ pour Sector Zoning) plus ou moins prononcées en fonction des échantillons. Les trois grands type de zircons rencontrés sur le complexe plutonique sont reportés dans la Figure 3.4a, b et c.

Il est communément admis que la zonation oscillatoire est la conséquence d'une succession de couches cristallisée en trois dimensions et suivant la même morphologie durant la croissance du minéral. Ces franges concentriques peuvent être d'épaisseur variables et sont visibles grâce à leur différentes contenus en éléments traces incorporés lors de leur cristallisation et impliquant des changements dans les émissions cathodoluminesentes (e.g. Benisek and Finger, 1993; Hoskin, 2000). Les zonations oscillatoires des zircons du SRBIC sont composés de couches fines (<5µm; Figure 3.3 et Figure 3.4). Les mécanismes exactes responsables de ce type de zonation sont encore débattus mais semblent simultanément régis par la variation temporelle de la composition du liquide dans lequel le cristal grandit et la cinétique des échanges solides liquide à l'interface du minéral (e.g. Halden and Hawthorne, 1993). Ainsi, de par ces caractéristiques physico-chimiques tels que sa composition, son état d'oxydation et sa saturation en zirconium, l'environnement de croissance contrôle les zonations qui forment la structure interne du zircon (e.g. Mattinson et al., 1996).



Figure 3.3: Exemples de morphologies et structures internes des zircons du SRBIC sous lumière polarisée et cathodoluminescence. En dépit de leur contenu en inclusions, les zircons montrent tous des zonations en secteurs et des zonations oscillatoires plus ou moins prononcées.

Tout comme les OZ, les zonations en secteur sont souvent observées dans les zircons (Vavra, 1990) et références précédentes). Ce type de zonation découpe généralement les minéraux en plusieurs zones qui séparent généralement les secteurs pyramidaux des prismatiques comme c'est le cas des zircons de la Figure 3.3 et Figure 3.4b. Hoffman and Long (1984) ont premièrement décrit ces zonations en secteur comme résultant d'une croissance anomalique. Elles sont plutôt considérées aujourd'hui comme résultant de l'incorporation différentielle en éléments traces dans les différentes portions du crystal en relation avec l'orientation cristallographique de la surface en croissance. La diffusion élémentaire

intracristalline étant bien plus lente que le taux de croissance, la ré-équilibration avec le liquide n'est pas complétée lorsque sont incorporés les éléments traces (Watson and Liang, 1995). Ces auteurs suggèrent que tous les zircons doivent être zonés en secteurs mais que nous ne sommes pas capables de détecter pour le moment toutes les occurrences. Quoiqu'il en soit, les structures zonées des zircons du SRBIC sont typiques de zircons magmatiques, attribuées à la cristallisation de minéraux provenant d'un unique événement pétrogénétique et issus d'un liquide ayant évolué et/ou perturbé dans le temps (Vavra, 1990; Pidgeon, 1992; Rubatto and Gebauer, 2000; Hanchar and Watson, 2003; Miller et al., 2003).



Figure 3.4: Photos en lumière naturelle (a, c, e) et cathodoluminescence (b, d, f) de plusieurs zircons caractéristiques du SRBIC illustrant les différent types de structures internes rencontrées. Tous contiennent des inclusions en quantité variable. a) échantillon 13TK70, zircon cristallisé avec un développement caractéristique du prisme 100 et de la pyramide 101, et une variation de coloration laissant apparaitre un zoning en secteurs. c) échantillon TC09\_82, zircon cristallisé avec un développement préférentiel du prisme 100 et de la pyramide 101 avec un léger développement des faces 211. e) échantillon 13TK31, zircon montrant une zonation de couleur du cœur vers la bordure, et la même morphologie que (a et c). (b) même zircon que (a), montrant une zonation oscillatoire et en secteur très prononcé. (d) échantillon TC09\_82, zircon montrant une zonation oscillatoire très contrastée, ainsi que des limites de résorptions bien visibles aux angles entre les différentes faces de croissance. (f) même zircon que (e) montrant un cœur avec une zonation oscillatoire et en secteur, suivit d'une limite de résorption majeure. Cette surface délimite une bordure montrant une zonation oscillatoire. Les zircons (a) et (c) représentent la majorité des zircons séparés au sein des syénites du SRBIC.

Au-delà de la majeure partie des zircons du SRBIC décrite plus haut et dont les exemples sont illustrés dans les Figure 3.3 et Figure 3.4a,b,c ; un autre type de zircon dont la structure interne diffère des précédents a pu être observé. Ils se caractérisent, en plus des SZ et OZ, par la présence de zones de résorption (Figure 3.4d). Ces zones de résorptions apparaissent principalement à l'extrême bordure des minéraux, mais peuvent s'observer rarement plus proches du centre du cristal dans certains échantillons. Ces zones sont visibles en cathodoluminescence car elles s'appuient sur une surface qui semble recouper la morphologie définie par les précédentes franges de croissance du minéral. Cette limite courbée est donc plus facile à observer aux angles entre les différentes franges de croissance (Figure 3.4d). De plus, une telle limite peut apparaitre plusieurs fois au sein du même minéral et définir autant de zones de résorption (Figure 3.4d et Figure 3.4f). Ce genre de discontinuités texturales ont été reportées au travers de nombreuses études (Corfu et al., 2003; Hoskin and Schaltegger, 2003; Köksal et al., 2008). Elles sont désormais largement attribuées à des phénomènes de dissolution où la saturation en zircon du liquide

magmatique n'est plus atteinte pendant une période de temps plus ou moins courte. Ces épisodes pourraient provenir d'anomalies cinétiques locales, de processus de mélange à différentes échelles, jusqu'à des phénomènes cycliques de croissance/dissolution pendant une longue période d'injection magmatique. D'autre part, Pidgeon and Compston (1992) ont proposé que les zircons aient pu subir plusieurs phases de cristallisation dans différentes parties d'un même magma de composition nonhomogène à échelle inconnue avant d'atteindre leur position finale. Ces zones de résorption sont donc des témoins de changement plus ou moins important et d'origine variables dans l'environnement magmatique durant la cristallisation du zircon.

Un dernier type de structure interne a été observé parmi les zircons de rares échantillons du SRBIC (Figure 3.4e et Figure 3.4f). Ce type de zircon présente un cœur avec des zonations oscillatoires et en secteur moins prononcés que pour les zircons précédents dus à une différence moins grande de contraste entre les différentes surfaces de croissance. Ce cœur est entouré par une couronne qui montre également des zonations oscillatoires. Tout comme le zircon Figure 3.4d, les zonations oscillatoires de cette bordure présentent plusieurs zones de résorption. Mais à la différence du zircon Figure 3.4d, la limite de résorption la plus proche du centre du zircon Figure 3.4e et Figure 3.4f est très rugueuse et marque clairement une importante surface de dissolution dans l'histoire de ce minéral. Cette limite majeure de résorption forme une discontinuité structurale et mène a distinguer un cœur magmatique d'une bordure magmatique. En effet, bien que les surfaces de résorption importante soit communes pour les zircons métamorphisés, de telles discontinuités texturales peuvent également se retrouver dans les zircons magmatiques. De plus, la zonation oscillatoire bien prononcée dans cette bordure qui suit la morphologie de croissance du cœur, bien que recoupé par une zone de résorption majeure, supporte cette origine uniquement magmatique. Au contraire, les zircons non-magmatiques présentent des zones déstructurées (patchy areas) et des zonations rarement visibles (Pidgeon, 1992; Hanchar and Miller, 1993; Corfu et al., 2003; Hoskin and Schaltegger, 2003). Sur le zircon Figure 3.4e et Figure 3.4f, la zone qui semble déstructurée correspond à un plan d'inclusions entre le cœur et la bordure. Bien que celui-ci soit visible en cathodoluminescence, ce zircon montre plusieurs plans d'inclusions du même type qui suivent les différente faces de croissance du minéral.

Les observations microscopiques des structures internes ont donc montré : (i) un 1<sup>er</sup> type de zircon, largement dominant au sein des roches du SRBIC ; bien structuré avec des OZ et SZ bien prononcées ; (ii) un 2<sup>eme</sup> type de zircon, minoritaire, avec des caractéristiques semblables au 1<sup>er</sup> type mais qui montrent de multiples surfaces fines de résorption ; et (iii) un dernier type de zircon rare et spécifique à certains échantillons ; montrant une surface de dissolution majeure délimitant un cœur et une bordure magmatique.

Les observations microscopiques ont également permis de relier directement la couleur des zircons à leur structure interne. Il apparait en effet que la couleur n'est pas repartie de façon homogène au sein d'un même cristal (Figure 3.4a, c, e). Chaque frange de croissance formant les OZ ayant une émission propre en CL semble également avoir une couleur propre en lumière naturelle. Plus l'intensité de l'émission lumineuse en cathodoluminescence est forte plus la couleur rose est foncée en lumière naturelle. Comme l'émission en cathodoluminescence est un signal complexe issus de plusieurs centres d'émission, il est difficile de savoir quels éléments, incorporés dans la structure du zircon, sont directement responsables de la coloration. Cependant, il est communément accepté que les zones de forte émission-CL sont des zones enrichies en REE<sup>3+</sup> (surtout en Dy<sup>3+</sup>), tandis que les faibles émissions sont attribuées à des zones enrichies en U, Th et Y (e.g. Köksal et al., 2008). C'est pourquoi, même si les éléments traces peuvent être

impliqués, il semble que les fortes concentrations en U, Th et Y (ainsi que leur propre irradiation) soient les principaux éléments responsables de la coloration des zircons du SRBIC.

# 3.2.3 Inclusions

Le dernier critère qui définit les zircons du SRBIC est leur grand nombre d'inclusions (Figure 3.5 et précédentes). Elles sont le plus souvent constituées de phases solides telles que des minéraux allongés d'apatite, mais également de phases fluides ou vitreuses. Les premières s'observent aussi bien dans les plans qui délimitent deux franges de cristallisation successives qu'à l'intérieur du crystal en recoupant la morphologie de croissance sans direction préférentielle. Tout comme les inclusions solides, les inclusions fluides suivent les plans de cristallographie de minéral en croissance. Mais elles apparaissent également dans des plans de faiblesse du cristal, qui peuvent être les précédents ou bien des fractures plus tardives recoupant une partie du minéral. Dans certains spécifiques, ces dernières mènent à un réarrangement de la structure et probablement une légère recristallisation dans des espaces très localisés. Cette observation est illustrée en Figure 3.4e Figure 3.4f où ce type d'inclusions donne lieu a une texture poreuse en CL et sous lumière réfléchie. Cette même texture s'observe pour les zircons b et c de la Figure 3.5, où la bordure à subit une désorganisation de sa structure ainsi que vers l'intérieur du minéral via une inclusion précoce.



Figure 3.5: Exemples d'inclusions rencontrées au sein des zircons du SRBIC, telles que (a) des inclusions d'apatite qui sont de loin les plus courantes, et (b et c) d'autres inclusions solides (± fluides ?vitreuses ?) incorporées dans la structure via une fracturation et restructuration tardive.

Ces textures poreuses semblent révélatrices d'un ou plusieurs épisodes tardifs plus ou moins important de circulation de fluides hydrothermaux dans l'histoire de cristallisation des zircons de quelques échantillons. Ces échantillons se repartissent inégalement sur le SRBIC et notamment proches de points de résurgence de fluides hydrothermaux ou « sources chaudes ».

# 3.3 Protocole d'analyse et traitement des données U-Pb

Les cristaux de zircon ont été séparés à partir de 24 échantillons sélectionnés et identifiés sur 8 lames épaisses (100  $\mu$ m d'épaisseur). La micro-caractérisation par cathodoluminescence et les mesures U-Pb par LA-ICPMS ont toutes été effectuées au Centre GEMOC / CCFS, Université Macquarie, Sydney (Australie). Les structures internes des cristaux ont été étudiées par cathodoluminescence sur un MEB Zeiss EVO MA15. Les grains de zircons ont pu être datés via l'ablation en utilisant un laser (Photon Analyte G2 Excimer 193nm) couplé à un ICP-MS (quadripôle Agilent 7700cx). Les procédures analytiques appliquées au cours de cette étude pour la datation U-Pb sont ont été décrites en détails précédemment (Belousova et al., 2001; Griffin et al., 2004; Jackson et al., 2004). Un diamètre de faisceau d'environ 40  $\mu$ m avec un taux de répétition de 5 Hz et une énergie d'environ 0,06  $\mu$ J et 8 J/cm<sup>2</sup> a été utilisé pour l'ablation. Une minute d'acquisition sur le « background » et deux minutes d'acquisition sur le signal ont été appliquées pour chaque analyse. Ce balayage rapide sous conditions d'He permet de minimiser le bruit de fond

pendant les mesures d'ablation. Un étalon de zircon isotopiquement homogène a été utilisé pour obtenir une correction précise du fractionnement U / Pb dans des conditions d'ablation constante. 10 grains de zircons ont été encadrés par des paires d'analyses de l'étalon GEMOC GJ-1 zircon (Elhlou et al., 2006). Ce standard a un âge TIMS <sup>207</sup>Pb/<sup>206</sup>Pb de 608,5 Ma (Jackson et al., 2004). Deux autres standard de zircons bien caractérisés, 91500 avec un âge certifié de 1065 Ma en <sup>206</sup>Pb / <sup>238</sup>U (Wiedenbeck et al., 1995), et un étalon Mud Tank avec un âge <sup>206</sup>Pb / <sup>238</sup>U de 734 ± 32 Ma (Black and Gulson, 1978) ont été analysés dans chaque série comme un contrôle indépendant de la reproductibilité et de la stabilité de l'instrument. La moyenne des âges obtenus pour GJ1 sont de 600.1 ± 8Ma (<sup>206</sup>Pb/<sup>238</sup>U) et 602.15 ± 6.7Ma (<sup>207</sup>Pb/<sup>235</sup>U). Bien que cette valeur soit cohérente avec la valeur (<sup>207</sup>Pb/<sup>206</sup>Pb) TIMS admise pour ce standard à 2σ près (Jackson et al., 2004), elle est légèrement plus faible que cette dernière. Toutefois l'ensemble des mesures effectuées récemment au sein du GEMOC sur ce standard tendent à rapprocher son age réel de 605 Ma, tel que cette valeur semble le confirmer (N.Pearson et W. Powell, communication personnelle). La moyenne des âges obtenus pour 91500 est de 1059 ± 15 Ma (<sup>206</sup>Pb/<sup>238</sup>U) et 1065.6 ± 10.16Ma (<sup>207</sup>Pb/<sup>235</sup>U). Celle des âges obtenus pour Mud Tank est de 733.4 ± 8.9Ma (<sup>206</sup>Pb/<sup>238</sup>U) et 734.4 ± 9Ma (<sup>207</sup>Pb/<sup>235</sup>U). Ces valeurs de standard confirment également l'intérêt d'utiliser les âges <sup>206</sup>Pb/<sup>238</sup>U pour les jeunes zircons.

Le logiciel Glitter (www.gemoc.mq.edu.au, Griffin et al., 2008) a été utilisé pour calculer les âges U-Pb à partir des données de signal brutes. Glitter affiche les rapports isotopiques pertinents pour chaque balayage de masse et permet de sélectionner des segments isotopiquement homogènes pour l'intégration. Il corrige également les ratios intégrés pour le fractionnement lié à l'ablation et le biais de masse instrumental par l'étalonnage de chaque segment de temps sélectionné par rapport aux segments pour les analyses de zircon standard. Le détail des résultats obtenus est reporté en annexe.

Une attention particulière a été portée à la localisation du point d'ablation sur la surface polie des zircons afin d'éviter leur grande quantité d'inclusions (Figure 3.3, Figure 3.4 et Figure 3.5). Les rapports isotopiques ont été corrigés en supposant que les rapports <sup>206</sup>Pb/<sup>238</sup>U, <sup>207</sup>Pb/<sup>235</sup>U et <sup>208</sup>Pb/<sup>232</sup>Th d'un zircon discordant reflète une combinaison de perte de plomb et de plomb commun à un temps défini. Par conséquent, la méthode d'Andersen (2002) a été appliquée pour la correction de plomb commun avec une composition de plomb commun estimée à partir du modèle de Stacey et Kramers (1975). Aucune correction n'a été appliquée aux analyses qui sont concordantes dans les 2ơ d'erreur de <sup>206</sup>Pb/<sup>238</sup>U et <sup>207</sup>Pb / <sup>235</sup>U, ou qui possèdent moins de 0,2% de plomb commun. Le peu d'analyses corrigées ( 4 au total) montre que ces zircons ne possèdent pas de plomb commun. Cette correction n'a donc pas eu d'effet.

Une deuxième correction a été appliquée compte tenu des âges « jeunes » des zircons du SRBIC. En effet, il est maintenant bien documenté (Schärer, 1984; Schärer et al., 1990; Chiaradia et al., 2013) que les jeunes zircons sont affectés par déséquilibre Th/U initial. Le produit intermédiaire <sup>230</sup>Th dans la chaine de désintégration <sup>238</sup>U est exclu pendant la cristallisation du zircon. Cette particularité mène à un déficit de <sup>206</sup>Pb qui a pour effet de sous-estimer l'âge du zircon. Ce déséquilibre a été corrigé en suivant l'équation donnée par Schärer (1984):

$$\frac{^{206}\text{Pb}}{^{238}\text{U}} = (e^{\lambda_{238'}} - 1) + \frac{\lambda_{238}}{\lambda_{230}} \left( f_{\text{Th/U}} - 1 \right) \qquad \qquad f_{\text{Th/U}} = \left( \frac{(\text{Th/U})_{\text{zircon}}}{(\text{Th/U})_{\text{magma}}} \right)$$
(2)

Les concentrations U et Th (zircon) ont été quantifiées en comparant les nombres de coups <sup>238</sup>U et <sup>232</sup>Th pour chaque analyse par rapport aux standard 91500 et GEMOC GJ-1. Le standard 91500 est supposé avoir des concentrations homogènes en U et en Th de 81 ± 3 et 29 ± 1 ppm respectivement (Wiedenbeck et al., 1995). Celles de GJ-1 GEMOC sont respectivement de 287 ± 13 ppm et de 18 ± 3 ppm pour U et Th

(Elhlou et al., 2006). Sur la base de l'hypothèse que le rapport Th/U du liquide magmatique à partir duquel le zircon a cristallisé peut être approché par le rapport Th/U mesuré dans la roche hôte, j'ai considéré un Th/U(magma) égal à la moyenne des rapports de concentrations Th/U(roche) pour tous nos échantillons. Ce dernier étant égal à 4.5 (Figure 3.6). Même si l'utilisation des rapports Th/U des roches hôtes fait l'objet d'un débat (e.g. Schärer et al., 1990), il apparaît qu'une erreur relative de 30% sur cette valeur conduit toujours à moins de 20 Ka d'erreur sur les âges zircons corrigés. La moyenne de correction pour une telle erreur sur le Th/U (roche) étant de 8,7 Ka pour tous les échantillons. La correction typique du déséquilibre de <sup>230</sup>Th pour les zircons du SRBIC va de 50 à 100 Ka pour chaque analyse avec une moyenne d'environ 80 Ka pour un même échantillon.



Figure 3.6: Rapport Th/U des roches plutoniques de Rallier du Baty et valeur moyenne utilisée pour la correction de <sup>230</sup>Th.

A l'aide de photos sous différentes lumières, les points d'ablation ont pu être choisis de façon optimale. Cependant, bons nombres d'inclusions n'ont pu être évitées, conduisant à des anomalies dans les signaux mesurés. C'est pourquoi, chaque segment de signal, ayant servi au calcul des âges, fut soigneusement choisi pour éviter toute contamination avec un temps maximum d'intégration toujours strictement supérieur à 30 secondes sur un signal stable. Ce choix d'intégration est apparut inévitable compte tenu des inclusions. Les temps d'intégration sur les standards ne sont donc pas identiques à ceux de tous les zircons. Bien que cette différence n'ait pas d'impact sur le résultat, elle force une correction entre ces différents temps (automatiquement réalisée via Glitter) et donc une incertitude qu'il aurait été préférable mais impossible à éviter. Au minimum 10 zircons ont été analysés par échantillon. Par manque d'expérience, j'ai privilégié le nombre d'échantillons plutôt que le nombre d'analyses par échantillons. Compte tenu des analyses inutilisables à cause de perturbation de signal, ce choix a un impact direct sur la fiabilité des âges calculés. Il est clair que la fiabilité de certains de ces âges doit être considérée de façon statistique. C'est pourquoi, les âges calculés pour lesquels le nombre de zircon est inférieur à n=5 sont considérés comme moins robustes et n'ont pas été intégrés dans l'article soumis à publication (voir partie 3.5). Toutefois, même si la fiabilité de ces âges est statistiquement faible, ils permettent d'étendre le champ des données géochronologiques du SRBIC et doivent être pris en compte dans l'interprétation de ces données. En dépit de la statistique qui parait parfois faible pour l'estimation des âges U-Pb, la très bonne corrélation entre les âges concordants et les moyennes pondérés en <sup>206</sup>Pb/<sup>238</sup>U confirme et appuie la fiabilité de l'ensemble des datations. Enfin, considérant le nombre relativement faible d'analyses par échantillon et dû à la légère erreur liée à la correction de <sup>230</sup>Th, il est apparu plus réaliste de maximiser les erreurs par rapport aux âges calculés. J'ai donc décidé d'arrondir les erreurs sur les datations rapportées par échantillon au 0,05 Ma supérieur près. Bien que cette manipulation mène à un différentiel de surestimation de l'erreur en fonction des échantillons allant jusqu'à 0.04Ma, cette manipulation est justifiée compte tenu des considérations précédentes.

3.4 Résultats



Figure 3.7: Exemple de diagrammes Tera-Wasserburg par échantillon illustrant les résultats de géochronologie in-situ U-Pb sur les zircons du complexes sud de Rallier du Baty (voir le texte pour les détails).

La Figure 3.7 a pour but de présenter des exemples de datation par échantillon, illustrant les caractéristiques des résultats U-Pb obtenus sur zircons. Ces différents exemples et caractéristiques sont représentatifs de l'ensemble des données U-Pb obtenus sur les roches du SRBIC et de ses satellites (lesquelles sont fournies en détails dans en annexe).

Les 2 premiers échantillons que sont le TC09-006 et 13TK63 sont présentés de la même façon. Les diagrammes de droite représentent l'ensemble des analyses réalisées sur les zircons de chaque échantillon. Les cercles d'analyses en pointillées correspondent aux analyses qui ne respectent pas les conditions de validation nécessaires à leur utilisation pour le calcul des âges. Elles sont issues de l'intégration d'un signal mesuré non stable perturbé par l'ablation d'inclusions et/ou d'un temps d'intégration inférieur à 30sec considéré comme trop court pour la fiabilité de la mesure. Ces analyses sont en général discordantes. Le fait que certaines de ces analyses en pointillées soient concordantes est due à ma seule volonté d'avoir forcé l'intégration de ces signaux perturbés, que ce soit sur des segments très courts ou instables pour les rendre concordantes. Ce forçage m'a permis d'entrevoir les limites du traitement des données issues l'ablation sur des zircons aussi jeunes. Bien que l'inconvénient majeur en soit l'impression de validité de ces données, il n'en est rien. Ces analyses volontairement faussées ne remplissent pas les conditions d'analyses valables pour le calcul des âges.

Les analyses fiables sont représentées par des cercles colorés de gris. Ces analyses sont toutes concordantes dans le diagramme de Tera-Wasserburg pour ces deux échantillons. Cependant, dans ces deux exemples, le temps qui sépare l'âge du plus vieux zircon de l'âge du plus jeune est d'environ 1 et 0.6 Ma pour le TC09-006 et le 13TK63 respectivement. Ce résultat implique donc que l'échantillon TC09-006 contient des zircons qui se sont formés sur environ 1Ma et qui se retrouvent au sein d'un même échantillon de 5Kg. Ce résultat est caractéristique de l'ensemble des échantillons du complexe pour lesquels les âges des zircons provenant d'un même échantillon peuvent s'étendre jusqu'à 1 Ma au maximum. Cette continuité pourrait indiquer l'évolution des âges d'une population correspondant à des cœurs de cristaux vieux vers des âges de population correspondants à des bordures de cristaux plus jeunes. Si tel est le cas, cette hypothèse suppose des épisodes de croissance continue dans le temps plutôt que 2 phases bien distinctes cœur/bordures. Comme décrit précédemment, même si des limites de résorption ont été souvent observées, seuls de rares échantillons montrent des cristaux pour lesquels des cœurs et des bordures peuvent être clairement identifiés par des limites structurales marquées. A cause d'un sur-broyage en amont, et faute de temps d'analyse, les cœurs et les bordures (en termes de localisation) n'ont pas fait l'objet d'une étude systématique pendant étude géochronologique. D'autre part, certaines rares analyses montrent des bordures plus vieilles que les cœurs (bien qu'il y ait recouvrement des erreurs à 20) qui pourraient indiquer l'incidence de la taille du spot d'ablation laser par rapport aux zonations magmatiques potentiellement responsables d'un shift du géochronomètre U-Pb. Considérant ces différents arguments, chaque âge fut considéré comme représentatif du zircon à part entière. Quoi qu'il en soit, cette répartition des âges dans les échantillons du complexe est continue à l'échelle des barres d'erreur. C'est pourquoi, toutes ces analyses ont été utilisées pour calculer un âge dit «concordant » et considéré comme représentatif de l'âge de la roche.

La moyenne pondéré des âges <sup>206</sup>Pb/<sup>238</sup>U réalisées sur les analyses ayant servi à calculer chacun des âges concordants est tout à fait en accord avec ces derniers sur l'ensemble des roches du complexe.

La dispersion des âges au sein des échantillons évoquée précédemment est également illustrée au sein de l'échantillon 13TK31. Toutefois, sur cet échantillon en particulier, quelques zircons montrent une forte délimitation structurale qui se pourrait révélatrice d'un cœur et une bordure Figure 3.4e,f. L'exemple illustré confirme les observations microscopiques et montre que la bordure est plus vielle d'environ

0.4Ma que le cœur du cristal. Cependant, dans cet échantillon également, la dispersion des âges est continue et tous les zircons ne montrent un cœur et une bordure. Particulièrement, un âge très jeune (cercle gris-clair) pose problème et ne permet pas de calculer un âge concordant avec l'ensemble des analyses. Pour cet échantillon, l'âge reporté est celui de la population principale de laquelle cette dernière analyse semble se dissociée. J'ai donc volontairement écarté l'âge de ce zircon, qui pourtant existe, dans le calcul de l'âge de la roche reporté. Les moyennes calculées pour cet échantillon montrent qu'à l'échelle de la roche l'âge n'est que peu affecté par ce jeune zircon car de poids statistique faible. Cet écart n'a donc pas d'impact significatif sur la datation reportée mais à une importance certaine sur l'interprétation des données. Seul trois échantillons montrent des zircons jeunes dissociés de leur population principale (un âge par échantillon). Sans pouvoir expliquer ces âges ici, il est intéressant de noter qu'ils correspondent tous à l'âge de la mise en place d'une nouvelle unité (structurale ou complexe).

L'échantillon 13TK45 montre également une population dominante avec un âge concordant à environ 10.22 Ma. L'âge le plus vieux de cette population dominante est associé à une plus grande erreur de mesure (cercle gris-clair) que les autres analyses plus jeunes. C'est pourquoi, même plus vieux, ce zircon ne semble pas dissociée des autres analyses et fait partie des zircons utilisés pour la datation. D'autre part, cet échantillon contient un zircon dont l'âge est clairement plus vieux que tous les autres âges obtenus. Ce zircon est un zircon hérité d'une première phase de cristallisation qui ne correspond pas à celle définie par tous les autres zircons de cette roche. Cette hypothèse est en accord (i) avec les observations de terrain qui montrent que cette roche porphyrique (13TK45), transportant des enclaves, recoupe également les niveaux intrusifs intermédiaires de l'unité 1 (Figure 2.19) et 'ii) avec la datation de ces niveaux intrusifs mafiques (ii) entre 10.77 et 11 Ma. A l'image de cet échantillon, de rares zircons hérités ont été retrouvés au sein des roches analysées, lesquels correspondent tous à l'âge d'intrusions antérieures (Figure 3.8).

Ainsi, cette figure illustre : (i) le fait que la plupart des analyses réalisées conduisent au calcul d'âges dit « concordants » en accord avec la moyenne des âges pondérés des zircons par échantillons; (ii) l'étalement des âges mesurés par échantillon sur un intervalle parfois égal à 1Ma ; (iii) la présence de rares zircons hérités d'âge identique à celui d'intrusions précédentes, (iv) de 3 zircons trop jeunes pour faire partie de la population principale des échantillons dont ils ont été extraits.

La Figure 3.8 et Figure 3.9 synthétise l'ensemble des datations obtenues sur le complexe sud de RdB. Ces données géochronologiques ont été valorisées au travers d'une publication soumise à la revue *Geology* (voir partie 3.5). Cependant, plusieurs de ces datations obtenues durant cette thèse n'ont pas été intégrées dans l'article par souci de statistiques sur les âges (avec un nombre d'analyses < 5) qui les rend moins robustes. Ainsi 8 datations (2 échantillons séparés et 7 lames épaisses) présentées ici (données grisées) ne figurent pas dans l'article en cours de révision. Bien que statistiquement moins fiables, ces âges sont tout à faits cohérents avec le reste des datations obtenues plus robustes et permettent d'affiner la chronologie des différentes injections du complexe. L'ensemble des âges s'étale entre 13.74  $\pm$  0.2 (syénite de l'anse du Gros Ventre) et 7.88  $\pm$  0.15Ma (syénite au nord des Deux Frères). Le massif de l'anse du Gros Ventre constitue donc les premières intrusions (datées) sur la péninsule de RdB. Structuralement déconnecté sur SRBIC, ce petit massif plutonique en est également déconnecté dans le temps. Un gap d'environ 2Ma le sépare de l'intense activité magmatique qui va suivre et dont les prémices sont également mis en place à l'anse du Gros Ventre. Cette intense activité débute avec les syénites formant le contact ou le proche contact intrusif sud du SRBIC avec les basaltes de plateau à 11.57  $\pm$  0.15Ma. Les âges montrent ensuite une progression décroissante continue à partir des bordures sud du

complexe vers le massif des Deux Frères. Le complexe du SRBIC se construit donc en 3.7 – 4 Ma. La succession décroissante des âges confirment les observations de terrains et montrent bien que le complexe est formé par une succession d'intrusions magmatiques de plus en plus jeune vers le nord. Cette progression semble se poursuivre plus au nord jusque dans le CRBIC où une syénite est datée à 7.31 ± 0.15. Toutefois, lorsque les datations sont concentrées telles que c'est le cas sur l'affleurement caractéristique de l'unité 1 au pied de la Coulée du Vulcain (Figure 2.19 et Figure 3.9a), elles confirment également les observations montrant des recoupements à l'échelle de quelques mètres. Sur le SRBIC, la répartition des âges ne montre aucune discontinuité forte (Figure 3.8). Ces résultats sont donc cohérents avec une multitude d'intrusions mises en place mais n'indiquent pas une structuration du complexe en grandes unités structurales. D'autre part, ces résultats montrent que les roches intermédiaires sont bien contemporaines des syénites et strictement localisées dans le temps (et l'espace). Enfin, un échantillon de trachyte (13TK08) prélevé au sein d'un filon tardif et sécant sur tout un massif de l'unité 2 donne un âge de 7.93 ± 0.3Ma. Cette valeur est similaire aux âges les plus jeunes ( $\pm 2\sigma$ ) obtenus pour la mise en place des syénites sur le massif des Deux Frères. Ceci implique que lorsque les sills ou lentilles formant le massif des Deux frères se mettent en place, des dykes trachytiques contemporains s'injectent de façon sécante au travers des unités déjà en place, lesquelles sont donc totalement cristallisées ou presque. Cette interprétation est cohérente avec les relations de terrain qui montrent que certains dykes sont eux mêmes recoupés par des injections de syénites témoignant du caractère syn plutonique de la fracturation du SRBIC par des filons de trachytes (et de basaltes ?).

AGES (Ma)

|     |         |         |           |                           |          |           |             |        |            |       | course from the | _  |             |                 |
|-----|---------|---------|-----------|---------------------------|----------|-----------|-------------|--------|------------|-------|-----------------|----|-------------|-----------------|
| 14  | 13      | 12      | 11        | 10                        | 9        | 8         | 7 (Ma)      | Concor | rdant (20) | W.M   | ean (20)        | 0  | Report<br>( | ted ages<br>2σ) |
| 1.5 | a de la |         | belor     | igs to th                 | he CRE   | BIC 🔳     | TC135       | 7.311  | 0.13       | 7.29  | 0.2             | 8  | 7.31        | 0.15            |
|     | 1       |         |           |                           |          | -         | TK104       | 7.88   | 0.12       | 7.87  | 0.21            | 6  | 7.88        | 0.15            |
|     |         |         |           | TK78                      | 7.902    | 0.084     | 7,94        | 0.26   | 4          | 7.94  | 0.30            |    |             |                 |
|     |         | trachy  |           | vte sécante _<br>Funité 2 | nte _    | _         | TK08        | 7.93   | 0.29       | 7.9   | 0.59            | 4  | 7.93        | 0.30            |
|     | Unit 3  |         |           | TK106                     | 7.99     | 0.17      | 7.96        | 0.43   | 4          | 7.99  | 0.20            |    |             |                 |
|     |         |         |           |                           |          |           | TK108       | 8.031  | 0.071      | 8.04  | 0.12            | 11 | 8.03        | 0.10            |
|     |         |         | 4         | TK80                      | 8.043    | 0.048     | 8.049       | 0.084  | 9          | 8.04  | 0.05            |    |             |                 |
|     |         |         |           |                           |          |           | <b>TK70</b> | 8.269  | 0.074      | 8.26  | 0.12            | 14 | 8.27        | 0.10            |
|     | +       |         | Inité 2 - | enclave                   | 0        | 0         | TK101       | 8.47   | 0.13       | 8.45  | 0.13            | 15 | 8.47        | 0.15            |
| 1   | 1       | 101     |           |                           |          |           | TC120       | 8.51   | 0.12       | 8.49  | 0.19            | 8  | 8.51        | 0.15            |
|     |         |         |           |                           |          |           | TK69        | 8.723  | 0.09       | 8.53  | 0.18            | 19 | 8.72        | 0.10            |
|     | Linit 2 |         | -         | TK117B                    | 8.75     | 0.18      | 8,76        | 0.75   | 2          | 8.75  | 0.20            |    |             |                 |
|     | 01112   |         |           | *                         | 1        |           | TC129       | 9.075  | 0.063      | 9.08  | 0.12            | 8  | 9.08        | 0.10            |
|     |         |         |           |                           |          |           | TK81A       | 9.31   | 0.11       | 9.29  | 0.22            | 6  | 9.31        | 0.15            |
| u L |         |         |           |                           |          | -         | TK23        | 9.38   | 0.18       | 9,45  | 0.19            | 2  | 9.38        | 0.20            |
| 20  | 1       | 1       |           |                           |          | 1.1.2     | TK118A      | 9.45   | 0.15       | 9.46  | 0.15            | 5  | 9.45        | 0.15            |
|     |         |         |           |                           |          |           | TK63        | 9.938  | 0.075      | 9.93  | 0.1             | 12 | 9.94        | 0.10            |
|     |         |         |           | Contract of               |          |           | TC26        | 10.074 | 0.32       |       |                 | 1  | 10.07       | 0.35            |
|     |         |         |           |                           | 0        |           | TK31        | 10.086 | 0.095      | 10.05 | 0.19            | 11 | 10.09       | 0.10            |
|     |         |         | *         |                           |          |           | TK45        | 10.216 | 0.069      | 10.19 | 0.12            | 9  | 10.22       | 0.10            |
|     |         |         |           |                           |          |           | TC110       | 10.59  | 0.11       | 10.58 | 0.14            | 9  | 10.59       | 0.15            |
|     |         |         |           |                           |          |           | TK42        | 10.65  | 0.1        | 10.64 | 0.14            | 14 | 10.65       | 0.10            |
|     | Unit 1  |         | -         |                           |          |           | TK36        | 10.77  | 0.15       | 10.75 | 0.26            | 9  | 10.77       | 0.15            |
|     | 1       |         | 100       |                           | 0        |           | TC37A       | 10.77  | 0.13       | 10,79 | 0.36            | 5  | 10.77       | 0.15            |
|     |         |         | -         | mon                       | zo-dior  | ntes      | TK43        | 11     | 0.1        | 10.99 | 0,17            | 7  | 11          | 0.10            |
|     |         |         |           |                           |          |           | TC113       | 11.13  | 0.16       | 11.09 | 0.25            | 12 | 11.13       | 0.20            |
|     |         |         |           |                           |          |           | TK47        | 11.185 | 0.087      | 11,16 | 0.14            | 9  | 11.19       | 0.10            |
|     | *       |         |           |                           |          |           | TC75        | 11.3   | 0.19       | 11.26 | 0.3             | 10 | 11.3        | 0.20            |
|     |         | 1       |           |                           |          |           | TC41        | 11.53  | 0.17       | 11.5  | 0.38            | 8  | 11.53       | 0.20            |
|     | +       |         |           |                           |          |           | TC06        | 11.57  | 0.11       | 11.57 | 0.16            | 11 | 11.57       | 0.15            |
| 1   |         | -       | 111       |                           |          |           | TK01        | 11.87  | 0.2        | 11.87 | 0.23            | 3  | 11.87       | 0.20            |
| 10  | Earlies | t intru | sion cor  | sidered                   | d as a : | satellite | TC82        | 13.74  | 0.17       | 13.73 | 0.25            | 10 | 13.74       | 0,20            |

Figure 3.8: Diagramme et tableau synthétiques des données géochronologies in-situ sur les zircons du SRBIC (triées par âges décroissants). Les domaines grisés correspondent aux échantillons dont l'âge est basé sur moins de 5 zircons. Les étoiles correspondent aux âges des zircons hérités et les cercles sont des zircons très jeunes dans les échantillons correspondants.

3.5



Etude structurale et géochronologique : synthèse des chapitres 2 et 3

Les données présentées dans ce chapitre et les conclusions de l'étude géochronologique sont cruciales pour comprendre la construction du SRBIC. Cette étude a donc été couplée à l'étude structurale et valorisée au travers d'une publication soumise à la revue « Geology ». Cet article est donc une synthèse des données présentées dans les deux chapitres précédents. Etant en cours de relecture à l'heure actuelle et il est présenté dans sa forme soumise : texte / figures / annexes (en annexes).

- Mechanism and duration of plutonic processes in oceanic
- 2 plateau crust: the example of the South Rallier du Baty Intrusive
- 3 Complex, Kerguelen Archipelago
- 4 Leandre Ponthus<sup>1</sup>, Michel de Saint Blanquat<sup>1</sup>, Damien Guillaume<sup>2</sup>, Marc Le Romancer<sup>3</sup>,
- 5 Norman Pearson<sup>4</sup>, Suzanne O'Reilly<sup>4</sup>, Michel Gregoire<sup>1</sup>
- 6 <sup>1</sup>Geosciences Environnement Toulouse, Université Paul Sabatier, CNES, CNRS, IRD, UMR
- 7 5563, 31400 Toulouse, France
- 8 <sup>2</sup>Laboratoire Magmas et Volcans, Université Lyon, UJM-Saint-Etienne, UCA, CNRS, IRD, LMV
- 9 UMR 6524, F-42023, Saint-Etienne, France
- 10 <sup>3</sup>Laboratoire de Microbiologie des Environnements Extrêmes, Université de Bretagne
- 11 Occidentale, IFREMER, IUEM, UBO, CNRS, UMR 6197, 29280 Plouzané, France
- 12 <sup>4</sup>ARC Centre of Excellence for Core to Crust Fluid Systems and GEMOC, Department of Earth
- 13 and Planetary Sciences, Macquarie University, CCFS, NSW 2109, Australia

14

# 15 ABSTRACT

The South Rallier du Baty Intrusive Complex (SRBIC) intrudes the lava flows of the northern part of the Kerguelen oceanic plateau. This complex consists of a typical alkaline Sioversaturated magmatic series. New structural and geochronological data lead us to propose that the SRBIC is a laccolith built over about 3.7 My by successive injections of under-accreted syenitic magmas pulses, forming a unique example of a felsic laccolith in an oceanic within-plate setting. Our results show strong similarities with many continental plutons emplaced in different geodynamic settings. Firstly from a structural and mechanical perspectives, such as 3d geometry, internal structure and emplacement mechanism of the SRBIC are identical to continental examples. Secondly, from a dynamic and temporal perspective, duration and average construction rate (around 10<sup>-4</sup> km<sup>3</sup>/yr) of the SRBIC are similar to those proposed for continental plutons. Consequently, the nature and thickness of the crust are not the main parameters that control plutonic processes. The source and evolution in the deep hot crust certainly plays a major role, by producing multiple magmatic episodes at variable timescales.

29

### 30 INTRODUCTION

31 Magmatism is the geological process that directly links the inner and outer earth envelopes through almost instantaneous mass and heat transfer at the geological time scale, from 32 33 the mantle to the crust, but also to the atmosphere and to the hydrosphere. It is one of the main 34 factors that control the climate, especially over the long term, and a key process in the formation of natural resources. The most spectacular expression of earth's magmatism is volcanic extrusive 35 36 activity, but quantitatively its main output is by far the crystallization of intrusive plutonic rocks 37 (Crisp, 1984; Shaw, 1985; White et al., 2006; Paterson and Ducea, 2015). These intrusive bodies, 38 commonly called plutons, are the building blocks of the continental crust. A new general model of pluton construction in the continental crust has emerged which highlights their tabular shape, 39 their main emplacement mechanism by displacement of wall rocks, and their episodic growth at 40 41 various timescales (Cruden, 1998; Tikoff et al., 1999; Petford et al., 2000; Glazner et al., 2004; Coleman et al., 2004; Horsman et al., 2009; Menand et al., 2011 and references therein; Leuthold 42 et al., 2012; among many others). One consequence of this new model is that the pulsed 43 44 magmatism recorded in continental plutonic systems reflects deeper magmatic processes at the 45 source (St Blanquat et al., 2011; Annen et al., 2015). The main remaining question is then about 46 the role(s) of the crustal 'filter' (including thickness, composition, rheological stratification and 47 structure) in magma production, transport and final emplacement. This can be explored by 48 characterizing and comparing the emplacement mechanism and construction of plutons in 49 various geodynamic settings, including in oceanic crust. Indeed, while the existence of plutonic 50 bodies within oceanic crust is well established (e.g. Dick et al., 2008), quantitative data on their 51 internal structure and emplacement mechanisms are rare, and there is no data about their duration 52 of formation. Felsic plutonic rocks in oceanic context are even rarer and commonly less 53 accessible than their continental analogues. They are found either as xenoliths in Azores and 54 Ascension islands (Widom et al., 1993; Kar et al., 1998) or as in-situ intrusive complexes in 55 Iceland and Kerguelen archipelago (Nougier, 1969; Furman et al., 1992). The intrusive 56 complexes outcropping in the Rallier du Baty peninsula of the Kerguelen archipelago are the 57 most spectacular occurrences of felsic oceanic plutonic rocks. Since the early studies from the 58 70's (e.g. Nougier, 1969; Marot and Zimine, 1976), this dominantly felsic plutonic complex has 59 been considered as a ring complex and a typical example of emplacement by cauldron 60 subsidence (Giret, 1983; Bonin et al., 2004). In order to compare the plutonic processes in 61 continental and oceanic settings, the aim of the present study is to constrain the construction of the South Rallier du Baty Intrusive Complex (SRBIC) based on a set of new field structural 62 observations, associated with detailed U-Pb geochronological data. 63

- 64
- 65

### GEOLOGICAL CONTEXT AND PREVIOUS STUDIES

66 The Kerguelen archipelago represents the emergent part of the Northern Kerguelen 67 oceanic Plateau (NKP) (Fig. DR1), assumed to be formed by the Kerguelen plume activity. This archipelago primarily consists of tholeiitic to transitional basalt flows emplaced from ~29 to ~24 68

My. Several volcano-plutonic complexes emplaced into this basalt sequence are distributed 69 through the archipelago and dated from ~24 to ~4.9 My (See Fig. DR2 for details and 70 references). With the exception of the oldest tholeiitic-transitional gabbroic complex, all the 71 72 younger different intrusive complexes, show a dichotomy into either Si-oversaturated or Si-73 undersaturated alkaline rock series. The South Rallier du Baty Intrusive Complex (SRBIC) is part of a ~350 km<sup>2</sup> plutonic province (Nougier, 1969; Marot and Zimine, 1976) (Fig. 1 and 74 DR2). The plutonic rocks of the SRBIC belong to the Si-oversaturated series and range from 75 76 monzo-gabbros and monzo-diorites to mostly Qz-bearing monzonites and syenites. The rare 77 mafic and intermediate intrusive coarse-grained rocks are only associated to the syenites in the 78 external parts of the SRBIC. The ages obtained on syenite by previous authors with the K-Ar and Rb-Sr methods on whole rock range between ~15.5 and ~7.5 My from the south to the north of 79 80 the peninsula (Fig. DR3 and Table DR1).

81

# 82 GEOMETRY OF THE SRBIC

83 The SRBIC intrudes the plateau lavas and form an elliptical body with a 13 x 17 km 84 outcropping size and a WNW-ESE long axis. The contact between the intrusion and the basalts 85 shows two contrasting geometries: (i) Steeply-dipping and cross-cutting or (ii) shallowly-dipping and concordant (Fig. 1 and 2). At the scale of the Kerguelen archipelago, the orientation of the 86 87 basaltic lava flows is very regular but shows a small dip (2-5°) toward the SE, due to recent tilting (Nougier, 1969) (Fig. DR2). This orientation changes towards the intrusive centers, and 88 89 particularly when approaching the SRBIC. Indeed, all around the NE, SE and SW parts of the latter, a progressive tilting of the flood basalts could be measured, reaching a dip of 20 - 40° 90 91 away from the SRBIC (Fig. 1, 3, DR2 and DR4). Because of the recent trachytic activity and the

92 ice cover, this contact is not observed in the NW part of the complex. Nevertheless, 93 measurements of the orientation of the basalt flows along the coast on the western side of the 94 SRBIC show a dip toward the W. These measurements all around the SRBIC confirm the general 95 tilting of the basalts away from the intrusive center and an increase of the dip toward the contact 96 of the SRBIC. The floor and the roof of the SRBIC are not exposed, but the general geometry of 97 the surrounding basalt lava flows, the amount of their flexure towards the intrusive center, and the location of this flexure, indicate that the SRBIC is a tabular magmatic body with a thickness 98 99 of  $\sim 2$  - 3 km and a maximal radius at its base of  $\sim 15$  km (Fig. 3). From these geometrical 100 observations, its total volume can be estimated at about 250 - 350 km<sup>3</sup>.

101

### 102 INTERNAL STRUCTURE

103 Three main syenitic units separated by sharp magmatic contacts could be distinguish on 104 the field (Fig. 3 and DR5). Field criteria indicate that these units are younger towards the center 105 of the intrusive complex. Each unit consists of several layered intrusions with contrasting 106 textures. All the contacts are magmatic. These different injections of mainly coarse syenite, fine 107 grained syenite and pegmatitic segregation, and rare monzo-diorites, define a magmatic layering 108 (Fig. 1 and 4) which exhibits a consistent outward dipping across the SRBIC, with decreasing 109 dip toward the center of the intrusive complex. Moreover, this general magmatic layering is 110 parallel to the external contact with basalts and also parallel to the main internal contacts that 111 separate the three main syenitic units (Fig. 1 and DR6a).

112 The magmatic fabric is poorly developed and rarely visible on the field. The quantitative 113 study of these fabrics conducted by Anisotropy of Magnetic Susceptibility (see methodology, 114 maps and raw data in GSA Data Repository) show a foliation parallel to the magmatic layering measured in the field (Fig. DR6a and DR7a). The lineation shows an N-S horizontal pattern in the central and youngest parts of the SRBIC which evolves gradually to a lineation parallel to the external contact in the older marginal units (Fig. DR7b).

118 A network of several generations of shear zones, mainly brittle and cataclastic or, more 119 rarely brittle-ductile and/or with melt injection, is observed throughout the intrusion (Fig. 3). 120 They are syn-plutonic as evidenced by mutual cross-cutting relationships between shear-zones 121 and dykes intrusion (Fig. DR8). Their distribution is heterogeneous and shows a denser network 122 at the base of the unit 1 at its contact with the underlying unit 2 (Fig. 3 and DR6b). The 123 conjugate orientation of this network suggests that it results from a shortening perpendicular to 124 the contact between these two units. This defines a ring of more deformed and brecciated 125 syenites (Fig. 1), which records the flattening of the marginal unit due to the injection of the 126 lower units. These features imply an advanced crystallization stage of the older unit before 127 intrusion of the younger one.

128

### 129 NEW GEOCHRONOLOGICAL DATA

130 The methodology and raw data are available in the GSA Data Repository. Most zircons 131 from the SRBIC rocks exhibit a characteristic morphology with (100) prism and (101) pyramid 132 as well as clear oscillatory and sector zonings (Fig. DR9). The oldest syenite  $(13.74 \pm 0.2 \text{ My})$ 133 was sampled in the southern part of the peninsula and is from one of the first emplaced minor complex clearly disconnected in space and time from the SRBIC (Fig. 1 and DR10). Indeed, 134 135 considering U-Pb zircon ages as the minimum emplacement age, the major volume of SRBIC 136 magma was emplaced between  $11.57 \pm 0.15$  and  $7.88 \pm 0.2$  My. The zircon ages of the monzo-137 diorites similar to those of surrounding syenites suggest a synchronous emplacement of magmas exhibiting contrasting degrees of differentiation. U-Pb zircon ages show that the syenites are younger towards the center of the intrusive complex, from the marginal unit 1 to the central unit

140 3, in agreement with field observations (Fig. 1 and 3).

141

# 142 DISCUSSION AND CONCLUSION

The SRBIC is classically interpreted as a ring complex emplaced by a cauldron subsidence that corresponds to a cluster of intersecting ring dykes injected in relationship with the down-sagging of a crust block in a deep magma chamber and overlay by a caldera (Marot and Zimine, 1976; Giret, 1983; Bonin et al., 2004).

Based on our new field and geochronological data, we propose a new model ofconstruction for the SRBIC based on the following main features:

149 1) The spatial coincidence between the change in basalts orientation and the SRBIC, which 150 clearly shows a causal relationship and reveals that the main space-making process related to the 151 emplacement of the intrusive magmas, is the uplift and up-doming of host basalts. This feature 152 was already recorded by previous authors and interpreted as occurring before the formation of 153 the intrusive complex, an interpretation not supported by the field relationships (see above). The 154 geometry of the plateau basalts deflection implies that the SRBIC is tabular and concordant and 155 could be consequently interpreted as a laccolith (Fig. 5). The discordant and steeply dipping parts 156 of the external contact are irregularities due to local stopping, as suggested by the occurrence of 157 basalt screen within the syenite below those parts of the contact, and/or as extensional fractures 158 filled by magma and related to the extensional component of strain in the wallrocks induced by 159 magma infilling. As we do not have any data for the orientation of the plateau basalts from the

160 northern part of the SRBIC, we cannot be sure that the latter is a symmetric elliptical laccolith. 161 Consequently, consideration should be given to the possibility of a N-S asymmetrical geometry. 162 2) The internal structure which shows a domal shape and a subdivision in three co-structured 163 units of magma, each one being constituted by numerous injections of syenite but also monzo-164 diorite in the oldest unit. The sharp contacts between the three main syenitic units and the brittle 165 deformation of the two older units, demonstrate that in spite of an apparent N-S continuous age 166 distribution, the construction of the SRBIC was discontinuous. The textural difference observed 167 between the coarse and fine-grained syenites was acquired during the emplacement process and 168 results from the dynamics of magma injection (including injected volume, temperature contrast, 169 cooling rate and time range between injections). The two other main facies, i.e. the pegmatite 170 segregations and the network of porphyritic syenite, could represent local mechanical 171 segregation in an older injection due to the injection of a younger one. Field relationships and 172 geochronology demonstrate a construction by under-accretion.

173 3) The fabric pattern, quantified through AMS measurements, confirms the domal shape and the 174 general concordance between all units and sub-units with the orientation of foliation. The 175 difference between the regular N-S lineation orientation in the central younger unit and the 176 marginal parallel lineation in the external older unit reminds a pattern observed in many 177 continental plutons (e.g. the Papoose Flat and the Black Mesa plutons, St Blanquat et al., 2001 178 and 2006) and indicates that (i) the pluton roof exerted an important control on flow/deformation within the pluton, and (ii) the central and younger N-S orientation of the lineation could be 179 180 interpreted as an infilling orientation, possibly from an ~ E-W dyke.

4) Both field relationships and U-Pb geochronology evidence that the magmatic injections are
 progressively younger towards the center of the RdB peninsula. The U-Pb data indicate that the

construction of the SRBIC lasted around 3.7 My, between  $11.57 \pm 0.15$  and  $7.88 \pm 0.2$  My. With a total estimated volume of about 250 - 350 km<sup>3</sup>, this suggest an average construction rate in the order of  $10^{-4}$  km<sup>3</sup>/yr.

186 In summary, our data are compatible with a model where the SRBIC is a laccolith 187 constructed by the upward inflation and stacking of initially horizontal thin magma sheets, which 188 is now a classic re-interpretation of many 'cauldrons' (Stevenson et al., 2007; Magee et al., 189 2012). Our results establish strong similarities between the SRBIC - a unique example of a recent 190 felsic laccolith in an oceanic within-plate setting - and continental plutons. Firstly from a 191 structural and mechanical perspectives, as the 3d geometry, the internal structure and the 192 emplacement mechanism of the SRBIC are identical to many continental examples. This is 193 another argument for the independence between the incremental process of pluton construction 194 and the tectonic setting (St Blanquat et al., 2011). Secondly, from a dynamic and temporal 195 perspectives, it appears that the duration and the average construction rate are similar to those 196 proposed for continental plutons (St Blanquat et al., 2011; Leuthold et al., 2012; Coleman et al., 197 2016). Consequently, the nature and thickness of the crust are not the main parameters that 198 control such plutonic processes. The source evolution in the deep crustal hot zone certainly plays 199 the major role, by providing variable amounts of magma at variable timescales (Annen et al., 200 2015).

201

# 202 ACKNOWLEDGEMENTS

We thank the French Polar Institut Paul-Emile Victor (IPEV-TALISKER 1077 program, D.
Guillaume; IPEV-DYLIOKER 444 program, B.N. Moine), Y. Le Meur and the IPEV-logistic
staff for field assistance and support. We also thank the CNRS-INSU and the GET for funding

| 206               | allowing the acquisition of data. We finally thank the Centre of Excellence for Core to Crust                                                                                                                                               |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 207               | Fluid System and the GEMOC Key Centre for the zircon dating using instrumentation funded by                                                                                                                                                 |
| 208               | DEST Systemic Infrastructure Grants, ARC LIEF, NCRIS/AuScope, industry partners and                                                                                                                                                         |
| 209               | Macquarie University. W. Powell and J. Bascou are also thanked for their help during the U-Pb                                                                                                                                               |
| 210               | and AMS acquisitions respectively.                                                                                                                                                                                                          |
| 211               |                                                                                                                                                                                                                                             |
| 212               | FIGURES CAPTION                                                                                                                                                                                                                             |
| 213               | Figure 1. a) Localization of the SRBIC, b) Structural map of the SRBIC with simplified geology                                                                                                                                              |
| 214               | and geochronological data acquired on separated zircons (purple circles) and thick-sections                                                                                                                                                 |
| 215               | (yellow circles). c) Zoom on a small area which concentrates datings. Stereographic                                                                                                                                                         |
| 216               | projection of magmatic layering (d) and cataclastic shear zones (e); arrows indicate the                                                                                                                                                    |
| 217               | location of the cross-section of the Fig. 3.                                                                                                                                                                                                |
| 218               | Figure 2. External contact of the Mont du Commandant displaying both discordant and                                                                                                                                                         |
| 219               | concordant geometries.                                                                                                                                                                                                                      |
| 220               | Figure 3. Synthetic SSW-NNE cross-section of the SRBIC with U-Pb results.                                                                                                                                                                   |
| 221               | Figure 4. South-dipping magmatic contact between two syenitic layers with contrasted magmatic                                                                                                                                               |
| 222               | textures. Both layers are cross-cutted by a basaltic dyke dipping to the N.                                                                                                                                                                 |
| 223               | Figure 5. The laccolith model of the SRBIC.                                                                                                                                                                                                 |
| 224               |                                                                                                                                                                                                                                             |
| 225               | REFERENCES CITED                                                                                                                                                                                                                            |
| 226<br>227<br>228 | Annen, C., Blundy, J.D., Leuthold, J., and Sparks, R.S.J., 2015, Construction and evolution of<br>igneous bodies: Towards an integrated perspective of crustal magmatism: Lithos, v. 230,<br>p. 206–221, doi: 10.1016/j.lithos.2015.05.008. |

Bonin, B., Ethien, R., Gerbe, M.C., Cottin, J.Y., Feraud, G., Gagnevin, D., Giret, A., Michon, G.,
 and Moine, B., 2004, The Neogene to Recent Rallier-du-Baty nested ring complex,
 Kerguelen Archipelago (TAAF, Indian Ocean): stratigraphy revisited, implications for

| 232<br>233 | cauldron subsidence mechanisms: Geological Society, London, Special Publications, v. 234, p. 125–149, doi: 10.1144/GSL.SP.2004.234.01.08. |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 234        | Coleman, D.S., Gray, W., and Glazner, A.F., 2004, Rethinking the emplacement and evolution                                                |
| 235        | of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolumne                                                        |
| 236        | Intrusive Suite, California: Geology, v. 32, p. 433, doi: 10.1130/G20220.1.                                                               |
| 237<br>238 | Coleman, D.S., Mills, R.D., and Zimmerer, M.J., 2016, The Pace of Plutonism: Elements, v. 12, p. 97–102, doi: 10.2113/gselements.12.2.97. |
| 239        | Crisp, J.A., 1984, Rates of magma emplacement and volcanic output: Journal of Volcanology                                                 |
| 240        | and Geothermal Research, v. 20, p. 177–211, doi: 10.1016/0377-0273(84)90039-8.                                                            |
| 241        | Cruden, A.R., 1998, On the emplacement of tabular granites: Journal of the Geological Society-                                            |
| 242        | London, v. 155, p. 853–862.                                                                                                               |
| 243        | Dick, H.J.B., Tivey, M.A., Tucholke, B.E., 2008, Plutonic foundation of a slow-spreading ridge                                            |
| 244        | segment: Oceanic core complex at Kane Megamullion, 23_300N, 45_200W.                                                                      |
| 245        | Geochemistry, Geophysics, Geosystems, 9, doi:10.1029/2007GC001645.                                                                        |
| 246        | Furman, T., Meyer, P.S., and Frey, F., 1992, Evolution of Icelandic central volcanoes: evidence                                           |
| 247        | from the Austurhorn intrusion, southeastern Iceland: Bulletin of volcanology, v. 55, p.                                                   |
| 248        | 45–62.                                                                                                                                    |
| 249        | Giret, A., 1983, Le plutonisme oceanique intraplaque: exemple des Iles Kerguelen: Laboratoire                                             |
| 250        | de pétrologie, Université Pierre et Marie Curie, CNFRA. Comité national français pour                                                     |
| 251        | les recherches antarctiques 54, 290 p.                                                                                                    |
| 252        | Glazner, A.F., Bartley, J.M., Coleman, D.S., Gray, W., and Taylor, R.Z., 2004, Are plutons                                                |
| 253        | assembled over millions of years by amalgamation from small magma chambers? GSA                                                           |
| 254        | Today, v. 14, p. 4, doi: 10.1130/1052-5173(2004)014<0004:APAOMO>2.0.CO;2.                                                                 |
| 255        | Horsman, E., Morgan, S., St Blanquat, M. (de), Habert, G., Nugent, A., Hunter, R.A., and Tikoff,                                          |
| 256        | B., 2009, Emplacement and assembly of shallow intrusions from multiple magma pulses,                                                      |
| 257        | Henry Mountains, Utah: Earth and Environmental Science Transactions of the Royal                                                          |
| 258        | Society of Edinburgh, v. 100, p. 117–132, doi: 10.1017/S1755691009016089.                                                                 |
| 259        | Kar, A., Weaver, B., Davidson, J., and Colucci, M., 1998, Origin of Differentiated Volcanic and                                           |
| 260        | Plutonic Rocks from Ascension Island, South Atlantic Ocean: Journal of Petrology, v. 39,                                                  |
| 261        | p. 1009–1024, doi: 10.1093/petroj/39.5.1009.                                                                                              |
| 262        | Leuthold, J., Müntener, O., Baumgartner, L.P., Putlitz, B., Ovtcharova, M., and Schaltegger, U.,                                          |
| 263        | 2012, Time resolved construction of a bimodal laccolith (Torres del Paine, Patagonia):                                                    |
| 264        | Earth and Planetary Science Letters, v. 325–326, p. 85–92, doi:                                                                           |
| 265        | 10.1016/j.epsl.2012.01.032.                                                                                                               |
| 266        | Magee, C., Stevenson, C., O'Driscoll B., Schofield N., McDermott, K., 2012, An alternative                                                |
| 267        | emplacement model for the classic Ardnamurchan cone sheet swarm, NW Scotland,                                                             |

| 268        | involving lateral magma supply via regional dykes. Jl of Structural Geology, 43, pp. 73-                                                                                    |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 269        | 91.                                                                                                                                                                         |
| 270        | Marot, A., and Zimine, S., 1976, Les complexes annulaires de syenites et granites alcalins dans                                                                             |
| 271        | la peninsule de Rallier du Baty (Iles Kerguelen, T.A.A.F): Laboratoire Scientifique des                                                                                     |
| 272        | T.A.A.F., Université Pierre et Marie Curie-Paris VI, v. 1, 131 p.                                                                                                           |
| 273        | Menand, T., St Blanquat, M. (de), and Annen, C., 2011, Emplacement of magma pulses and                                                                                      |
| 274        | growth of magma bodies: Tectonophysics, v. 500, p. 1–2, doi:                                                                                                                |
| 275        | 10.1016/j.tecto.2010.05.014.                                                                                                                                                |
| 276        | Nougier, J., 1969, Contribution à l'étude géologique et géomorphologique des îles Kerguelen:                                                                                |
| 277        | CNFRA. Comité national français pour les recherches antarctiques. 27, v. 2, 422 p.                                                                                          |
| 278        | Paterson, S.R., and Ducea, M.N., 2015, Arc Magmatic Tempos: Gathering the Evidence:                                                                                         |
| 279        | Elements, v. 11, p. 91–98, doi: 10.2113/gselements.11.2.91.                                                                                                                 |
| 280<br>281 | Petford, N., Cruden, A.R., McCaffrey, K.J., and Vigneresse, JL., 2000, Granite magma formation, transport and emplacement in the Earth's crust: Nature, v. 408, p. 669–673. |
| 282        | Shaw, H.R., 1985, Links between magma-tectonic rate balances, plutonism, and volcanism:                                                                                     |
| 283        | Journal of Geophysical Research, v. 90, p. 11275, doi: 10.1029/JB090iB13p11275.                                                                                             |
| 284        | St Blanquat, M. (de), Law, R.D., Bouchez, JL., and Morgan, S.S., 2001, Internal structure and                                                                               |
| 285        | emplacement of the Papoose Flat pluton: An integrated structural, petrographic, and                                                                                         |
| 286        | magnetic susceptibility study: Geological Society of America Bulletin, v. 113, p. 976–                                                                                      |
| 287        | 995.                                                                                                                                                                        |
| 288        | St Blanquat, M. (de), Habert, G., Horsman, E., Morgan, S.S., Tikoff, B., Launeau, P., and                                                                                   |
| 289        | Gleizes, G., 2006, Mechanisms and duration of non-tectonically assisted magma                                                                                               |
| 290        | emplacement in the upper crust: The Black Mesa pluton, Henry Mountains, Utah:                                                                                               |
| 291        | Tectonophysics, v. 428, p. 1–31, doi: 10.1016/j.tecto.2006.07.014.                                                                                                          |
| 292        | St Blanquat, M. (de), Horsman, E., Habert, G., Morgan, S., Vanderhaeghe, O., Law, R., and                                                                                   |
| 293        | Tikoff, B., 2011, Multiscale magmatic cyclicity, duration of pluton construction, and the                                                                                   |
| 294        | paradoxical relationship between tectonism and plutonism in continental arcs:                                                                                               |
| 295        | Tectonophysics, v. 500, p. 20–33, doi: 10.1016/j.tecto.2009.12.009.                                                                                                         |
| 296        | Stevenson, C.T.E., Owens, W.H., Hutton, D.H., Hood, D.N., & Meighan I.G., 2007, Laccolithic,                                                                                |
| 297        | as opposed to cauldron subsidence, emplacement of the Eastern Mourne pluton, N.                                                                                             |
| 298        | Ireland: evidence from anisotropy of magnetic susceptibility. Jl. Geological Society,                                                                                       |
| 299        | London, 164, pp.99-110.                                                                                                                                                     |
| 300        | Tikoff, B., St Blanquat, M. (de), and Teyssier, C., 1999, Translation and the resolution of the                                                                             |
| 301        | pluton space problem: Journal of Structural Geology, v. 21, p. 1109–1117, doi:                                                                                              |
| 302        | 10.1016/S0191-8141(99)00058-9.                                                                                                                                              |

- White, S.M., Crisp, J.A., and Spera, F.J., 2006, Long-term volumetric eruption rates and magma budgets: Eruption rates and magma budgets: Geochemistry, Geophysics, Geosystems, v.
   7, doi: 10.1029/2005GC001002.
- Widom, E., Gill, J.B., and Schmincke, H.-U., 1993, Syenite Nodules as a Long-Term Record of
   Magmatic Activity in Agua de Pao Volcano, Sao Miguel, Azores: Journal of Petrology,
   v. 34, p. 929–953, doi: 10.1093/petrology/34.5.929.



Figure 3.10: a) localisation du SRBIC ; b) Carte structurale du SRBIC avec une géologie simplifiée et datations U-Pb obtenues sur zircons séparés (cercles violets) et sur lames épaisses (cercles jaunes) ; c) zoom sur une zone où se concentrent plusieurs datations ; d) stéréogramme des mesures du litage magmatique ; e) stéréogramme des mesures de zones de cisaillement. Les flèches indiquent les points fixes de la coupe présentées en Figure 3.12.


Figure 3.11: Contact intrusif du SRBIC dans les basaltes de plateau montrant une géométrie discordante et concordante.



Figure 3.12: Coupe synthétique SSO-NNE du SRBIC et données géochronologiques associées.



Figure 3.13: Exemple caractéristique de contact magmatique penté vers le sud entre deux intrusions syénitiques de textures différentes. Les deux syénites sont recoupées par un filon de basalte tardif.



Figure 3.14: Modèle de laccolithe du SRBIC.

# Chapitre 4 : Pétrographie et minéralogie

Cette partie représente le ventricule gauche du cœur sur lequel est bâtie cette thèse. Conscient du gros travail d'observation déjà réalisé sur les roches du complexe sud de RdB par Marot et Zimine(1976), il était pourtant impensable de revisiter ce complexe sans en revoir la pétrographie de ses roches. C'est une base indispensable et que j'affectionne particulièrement.

## 4.1 Description pétrographique

#### 4.1.1 Roches mafiques et intermédiaires

#### 4.1.1.1 Basaltes de plateau

Les basaltes de plateaux ne constituent pas la majeure partie des roches à l'affleurement sur la péninsule de Rallier du Baty comme c'est le cas sur l'ensemble de l'archipel (~85% de la surface émergée). Cependant, leur rôle est crucial dans l'étude des roches grenues de l'archipel, puisqu'ils forment l'encaissant de ces roches intrusives. Les travaux antérieurs sur ces basaltes, conduits sur une grande partie de l'archipel (Gautier, 1987; Nougier, 1969), ont montré des variations minéralogiques, géochimiques et géochronologiques au sein des ces roches formant à première vue un ensemble très continu. Du point de vue pétrographique, les textures dominantes sur l'ensemble de l'archipel de ces basaltes sont les textures aphyritiques et porphyriques. La mésostase est partiellement composée de verre et contient des microlites qui sont en majorité des plagioclases. Il n'est pas rare que ces derniers soient souvent accompagnés, en faible proportion, par les minéraux qui forment également les phénocristaux des basaltes porphyriques. La nature et le mode de ces phénocristaux définissent une large variété de basaltes présents sur l'archipel. Il s'agit des plagioclases, des olivines ou des pyroxènes (en grande majorité des clinopyroxènes). Les minéraux accessoires les plus abondants sont les oxydes de Fe-Ti.

Les basaltes de plateaux n'ont pas fait l'objet de travaux approfondis sur Rallier du Baty depuis la thèse d'Etat de J. Nougier en 1969. Mes travaux de thèse étant concentrés sur les roches plutoniques, seuls les basaltes de plateau au contact avec ces dernières ont reçu ici une attention particulière.

La Figure 4.1 est un échantillon scié des basaltes prélevés juste au contact discordant avec l'intrusion plutonique sur le mont du Commandant coté ouest. Ces basaltes sont traversés par des injections provenant de l'intrusion. De par leur morphologie, ces injections semblent contrôlées par la rhéologie et la structuration même des basaltes qui opposent une résistance à leur passage. Ceci s'illustre bien sur cet échantillon où le microfilon ou veine la plus à droite de l'illustration ne semble soumis à aucune contrainte visibles à l'œil nu, alors que la veine de gauche a clairement été stoppée dans sa progression. Cette dernière se poursuit donc vers la bordure gauche de cet échantillon sous forme d'une veine bien plus fine. Cette particularité montre que la résistance des basaltes n'est pas homogène et ne permet donc pas une fracturation régulière lors de l'injection des liquides felsiques. Ce type de progression des liquides provenant de l'intrusion plutonique sous-jacente donne à ce contact discordant une texture bréchique (« stopping ») composé de morceaux de basaltes plus ou moins anguleux (voir Chapitre 2.2.3). Ces basaltes présentent également des phénocristaux automorphes de couleur noire répartis de façon hétérogène. Ces minéraux se concentrent particulièrement le long des injections felsiques mais pas uniquement. Ils sont présents dans l'ensemble de l'échantillon mais confinés dans les parties les plus claires de celui-ci. A la différence, les parties les plus sombres ne présentent pas de signes particuliers. Les différentes zones de l'échantillon distinguables à l'œil nu se retrouvent sous le microscope. Ainsi les injections (1) se composent essentiellement de feldspaths et quartz ce qui explique leur couleur blanchâtre en macro.

#### Chapitre 4

Figure 4.1 : a) Basaltes de plateau au contact avec le SRBIC. a) échantillon poli du mont du Commandant (13TK11). b) Lame mince en LSP. c) Schéma de lame mince représentant les zones de composition minéralogique différente. d) Lame mince en LPA.

- 1 : zone d'injection quartzo-feldspathique.
- 2 : zone à phénoblastes d'hornblende et biotite.
- 3 : zone à microblastes d'hornblende.
- 4 : zone à microblastes d'épidotes.

C

Les parties où se concentrent les phénocristaux se retrouvent bien de part et d'autres de ces injections. Les minéraux automorphes sombres qui les composent sont des phénoblastes d'amphiboles et de biotites. Ils renferment des inclusions de plagioclases microlitiques et quelques rares apatites. Ce sont des microlites similaires qui composent la matrice dans laquelle les phénoblastes ont cristallisé. La texture de cette partie de la roche (2) indique clairement que les amphiboles et les biotites ont cristallisé de façon synchrone avec l'injection de liquides quartzo-feldspathiques formant les veines. Ils sont donc des marqueurs du métamorphisme de contact que les basaltes ont subi lors de la mise en place du pluton et de ses injections dérivées. Attestée par la position structurale de ces minéraux, cette hypothèse est aussi confirmée par la présence de certains de ces phénocristaux dans les injections elles mêmes et par les couronnes de quartz + feldspaths auxquelles ces minéraux sont associés dans le basalte. D'autre part, les plagioclases qui composent la mésostase et qui sont recoupés par la croissance des phénocristaux se retrouvent associés avec des microcristaux d'amphiboles. Ces microcristaux, ne se retrouvant jamais en inclusion dans les phénoblastes, ont certainement cristallisé après ces derniers. C'est cette association de plagioclases microlitiques et de microblastes d'amphiboles qui constitue les parties les plus claires du basalte macroscopiquement (3). Les parties les plus sombres (4), elles, sont composées des microlites de plagioclases sur lesquels ont cristallisé des microcristaux d'épidotes associés par endroits à des oxydes de Fe-Ti. Ainsi, il existe des zones exclusivement microlitiques à plagioclases + microblastes d'amphiboles et





4



des zones exclusivement à plagioclases + microblastes d'épidotes. Il est à noter que de rares reliques de pyroxènes ont été observées, dans les parties sombres contenant de l'épidote. La taille de ces reliques ne peut cependant pas permettre d'interpréter définitivement la formation des épidotes par déstabilisation de ces pyroxènes. Les oxydes sont aussi très abondants dans cet échantillon. Ils sont sub-automorphes et semblent donc pour la plupart en lien avec le métamorphisme et plutôt associés aux épidotes. La fin de l'épisode métamorphique est marquée par la déstabilisation des amphiboles mais surtout des biotites. Probablement favorisée par la présence des filons issus de l'injection des liquides felsiques, la circulation tardive de fluides a permis la transformation partielle de ces minéraux en chlorite.

De par leurs caractéristiques, ces basaltes métamorphisés ont été justement qualifiés de cornéennes par J.Nougier en (1969). J.Nougier a distingué deux types de cornéennes en fonction de leur composition minéralogique en lien avec leur distance par rapport au contact intrusif. Il a identifié au plus proche du contact des cornéennes à hornblende tandis qu'avec la distance au contact intrusif apparaissent des cornéennes à albite-épidote. La Figure 4.1 est bien une cornéenne à amphibole que J.Nougier a identifié comme de l'hornblende. Cependant, les épidotes sont également bien présentes dans cet échantillon et localisées dans les zones sombres de la cornéennes. La Figure 4.2 est un exemple des cornéennes à albite et épidote de J.Nougier. Cette lame mince provient de la collection de Marot et Zimine qui a également été prélevés sur le mont du Commandant entre l'été austral 1973 et l'été austral 1975. Le métamorphisme de contact est en effet moins exprimé dans cet échantillon. Il préserve la texture microlitique porphyrique du basalte sain. Cette roche entièrement cristallisée se compose uniquement de plagioclases microlitiques et de phénocristaux majoritairement plagioclasiques auxquels sont associés quelques rares pyroxènes. Les minéraux accessoires sont les oxydes de Fe-Ti. Le métamorphisme est marqué par le remplacement des porphyroclastes de plagioclase par des agrégats de microcristaux d'épidote dont seuls persistent quelques fantômes de minéraux désormais entièrement pseudomorphosés par la chlorite.



Figure 4.2: Photo au microscope en LSP (a) et LPA (b) de l'échantillon MC54 des basaltes de plateau = Cornéenne à albiteépidote.

J.Nougier et plus tard Marot et Zimine ont également décrit un type de cornéenne à pyroxène au contact avec le complexe « centre » (CRBIC) intrusif au nord de la péninsule de Rallier du Baty (Marot and Zimine, 1976; Nougier, 1969). Son absence sur le complexe sud indiquerait, selon eux, une différence de conditions de pressions-températures entre les complexes en questions, l'absence de pyroxènes attestant de conditions de plus basses pressions-températures. A.Giret a également décrit une cornéenne à biotite et diopside au contact des basaltes et du pluton de l'île de l'Ouest (Giret, 1983). Ces différents marqueurs de métamorphisme attestent du différentiel de température à la mise en place des magmas syénitiques chauds dans l'encaissant basaltique froid.

## 4.1.1.2 Monzo-gabbro de l'anse du Gros Ventre

Les roches mafiques grenues sont peu abondantes sur la péninsule de Rallier du Baty (voir Chapitre 1) et limitées au sud du complexe plutonique. Ces roches sont des monzo-gabbros et monzo-diorites. Elles ont donc des compositions plutôt intermédiaires que véritablement mafiques. L'affleurement de roches grenues à l'extrémité SE de l'arête Jérémine, proche de l'anse du Gros Ventre est constitué des roches grenues les plus basiques de la péninsule. Cet affleurement est formé par un monzo-gabbro dont les contacts avec l'encaissant n'ont pu être clairement défini à cause d'une végétation abondante dans cette zone. Cette roche mafique a une texture porphyrique (Figure 4.3 et Figure 4.4).



Figure 4.3 : Echantillon scié du monzo-gabbro du massif de l'anse du Gros Ventre

Les phénocristaux sont de différentes natures (Figure 4.4 et Figure 4.5). En premier lieu, on distingue microscopiquement les olivines qui sont xénomorphes à sub-automorphes. Reconnaissables grâce à leur fort relief, elles ont également un habitus caractéristique très fracturé. En partie comblées par des oxydes, ces fractures sont typiques de l'altération des olivines. De plus, ces péridots ont souvent des textures coronitiques formées par de fines auréoles de pyroxène. Ce pyroxène qui possède une extinction oblique est une clino-enstatite. Cette dernière s'observe également sous forme de phénocristaux. Elle est donc synchrone et postérieure à la cristallisation de l'olivine. Parmi les pyroxènes qui ont cristallisés dans cette roche, ce sont les clinopyroxènes calciques qui sont les plus nombreux et les plus grands (jusqu'à 7mm). Il s'agit de diopsides qui cristallisent en même temps ou peu après les clino-enstatites. Ces diopsides sont notamment remarquables par leur texture de déstabilisation. Cette déstabilisation, qui n'affecte pas les clino-enstatites, se manifeste par la transformation des diopsides en pargasites (amphiboles calciques). Cette déstabilisation induit une pseudomorphose partielle des diopsides à partir de leurs bordures mais également au sein même des cristaux par le biais d'une fracturation (donnant parfois l'illusion d'inclusions). Cette pargasite est donc clairement postérieure à la cristallisation des clinopyroxènes calciques. Elle possède une couleur brune en LSP, des teintes de polarisation allant jusqu'au bleu-vert du second ordre et un clivage net à 120°.



Figure 4.4 : Lame mince en LSP (a) et en LPA (b) de l'échantillon de monzo-gabbro de l'Anse du Gros Ventre

Cependant ce sont les plagioclases qui forment les phénocristaux les plus grands (de l'ordre du centimètre) et qui font ressortir la texture porphyrique du monzo-gabbro. Les compositions de ces plagioclases vont des andésines aux labradors (An37-An57). Ils cristallisent tous après les diopsides. Ainsi, ils incluent bon nombre de minéraux et comblent une partie des interstices entre ces derniers. Ils semblent toutefois se concentrer dans certaines zones de la roche. Les apatites sont également abondantes et ont cristallisés sous forme de microcristaux. Elles semblent apparaitre au moins en même temps que les clino-enstatites et cristallisent jusque dans les stades terminaux. La « matrice » magmatique est principalement composée de phlogopite qui inclut tous les autres minéraux et semble croitre parfois de façon synchrone avec la pargasite. Cette dernière caractéristique donne à cette syénite une texture d'ensemble qui ressemble à une texture cumulative.



Figure 4.5 : Zoom en lame mince en LSP (a) et LPA (b) ; (c) zoom sur la texture symplectique des oxydes de Fer dans une couronne de clino-enstatite entourant un crystal d'olivine.

Ce monzo-gabbro contient aussi beaucoup de minéraux opaques. Bien que la majorité soit des oxydes de Fer, certains montrent des exsolutions d'oxydes de Ti. Ces oxydes apparaissent notamment dans les couronnes de clino-enstatite qui entourent les olivines (Figure 4.5c) et forment avec ces derniers une texture symplectique. De plus, certains microcristaux xénomorphes à sub-automorphes d'oxydes apparaissent en inclusion dans les feldspaths et sont donc antérieurs à la formation de ces derniers. Toutefois, la majorité des oxydes présents dans cette roche semble cristalliser dans les phases tardives. Ils sont en effet généralement associés à l'amphibole calcique durant la déstabilisation des diopsides (pseudomorphose). Cependant, il est probable que parmi la quantité d'oxydes présents dans les clinopyroxènes certains ne proviennent pas de leur altération mais aient pu cristalliser avant leur développement. Certains oxydes tardifs incluent des minéraux métalliques de quelques microns non analysés à la microsonde. De teintes jaune à orange en lumière réfléchie ce sont très certainement des sulfures de Fe (pyrite). Le stade final de l'histoire de ce monzo-gabbro correspond à une phase d'altération issue de la circulation de fluides calciques tardifs au moins en partie magmatiques. Ce dernier épisode va permettre la déstabilisation de pyroxènes au profit de l'épidote et la pseudomorphose des pargasites par l'actinolite. L'intensification de cette altération engendre la séricitisation des plagioclases, la pseudomorphose des phlogopites par la chlorite, ainsi que la cristallisation de calcite dans les espaces crées par la fracturation. La description pétrographique ci-dessus permet de présenter la séquence de cristallisation du monzo-gabbro de l'anse du Gros Ventre telle que sur le Tableau 4-1 suivant:

| Minéraux          | Séquence de cristallisation |
|-------------------|-----------------------------|
| Olivine -         |                             |
| Clino-enstatite   |                             |
| Diopside          |                             |
| Plagioclase       |                             |
| Pargasite         |                             |
| Phlogopite        |                             |
| Oxydes Fe-Ti      |                             |
| Sulfures Fe (±Cu) |                             |
| Actinolite        |                             |
| Chlorite          |                             |
| Calcite           |                             |
| Apatite           |                             |

Tableau 4-1 : Séquence de cristallisation du monzo-gabbro de l'Anse du Gros Ventre. Les traits pleins correspondent a des occurrences observées, les pointillées représentent une forte probabilité de présence non certifiée du minéral.

## 4.1.1.3 Monzo-gabbro et monzo-diorite de l'unité la plus externe

Les roches grenues mafiques/intermédiaires qui sont co-structurées avec les intrusions syénitiques au niveau du front de la coulée de Vulcain, formant l'alternance bimodal caractéristique de l'Unité 1 (Figure 2.19), sont légèrement différentes entre elles pétrographiquement. Cette différence ne peut clairement s'observer à l'œil nu, seules les tailles de grains apparaissent différentes macroscopiquement (Figure 4.6).





Figure 4.6 : Echantillons sciés des intrusions (intermédiaires) au front de la coulée du Vulcain. Monzo-diorite la plus au Sud (a) et monzo-gabbro à biotite le plus au Nord (b).

Parmi les différents niveaux intrusifs intermédiaires, l'intrusion la plus au sud est une monzo-diorite sensu-stricto tandis que l'intrusion la plus au nord est un monzo-gabbro à biotite. Ce dernier est de texture équante et microgrenue (Figure 4.7). Il est essentiellement composé de pyroxènes, biotites et plagioclases. Les pyroxènes sont exclusivement des clinopyroxènes calciques (diopsides). Ils font partie des premiers minéraux à cristalliser avec la biotite. Cette cristallisation synchrone est attestée par certaines figures de croissance conjuguées de ces deux phases. En effet, ces deux phases minérales montrent très souvent des textures graphiques (Figure 4.8) dans lesquelles un cristal de clinopyroxène inclut des portions de biotite. Ces différentes portions s'éteignent toutes en même temps et appartiennent donc à un seul et même individu. Cependant, la biotite apparait également en bordure du diopside et atteste, dans ce cas, d'une cristallisation relativement plus tardive. Le reste de la roche est exclusivement constituée de plagioclases dont la cristallisation apparait synchrone pour certains et postérieur pour d'autres à celle des deux minéraux précédents. Les minéraux accessoires de cette roche sont les apatites, les zircons, les titanites et les opaques. Les apatites sont en inclusions, à la fois dans les pyroxènes, les biotites et les plagioclases. Elles font donc partie des premières phases à cristalliser.



Figure 4.7 : Lame mince en LSP (a) et LPA (b) du monzo-gabbro à biotite formant l'intrusion la plus au nord au front de la Coulée du Vulcain (13TK36).



Figure 4.8 : Zoom en LSP (a) et LSP (b) du monzo-gabbro au front de la Coulée de Vulcain, illustrant la texture graphique du clinopyroxène et de la biotite.

Les titanites se trouvent surtout en inclusion dans les biotites tandis que les opaques (des oxydes de Fe-Ti) cristallisent surtout en exsolution à partir des titanites, des clinopyroxènes et des biotites. Mais ils sont également présents en inclusions dans les plagioclases. La majorité de ces oxydes montrent des figures d'exsolution d'ilménite à partir de la magnétite, selon les plans de faiblesse du cristal. Les zircons et certaines titanites se retrouvent en inclusions dans les pyroxènes ainsi qu'en association avec les plagioclases les plus tardifs. Il existe dans cette roche quelques veines d'épaisseur inférieure au millimètre. Elles se sont certainement mises en place dans les derniers stades de la cristallisation du monzo-gabbro à biotite. Ces veines sont de véritables drains qui se suivent dans la roche sans montrer de figures de fracturation en environnement cassant ce qui tend à démontrer que la roche n'était pas entièrement solidifiée lors de leur formation. Ce passage de liquides/fluides tardifs a conduit à la cristallisation de plagioclases ± épidotes ± titanites ± zircons et à la déstabilisation des phases déjà cristallisées comme la chloritisation des biotites. L'épidote cristallise notamment lors de cet épisode tardif et accompagne la séricitisation des feldspaths. Toutes ces observations permettent de représenter la séquence de cristallisation de ce monzo-gabbro dans le Tableau 4-2 suivant:

| Minéraux     | raux Séquence de cristallisation |  |
|--------------|----------------------------------|--|
| Diopside     |                                  |  |
| Plagioclases |                                  |  |
| Biotite      | 33                               |  |
| Oxydes Fe-Ti |                                  |  |
| Apatite      |                                  |  |
| Zircon       |                                  |  |
| Epidote      |                                  |  |
| Titanite     |                                  |  |
| Chlorite     |                                  |  |

Tableau 4-2 : Séquence de cristallisation du monzo-gabbro à biotite formant l'intrusion mafique (±intermédiaire) la plus au nord au front de la Coulée de Vulcain.

L'intrusion la plus au sud de l'ensemble intrusif intermédiaire au front de la Coulée de Vulcain est une monzo-diorite à texture microgrenue Figure 4.9. Cette roche a une taille de grains inférieure à celle du monzo-gabbro précédent (Figure 4.7 et Figure 4.9) et montre une altération plus avancée.



Figure 4.9 : Lame mince en LSP (a) et LPA (b) de la monzo-diorite à biotite formant l'intrusion la plus au sud au front de la coulée de Vulcain (13TK43).

Les minéraux les plus précoces sont des clinopyroxènes calciques de la série du diopside qui cristallisent de façon synchrone avec la biotite tout comme dans le monzo-gabbro précédent. Cependant, la biotite semble avoir cristallisé sur une plus longue période que les pyroxènes. Ces pyroxènes sont toujours partiellement transformés en amphiboles (Figure 4.10). Ces amphiboles, pléochroïques incolores à vertes en LSP font partie du groupe pétrographique de la hornblende et sont donc postérieures à la cristallisation des pyroxènes et à celle d'au moins une partie des biotites.



Figure 4.10 : Zoom en LSP (a), LPA (b) et LR (c) illustrant le remplacement partiel du clinopyroxène par l'amphibole dans la monzo-diorite au front de la Coulée de Vulcain (13TK43).

Certains amas de minéraux forment des structures remarquables dans cette roche (Figure 4.11). Ils correspondent à des figures de remplacement d'un minéral ayant cristallisé précocement et dont il ne reste que le fantôme. Ces structures sont constituées en leur centre de petits cristaux d'amphiboles et de feldspaths dont la taille ne permet pas une identification claire. Cependant, les couleurs jaunâtres à verte claires des amphiboles en LSP pourraient notamment indiquer des compositions actinolitiques. Cet assemblage central est couronné par des cristaux plus grands de biotite qui sont donc légèrement postérieurs.



Figure 4.11 : Photographies en LSP (a) et LPA (b) d'un fantôme de minéral précoce remplacé par un agrégat de différents minéraux formant une texture coronitique.

Ces structures sont inclues dans une matrice de plagioclases qui forment les zones les plus claires de cette roche. Certains de ces plagioclases sont inclus dans les biotites ce qui plaide pour une cristallisation antérieure voire synchrone à celle des biotites. Les apatites s'observent en inclusions dans les minéraux précédemment cités et sont donc l'une des premières phases à avoir cristallisé. Les opaques sont des oxydes de Fe-Ti qui sont également présents en inclusion dans tous les minéraux de cette roche bien que le plus souvent associés à la biotite. Ils se trouvent aussi sous forme d'exsolutions à partir de la titanite. Le zircon se trouve en inclusion dans les plagioclases de la matrice et avec les dernières amphiboles qui cristallisent. Les titanites se trouvent en inclusion dans les pyroxènes, les amphiboles et les biotites ; et semblent en partie issues de leur déstabilisation. Elles apparaissent également en interstices des plagioclases et accompagnent les phases tardives responsables de l'ultime altération des minéraux primaires. Ces phases d'altération sont les chlorites, les actinolites et les épidotes qui déstabilisent les amphiboles, les plagioclases et les biotites. Les épidotes qui s'observent également en pseudomorphose des cœurs de plagioclases laissent penser qu'elles témoignent d'un métamorphisme subit par cette roche causé par son réchauffement. Cette dernière phase de cristallisation est également associée à la séricitisation des plagioclases et la présence de calcite. Toutes ces observations permettent de représenter la séquence de cristallisation de cette monzo-diorite dans le Tableau 4.3 suivant :



Tableau 4-3 : Séquence de cristallisation de la monzo-diorite intrusive la plus au sud de l'ensemble intermédiaire/syénites au front de la Coulée de Vulcain. M1 : minéral précoce inconnu (probablement olivine) et feldspaths non identifiés.

## 4.1.1.4 Roches intermédiaires de l'intrusion de la Plage jaune

Les monzonites sont très peu représentées dans l'ensemble des roches plutoniques de la péninsule de Rallier-du-Baty. En effet, l'unique occurrence de ce type roches intermédiaires se situe au niveau de l'extrême sud de la Plage Jaune. Elle constitue la première intrusion plutonique dans cette partie de la péninsule (voir Chapitre 2 et 3) et forme un complexe « satellite » dissocié du SRBIC. Cette roche intermédiaire transporte de nombreuses enclaves grenues plus mafiques, essentiellement basaltiques et gabbroïques qui n'ont pas été étudiées dans cette thèse.



Figure 4.12 : Echantillon scié (13TK47) de la monzonite de la Plage Jaune.

Cette roche se situe pétrographiquement entre une monzo-diorite et une monzonite. Elle présente une texture microgrenue voire légèrement porphyrique (Figure 4.12). Hormis un échantillon à texture légèrement porphyrique, tous les minéraux de cette monzo-diorite sont de taille relativement similaire ce qui lui confère une texture équante (ou équigranulaire). Elle est essentiellement composée de feldspaths (plagioclases et perthites) et d'amphiboles.



Figure 4.13 : Lame mince en LSP (a) et LPA (b) de monzonite du complexe de la Plage Jaune (13TK47).

Les plagioclases les plus gris de la Figure 4.13(a) sont perthitiques. Quelques amphiboles incluent certains de ces feldspaths perthitiques attestant d'une cristallisation synchrone entre ces deux phases. Ces

amphiboles sont calciques et appartiennent au groupe des hornblendes. Caractérisées par leur clivage net à 120°, elles sont pléochroïques dans les teintes vertes à vertes légèrement brunes en LSP. Certaines de ces amphiboles incluent également en leur sein un reliquat qu'il est impossible de caractériser, mais qui atteste certainement de la présence d'un minéral plus précoce au dépends duquel elles se sont développées (tout du moins pour une partie d'entre elles). Les amphiboles présentent elles-mêmes de façon systématique des zones d'altération qui se retrouvent majoritairement en bordure mais également dans les plans de faiblesses des cristaux. Lorsque certaines de ces amphiboles ont subi une transformation avancée, leur structure devient fibreuse. Cette altération conduit donc à la transformation de ces amphiboles de type hornblende en actinolite ( $\pm$  épidote  $\pm$  biotite). D'autres cristaux d'hornblendes sont regroupés en agrégat plus ou moins circulaires dont le centre est composé de petits minéraux d'actinolite  $\pm$  épidote  $\pm$  hornblende  $\pm$  chlorite  $\pm$  calcite (Figure 4.14). Ces zones sont clairement indicatrices de la présence d'un minéral précoce qui a subi une transformation complète et une recristallisation en plusieurs minéraux plus petits.



Figure 4.14 : Photographie en LSP (a) et LPA (b) d'un exemple de structure concentrique formée de l'assemblage successif de plusieurs minéraux et indicatrice de la transformation complète d'un minéral précoce dans la monzonite de la Plage Jaune (13TK47).

Le parallèle avec la transformation des hornblendes en actinolite laisse penser que la formation du cœur de ces amas se fait après la formation de la couronne d'hornblende autour du minéral primaire. De par la nature même de cette roche, on peut supposer que ces minéraux primaires aient été des olivines ou bien des pyroxènes. Le quartz est l'autre minéral qui apparait en quantité importante dans cette roche. Cette phase minérale est tardive dans l'histoire de cristallisation de cette monzonite(≈diorite) car elle remplit les espaces entre les minéraux déjà formés. Cependant, certains de ces quartz sont également synchrones avec la cristallisation des perthites avec lesquels ils ont une texture graphique.



Figure 4.15 : Texture graphique du quartz avec les feldspaths perthitiques dans la monzonite de la Plage Jaune (13TK47).

En effet, il est fréquent d'observer des perthites qui incluent des portions d'un même minéral de quartz comme illustré dans la Figure 4.15. Dans le cas des grands minéraux perthitiques, cette texture graphique s'observe aux bordures et atteste de l'apparition relativement tardive du quartz. Parmi les minéraux accessoires, se trouvent la biotite, la titanite, des oxydes de Fe-Ti, l'épidote et le zircon. Les titanites sont des minéraux qui apparaissent en association avec les actinolites. Les opaques sont majoritairement des oxydes de Ti (type ilménite) reconnaissables à leur teintes rosâtres en lumière réfléchie (LR) et se trouvent exclusivement en exsolution dans les titanites. Les zircons se retrouvent surtout en association avec le quartz, mais parfois en inclusion dans les perthites. Les nombreuses microstructures et textures observables dans cette roche montrent que la plupart des minéraux semblent cristalliser de façon synchrone, comme l'illustre la séquence de cristallisation de cette monzonite(≈diorite) dans le Tableau 4-4 suivant :

| Minéraux     | Séquence de cristallisation |  |
|--------------|-----------------------------|--|
| M1           |                             |  |
| Hbl Amp      |                             |  |
| Plagioclase  |                             |  |
| Perthite     |                             |  |
| Biotite      |                             |  |
| Epidote      |                             |  |
| Quartz       |                             |  |
| Actinolite   |                             |  |
| Titanite     |                             |  |
| Oxydes Fe-Ti |                             |  |
| Chlorite     |                             |  |
| Calcite      |                             |  |
| Apatite      |                             |  |
| Zircon       |                             |  |

Tableau 4-4 : Séquence de cristallisation de l'intrusion de monzonite du complexe satellite au sud de la Plage jaune. M1 : minéral précoce (pyroxène / olivine ?).

# 4.1.2 Roches plutoniques felsiques

La pétrographie des roches plutoniques felsiques de la péninsule de Rallier du Baty est complexe. Cette complexité ne provient pas d'un large éventail de roches de compositions variées mais plutôt des faibles différences qui existent entre elles. En effet, hormis des différences notables de textures magmatiques (voir chapitre 2), les observations pétrographiques sur le terrain ne mettent en évidence que de faibles différences de couleur des roches et de faibles variations de composition modale avec une minéralogie qui semble peu varier macroscopiquement. C'est pourquoi, il est difficile d'estimer sur le terrain l'importance de ces faibles variations à l'échelle du complexe plutonique. La minéralogie de toutes les roches plutoniques felsiques s'organise autour de quatre phases minérales principales : le quartz, les feldspaths perthitiques, les amphiboles et les pyroxènes.

Ces minéraux communs à toutes les roches et notamment la présence de quartz et de feldspaths perthitiques en grande proportion permet de les définir pétrographiquement au premier ordre comme syénites appartenant à une série sursaturée en silice en accord avec les études antérieures (Marot and Zimine, 1976; Giret, 1983). C'est pourquoi, j'emploierai le terme de roches syénitiques sensu lato (ou de syénites sensu lato) pour l'ensemble des roches felsiques. Bien que des variations texturales et modales soient observables à différentes échelles, de par leur nature, ces roches sont donc très proches du point de vue pétrographique. C'est pourquoi, plutôt que d'en faire une description précise centrée sur toutes les faibles nuances observées, j'ai choisi de définir des grands ensembles pétrographiques basés sur les similitudes observées entre les échantillons qui les constituent. Plus précisément, j'ai établi une nouvelle classification des roches plutoniques du SRBIC bâtie sur les caractéristiques pétrographiques communes aux minéraux silicatés ferromagnésiens que sont les pyroxènes et les amphiboles. Comme démontré dans les sections suivantes ces phases majeures sont d'excellents marqueurs de l'évolution pétrographique des roches plutoniques du SRBIC.

## 4.1.2.1 Syénites calciques (groupe pétrographique CaS)

La Figure 4.16 compile des photographies de lames minces des roches qui composent le premier groupe pétrographique de syénites. Ces exemples sont non exhaustifs mais représentatifs des principaux types d'échantillons de ce groupe. Echantillonnés au cœur de différentes intrusions plutoniques, il apparait clairement que la texture n'est pas un caractère commun à ces différentes roches. Cette figure illustre en effet la diversité des textures observables allant de roches très grenues à microgrenues et microgrenues porphyriques. Bien que leur texture diffère, toutes ces roches sont pétrographiquement des syénites. Elles se caractérisent toutes par un grand nombre de feldspaths perthitiques formant la majorité du volume de la roche. Ce premier groupe pétrographique est définit par la présence de minéraux ferromagnésiens exclusivement calciques. C'est pourquoi nous qualifierons ce premier ensemble pétrographique de groupe « CaS » (pour « Syénites-Calciques ») dans la suite de cette thèse. Ce terme sera rapporté à l'ensemble des syénites dont les caractéristiques sont exposées ci-dessous.



Figure 4.16 : Planche photographique de plusieurs lames minces de syénites appartenant au groupe CaS. (a) échantillon 13TK01A, texture microgrenue porphyrique, (b) échantillon 13TK12, texture grenue, (c) échantillon TC09-10A, texture microgrenue porphyrique, (d) échantillon 13TK42, texture grenue, (e) échantillon 13TK38, texture microgrenue, (f) échantillon 13TK63B, texture microgrenue porphyrique.

Parmi les ferromagnésiens, les pyroxènes, lorsqu'ils sont présents, sont les premiers à cristalliser. Ils se caractérisent par un relief assez fort et un léger pléochroïsme d'incolore à bleu clair ou jaune clair suivant les cristaux. Leurs teintes de polarisation sont du second ordre allant jusqu'à des teintes orange brun. Un des deux plans de clivage est souvent visible dans l'allongement du minéral. L'extinction de ces pyroxènes est oblique par rapport à la trace de ce clivage. Toutes ces caractéristiques sont celles des clinopyroxènes calciques de la série Diopside-Hédenbergite-Augite. Enfin, il n'est pas rare d'observer une macle simple qui associe structuralement deux individus. Certains de ces cristaux montrent des zonations de croissance qui sont typiques de minéraux qui grandissent au sein d'un liquide dont les caractéristiques chimiques évoluent au cours de la cristallisation et qui attestent de la formation précoce de ce minéral. L'identification précise des clinopyroxènes de cette série calcique indique souvent la présence de

plusieurs termes dans un même échantillon sans différences chronologiques relatives à leur cristallisation. De plus, les analyses in-situ de ces pyroxènes montrent des compositions chimiques relativement proches (voir partie 4.2 Minéralogie). C'est pourquoi j'utiliserai seulement le terme de clinopyroxènes calciques pour désigner les diopsides, hédenbergites et augites (sensu stricto) dans la suite de la description pétrographique et « Cpx » dans les figures qui suivent. Les amphiboles se distinguent par leurs couleurs vertes à vert légèrement brun en LSP. Leur pléochroïsme est plus ou moins prononcé en fonction de la section exposée. En LPA, elles polarisent souvent dans les teintes de la fin 1<sup>er</sup> ordre jusque dans les teintes vives du début du second ordre. Elles ont un relief modéré. Le clivage est souvent marqué, avec des traces d'intersection à  $\approx 120^{\circ}$  caractéristiques pour les coupes dans le plan de section basale. Toutes ces caractéristiques sont celles des amphiboles calciques appartenant au groupe des hornblendes. Cette famille d'amphiboles regroupe différentes compositions idéales formant les pôles de plusieurs solutions solides qui incluent les séries Magnesiohornblende-Ferro-hornblende, Tschermakite-Ferrotschermakite, Edenite-Ferroedenite, Pargasite-Ferropargasite et Magnesiohastingsite-Hastingsite (Deer et al., 1992; Roubault, 1963). Il est difficile de distinguer les amphiboles de ces différentes séries pétrographiquement. C'est pourquoi je regroupe également ces amphiboles sous le terme d'hornblendes dans la suite de cette étude pétrographique. Au delà de l'occurrence de ces amphiboles calciques souvent associées à des clinopyroxènes également calciques, la place occupée par ces minéraux ferro-magnésiens dans l'histoire de cristallisation est toujours la même quel que soit l'échantillon considéré de ce groupe CaS. En effet, les relations texturales entres ces deux phases mais aussi celles avec les autres espèces minérales constituant ces échantillons sont toujours identiques, attestant d'une séquence paragénétique commune. Malgré des variations modales, l'apparition de phases minérales ferro-magnésiennes calciques ainsi que les propriétés texturales de ces dernières sont donc des caractères communs à toutes les syénites de ce groupe CaS.

Le pyroxène est le premier de ces minéraux ferromagnésiens à cristalliser dans ces roches. Il est toujours en position d'inclusions dans l'ensemble des autres phases et notamment dans les feldspaths perthitiques. La Figure 4.17 compile les principales textures des clinopyroxènes dans le groupe CaS. Le clinopyroxène le plus sain est illustré en Figure 4.17(a). Son habitus diffère en fonction de la taille du minéral allant de formes xénomorphes et plutôt circulaires pour les petit cristaux à des formes automorphes pour les minéraux de plus grande taille. Il est souvent assez fracturé quelle que soit sa taille attestant de son caractère précoce. Ces fractures sont généralement comblées par de la biotite. La texture la moins « saine » du clinopyroxène est illustrée en Figure 4.17(b). Cette dernière résulte de la déstabilisation et du remplacement partiel du Cpx par une amphibole par pseudomorphose. Entre ces deux exemples extrêmes (Figure 4.17a et b), il existe toute une diversité de figures d'interaction entre le clinopyroxène et l'amphibole qui sont illustrées de la Figure 4.17(c), avec une intensité croissante de cette interaction jusqu'à la Figure 4.17(f). La Figure 4.17(c) représente un clinopyroxène relativement « sain » bien que fracturé à postériori qui ne présente pas d'évidence d'interaction avec l'amphibole mais qui a cristallisé en même temps qu'un cristal de biotite. Les différentes parties de cet unique cristal de biotite apparaissent dispersées dans le clinopyroxènes et les perthites environnantes. Ces deux minéraux se sont donc formés au moins en même temps que les perthites, voire légèrement avant ces dernières. La Figure 4.17(d) montre des cristaux de clinopyroxènes isolés dans le coin supérieur gauche et d'autres en inclusions dans un cristal d'amphibole au niveau la partie droite. Il apparait clairement que la croissance de l'amphibole est ici postérieure à la cristallisation des clinopyroxènes. Cependant, leur interaction semble faible, car aucun signe de déstabilisation ne s'observe dans les pyroxènes. La Figure 4.17(e) montre un cristal de clinopyroxène complètement auréolé de cristaux d'amphibole. L'amphibole déstabilise légèrement le pyroxène en bordure et provoque un changement de sa composition. Ce

127

changement s'observe par une variation de coloration et de teinte de polarisation au niveau des bordures du pyroxène. Enfin, la Figure 4.17(f) montre plusieurs pyroxènes antérieurs aux cristaux d'amphibole qui les incluent et qui clairement déstabilisent et remplacent ces pyroxènes. Ce remplacement se fait aussi bien en bordure qu'à l'intérieur des cristaux via des fractures préexistantes. Cette pseudomorphose aboutie donc aux textures de la Figure 4.17(b) où l'interaction entre ces deux minéraux ferro-magnésiens mènent aussi à un changement net de composition du pyroxène révélé par l'évolution des teintes de polarisation. Quelles que soient leur habitus, les clinopyroxènes peuvent contenir des inclusions qui sont des apatites et des oxydes Fe-Ti.



Figure 4.17 : Photographies au microscope optique des habitus typiques des clinopyroxènes au sein des syénites du groupe CaS. Facies extrême : (a) Clinopyroxène simplement fracturé, (b) Clinopyroxènes en cours de pseudomorphose avancée. Facies intermédiaire : (c) Clinopyroxène et biotite co-formés. (d) Clinopyroxène en inclusion dans l'amphibole. (e) Clinopyroxène auréolé d'amphibole. (f) Clinopyroxènes en cours de déstabilisation.

Les amphiboles sont donc au moins postérieures voire légèrement synchrones aux clinopyroxènes. Cependant ces derniers ne sont pas toujours présents parmi tous les échantillons étudiés tandis que l'amphibole est omniprésente. Tout comme le pyroxène, elle présente plusieurs habitus de cristallisation, caractéristique au sein des syénites du groupe CaS. Comme le montrent ses textures (Figure 4.18 et Figure 4.19); elles se forment à plusieurs moments dans l'histoire de ces syénites. Certaines d'entre elles cristallisent avant la formation des perthites qui les incluent, comme c'est le cas dans la Figure 4.17. Mais la majorité d'entre elles montrent des textures de croissance contraintes par les perthites environnantes comme c'est le cas dans la Figure 4.18(a). Les amphiboles représentées sur cette figure montrent plusieurs lobes de croissance attestant du développement synchrone des feldspaths et de l'amphibole. De plus, une de ces amphiboles en particulier montre une bordure qui englobe clairement le feldspath (Figure 4.18, a –flèche noire). Certaines amphiboles se forment aussi clairement après la cristallisation des feldspaths perthitiques souvent en association avec le quartz. C'est le cas de la Figure 4.18(b) où les



extrémités d'un cristal d'amphibole grandissent et épousent la forme des quartz environnant. Ces deux minéraux comblent tardivement les interstices laissés par la formation des feldspaths perthitiques.

Figure 4.18: Photographies en LSP des habitus typiques de l'amphibole observés dans les syénites du groupe CaS. (a) Amphibole synchrone avec les perthites, (b) Amphibole relativement tardive synchrone avec le quartz, (c) Amphibole synchrones avec la biotite et les feldspaths, (d) Amphiboles en remplacement du clinopyroxène et partiellement transformée en actinolite.

La Figure 4.18(c) illustre également le caractère étendu dans le temps de la cristallisation des amphiboles. Sur cette photographie, certaines amphiboles sont clairement inclues dans les perthites, tandis que d'autres montrent une texture graphique avec les feldspaths. C'est également le cas de la biotite dans cet échantillon.

Une autre particularité qui caractérise les amphiboles du groupe CaS est illustrée par la photographie (d) de la Figure 4.18. La plupart des amphiboles montrent en effet des textures de déstabilisation et de remplacement par un autre minéral. Ceci s'observe notamment par des franges de déstabilisation au niveau desquelles les teintes de coloration et de polarisation des amphiboles révèlent un changement de composition. Ces dernières peuvent également subir une transformation plus avancée visible sur la Figure 4.19. A l'extrême, l'amphibole est complètement remplacée par un ou plusieurs cristaux d'une amphibole tardive de composition différente. Dans ce cas, la structure même de l'amphibole primaire est remplacée puisque les nouvelles amphiboles ont un aspect fibreux. Ce nouveau minéral présente également un pléochroïsme net, d'incolore à vert bleu ou vert jaune suivant les cristaux. Il polarise dans les teintes de la fin du 1<sup>er</sup> ordre et le début du second. Ces caractéristiques sont celles d'autres amphiboles calciques qui font partie de la série actinolite-trémolite. Les amphiboles calciques primaires de type hornblendes sont

donc déstabilisées et remplacées par d'autres amphiboles calciques. Ces dernières (qui s'apparentent au pôle actinolite, voir partie 4.2.2 Minéralogie) sont donc tardives dans l'histoire de cristallisation des syénites. Les seuls exemples où ces amphiboles plus tardives se forment sans entrainer la déstabilisation d'un minéral préexistant correspondent à leur cristallisation dans les interstices laissés par les minéraux déjà cristallisés. Ces exemples texturaux de l'apparition d'une amphibole tardive sont illustrés en Figure 4.19(de a à c).



Figure 4.19 Photographie d'amphiboles de la série Actinolite-Trémolite dans les syénites du groupe CaS cristallisant (a) à partir de la déstabilisation des hornblendes (b, c) dans les derniers interstices laissés par les gros cristaux de feldspaths perthitiques.

Certaines structures particulières impliquant également l'actinolite s'observent de façon hétérogène dans les échantillons du groupe CaS. Les exemples et textures caractéristiques de ces microstructures sont illustrés dans la Figure 4.20. Ces structures se composent d'une association de petits minéraux cristaux d'actinolites et d'oxydes de Fe-Ti en leur centre (±feldspaths). Cet assemblage central est auréolé d'une couronne de biotite plus ou moins épaisse (Figure 4.20a). De par l'apparition tardive de l'actinolite dans les syénites, la forme sub-automorphe de ces agrégats minérals, leur taille variable et leur texture de type coronitique, ces structures sont interprétées comme des figures de remplacement d'un minéral préexistant (Figure 4.20a, b).

La Figure 4.20(c et d) montrent que les clinopyroxènes calciques ne semblent pas du tout affectés par la réaction qui a entrainé la formation de ces structures. Il est donc clair que ces structures ne sont pas issues de la déstabilisation du clinopyroxène mais d'un autre minéral précoce. Dans ces agrégats, les oxydes se concentrent dans les amphiboles. Leurs habitus xénomorphes ainsi que leur petite taille indiquent qu'ils proviennent majoritairement soit (i) du minéral précoce remplacé, soit (ii) des amphiboles (±biotite). Dans les deux cas, ils représentent une phase vraisemblablement exsolvée. Lorsque ce phénomène est important, les oxydes ne laissent qu'une fine frange d'actinolite en bordure et en contact avec la couronne de biotite (Figure 4.20, d). Ces structures sont très semblables à celles déjà observées dans la monzo-diorite au front de la coulée de Vulcain (Figure 4.11) et dans la monzonite/diorite de la Plage Jaune (Figure 4.14).



Figure 4.20 : Photographie en LSP de figures de remplacement d'un minéral précoce formées par de l'actinolite, des oxydes de Fe-Ti et une couronne de biotite. (a, b) Figures typiques au sein des perthites, (c) Relation avec le clinopyroxène, (d) Remplacement avancé formé au centre d'une majorité d'oxydes de Fe-Ti, auréolé d'une frange d'actinolite et surmonté d'une couronne de biotite.

Hormis les minéraux majeurs de ce groupe CaS que sont les clinopyroxènes calciques, les amphiboles calciques, le quartz, la biotite, les feldspaths perthitiques et les oxydes de Fe-Ti; il existe d'autres minéraux accessoires en proportion variable selon les échantillons. Parmi ces minéraux accessoires, les apatites sont les plus abondantes. Elles s'observent en inclusion dans tous les autres minéraux et semblent donc se former tout au long de l'histoire de cristallisation des syénites. Les titanites sont aussi des minéraux accessoires et cristallisent souvent en association avec les amphiboles calciques de type hornblendes. Elles peuvent aussi se retrouver en fin de cristallisation avec le quartz et les actinolites. Les zircons sont relativement abondants et se retrouvent majoritairement en inclusion dans les amphiboles de première génération. Ils sont aussi souvent en inclusion dans les feldspaths perthitiques et plus

rarement présents en fin de séquence de cristallisation avec le quartz. Contenus dans les feldspaths mais le plus souvent associés aux amphiboles de type hornblende, des minéraux du groupe de la chevkinite s'observent également de façon plus ou moins abondante en fonction des échantillons. Ce sont des espèces minérales rares porteuses d'élément traces (notamment La et Ce) et HFSE (notamment Th) caractéristiques des systèmes magmatiques alcalins. Elles sont relativement bien représentées au sein de l'ensemble CaS. Finalement, quelques rares calcites tardives ont pu être observées en interstices ou dans des veines tardives associées avec le quartz. En résumé, le groupe pétrographique CaS regroupe un ensemble de roches de textures variées et caractérisées par l'omniprésence de minéraux ferromagnésiens calciques (pyroxènes et amphiboles en proportion relative variable). Ces minéraux, exclusivement calciques, s'observent tout au long de la séquence paragénétique des échantillons qui composent ce groupe. Ces phases minérales ont des habitus et des relations similaires au travers de tous les échantillons, attestant de caractères pétrographiques communs. En plus de ces phases majeures, les autres minéraux majeurs et accessoires s'observent de façon identique au sein des syénites qui composent ce groupe. C'est pourquoi, une séquence paragénétique commune peut être établie pour toutes les roches du groupe CaS (Tableau 4-5 suivant) :



Tableau 4-5 : Séquence de cristallisation correspondant au groupe CaS. M1 : minéral précoce inconnu (olivine ?). Les minéraux en gras sont toujours présents quel que soit l'échantillon considéré.

Finalement, bien que la texture de ces roches soit différente, et que les proportions minérales soient variables d'un échantillon à l'autre, cette unique séquence de cristallisation permet de définir un premier ensemble pétrographique cohérent. Le terme « calcique » est relié à la composition des amphiboles et pyroxènes mais est également appuyé par la présence de phase telle que l'apatite (accessoire mais abondante) et la titanite, voire la calcite tardive.

### 4.1.2.2 Syénites sodiques (groupe pétrographique NaS)

Un deuxième ensemble a pu être défini sur des similitudes pétrographiques entres les différentes roches qui le composent. A l'instar du groupe précédent, la texture de ces roches est un paramètre variable. Comme le montre la Figure 4.21, ces roches ont en effet des textures qui vont de microgrenues à fortement grenues voire pegmatitiques. Ces roches sont toujours des syénites composées de phases minérales majeures que sont le quartz, les feldspaths, les pyroxènes et les amphiboles.



Figure 4.21 : Planche photographique de plusieurs échantillons appartenant au groupe NaS. (a) échantillon 13TK103B, texture grenue,(b) échantillon 13TK104, texture très grenue quasiment pegmatitique, (c) échantillon 13TK105, texture grenue (±porphyrique), (d) échantillon 13TK79, texture grenue, (e) échantillon 13TK76, texture microgrenue, (f) échantillon 13TK106, texture microgrenue porphyrique.

#### Chapitre 4

De la même manière que pour le groupe CaS, ce second groupe est définit à partir des caractères pétrographiques des minéraux ferro-magnésiens (pyroxènes et amphiboles). Tout comme dans le groupe CaS, les amphiboles sont toujours présentes dans tous les échantillons, contrairement aux pyroxènes dont le mode d'occurrence varie. Au-delà des caractéristiques communes aux amphiboles telles que leur relief modéré et leur clivage souvent finement marqué, avec des angles d'intersection à  $\approx 120$ ; les amphiboles de ce groupe se distinguent de par leurs couleurs. Elles possèdent en effet, un large spectre de teintes caractéristiques en LSP. Cet éventail apparait non seulement d'un échantillon à l'autre mais aussi d'un cristal à l'autre au sein d'une même roche ainsi qu'au sein même d'un unique cristal. Fortement pléochroïques, leurs teintes varient entre le jaune, le vert, le bleu et le brun. Elles passent généralement de teintes pâles vert-jaune à des teintes foncées brun-bleu. Tout comme leurs couleurs en LSP, leurs teintes en lumière polarisée et analysée sont variées. Elles oscillent entre des teintes rouge-bleu du 1<sup>er</sup> ordre et vert-jaune du second ordre. La diversité de coloration et de teintes de polarisation est révélatrice des variations de compositions chimiques de ces amphiboles. La Figure 4.22 suivante présente les différents habitus et colorations des amphiboles observables au sein du groupe NaS.



Figure 4.22 : Photographie en LSP des différents habitus des amphiboles présentes au sein des syénites du groupe NaS.

Cette figure montre des amphiboles de coloration allant de jaune-vert (a) à vert-jaune (b), et de vert-bleu (c) à bleu foncé (d). Défini pétrographiquement comme des amphiboles calco-sodiques, les deux premières (a, b) ont des caractéristiques relativement similaires aux amphiboles calciques du groupe CaS, si ce n'est une légère différence de coloration révélatrice d'un changement de composition élémentaire. Les analyses chimiques réalisées à la microsonde ont permis de les identifier comme des amphiboles calco-sodiques de la série des katophorites et de la série des richtérite (voir partie 4.2.2 Minéralogie), et de confirmer l'implication du sodium dans leur structure élémentaire. Ces amphiboles apparaissent à la fois en inclusions dans les feldspaths perthitiques et contraintes par la croissance de ces derniers (Figure 4.22, a). Cette caractéristique est visible de par les extrémités de l'amphibole dont la croissance est contrainte par les feldspaths environnant en Figure 4.22a. C'est également ce type d'amphibole qui apparait en Figure 4.22(b) et dont le changement de composition est mis en évidence par un changement progressif de coloration, passant de zones (majoritairement des cœurs) vert-jaune à des parties (principalement des bordures) brun-bleu. Ce changement se fait de manière progressive et n'est pas accompagné par la formation de nouveaux cristaux. Cette amphibole se transforme donc en une amphibole d'un bleu intense en LSP. Les teintes de polarisation de cette dernière vont jusqu'à la fin du 1<sup>er</sup> ordre, et sont souvent masquées par de la couleur bleue intense du minéral.

Cette amphibole bleue se retrouve donc en produit de déstabilisation et d'évolution d'une autre amphibole attestant de son caractère secondaire mais également en tant que minéral seul plus précoce dans certains échantillons, tel qu'illustré dans la Figure 4.22(c). Ces caractéristiques sont celles d'une amphibole sodique de la série arfvedsonite-eckermannite. Un dernier type d'amphibole apparait dans certains échantillons. Cette amphibole cristallise au cours des derniers stades de l'histoire de cristallisation de certaines syénites. Elle apparait dans les interstices laissés par les autres minéraux déjà cristallisés. Elles remplacent également l'amphibole sodique bleue à partir de sa bordure. Ce minéral est pléochroïque en LSP, d'incolore à vert jaunâtre. Il polarise dans des teintes vives du second degré. Représenté dans la Figure 4.22(d), cette amphibole a une forme aciculaire lorsqu'elle cristallise librement dans les derniers interstices. Cette amphibole est une eckermannite, un minéral très sodique représentant le pôle alumineux (±magnésien) de la série arfvedsonite-eckermannite. Il existe donc parmi les minéraux ferro-magnésiens caractérisant les roches du groupe NaS, plusieurs types d'amphibole allant de calco-sodiques (série katophorite- série richtérite) remplacées par des amphiboles franchement sodiques (série arfvedsonite – eckermannite). L'arfvedsonite, soit secondaire soit plus précoce, est l'amphibole la plus abondante au sein de ce groupe.

Contrairement au groupe CaS dont les pyroxènes sont exclusivement des clinopyroxènes calciques et relativement abondants, les clinopyroxènes calciques sont très rares dans les syénites du groupe NaS. Ils persistent en tant que reliques partiellement déstabilisés par les amphiboles ou bien en tant que minéral isolé en inclusion dans les feldspaths. Les pyroxènes les plus abondants et caractéristiques de ce groupe sont pléochroïques en LSP passant du jaune au vert intense. Leur teintes de polarisation s'étendent du 1<sup>er</sup> ordre à la fin des teintes vives du second. De plus, l'extinction est généralement droite voir très légèrement oblique. Ils possèdent un relief modéré toutefois plus fort que celui des amphiboles. Ces caractéristiques sont celles de clinopyroxènes sodiques de type aegirine. Ils se trouvent souvent en association avec les amphiboles calco-sodiques (Figure 4.23). Leurs relations texturales avec ces amphiboles calco-sodiques indiquent une cristallisation postérieure voire synchrone dans certains échantillons. Les textures de ces phases minérales semblent généralement montrer la déstabilisation et le remplacement partiel de l'amphibole par le pyroxène (Figure 4.23a). Cependant quelques exemples montrent également une cristallisation synchrone sans réaction évidente.



Figure 4.23 : Photographie en LSP des principales textures du clinopyroxène sodique observables au microscope au sein du groupe NaS. (a) : l'aegirine remplace l'amphibole. (b) L'aegirine cristallise en même temps que l'amphibole qui est déstabilisée en amphibole sodique. (c- haut) : l'amphibole se déstabilise en amphibole sodique tandis que l'aegirine est synchrone de cette transformation et cristallise en association avec l'arfvedsonite.

#### Chapitre 4

D'autres textures sont encore plus révélatrices de cette interaction qui existe entre ces deux phases minérales ferro-magnésiennes. La Figure 4.23b illustre en effet le type de relation et de texture le plus observé dans ce groupe NaS. Ici, l'amphibole calco-sodique montre un changement de composition révélateur de la déstabilisation et du remplacement de cette dernière par l'arfvedsonite en lien ou associé à l'aegirine, ne laissant presque plus de traces de la composition initiale calco-sodique. Ces aegirines sont donc majoritairement postérieures à la formation des amphiboles calco-sodiques et semblent associées à leur transformation en arfvedsonite. Cette phase sub-synchrone de cristallisation de minéraux ferro-magnésiens riches en sodium est également mis en évidence par la co-cristallisation de ces deux phases dans les interstices laissées par les grands feldspaths perthitiques (Figure 4.23c). Les minéraux ferro-magnésiens des syénites du groupe NaS sont donc majoritairement sodiques. De plus, les observations pétrographiques montrent que le caractère sodique de ces minéraux s'accentue au cours de l'histoire de cristallisation. Un autre caractère commun des syénites ce groupe est l'omniprésence du quartz. Malgré un mode variable d'une roche à l'autre, sa proportion est toujours plus grande que celle des syénites du groupe CaS. Il est d'ailleurs visible à l'œil nu dans les roches du groupe NaS contrairement à celles du groupe CaS (Figure 4.16 et Figure 4.21). Il apparait généralement en fin de séquence de cristallisation dans ses syénites dans lesquelles il cristallise dans les interstices laissés vacants par les minéraux plus précoces, souvent en association avec l'aegirine et l'arfvedsonite (Figure 4.24, a). Rarement, il montre une texture graphique avec les bordures des feldspaths perthitiques impliquant une cristallisation au moins synchrone avec ces dernières (Figure 4.24, b).



Figure 4.24 : Photographies en LSP des habitus d'arfvedsonites isolées et de quartz au sein des syénites du groupe NaS.

Cette plus grande proportion de quartz pourrait indiquer un degré de différenciation des roches du groupe NaS plus avancé que pour les échantillons du groupe CaS. Les minéraux opaques les plus grands sont des oxydes de Fe-Ti. Toutefois, les oxydes de Fe (magnétite) qui présentent souvent des figures d'exsolution d'oxydes de Ti (ilménite) tel qu'ils s'observent de façon quasiment ubiquiste dans le groupe CaS sont plus rares et moins abondants que les ilménites seules dans ce groupe NaS. Elles sont en général associées aux amphiboles et se retrouvent plus rarement en inclusion dans les feldspaths perthitiques. Les oxydes les plus tardifs cristallisant en association avec le quartz et les ferromagnésiens les plus sodiques sont des magnétites de petite taille. Les apatites sont en proportion modale moindre que dans les syénites du groupe CaS. Tout comme les oxydes de Fe-Ti, elles se concentrent surtout en inclusion dans les amphiboles et plus rarement dans les feldspaths. Les syénites du groupe NaS ont également la particularité d'être riches en certains minéraux accessoires. Ces minéraux accessoires sont suivant leur abondance relative décroissante : le zircon, la chevkinite et l'aenigmatite. Le zircon plus particulièrement est fortement représenté dans ce groupe et peut atteindre des tailles proches du millimètre. Il apparait

généralement en association avec les amphiboles calco-sodiques. Il cristallise également dans les interstices avec le quartz en fin de séquence de cristallisation. La chevkinite est présente à plusieurs stades de l'histoire de cristallisation, elle se retrouve généralement en association avec l'amphibole mais également en inclusion au sein des perthites et plus rarement en bordures de ces derniers et dans les interstices. L'aenigmatite est un inosilicate particulier riche en titane et en sodium. Une vive coloration « sanguine » permet de le repéré facilement dans ces roches. Des teintes de polarisation tout aussi « sanglantes » permettent de ne pas le confondre avec un mica noir riche en titane. Il se trouve plutôt en association avec l'arfvedsonite et l'aegirine mais peut également se retrouver en inclusion dans les feldspaths. Ce minéral est caractéristique des systèmes alcalins et confirme le caractère sodique de ces syénites observé via les ferromagnésiens et riche en titane repéré par l'abondance d'ilménite. La fin de l'histoire magmatique est caractérisée dans plusieurs échantillons par la cristallisation de petits minéraux accessoires en association avec le quartz et l'albite, dont les plus abondants sont les zircons, les chevkinites et des fluorites. Des cristaux d'astrophyllite, minéral d'aspect fibreux, ainsi que quelques pyrochlores ont également pu être observés.

La Figure 4.25 suivante compile quelques exemples photographiques des minéraux accessoires et de leurs textures majoritairement rencontrés dans le groupe NaS. Ces minéraux sont caractéristiques des systèmes alcalins et révèlent le caractère dit « agpaïtique » de ce groupe pétrographique.



Figure 4.25 : Photographies des principaux minéraux accessoires du groupe NaS. (a) : Cristaux de chevkinite souvent en forme de pyramide et/ou aciculaire. (b) Minéraux de zircons dépassant 0,5mm et formés en même temps que les feldspaths. (c) : Cristaux de zircons en inclusion dans une amphibole calco-sodique et aenigmatite en inclusion dans le quartz et les perthites. (d) Cristal d'astrophyllite cristallisé en fin de séquence dans les interstices laissés par les perthites et en association avec le quartz, l'albite, le pyrochlore et la fluorite.

Après l'histoire magmatique des syénites, un épisode tardif de circulation de fluides affecte plusieurs échantillons. Cette dernière phase aboutit à l'oxydation généralisée de tous les minéraux ferromagnésiens et est accompagnée d'un dépôt d'hydroxyde de fer (Figure 4.21, b). C'est peut être ce même épisode qui a permis de cristallisées les fluorites tardives.

En résumé, le groupe NaS se définit en premier lieu par ses minéraux ferromagnésiens qui sont en grande majorité sodiques et se distinguent donc clairement de ceux du groupe CaS. De plus, toutes les syénites du groupe NaS, ont dans l'ensemble une proportion de quartz plus grande que celle des syénites du groupe CaS et visible à l'œil nu. En outre, ces roches contiennent une plus grande proportion de minéraux accessoires caractéristiques des systèmes alcalins tels que la chevkinite (± pyrochlore) et l'aenigmatite. Les zircons sont également très présents et sont généralement de plus grande taille dans ce groupe NaS. Tout comme pour le groupe CaS, bien que la texture des roches soit différente, et que les proportions minérales soient variables d'un échantillon à l'autre, une séquence de cristallisation (Tableau 4-6) permet de caractériser ces échantillons formant un second groupe pétrographique au sein du SRBIC : le groupe NaS.

| Minéraux       | Séquence de cristallisation magmatique | altération |
|----------------|----------------------------------------|------------|
| Ca - Cpx       |                                        |            |
| CaNa - Amp     |                                        |            |
| Na - Amp       |                                        |            |
| Aegirines      | · · · · · · · · · · · · · · · · · · ·  |            |
| Quartz         |                                        | <u> </u>   |
| Perthites      |                                        |            |
| Feldspaths-K   | · · · · · · · · · · · · · · · · · · ·  |            |
| Albites        | · · · · · · · · · · · · · · · · · · ·  |            |
| Zircons        |                                        |            |
| Apatites       |                                        |            |
| Pyrochlores    |                                        |            |
| Chevkinites    |                                        |            |
| Aenigmatites   |                                        |            |
| Astrophyllites |                                        |            |
| Fluorites      |                                        |            |
| Oxydes Fe-Ti   |                                        |            |
| Hydroxydes Fe  |                                        |            |

Tableau 4-6 : Séquence de cristallisation des roches appartenant au groupe pétrographique NaS. Les minéraux en gras sont toujours présents quelques soit l'échantillon considéré.

4.1.2.3 Syénites calco-sodiques (groupe pétrographique intermédiaire CaNaS)

A l'instar des syénites des deux groupes précédent de la péninsule de Rallier du Baty, les roches de ce groupe sont des syénites majoritairement composées de feldspaths perthitiques ainsi que de pyroxènes, d'amphiboles et de quartz. Tout comme ces deux groupes précédent, ce troisième ensemble pétrographique est défini ici sur la base des caractéristiques propres à ses minéraux ferro-magnésiens. La texture des roches de ce groupe est également variable, allant de textures magmatiques microgrenues à (±porphyriques) jusqu'à des textures très grenues. Ce dernier groupe est considéré comme un groupe intermédiaire entre les deux groupes CaS et NaS. C'est pourquoi il est nommé « CaNaS » (pour syénites calco-sodiques) dans la suite de cette thèse. Les roches de groupe CaNaS présentent en effet des caractères pétrographiques propres aux deux groupes précédents. Ces caractéristiques se retrouvent d'un échantillon à l'autre mais également et surtout au sein d'un même échantillon. Les pyroxènes de ce groupe sont tous des clinopyroxènes mais de plusieurs types : calciques, calco-sodiques et sodiques. La

#### Chapitre 4

Figure 4.26 représente les habitus communs de ces clinopyroxènes au sein de ce groupe, du clinopyroxène le plus sain (Figure 4.26, a) au plus altéré. Tout comme dans le groupe CaS, les clinopyroxènes calciques font partie des minéraux les plus précoces. Ils se retrouvent le plus souvent en inclusion dans les feldspaths perthitiques (Figure 4.26, a). D'autre part, le clinopyroxène sodique apparait plutôt dans les stades de cristallisation plus avancés en association avec les amphiboles (Figure 4.26, a,c). L'aegirine est souvent contrainte par les bordures des feldspaths perthitiques et cristallise aussi dans les interstices. Il existe donc des clinopyroxènes calciques et sodiques strictement distincts au sein de mêmes échantillons. Cependant, le pyroxène caractéristique de ce groupe est un clinopyroxène à la fois calcique et sodique. Il s'agit en effet d'un clinopyroxène dont le cœur est faiblement coloré voire incolore en LSP et dont les bordures sont de couleur verte intense (Figure 4.26b,c). Ce changement de coloration atteste d'un changement de composition progressif du cœur vers la bordure de ce minéral. Il s'agit de clinopyroxènes calciques dont les bordures se sont déstabilisées et devenues sodiques. Ce pyroxène illustre donc clairement le caractère intermédiaire de ce groupe CaNaS entre des cœurs de type diopside et des bordures de type aegirine. De plus, la texture de ce type de pyroxène ainsi que la chronologie relative des différents types de pyroxènes montre clairement une évolution dans le temps vers des termes sodiques.



Figure 4.26 : Photographie en LSP des habitus typiques de clinopyroxènes observés dans les syénites du groupe CaNaS. (a) Ca-Cpx sains incluent dans une amphibole CaNa + aegirine, (b, c, d, e), (f) Relations Ca-Cpx sains, Ca-Cpx en transformation, aegirine et CaNa-amphibole.

La Figure 4.26(d) à (f) illustre des exemples de relations entre les ferromagnésiens couramment observées au sein du groupe CaNaS. Ainsi, l'observation des amphiboles de ce groupe CaNaS permet de faire un constat identique à celui de l'observation des pyroxènes. En effet, les amphiboles retrouvées au sein de ces roches sont de plusieurs natures mais clairement dominées par les amphiboles calco-sodiques. Ces amphiboles ont des colorations vertes aux nuances prononcées (brunes) ce qui permet de les distinguer optiquement des amphiboles de type hornblende (Figure 4.26a,b,e,f). Ces amphiboles incluent les clinopyroxènes calciques et semblent contemporaines voire légèrement antérieures à la cristallisation du clinopyroxène sodique (Figure 4.26a,b,d,e,f). Elles se forment de façon synchrone avec les feldspaths perthitiques qui les incluent. Les amphiboles de types hornblende sont précoces et plutôt rares tandis que les amphiboles sodiques de coloration bleue intense apparaissent surtout dans les derniers stades de l'histoire magmatique des syénites de ce groupe. Elles cristallisent majoritairement en relation avec la déstabilisation des amphiboles calco-sodiques et plus rarement dans les interstices laissés par les autres minéraux déjà cristallisés.



Figure 4.27 : (a et b) Photographies en LSP des figures de remplacement de l'olivine au sein des syénites du groupe CaNaS

L'amphibole sodique se retrouve également dans des structures particulières présentes dans certains échantillons. Ces structures correspondent à un assemblage de plusieurs minéraux toujours relativement bien organisés de manière concentrique (Figure 4.27,a). On retrouve rarement au centre de ces structures un minéral qui a un fort relief, très fracturé et dont ces fractures sont remplies d'oxydes de Fe-Ti. Incolore en LSP, polarisant dans des teintes vives du second degré et ne présentant pas de clivage apparent, ce minéral est une olivine de type fayalite. Cette olivine est souvent couronnée d'une frange d'amphibole vert-bleu en LSP et polarisant dans les vert-brun en LPA. L'analyse microsonde a révélé qu'il s'agissait d'une amphibole calco-sodique de type richtérite (plutôt magnésienne). Cette frange est toujours surmontée d'une seconde couronne de biotite. Les oxydes se concentrent surtout au centre de ces structures mais s'étendent parfois jusqu'aux micas. Il est clair que cet assemblage minéralogique coronitique est caractéristique du remplacement de l'olivine. Toutefois, il est rare d'observer nettement des reliques d'olivines qui sont souvent remplacées par les oxydes au centre de ces structures tel que sur la Figure 4.27(b) accompagnés d'une phase amorphe jaune. Toujours en association avec ces objets se trouvent d'autres agrégats minérals constituées par des amphiboles sodiques bleues en association avec des oxydes de Fe-Ti. Il pourrait également s'agir des mêmes figures de remplacement que les structures décrites précédemment mais à un stade plus avancé, ou bien de la transformation de plus petits cristaux d'olivine. Les analyses in-situ de ces amphiboles a permis de les identifier comme étant des riebéckites (amphiboles sodiques).

De par les rares amphiboles strictement calciques et la présence des amphiboles sodiques ; la nature et la texture des amphiboles de ce groupe ressemblent à celles des amphiboles du groupe NaS. Cependant l'amphibole calco-sodique est ici clairement dominante. De plus, l'amphibole sodique est ici rarement un minéral qui a cristallisé directement à partir du magma mais apparait surtout en remplacement d'amphiboles plus précoces. Ainsi, le constat sur l'évolution des pyroxènes dans ce groupe CaNaS s'applique également aux amphiboles. Les proportions relatives, la nature et la texture des amphiboles montrent également une évolution vers des termes sodiques au cours du temps.

La biotite est ici présente en tant que minéral précoce. En effet en plus de faire partie des figures de remplacement de l'olivine, elle cristallise tout comme dans le groupe CaS en grande plage, parfois isolée, mais le plus souvent en association avec les clinopyroxènes calciques et les amphiboles calco-sodiques. En majorité, les syénites de ce groupe CaNaS, tout comme celles du groupe CaS, sont relativement pauvres en quartz comparées à celles du groupe NaS. Celui-ci cristallise toujours dans les stades finaux de l'histoire magmatique. Les oxydes de Fe-Ti sont des magnétites à exsolutions d'ilménite de tailles variées. Ils sont présents tout au long de l'histoire de cristallisation de ces roches. Les minéraux accessoires sont surtout des chekvinites, des zircons et des aenigmatites. Contrairement aux syénites du groupe NaS, la titanite est bien présente et l'apatite apparait en proportion plus abondante. La première est en majorité inclue dans les amphiboles calco-sodiques et l'autre dans les perthites. Toutes ces observations permettent de définir une séquence de cristallisation pour les syénites du groupe CaNaS telle que représentée dans le Tableau 4-7 suivant :

| Minéraux     | Séquence de cristallisation magmatique |  |
|--------------|----------------------------------------|--|
| Olivines     |                                        |  |
| Са - Срх     |                                        |  |
| Hbl amp      |                                        |  |
| Biotites     |                                        |  |
| CaNa - Amp   |                                        |  |
| Perthites    | 2                                      |  |
| Na - Cpx     | · · · · · · · · · · · · · · · · · · ·  |  |
| Na - Amp     |                                        |  |
| Actinolites  |                                        |  |
| Quartz       |                                        |  |
| Apatites     |                                        |  |
| Titanites    |                                        |  |
| Oxydes Te-Ti |                                        |  |
| Zircons      |                                        |  |
| Chevkinites  |                                        |  |
| Aenigmatites |                                        |  |

 Tableau 4-7 : Séquence de cristallisation des roches appartenant au groupe pétrographique CaNaS

En résumé, les roches du groupe CaNaS se distinguent de celles du groupe CaS par l'apparition du clinopyroxène sodique, lequel se retrouve généralement en produit de déstabilisation des Cpx précoces impliquant une évolution des Cpx au travers des compositions calco-sodiques. Au niveau des amphiboles, malgré quelques amphiboles de type hornblendes semblables au groupe CaS, la grande majorité des amphiboles précoces sont des amphiboles calco-sodiques. Sauf quelques rares actinolites identiques au groupe CaS, l'arfvedsonite est l'amphibole représentative des derniers stades de cristallisation des roches de ce groupe. Les roches du groupe CaNaS se distinguent également de celles appartenant au groupe NaS de par l'abondance des Cpx calciques précoces en cours de déstabilisation. L'aegirine relativement tardive

ne montre pas de réaction avec les amphiboles calco-sodiques telles qu'elles s'observent dans le groupe NaS. L'arfvedsonite est dans ce groupe exclusivement tardive et bien moins abondante que dans le groupe NaS.

Ces distinctions pétrographiques basés sur les minéraux ferro-magnésiens montrent et impliquent des caractères également communs avec les deux groupes précédents, qui se retrouvent aussi au niveau des minéraux accessoires. Ces syénites apparaissent donc clairement comme intermédiaires entre les syénites du groupe CaS exclusivement calciques et les syénites du groupe NaS dont les ferromagnésiens sont majoritairement sodiques. De par ce caractère intermédiaire, certaines roches de ce groupe se rapprochent plus des syénites du groupe CaS tandis que d'autres ressemblent d'autant plus à celles du groupe NaS. Cette particularité est notamment liée aux proportions de modales des différentes phases ferromagnésiennes qui cristallisent au cours de l'histoire magmatique de chaque échantillon. Cependant, l'évolution pétrographique de ces derniers vers des termes sodiques tend à rapprocher naturellement les roches de ce groupe CaNaS de celles du groupe NaS.
# 4.1.3 Filons et dykes tardifs

Il existe deux grands types de filons identifiés comme syn à tardi-plutonisme (voir Chapitre 2). Les exemples qui suivent dans cette section sont issus de filons qui recoupent l'ensemble des structures plutoniques.

## 4.1.3.1 Filons de basalte

Le premier type regroupe les filons de nature basaltique (Figure 4.28 et Figure 4.29). Ces basaltes ont une texture microlitique (± porphyrique). Les phénocristaux sont des plagioclases et des clinopyroxènes. Les pyroxènes sont souvent zonés et possèdent souvent des macles en sablier. Ce sont également ces deux types de minéraux qui forment la mésostase microlitique sans orientation préférentielle marquée des microlites. Les apatites et les oxydes de Fe-Ti sont également présents en quantité significative et semblent avoir cristallisé tout au long de la séquence de cristallisation. La texture squelettique de certains oxydes atteste d'une croissance très rapide dans la mésostase. Tous ces oxydes montrent des figures d'exsolution entre une phase riche en titane (ilménite) et une phase riche en fer (magnétite). Ces roches contiennent également quelques sulfures de Fe-Cu. En effet, la pyrite et la chalcopyrite (plus tardive) s'observent souvent en minéraux accessoires (Figure 4.30). D'autre part, il est fréquent que ces filons aient subit une altération tardive conduisant à la déstabilisation des plagioclases et pyroxènes en micas (majoritairement noirs) et chlorites.



Figure 4.28 : Lame mince en LSP (a) et LPA (b) de l'échantillon 13TK06. Dyke de basalte recoupant le SRBIC.



Figure 4.29 : Lame mince en LSP (a) et LPA (b) de l'échantillon 13TK52. Dyke de basalte recoupant le SRBIC.





#### 4.1.3.2 Filons de trachyte

Le second type de filons et dykes syn à post-plutonisme regroupe les filons de nature trachytique. Ces roches ont des textures microlitiques porphyriques (Figure 4.31). Les phénoblastes sont bien visibles à l'œil nu. De couleur blanche et d'aspect laiteux, ils se distinguent de la matrice homogène vert foncé. Pétrographiquement, ces roches sont entièrement cristallisées et sont composées en grande majorité de feldspaths. Les phénocristaux sont formés de plagioclases seuls ou en agrégats. Ils sont entourés de microlites plagioclasiques parfois orientés sur l'ensemble de la lame mince. Ces roches contiennent également quelques microcristaux de titanite souvent en inclusion dans les feldspaths. Les opaques sont des oxydes de Fe-Ti et sont toujours associés avec la titanite. D'autre part, des zircons magmatiques, de taille approchant le millimètre se retrouvent au sein de la mésostase (Figure 4.31). Ces minéraux accessoires particuliers font de ces trachytes des objets d'importance pour l'étude chronologique du SRBIC. Enfin, une phase d'altération tardive dans l'histoire de cristallisation a engendré la déstabilisation des plagioclases en biotite et chlorite. La couleur vert foncé de ces roches à l'affleurement provient donc de cette dernière phase d'altération en grande partie chloriteuse.



Figure 4.31 : Lame mince en LSP (a) et en LPA (b) d'une trachyte recoupant le SRBIC et contenant des zircons (13TK08).

# 4.2 Minéralogie des minéraux ferro-magnésiens

Les observations pétrographiques précédentes ont montré l'importance des minéraux ferro-magnésiens dans les roches plutoniques du SRBIC et de ses satellites, constituant le principal critère de discrimination pétrographique entres les différents types de syénites (partie précédente). Leur omniprésence, leur grande étendue dans les différentes séquences de cristallisation ainsi que leur variabilité compositionnelle à l'échelle du complexe en fait des phases représentatives de l'évolution magmatique au sein du complexe. Elles apparaissent donc comme idéales pour caractériser l'évolution géochimique in-situ des différents magmas à l'origine des roches plutoniques. C'est pourquoi, afin d'aborder cet aspect fondamental, une étude minéralogique a été réalisée via des mesures à la microsonde électronique et concentrée sur ces minéraux ferromagnésiens. Tout comme l'étude pétrographique des roches intrusives, cette étude minéralogique fut entreprise dans le but de mettre en évidence les tendances à grande échelle sur l'ensemble du complexe plutôt que de chercher à distinguer toutes les nuances de composition d'un échantillon à l'autre.

Près de 261 analyses in-situ ont été réalisées sur les pyroxènes présents dans les roches intrusives du complexe sud de Rallier du Baty. Les formules structurales ont été calculées via la feuille Excel « PX-NOM » de Sturm (2002) basées sur 6 Oxygènes. Le ratio  $Fe^{2+}/Fe^{3+}$  a été calculé automatiquement via cette même feuille Excel. Cette estimation stœchiométrique est basée sur l'équilibre des charges électroniques suivant le model général de Droop (1987). D'après ce modèle, l'estimation du  $Fe^{3+}$  peut s'écrire de la façon suivante :F =2 X (1-T/S) où T représente le nombre idéal de cation par formule structurale ( $T_{px}$ =4), S est le nombre total de cation estimé pour un nombre idéal X d'oxygènes ( $X_{px}$ =6). Ce modèle permet de minimiser les incertitudes sur les mesures in situ. Etant données les faibles variations observées pour la somme des oxydes à travers toutes les analyses de pyroxènes (entre 102 et 96%), ce choix de modèle m'est apparut comme étant le plus judicieux, et a été appliqué à toutes les analyses pour le calcul des formules structurales. Le détail des analyses effectuées est reporté en annexe.

# 4.2.1 Pyroxènes

# 4.2.1.1 Pyroxènes des syénites du groupe CaS

L'étude pétrographique des pyroxènes du groupe CaS a permis de mettre en évidence la cristallisation précoce et exclusive dans ces roches de clinopyroxènes calciques. Les 43 analyses in-situ ont été réalisées sur 7 échantillons différents représentatifs du groupe CaS. Toutes les compositions de pyroxènes analysés au sein des syénites sont représentées dans le diagramme En-Fs-Wo de la ← Figure 4.32 suivante :



← Figure 4.32 : Diagramme Enstatite-Ferrosilite-Wollastonite (d'après Morimoto, 1989) dans lequel sont reportés les pyroxènes des syénites du groupe CaS, ainsi que les compositions du monzogabbro (13TK002) de l'anse du Gros Ventre.

Le diagramme de la ← Figure 4.32 démontre que les deux types de pyroxènes identifiés pétrographiquement au sein du monzogabbro de l'anse du Gros Ventre sont des diopsides et des clinoenstatites. Les pyroxènes des syénites du groupe CaS se projettent sur les limites entre les champs du diopside de l'hédenbergite et de l'augite. Ces analyses élémentaires confirment que les pyroxènes des syénites du groupe CaS sont des clinopyroxènes calciques en accord avec les observations pétrographiques. Cependant, aucune distinction n'avait pu être établie microscopiquement entre les différents termes (reportés à la nomenclature) qui composent ces clinopyroxènes. Les analyses in-situ montrent également que ces clinopyroxènes se répartissent de façon hétérogène dans la série diopside-hédenbergite. Bien qu'une quantité certaine de pyroxènes calciques se retrouve dans le champ de l'augite, ces compositions sont très proches des champs du diopside et de l'hédenbergite. L'ensemble des analyses des pyroxènes des syénites du groupe CaS étant contenues entre 48 et 41.5% de Ca (% cationique). La moyenne et la médiane de Ca en % cationique se situant sur la limite qui sépare le champ des augites de la série Diopside-Hédenbergite (45.2 et 44.8 respectivement).

#### 4.2.1.2 Pyroxènes des syénites du groupe NaS

L'étude pétrographique a permis de mettre en évidence le caractère sodique des pyroxènes qui cristallisent au sein des syénites du groupe NaS. La cristallisation des pyroxènes est soit synchrone de celle des amphiboles soit plus tardives dans ces roches. Les 24 analyses in-situ ont été réalisées sur 2 échantillons différents du groupe NaS. Toutes les compositions des pyroxènes ont été reportées dans la Figure 4.33 suivante :



Figure 4.33 : Diagramme Quad-Jadéite-Aegirine d'après (Morimoto, 1989), avec Quad = Wollastonite+Ferrosilite+Enstatite ; où sont reportés les pyroxènes des syénites du groupe NaS.

La Figure 4.33 confirme le caractère sodique des pyroxènes analysés au sein de ce groupe. En effet, la majorité des compositions se projettent dans les champs des aegirines-augites et des aegirines. Seule une analyse se trouve dans le champ des augites-aegirines. Tous les clinopyroxènes sodiques ont des concentrations très faibles en Al et se situent donc le long de la droite reliant le pôle Q=Ca/Mg/Fe<sup>2+</sup> au pôle ferrique. Bien que ces compositions déterminent plusieurs types de pyroxènes dans la nomenclature, aucune distinction pétrographique significative n'a pu être établie entre les différents

types. Il faut noter que le nombre d'analyses et d'échantillons étant moindre que pour le groupe CaS, il est probable qu'un léger biais conduise à une sur représentation des compostions à la limite aegirineaugite / aegirine. Ce biais, s'il existe, ne change en rien les conclusions précédentes.

Les diagrammes de classification des clinopyroxènes (←Figure 4.32 Figure 4.33) montrent donc sans ambiguïté une nette une différence de composition de ces derniers cristallisant au sein de ces roches des groupe CaS et NaS.

#### 4.2.1.3 Pyroxènes des syénites du groupe CaNaS

Les 178 analyses in-situ ont été effectuées sur 23 échantillons représentatifs de ce groupe. Les compositions des pyroxènes ont été reportées dans la Figure 4.34 suivante :



Figure 4.34 : Diagrammes de classification des pyroxènes (d'après Morimoto, 1989) où ont été reportées les compositions de pyroxènes des syénites du groupe CaNaS. (a) diagramme Wo-En-Fs, (b) diagramme Q-Jd-Aeg.

La Figure 4.34 montre que les pyroxènes de ce groupe analysés se répartissent entre à la fois sur le diagramme de classification des pyroxènes calciques (Wo-En-Fs) et celui des pyroxènes calco-sodiques (Q-Jd-Aeg). Cette représentation confirme ainsi les observations pétrographiques et montrent à la fois des clinopyroxènes calciques et sodiques au sein de ce groupe. Les compositions des pyroxènes calciques se retrouvent concentrées le long de la limite des champs des diopsides, hédenbergites et augites. La teneur en Ca des augites est très proches de celles des diopsides et hédenbergites. Tout comme pour les Ca-Cpx du groupe CaS, la moyenne et la médiane des analyses des Ca-Cpx de ce groupe se situent très proche de 45% de Ca (44.7 et 44.9% cationique respectivement). Seules 3 analyses appartenant à un même échantillon dont la plupart des autres pyroxènes se retrouvent dans le champ des diopsides et augites, sont des wollastonites. Tout comme pour les pyroxènes du groupe NaS, les compositions des pyroxènes sodiques sont aussi très pauvres en Al et s'alignent donc le long de l'axe Quad-Aeg dans le diagramme Q-Jd-Aeg (Figure 4.34). Les compositions de ces clinopyroxènes sodiques s'étendent ici des augites-aegirines aux aegirines en passant par les aegirines-augites. Un gap de compositions existe entre 51 et 64% d'aegirine. Il existe donc au sein du groupe CaNaS, des clinopyroxènes calciques, sodiques et calcosodiques. Cette étude minéralogique confirme donc les observations pétrographiques et atteste du caractère intermédiaire de l'ensemble des pyroxènes de ce groupe par rapport à ceux des groupes pétrographiques précédents. De plus, la Figure 4.34 montre que dans une classification basée sur les ferromagnésiens, un échantillon du groupe CaNaS aura des ressemblances plus ou moins prononcées avec le groupe CaS ou NaS, en fonction des compositions de ses pyroxènes.

4.2.1.4 Evolution des pyroxènes à l'échelle du complexe et de ses satellites

Les observations microscopiques ont permis d'établir les séquences de cristallisation des trois grands ensembles syénitiques : CaS, NaS et CaNaS. Ces différentes séquences (Tableau 4-5, Tableau 4-6 et Tableau 4-7) montrent que la cristallisation de l'ensemble des pyroxènes couvre une grande période de l'histoire de cristallisation des syénites du complexe sud de Rallier du Baty. Ceci est particulièrement vrai pour les différents pyroxènes formés dans les syénites du groupe CaNaS. C'est pourquoi, les analyses insitu des pyroxènes dans les roches de ce groupe sont particulièrement utiles pour retracer l'évolution de leur composition au cours de la formation de ces roches. La diversité de composition des pyroxènes dans ces roches permet d'étudier leur évolution aussi bien à l'échelle de l'échantillon qu'à celle du minéral comme le montre la Figure 4.35. Ici sont illustrés deux exemples de l'analyse in-situ de ces pyroxènes dans deux échantillons différents du groupe CaNaS.



Figure 4.35 : Photographies et diagrammes Di-Aeg-Hd illustrant l'évolution des compositions chimiques des pyroxènes au sein de deux échantillons du groupe pétrographique CaNaS. (a) : localisation des analyses in-situ sur un Cpx en cours de transformation (échantillon 13TK07C) ; (b, c) : représentation des analyses de pyroxènes de l'échantillon 13TK07C en (a) et de l'échantillonTC09-68 précédents dans un diagramme ternaire Diopside-Hédenbergite-Aegirine.

La Figure 4.35 (a) illustre la localisation de 6 analyses effectuées sur un pyroxène vu en LPA (gauche) et en LSP (droite) et entouré de plusieurs feldspaths perthitiques. Au moins trois zones de coloration et de teintes de polarisation différentes se distinguent dans ce minéral. Une première zone de teintes de polarisation jaune-orange à rouge-violet du premier ordre contient les analyses n°1 et n°2. Une seconde

partie de couleur et de teinte vert-jaune se distingue au centre du minéral et contient l'analyse n°3. Enfin, une troisième partie au bas de ce minéral est de couleur verte intense et contient les analyses n°4,5 et 6.

Ce minéral et un cristal unique, bien que la photographie puisse laisser croire à deux individus, ce n'est pas le cas. Au vue de l'habitus ovoïde, du changement progressif de coloration, et des relations Ca-Cpx / Na-Cpx observés au sein du complexe, il parait évident que la partie la plus ancienne de ce minéral est incolore en LSP.

Les analyses n° 1 à 6 ont été reportées dans le diagramme Diopside-Hédenbergite-Aegirine de la Figure 4.35 (b). Le calcul des proportions de chaque pôles a été réalisé considérant Di = Mg, Hd =  $Fe^{2+}$  + Mn et Aeg = Na en proportion cationique. Les symboles noirs dans ce diagramme proviennent d'autres analyses in-situ sur des pyroxènes du même échantillon et non-présentés dans la Figure 4.35(a).

Dans cette représentation, les cercles proviennent d'analyses réalisées sur les pyroxènes considérés comme précoce dans l'échantillon en question. Dans cet exemple Figure 4.35(a, b), le pyroxène précoce corresponds aux analyses n°1 et 2. Les carrés correspondent aux pyroxènes qui ont subi une phase de transformation repérée pétrographiquement par un changement de coloration et de teintes de polarisation. Dans ce cas présent, les analyses 3 à 6 ont été réalisées sur un pyroxène qui a subi une transformation progressive et dont les caractéristiques précoces persistent dans la partie des analyses n°1 et 2. La déstabilisation et le remplacement évident du « cœur » ancien se répartissent de façon hétérogène par rapport à celui-ci, ce qui laisse penser que cette phase de transformation est accompagnée d'une nouvelle phase de croissance (vers le bas sur la figure) de composition différente. Les triangles correspondent à des pyroxènes qui ne sont pas issus de la transformation des pyroxènes précoces mais cristallisent directement dans le magma. Ces triangles regroupent donc des pyroxènes synchrones et postérieurs aux amphiboles calco-sodiques. Ces pyroxènes correspondent notamment à ceux qui cristallisent dans les interstices laissés vacants après la cristallisation de la paragénèse minérale précoce. La Figure 4.35 montre que le pyroxène précoce correspondant aux analyses n°1 et 2 est une hédenbergite. Ce minéral subit par la suite une transformation qui s'intensifie du cœur vers les bordures du minéral. Cette transformation implique un changement de composition depuis celle de l'hédenbergite (analyses n°1 et 2) jusqu'à des compositions d'aegirines-augites (analyses n°4,5 et 6). Ce changement de composition met en œuvre la substitution  $Ca^{2+}+Mg^{2+} \rightarrow Na^{+}+Fe^{3+}$ . Les clinopyroxènes plus tardifs de cet échantillon confirment cette tendance au cours du temps.

De la même manière, la Figure 4.35 (c) présente les analyses in-situ réalisées sur les pyroxènes d'un seul et même échantillon (ici le TC09-68). Dans cette roche, les pyroxènes précoces (représentés par des cercles) sont majoritairement des diopsides, seule 1 composition. Les analyses réalisées sur les pyroxènes en cours de transformation sont majoritairement des aegirine-augites, à l'exception de la composition d'augite qui se trouve le plus proche des pyroxènes précoces. Enfin, les pyroxènes qui cristallisent tardivement et directement dans cette roche sans provenir de la transformation d'un clinopyroxène antérieur sont majoritairement des aegirine-augite. C'est dans l'objectif de caractériser les évolutions chronologiques des compositions de pyroxènes que, de façon identique aux deux exemples précédents, toutes les compositions de pyroxènes des syénites du groupe CaNaS ont été reportées dans le diagramme Di-Hd-Aeg de la Figure 36(a). Ce diagramme illustre le large domaine quasiment continu que couvrent les pyroxènes de ce groupe et qui s'étale depuis des compositions franchement calciques jusqu'à des compositions franchement sodiques. Cependant, trois domaines de compositions peuvent être distingués.



Figure 4.36 : Diagramme Di-Hd-Aeg des pyroxènes du groupe CaNaS (a), évolution chronologique au sein de ce groupe (b), diagramme Di-Hd-Aeg de l'ensemble des pyroxènes de Rallier du Baty (c), chemin d'évolution idéal des pyroxènes de Rallier du Baty.

Les pyroxènes les plus précoces, symbolisés par des cercles, sont clairement répartis entre les pôles diopside et hédenbergite et forment un premier domaine (A). Un second domaine B est constitué des pyroxènes calciques précoces ayant subi un changement de composition via la substitution  $Ca^{2+}+Mg^{2+} \rightarrow Na^++Fe^{3+}$ . Ces pyroxènes calco-sodiques sont représentés par des carrés. Enfin, le domaine le plus vaste est composé des pyroxènes de type aegirine-augite et aegirines qui cristallisent directement dans la roche et non pas aux dépends des Cpx déjà présents. Ils sont par contre plus tardifs que les pyroxènes calciques et lié à l'épisode de transformation de ces derniers. La limite qui sépare le domaine A du domaine B a été

tracée graphiquement et de telle façon que tous les Cpx précoces soient contenus dans le champ A. Ainsi, seule une analyse considérée comme provenant d'un Cpx déstabilisé se trouve dans le domaine A. La limite qui sépare le champ B du champ C a été placée graphiquement de façon à ce que la majorité des Cpx tardifs appartiennent au champ C. De cette manière, une seule analyse de Cpx tardif se retrouve dans le domaine B. Lorsque cela a été possible, l'évolution chronologique des compositions des pyroxènes pour 1 échantillon donné dans ce groupe CaNaS à été reporté dans la Figure 4.36(b).

L'ensemble des pyroxènes analysés dans les syénites du SRBIC et de ses satellites a été reportées dans le diagramme de la Figure 4.36 (c) en fonction des 3 groupes pétrographiques. Cette figure montre que les Ca-Cpx du groupe CaS correspondent exclusivement à des compositions se répartissant le long de la série diopside-hédenbergite, tandis que les Na-Cpx du groupe NaS montrent des compositions qui se répartissent le long de l'axe que forment les pôles Hd-Aeg. Les pyroxènes du groupe CaNaS, quant à eux, s'étalent entre ces deux groupes. Les Ca-Cpx du monzogabbro de l'anse du Gros Ventre ont également été reportés. Ils montrent les teneurs en Di les plus élevées de tous les roches plutoniques étudiées. Grace à l'évolution chronologique des compostions de pyroxène et notamment grâce au caractère intermédiaire du groupe CaNaS (Figure 4.36 a,b), une évolution chronologique des pyroxènes peut être envisagée pour l'ensemble du complexe sud de Rallier du Baty. Le domaine grisé de la Figure 4.36(c) représente graphiquement le champ où se concentrent principalement les analyses des pyroxènes des trois groupes de syénites étudiés. Ce dernier illustre donc les compositions représentatives de l'évolution des pyroxènes au cours du temps sur l'ensemble de ces roches plutoniques. Dans ce domaine, un chemin idéal d'évolution tracé graphiquement est reporté avec une flèche dans la Figure 4.36(d), ainsi que les 3 champs de compositions décrits précédemment. Cette tendance générale indique que l'histoire précoce des syénites est caractérisée par une évolution au sein de la série diopside-hédenbergite depuis des compositions plutôt magnésiennes vers des compositions plus riches en Fer ferreux. Cette tendance indique un changement dominé par la substitution  $Mg^{2+} \rightarrow Fe^{2+}$  dans le site octaédrique M1. Cette évolution se poursuit jusqu'à un changement des échanges dominants. Ce changement est représenté par l'étoile n°1 de la Figure 4.36(d), qui a été placé par méthode graphique. La substitution dominante Mg<sup>2+</sup>  $\rightarrow$  Fe<sup>2+</sup> est remplacée progressivement par la substitution couplée Ca<sup>2+</sup>+Mg<sup>2+</sup>  $\rightarrow$  Na<sup>+</sup>+Fe<sup>3+</sup> dans les 2 sites octaédriques M1, M2. Cette évolution est marquée pétrographiquement par des Ca-Cpx précoces montrant des bordures avec des compositions de type aegirine-augite et aegirine, sans variation du Fe<sup>2+</sup> (±Mn<sup>2+</sup>) élémentaire. Enfin, un dernier changement s'opère dans l'évolution des pyroxènes. Il correspond au remplacement progressif de la substitution dominante précédente (Ca<sup>2+</sup>+Mg<sup>2+</sup>  $\rightarrow$  Na<sup>+</sup>+Fe<sup>3+</sup>) par la substitution  $Ca^{2+}+Fe^{2+}(\pm Mn^{2+}) \rightarrow Na^{+}+Fe^{3+}$ . Ce changement est symbolisé dans la Figure 4.36(d) par l'étoile n°2 et permet le passage du champ B des CaCpx en remplacement au champ C des aegirines cristallisées directement dans la roche. En plus du chemin idéal suivi par les compositions des pyroxènes, deux autres chemins sont illustrés en pointillés dans la Figure 4.36(d). Ces tracés correspondent à l'évolution des échantillons qui constituent les pyroxènes ayant les compositions les plus extrêmes par rapport à l'évolution générale. Le chemin qui tend vers le pôle Hd correspond à l'échantillon 13TK119B provenant de la vallée de l'Armor. Son évolution reste assez proche de l'évolution générale. Ce n'est pas le cas du tracé en pointillé qui passe par le centre du diagramme. Cette évolution est dessinée par les pyroxènes de l'échantillon 13TK126 provenant de l'unité structurale 3 sous le contact est du Pic Chastaing. D'autres compositions qui se projettent au centre du diagramme proviennent de l'échantillon 13TK109, prélevé également dans l'unité structurale 3 sous le contact nord-ouest du massif des Deux Frères. Ces deux échantillons ont une position structurale et géographique très proche au sein de l'unité la plus récente. Cette évolution est différente de l'évolution des autres pyroxènes car fortement dominée dès le départ

par la substitution :  $Ca^{2+}+Mg^{2+} \rightarrow Na^{+}+Fe^{3+}$ . Je n'ai pas encore su trouver d'explication satisfaisante à l'évolution à part de ces deux échantillons.

## 4.2.1.5 Synthèse sur la minéralogie des pyroxènes

En résumé, les compositions de pyroxènes analysées sur l'ensemble des syénites du complexe sud de Rallier du Baty et ses satellites confirment et affinent les observations microscopiques. En effet, chacun des trois grands ensembles défini pétrographiquement montrent des compositions de pyroxènes clairement distinctes. Les syénites du groupe CaS regroupent des pyroxènes exclusivement calciques et répartis dans la série diopside-hédenbergite. Ces Ca-Cpx cristallisent précocement dans ces roches. Ce sont également des Ca-Cpx qui composent les pyroxènes précoces du groupe CaNaS. Ces pyroxènes subissent une transformation à partir de leurs bordures, plus ou moins associée à une nouvelle phase de croissance, et montrent ainsi des compositions calciques et sodiques tendant vers des compositions de type aegirine-augite. Cette évolution chronologique s'effectue grâce à la substitution dominante  $Ca^{2+}+Mg^{2+} \rightarrow Na^{+}+Fe^{3+}$ . En même temps et postérieurement à cette déstabilisation, d'autres pyroxènes qui ne sont pas issus de la déstabilisation des Ca-Cpx précoces cristallisent directement dans ces syénites. Ces pyroxènes plus tardifs ont des compositions qui s'étendent depuis celles des aegirines-augites jusqu'à celles des aegirines via la substitution  $Ca^{2+}+Fe^{2+}(\pm Mn^{2+}) \rightarrow Na^{+}+Fe^{3+}$ . Ce sont également des Na-Cpx qui composent les pyroxènes du groupe des syénites NaS. Ainsi, il apparait clairement que l'évolution élémentaire des pyroxènes au cours du temps sur l'ensemble des termes syénitiques de Rallier du Baty se fait depuis un pôle calcique plutôt magnésien vers un pôle sodique ferrique.

# 4.2.2 Amphiboles

273 analyses in-situ ont été effectuées sur les amphiboles des roches plutoniques du SRBIC. Ces analyses ont été traitées en utilisant la feuille de calcul Excel de Locock (2014). Ainsi les formules structurales ont été calculées sur la base de 23(O). Les diagrammes de compositions des amphiboles ainsi que toutes les formules structurales idéales présentées dans les paragraphes suivant sont tirés de Hawthorne et al. (2012).

#### 4.2.2.1 Amphiboles des roches plutoniques mafiques et intermédiaires

Parmi les roches plutoniques mafiques (±intermédiaires) de la péninsule de Rallier du Baty, seules les amphiboles des complexes satellites de l'anse du Gros Ventre (monzo-gabbro) et de la Plage Jaune (monzonite) ont été analysées. Dans le monzo-gabbro de l'anse du Gros Ventre, les amphiboles se sont formées après la cristallisation des pyroxènes. Les mesures in-situ indiquent que ces amphiboles sont des pargasites de formule structurale idéale : NaCa<sub>2</sub>(Mg<sub>4</sub>Al)(Si<sub>6</sub>Al<sub>2</sub>)O<sub>22</sub>(OH)<sub>2</sub>. Bien qu'elles puissent incorporer une faible quantité de Na dans leur structure, ces amphiboles représentent un pôle pur de compositions au sein des amphiboles calciques (Leake et al., 1997, 2004; Hawthorne et al., 2012). Les amphiboles qui cristallisent dans la roche grenue la plus mafique de la péninsule de Rallier du Baty sont donc bien calciques. La Figure 4.37 représente les domaines de compositions des amphiboles calciques où ont été reportées les analyses des amphiboles du monzo-gabbro de l'anse du Gros Ventre ainsi que celles des amphiboles de la monzonite de la Plage Jaune.



Figure 4.37 : Diagramme de composition des amphiboles calciques (d'après Hawthorne et al.,2012) où sont reportées les analyses du monzo-gabbro de l'Anse du Gros Ventre et celles de la monzonite de la Plage Jaune. La flèche correspond à une représentation idéale de l'évolution chronologique des compositions d'amphiboles dans la monzonite, passant des pargasites (cercles bruns) aux actinolites (losanges bruns).

Ainsi, les amphiboles du monzo-gabbro de l'anse du Gros Ventre qui n'ont pas subi de transformations tardives sont des pargasites (riches en Ti, nomenclature de Locock (2014). Les amphiboles de 1<sup>ère</sup> génération qui cristallisent dans la monzonite de la Plage Jaune, se trouvent pour la plupart également dans le domaine de compositions des pargasites. Cependant ces amphiboles sont des hastingsites dont le champ de composition est superposé à celui des pargasites dans ce diagramme. L'hastingsite est un autre pôle pur de compositions des amphiboles calciques dont la formule structurale idéale est:  $NaCa_2(Fe^{2+}_4Fe^{3+})(Si_6Al_2)O_{22}(OH)_2$ . Ainsi, les analyses in-situ des amphiboles primaires des roches grenues mafiques (±intermédiaires) et intermédiaires confirment leur appartenance au groupe pétrographique des hornblendes au sens large (Deer et al., 1992; Roubault, 1963). Les hastingsites précoces de la monzonite subissent une déstabilisation tardive et une transformation en amphibole de 2<sup>ème</sup> génération. Cette transformation est illustrée par une flèche en pointillé dans la Figure 4.37 et marquée par le passage de compositions de type hastingsite vers des compositions de type actinolite et ferro-actinolite. L'actinolite forme une solution solide avec la trémolite dont la formule structurale générale est :  $\Box$ Ca<sub>2</sub>(Mg,Fe<sup>2+</sup>)<sub>5</sub>Si<sub>8</sub>O<sub>22</sub>(OH)<sub>2</sub>. Le terme de trémolite est utilisé pour des compositions avec Mg/(Mg+Fe<sup>2+</sup>) >0.9, tandis que l'actinolite est utilisé pour des compositions comprise entre 0.5<Mg#<0.9 et la ferroactinolite pour celles avec Mg#<0.5. Le changement de composition des hastingsites vers des actinolites implique donc des substitutions telles que Al<sub>2</sub>+Na+Fe<sup>3+</sup>+Fe<sup>2+</sup>  $\rightarrow$  Ca<sup>2+</sup>+Mg<sup>2+</sup>+Si<sub>2</sub> et une évolution vers des termes plus riches en calcium au cours du temps. Cette évolution idéale est illustrée par une flèche en pointillé dans la Figure 4.37. Les compositions de ferri-ferro-hornblende qui se situent entre les ces deux extrêmes représentent donc des termes intermédiaires entre les hastingsites précoces en cours de transformation vers des compositions d'actinolite.

#### 4.2.2.2 Amphiboles des syénites du groupe CaS

103 analyses in-situ ont été effectuées sur 14 échantillons représentatifs de ce groupe. Toutes les compositions mesurées sur les amphiboles de ce groupe ont été reportées dans les diagrammes de la Figure 4.38 suivante :



Figure 4.38 : Composition des amphiboles analysées des syénites du groupe CaS. (b et a) exemple illustré et diagramme de classification des amphiboles calciques (d'après Hawthorne et al., 2012); (c) diagramme de classification des amphiboles calco-sodiques (d'après Hawthorne et al., 2012).

L'étude pétrographique a permis de montrer que les premières amphiboles à cristalliser dans les syénites de ce groupe sont de type hornblendes au sens large. Les analyses in-situ confirment ces observations (Deer et al., 1992; Roubault, 1963) et montrent qu'il s'agit majoritairement d'hastingsites et de ferroédenites (Figure 4.38). Quel que soit l'échantillon considéré ces amphiboles se forment après la cristallisation des clinopyroxènes calciques. Plus accentuée dans certains échantillons, ces amphiboles précoces subissent une déstabilisation tardive et un remplacement en pseudomorphose par de nouvelles amphiboles. Tout comme c'est le cas pour la monzonite de la Plage Jaune, cette phase tardive de transformation se traduit par l'apparition d'amphiboles de type actinolite représentées par des losanges verts dans la Figure 4.38(a). Plus précisément, ces amphiboles sont des ferro-actinolites. Les hastingsites et ferro-édenites se transforment donc en actinolites. Au sein des amphiboles précoces, quelques analyses tendent à montrer des cœurs plutôt de type hastingsite et des bordures de type ferro-edénite. Dans le cas d'un remplacement progressif d'une hastingsite par une ferro-actinolite, il est probable que la transition se fasse en passant par des compositions de ferro-édenite, ce qui pourrait expliquer une partie de ces compositions qui tendent vers le champ des actinolites. Cette évolution peut être justifiée par le caractère plus primaire de l'hastingsite avec un Mg# élevé par rapport à celui de la ferro-edénite. Cependant, une évolution simple de l'hastingsite vers la ferro-actinolite ne peut expliquer toutes les compositions de ferro-édenite reportées dans la Figure 4.38a. Il est clair que l'hastingsite et la ferroedénite coexistent également dans même échantillon sans aucun lien apparent avec une quelconque phase de déstabilisation. De plus, lorsqu'elles coexistent ces deux amphiboles sont déstabilisées et remplacées de la même manière en ferro-actinolite. C'est pourquoi, ces amphiboles précoces, sont représentées de la même façon dans la Figure 4.38 et Figure 4.39 et évoluant vers des termes actinolitiques au cours du temps. Cette chronologie suppose donc une évolution des compositions idéales telle que : (hastingsite) NaCa<sub>2</sub>(Fe<sup>2+</sup><sub>4</sub>Fe<sup>3+</sup>)(Si<sub>6</sub>Al<sub>2</sub>)O<sub>22</sub>(OH)<sub>2</sub> / NaCa<sub>2</sub>Fe<sup>2+</sup><sub>5</sub>(Si<sub>7</sub>Al)O<sub>22</sub>(OH)<sub>2</sub> (ferro-édenite)  $\rightarrow$  $\Box$ Ca<sub>2</sub>Fe<sup>2+</sup><sub>5</sub>Si<sub>8</sub>O<sub>22</sub>(OH)<sub>2</sub> (ferro-actinolite). C'est-à-dire un changement des compositions via des substitutions telles que : Na<sup>+</sup>+Al<sub>2</sub>+Fe<sup>3+</sup>  $\rightarrow$  Si<sub>2</sub>+Fe<sup>2+</sup>. La diminution du sodium, théoriquement contenu dans le site A mais dont une partie se retrouve dans le site B avec le Ca entraine l'augmentation de ce dernier dans le site B quelle que soit l'amphibole primaire remplacée. Cette tendance est nettement illustrée à travers les diagrammes de la Figure 4.39 (a, b et c) suivante :



Figure 4.39 : Diagrammes de caractérisation minéralogique (ternaire Ca-Al-Na en %, Ca vs Si, Na vs #Mg) des amphiboles des roches du groupe CaS.

Les premières amphiboles à cristalliser dans les syénites du groupe CaS sont donc calciques et évoluent au cours du temps vers des amphiboles ferreuses plus calciques (augmentation du rapport cationique Ca/Na).

Quelques analyses montrent des compositions d'amphibole calco-sodique qui sont reportées dans la Figure 4.38(c). Ces différents échantillons montrant également des compositions d'amphiboles calciques, elles pourraient être liées à une légère perturbation de la mesure à la microsonde menant à surestimer la proportion de Na tel que c'est surement le cas pour les cercles verts. Cependant certaines de ces amphiboles précoces (cercles bicolores) ont été analysées dans un échantillon qui se placent structuralement au contact avec les syénites du groupe CaNaS (13TK31). Appartenant pétrographiquement à des syénites du groupe CaS, ces analyses pourraient donc marquer ou annoncer un changement significatif dans la chimie globale des intrusions qui vont suivre. Les analyses représentées par des cercles bleus sont des amphiboles précoces analysées dans un échantillon (TC09-37) qui est structuralement au contact avec des intrusions monzo-dioritiques antérieures qui sont les extensions latérales de celles décrites au front de la coulée du Vulcain (Figure 2.19). Il est possible que ces intrusions mafiques aient eu un impact sur la chimie de la roche en profondeur menant à de telles compositions d'amphiboles dans ce cas particulier. Toutefois, il est curieux que ces analyses d'amphiboles calcosodiques proviennent de deux échantillons desquels au moins un zircon est trop jeune pour faire partie de la population principale. Cette coïncidence semble indiguer que ces deux échantillons ont subit une phase de cristallisation tardive en relation avec les caractéristiques des roches CaNaS.



29 analyses in situ des amphiboles ont été réalisées sur 4 échantillons représentatifs du groupe pétrographiques NaS. Toutes ces analyses ont été reportées dans Figure 4.40 suivante :



Figure 4.40 : Composition des amphiboles des syénites du groupe NaS. (b et a) exemple illustré et diagramme de classification des amphiboles calco-sodiques (d'après Hawthorne et al., 2012); (d et c) exemples illustrés et diagramme de classification des amphiboles sodiques (d'après Hawthorne et al., 2012).

En accord avec les observations pétrographiques, certains échantillons présentent parfois des amphiboles précoces de type calco-sodique. En effet, trois amphiboles ont des compositions de type ferrokatophorite, ferri-ferro-katophorite et ferro-richtérite, représentées dans la Figure 4.40(a). Les formules structurales idéales de ces amphiboles sont :  $Na(NaCa)(Fe^{2+}_4AI)(Si_7AI)O_{22}(OH)_2$  pour la ferro-katophorite avec une substitution  $AI^{3+} \Leftrightarrow Fe^{3+}$  donnant la ferri-ferro-katophorite et  $Na(NaCa)Fe^{2+}_5Si_8O_{22}(OH)_2$  pour la ferro-richtérite. Ces amphiboles sont définies par le rapport de [Ca/(Ca+Na)] dans le site B, compris entre 0.75 et 0.25, ce qui justifie leur appartenance au groupe des amphiboles calco-sodiques. Ces amphiboles sont toujours observées en cours de transformation remplacées par d'autres amphiboles associées au pyroxène sodique. Ces amphiboles plus tardives dans ces échantillons particuliers à amphiboles calcosodiques représentent toutefois la majorité des amphiboles de 1<sup>ère</sup> génération qui cristallisent dans les syénites où les amphiboles calco-sodiques sont absentes, lesquelles forment la majorité des roches de ce groupe NaS. En outre les amphiboles calco-sodiques, les compositions des amphiboles précoces se concentrent dans le champ des arfvedsonites -eckermannites. La composition idéale de l'arfvedsonite est NaNa<sub>2</sub>(Fe<sup>2+</sup><sub>4</sub>Fe<sup>3+</sup>)Si<sub>8</sub>O<sub>22</sub>(OH)<sub>2</sub> avec F>(Cl,OH) dans le site W pour la fluoro-arfvedsonite. En accord avec les observations pétrographiques, les amphiboles primaires qui cristallisent au sein des syénites du groupe NaS sont donc en grande majorité sodiques. Des compositions d'amphiboles tardives dans l'histoire des roches de ce groupe sont également reportées sous forme de losange violet dans la Figure 4.40(c). Ces amphiboles tardives apparaissent en remplacement des arfvedsonites à partir de leurs bordures comme le montre la Figure 4.40(d). Il s'agit de ferro-eckermannites parfois riches en fluor ou en titane dont la formule idéale est NaNa<sub>2</sub>(Fe<sup>2+</sup><sub>4</sub>Al)Si<sub>8</sub>O<sub>22</sub>(OH)<sub>2</sub>. La majorité des analyses se retrouve cependant à l'extérieur du champ de l'eckermannite. Une des raisons qui pourrait expliquer ce décalage est une mauvaise calibration de la feuille de (Locock, 2014) utilisée pour le calcul des formules structurales de ce type d'amphibole très riches en sodium. Il est plus probable que ces amphiboles, du fait de leur cristallisation tardive, aient incorporé des éléments en traces dans leur structure qui n'ont été pas mesurés lors de l'analyse à la microsonde. Une autre explication serait la confusion de cette espèce minérale, du fait de la petite taille des cristaux, avec l'aegirine dont les compositions sont chimiquement proches. Cependant cette dernière hypothèse ne semble pas cohérente du fait de la présence significative de potassium, fluor et chlore dans certaines analyses. De plus et c'est là l'argument principal, les figures de remplacement entre l'arfvedsonite et ce minéral observées ici (Figure 4.40, d) ne ressemblent pas aux figures de remplacement impliquant l'arfvedsonite, l'aegirine et les CaNa-Amp (Figure 4.40). Même si ce minéral pourrait représenter une 2<sup>ème</sup> génération d'aegirine remplaçant les amphiboles, il est peu probable que le mécanisme de transformation formant un nouvel habitus ait été différent. Une des explications que je privilégie est la mauvaise calibration du ratio Fe<sup>2+</sup>/Fe<sup>3+</sup> dans la formule structurale de ces amphiboles de compositions extrêmes. C'est pourquoi, j'ai donc considéré que l'évolution caractéristique des amphiboles au sein des syénites du groupe NaS se fait dans un premier temps des amphiboles calcosodiques vers les arfvedsonites, et plus tardivement des compositions d'arfvedsonite vers des compositions de ferro-eckermannite. Certains échantillons ne présentant que l'étape calco-sodique sodique.



Figure 4.41 : Diagrammes de caractérisation minéralogique (ternaire Ca-Al-Na en %, Ca vs Si, Na vs #Mg) des amphiboles des roches du groupe NaS.

Cette chronologie implique donc des substitutions de type  $Ca^{2+}+Al_2 \rightarrow Na^++Fe^{3+}+Si^{4+}$  dans le cas de la transformation d'une ferro-katophorite en arfvedsonite et une substitution  $Ca^{2+}+Fe^{2+} \rightarrow Na^++Fe^{3+}$  dans le cas de la transformation d'une ferro-richtérite. Ces transformations marquent donc un enrichissement net en sodium et fer ferrique qui s'illustre bien dans la Figure 4.41 (a, b et c). Plus tardivement le remplacement de l'arfvedsonite par la ferro-eckermannite s'opère via une substitution de type  $Fe^{3+} \rightarrow Al^{3+}$ . Cette dernière phase de remplacement ne s'observe pas dans tous les échantillons et semble donc en relation avec la circulation très localisée d'un fluide tardif alumineux.

#### 4.2.2.4 Amphiboles des syénites du groupe CaNaS

125 analyses ont été effectuées sur 23 échantillons représentatifs du groupe CaNaS. Toutes ces analyses ont été représentées dans la Figure 4.42 suivante :



Figure 4.42 : Diagramme de classification des amphiboles des syénites du groupe CaNaS (d'après Hawthorne et al., 2012). (a) diagramme des amphiboles calciques. (b) Exemple photographique d'une katophorite en cours de remplacement par une arfvedsonite plus tardive illustrant les compositions reportées dans le diagramme des amphiboles calco-sodiques (b) et sodiques (c).

Cette figure montre que les amphiboles analysées au sein de ce groupe se classent à la fois dans les amphiboles calciques (Figure 4.42,a), les calco-sodiques (Figure 4.42,c) et les sodiques (Figure 4.42,d). Une partie des amphiboles les plus précoces sont calciques et composées en majorité de ferro-édenites et d'hastingsites représentées par des cercles dans la Figure 4.42(a). Cependant les amphiboles précoces qui dominent au sein de ce groupe sont des amphiboles calco-sodiques dont les compositions sont reportées en Figure 4.42(c). Ces amphiboles sont principalement des ferro-ferri-katophorites et des ferrorichtérites. L'étude pétrographique préliminaire a permis de mettre en évidence la déstabilisation et le remplacement des amphiboles précoces au cours de l'histoire des roches de ce groupe quelle que soit l'échantillon considéré. Cette déstabilisation est accompagnée de la formation de nouvelles amphiboles qui viennent remplacer en pseudomorphose les amphiboles déjà cristallisées et qui apparaissent aussi tardivement dans les interstices laissés vacants. Ces amphiboles tardives sont représentées par des losanges dans la Figure 4.42. Une partie d'entre elles ont des compositions d'amphiboles calciques et sont des ferro-actinolites (Figure 4.42,a). Ces phases calciques tardives s'observent dans les roches où ont cristallisé initialement des amphiboles majoritairement calciques. Une autre partie de ces amphiboles tardives s'observent dans les échantillons où les amphiboles précoces sont majoritairement calcosodiques. Ces amphiboles secondaires ont des compositions calco-sodiques de type ferro-ferri-winchites et sodiques de type arfvedsonites. Deux analyses d'amphiboles qui forment avec la biotite une figure de remplacement d'un minéral d'olivine sont des magnésio-riebéckites. Cette amphibole a une formule idéale telle que :  $Na_2(Mg_3Fe^{3+}_2)Si_8O_{22}(OH)_2$  et dont le champ est confondu avec celui du glaucophane dans ce diagramme. Les amphiboles des syénites du groupe CaNaS montrent ainsi deux évolutions nettes de leur compositions au cours du temps vers des compositions soit plus calciques soit plus sodiques.



Figure 4.43 : Diagrammes de caractérisation minéralogique (ternaire Ca-Al-Na en %, Ca vs Si, Na vs #Mg) des amphiboles des roches du groupe CaNaS.

Cependant en accord avec les observations pétrographiques, l'évolution dominante est celle qui implique les amphiboles calco-sodiques qui sont prépondérantes au sein de ce groupe. Il s'agit donc de l'évolution vers les amphiboles sodiques, bien que cette tendance dominante ne se reflète pas dans la dispersion des analyses. Les amphiboles des syénites du groupe CaNaS montrent des caractères communs avec les amphiboles des deux groupes précédents. En effet, la comparaison entre les diagrammes des amphiboles calciques du groupe CaS (Figure 4.38, a) et CaNaS (Figure 4.42,a) met en évidence une forte similitude entre les amphiboles calciques de ces deux groupes. De plus, l'évolution chronologique des ces amphiboles calciques est semblable dans les deux groupes, allant des termes précoces calciques de type hastingsite et ferro-édenite vers des amphiboles tardives plus calciques de type ferro-actinolite. Mais les amphiboles du groupe CaNaS ont également des caractères communs avec les amphiboles du groupe NaS puisque leurs amphiboles calco-sodiques de type ferro-ferri-katophorite et ferro-richtérite évoluent vers des termes sodiques de type arfvedsonite. Bien que certaines analyses tendent à montrer un cœur de composition plutôt katophorite et des bordures plutôt de richtérite pour les amphiboles précoces, cette observation ne peut être généralisée pour l'ensemble des roches de ce groupe. De plus, il est clair que ces deux amphiboles coexistent au sein de certains échantillons sans qu'il soit possible de les distinguer chronologiquement dans la séquence de cristallisation. Ainsi, les analyses des amphiboles qui cristallisent dans les syénites du groupe CaNaS confirment bien le caractère intermédiaire de ce groupe par rapport aux syénites à amphiboles calciques du groupe CaS et aux syénites à amphiboles sodiques du groupe NaS.

#### 4.2.2.5 Evolution des amphiboles à l'échelle du complexe

Les analyses in-situ des amphiboles du SRBIC et de ses satellites ont ainsi permis de mettre en évidence des caractéristiques minéralogiques en fonction de la chronologie relative propre à chaque groupe. La comparaison entre ces différentes caractéristiques permet donc de contraindre l'évolution minéralogique des amphiboles à l'échelle du complexe plutonique dans son ensemble. La synthèse des résultats et la comparaison entre les différentes groupes pétrographiques sont présentées dans les figures suivantes qui reprennent en partie les diagrammes présentés précédemment volontairement épurés.



Figure 4.44 : Diagrammes d'évolution des compositions (ternaire Ca-Al-Na en %, Ca vs Si) d'amphiboles (a et b) du monzogabbro de l'Anse du Gros Ventre et intermédiaire de la Plage Jaune, et (c et d) des roches du groupe CaS

L'échantillon le plus mafique de la péninsule, situé dans le complexe satellite de l'anse du Gros Ventre, est en partie constitué d'amphiboles de type pargasite, lesquelles sont représentées par des cercles rouges dans les diagrammes (a et b) de la Figure 4.44. Ces amphiboles constituent le pôle le plus riche en calcium et pauvre en silice de toutes les amphiboles analysées dans les roches du complexe (Figure 4.44,b). Les amphiboles de première génération analysées dans les monzonites qui forment l'intrusion de la Plage Jaune sont également riches en calcium. Plus riches en silice que les pargasites, ces amphiboles sont des hastingsites représentées par des cercles bruns dans la Figure 4.44 (a et b). Ces amphiboles sont remplacées tardivement par des amphiboles de type actinolites. Cette transformation induit un enrichissement relatif en calcium et en silice des amphiboles se traduisant par un étalement net des compositions vers le pôle calcique du diagramme ternaire et vers la composition idéale Tr-Act du diagramme b. Cette évolution chronologique est illustrée par une flèche dans les deux diagrammes. Il apparait donc clairement que les premières amphiboles des roches mafiques et intermédiaires sont calciques et évoluent au cours de l'histoire de ces roches vers un pôle encore plus calcique. Les amphiboles des syénites du groupe pétrographique CaS montrent une tendance similaire. En effet, les premières amphiboles qui cristallisent dans ces roches sont majoritairement de type ferro-édenite (et minoritairement hastingsite), lesquelles subissent une transformation et un remplacement tardif par des amphiboles également de type actinolite. Cette transformation est bien illustrée dans les deux diagrammes c et d de la Figure 4.44, avec un partitionnement net des compositions d'amphiboles précoces par rapport à celles des amphiboles tardives. Les domaines de compositions couverts par les amphiboles des syénites du groupe CaS sont plus vastes que pour les amphiboles des roches mafiques et intermédiaires. Ceci s'explique bien entendu, mais seulement en partie, par le plus grand nombre d'échantillons analysés par rapport aux roches mafiques et intermédiaires. En effet, une tendance des amphiboles précoces CaS à s'étaler vers des compositions plus calco-sodiques de type katophorite s'observe notamment dans le diagramme d de la Figure 4.44 et n'est pas dû aux nombres d'analyses mais bien à la variation des compositions en fonction de l'échantillon considéré. Malgré cette légère variation, il est clair que les amphiboles primaires des roches intermédiaires et celles des syénites du groupe CaS sont calciques et évoluent au cours du temps vers des compositions relativement plus siliceuses et encore plus calciques au cours d'une phase de remplacement progressif.





Les syénites du groupe CaNaS sont, quant à elles, constituées en grande majorité par des amphiboles calco-sodiques de type ferri-ferro-katophorite et ferro-richtérite représentées par des cercles ocres.

Toutefois le large domaine de compositions couvert par les amphiboles précoces de ce groupe indique nettement une variation de composition à partir de termes calciques hastingsite et ferro-édenite vers des compositions d'amphiboles calco-sodiques en fonction de l'échantillon considéré. Aussi, comme décrit dans une partie précédente, les amphiboles précoces de ce groupe sont à la fois calciques et calco-sodiques. Ces amphiboles précoces subissent une transformation et un remplacement tardif par des amphiboles de seconde génération dont le type varie également en fonction de l'échantillon considéré. En effet, illustrée par des champs oranges dans la Figure 4.45(e et f), cette évolution peut déboucher sur des amphiboles tardives plus calciques de type actinolite en passant parfois par des compositions de ferriferro-winchite ou bien vers des termes plus sodiques de type arfvedsonite. En accord avec les observations pétrographiques, c'est cette dernière tendance qui domine l'évolution des amphiboles au sein de ce groupe CaNaS. Enfin, les amphiboles précoces du groupe NaS sont dominées par des compositions d'arfvedsonite, bien que quelque amphiboles calco-sodiques précoces puissent être parfois observées.



Figure 4.46: Diagrammes synthétiques de l'évolution des amphiboles au travers des 3 grands ensembles pétrographiques. a et b) ternaire Ca-Al-Na en %, et (c et d) Ca vs Si.

L'évolution des compositions de ces amphiboles se fait vers des compositions d'arfvedsonites plus riches en sodium et, dans quelques échantillons, aboutit plus tardivement à leur remplacement par des amphiboles de type ferro-eckermannite (Figure 4.45, g et h).

# 4.2.2.6 Synthèse sur la minéralogie des amphiboles

L'analyse minéralogique des amphiboles permet donc de caractériser un large domaine de compositions d'amphiboles précoces et tardives observées au sein des roches plutoniques du complexe sud de Rallier du Baty et de ses satellites. Tout comme c'est le cas pour les pyroxènes, ces compositions oscillent entre des termes très calciques et très sodiques. Cette particularité est illustrée dans la Figure 4.46, ou le domaine grisé, modélisé qualitativement, représente le domaine de concentration des compositions d'amphiboles de première génération sur l'ensemble des roches plutoniques étudiées.

D'autre part, l'étude minéralogique des différentes générations d'amphibole couplée aux observations pétrographiques au sein des roches plutoniques a permis de caractériser l'évolution de leur composition au cours du temps. Les résultats obtenus mettent clairement en évidence une évolution chronologique de ces phases minérales vers des termes calciques dans les roches intermédiaires, les syénites du groupe CaS et dans une faible proportion des syénites du groupe CaNaS. Ils démontrent aussi clairement que dans la majorité des roches du groupe CaNaS cette évolution chronologique se fait vers des termes sodiques tout comme dans les syénites du groupe NaS.

# 4.3 Synthèse sur la pétrographie et la minéralogie

L'étude pétrographique fut conduite sur les roches plutoniques du complexe sud de la péninsule de Rallier du Baty (SRBIC), comprenant le plus gros volume de mise en place et plusieurs de ses intrusions satellitaires. Majoritairement felsiques et plus précisément de compositions syénitiques (voir Chapitre 5), ces roches forment une série alcaline strictement sur-saturée en silice. Elles sont constituées des 4 phases majeures que sont les feldspaths perthitiques, les pyroxènes, les amphiboles et le quartz. Basée sur la pétrographie des clinopyroxènes et des amphiboles, cette étude a permis de distinguer trois grands ensembles pétrographiques parmi ces roches. Cristallisant à différents intervalles de temps dans l'histoire magmatique de ces roches et ce, avec différentes compositions minéralogiques, les amphiboles et les clinopyroxènes sont d'excellents marqueurs de l'évolution du système magmatique à l'origine du complexe. Ils sont donc, sans doute, les minéraux les plus adéquats permettant de discriminer les différentes roches plutoniques.

Ainsi, j'ai distingué un premier ensemble pétrographique constitué de syénites calciques (groupe CaS). Cet ensemble est caractérisé par la cristallisation exclusive de minéraux ferromagnésiens calciques (pyroxènes et amphiboles en proportion relative variable). Les premiers stades de cristallisation sont dominés par les pyroxènes de type Diopside-Hédenbergite-Augite. Les premières amphiboles relativement plus tardives que les pyroxènes sont de la famille des hornblendes. Finalement, les derniers ferromagnésiens cristallisant dans ces roches sont des actinolites. Le terme « calcique » est relié à la composition des amphiboles et pyroxènes mais est également appuyé par la présence de phases telles que l'apatite (accessoire mais relativement abondante), la titanite, voire parfois de la calcite tardive.

Un deuxième ensemble pétrographique correspond aux syénites sodiques (groupe NaS). Cet ensemble est caractérisé par la cristallisation abondante de minéraux ferromagnésiens sodiques. Les plus précoces dans ces syénites sont des amphiboles calco-sodiques et des amphiboles sodiques de type arfvedsonite (ces dernières cristallisent un plus tardivement que les précédentes). Les pyroxènes sont des aegirines qui déstabilisent les amphiboles calco-sodiques et apparaissent en association les arfvedsonites. A la fin de

l'histoire magmatique, ces dernières sont remplacées par des amphiboles de type eckermannite. Malgré la présence des amphiboles calco-sodiques, la proportion relative des ferromagnésiens sodiques (pyroxènes et amphiboles) justifient le terme de syénites « sodique » qui qualifie cet ensemble. D'autre part, les roches de ce groupe, riche en quartz, sont également très riches en minéraux accessoires typiques des systèmes alcalins évolués tels que la chevkinite, le zircon, l'aenigmatite, le pyrochlore, l'astrophyllite et la fluorite.

Un dernier ensemble pétrographique regroupe les syénites calco-sodiques. Comme l'indique cette dénomination, c'est un groupe intermédiaire entre les deux ensembles précédents. Ces roches ont donc des caractéristiques propres aux deux groupes CaS et NaS. Toutefois, elles se distinguent notamment de par les textures de déstabilisation et transformation des (nombreux) clinopyroxènes calciques précoces en clinopyroxènes sodiques, en passant donc par des compositions calco-sodiques. Les premières amphiboles sont calciques et surtout calco-sodiques, apparaissant après la cristallisation des clinopyroxènes calciques précoces. Ces amphiboles sont tardivement déstabilisées et remplacées soit par l'actinolite dans une faible proportion d'échantillons, soit par l'arfvedsonite qui est l'amphibole secondaire la plus abondante. Ces dernières sont contemporaines voire postérieures à la cristallisation des clinopyroxènes sodiques. Ce groupe pétrographique montre donc des similitudes avec les ensembles franchement calciques et franchement sodiques précédents. Cette caractéristique se retrouve également au niveau des minéraux accessoires tels que l'apatite, la titanite, l'aenigmatite, la chevkinite et le zircon. De par leur caractère intermédiaire, il est parfois difficile de distinguer les roches les plus évoluées de ce groupe avec celles les moins évoluées du groupe NaS uniquement via les caractéristiques des minéraux ferromagnésiens. C'est pourquoi, la quantité de quartz, la nature et l'abondance relative des minéraux accessoires ainsi que la proportion des minéraux sodiques doivent être pris en compte. D'autre part, cette difficulté relative révèle également les caractéristiques pétrographiques voisines de syénites. Ce lien apparent sera discuté plus en détail par la suite, notamment via les résultats géochimiques (Chapitre 5) mais permet, à ce stade, de distinguer au moins deux lignées d'évolution magmatique. La première évoluant de termes calciques vers des termes calciques correspondant aux syénites CaS et aux roches intermédiaires (monzo-gabbro/diorites et monzonites). La seconde évoluant de termes calciques précoces vers des termes sodiques incluant les syénites du groupe CaNaS et NaS.

Les caractères pétrographiques généraux du diagramme en Figure 4.47 permettent de mettre en évidence les changements de minéralogie in-situ des ferromagnésiens au travers des différents ensembles pétrographiques. Ces phénomènes d'évolution, notamment les textures de transformation et de remplacement dénotent des changements géochimiques dans l'environnement de cristallisation au cours de l'histoire des roches plutoniques du complexe. Toutes les textures observées sont magmatiques. Ceci implique que même si ces transformations sont accommodées/facilitées par la circulation de fluides, ceux-ci sont magmatiques. C'est pourquoi, ces figures de remplacement peuvent être considérées comme la conséquence d'un phénomène d'auto-métasomatisme des roches magmatiques plus ou moins cristallisées. Seules les figures d'intense oxydation et peut être la présence de minéraux exotiques tardifs (telle que la fluorite) au sein de quelques échantillons sur le massif des Deux frères pourraient être le résultat de la contribution de fluides en partie non magmatiques ayant eu un impact visible en lame mince sur les roches du complexe. En effet, les textures poreuses de certaines bordures de zircon indicatrices d'une potentielle participation de fluides hydrothermaux, révélées par l'imagerie électronique, n'ont pu être constatées à l'échelle de la lame mince.

La pétrographie des roches plutoniques démontre également que le complexe sud de la péninsule de RdB peut se définir pétrographiquement comme étant « agpaïtique transitionnel ». D'abord basés sur l'indice d'agpaïcité qui est en réalité l'index de peralcalinité (Na<sub>2</sub>O+K<sub>2</sub>O)/Al<sub>2</sub>O<sub>3</sub> en % molaire-(Ussing, 1912), les termes de « miaskitique » et « agpaïtique » ont été utilisés pour différencier les roches des systèmes peralcalins-alcalins. Révisés et redéfinis comme marqueurs minéralogiques (e.g. Sørensen, 1974; Marks and Markl, 2017), les roches miaskitiques sont les moins alcalines caractérisées par des minéraux porteurs des HFSE tels que la titanite, la pérovskite, le zircon et la baddeléyite. Les roches agpaïtiques sont les termes plus évolués de ces systèmes dont les principaux minéraux porteurs des HFSE sont l'eudyalite, la rinkite, les minéraux des groupes de la wöhlerite et de l'aenigmatite, l'astrophyllite, la catapleiite, la dalyite, l'elpidite, l'hilairite, la lampro-phyllite, la lorenzénite, la lovozérite, la parakeldyshite, la vlasovite, et la wadéite. C'est pourquoi, dans le cas du SRBIC, les syénites calciques (les plus vieilles du complexe) sont plutôt à tendance miaskitique tandis que les celles du groupe NaS (les plus jeunes du complexe) sont à tendance agpaïtique.



Figure 4.47: Diagramme synthétique des caractéristiques pétrographiques permettant de distinguer les 3 grands ensembles de roches plutoniques formant le complexe sud de Rallier du Baty.

# 4.4 Relation pétrographie-structure-géochronologie

# Géochronologie :

L'étude de terrain couplée à l'étude géochronologique a permis de montrer que le complexe plutonique du SRBIC est formé par des injections successives de magma majoritairement syénitique et mises en place de façon continue dans le temps (Figure 3.8). Les premières manifestations plutoniques structuralement déconnectées du complexe majeur se sont mis en place vers 13.7 Ma à l'extrême sud de la péninsule. Les intrusions qui ont suivi se sont mises en place avec un âge décroissant du sud vers le nord et le centre de la péninsule. La mise en place du complexe du SRBIC à proprement dit a duré environ 3.7 Ma entre 11.57 et 7.88 Ma.

## Structure :

Lorsque cela à été possible ces différentes injections ont pu être caractérisées sur le terrain grâce à leur contacts. Ces contacts, plus ou moins bien marqués à l'affleurement, sont tous des contacts magmatiques qui mettent en relation des roches d'aspects différents. Ces différences s'expriment par des changements relatifs et souvent associées, de taille de cristaux, d'agencement interne, de mode minéralogique et de couleur. Les différences texturales, qui sont les plus évidentes sur le terrain, sont donc des critères essentiels qui permettent la distinction entre les différentes injections. Aussi, 4 grands types de textures révélatrices de la construction du complexe ont été identifiées et qui sont: la texture pegmatitique, la texture grenue, la texture microgrenue, et la texture (microgrenue) porphyrique. La texture la plus représentée est sans conteste la texture grenue. Cependant, les observations répétées des différentes textures sur la péninsule ont montré que le SRBIC est formé par l'alternance de roches plutoniques de textures différentes répétées dans l'espace et dans le temps. Toutefois, l'organisation des différentes injections ne permet pas de définir dans le temps un processus qui se pourrait cyclique. La structure interne du SRBIC peut donc se schématiser par l'alternance de sills ou lentilles superposées de façon simple par sous-accrétion à l'échelle du complexe et de façon plus hétérogène à échelle plus fine. De plus, l'étude de terrain a permis de mettre en évidence trois grandes unités structurales toutes 3 composées par l'alternance de ces injections de textures différentes (Figure 2.33 et Figure 2.38). L'unité 1 est l'unité la plus vieille. La limite externe de cette unité est marquée par le contact intrusif avec les basaltes de plateau au sud et marqué par une zone de déformation intense le long de sa bordure interne. Elle est constituée par l'alternance de roche de texture grenue, pegmatitique est microgrenue. C'est également l'unité où se concentre le faciès microgrenue porphyrique. De plus, cette unité est la seule où s'observe une alternance de sills mafiques et syénitiques. L'unité 2, est plus récente. Sa bordure externe est marquée par le contact avec l'unité 1, et sa bordure interne par son contact avec l'unité 3. Elle est également formée par l'alternance des textures qui caractérisent les multiples injections plutonique. L'unité 3 est l'unité la plus récente. Sa bordure externe est formée par le contact avec l'unité 2 et ne possède pas de bordure interne. La proportion de syénite microgrenue dans cette unité est très inférieure à celle des unités précédente. Couplées à ces observations (Figure 2.49), les différentes mesures de terrains (Figure 2.32), l'orientation des basaltes encaissants (Figure 2.33) et les mesures de fabriques magnétiques (Figure 2.42) permettent de proposer un modèle de construction de type laccolithe pour le SRBIC (Figure 3.14).

# Pétrographie :

L'étude pétrographique précédente a permis de mettre en évidence 3 grands ensembles pétrographiques au sein des roches plutoniques majoritairement felsiques du SRBIC. Ces ensembles ont pu être définis suivant une classification basée sur la pétrographie des minéraux ferro-magnésiens que sont les amphiboles et les pyroxènes. Le groupe CaS est défini par la cristallisation exclusive de ferromagnésiens calciques quelle que soit leur place au sein de la séquence de cristallisation. Le groupe NaS est défini par la cristallisation de ferromagnésiens très majoritairement sodiques dès les premiers stades de cristallisation. Le groupe CaNaS est défini comme un groupe intermédiaire entre les 2 précédents. Les premiers stades de cristallisation des Fe-Mg étant dominés par des phases calciques ou calco-sodiques, tandis que les derniers stades sont dominés par la cristallisation ou l'évolution des Fe-Mg antérieurs vers des termes sodiques. Ainsi, chacun des 3 ensembles pétrographiques est défini par une séquence de cristallisation qui lui est propre. D'autre part, il est intéressant de noter que les textures observables sous microscopes différent quelque peu de celles identifiées sur le terrain. En comparant ces observations, il est clair que les textures identifiées sur le terrain dépendent de l'habitus des feldspaths qui forment la majorité du volume cristallisé. Sous le microscope, l'œil est moins attiré par ces gros volumes. Avec un regard critique, la taille des phases qui dépendent de leur nature, pourrait conduire à qualifier la majorité des syénites de porphyriques. Cependant, il faut ici considérer la texture de l'ensemble de la roche qui est majoritairement gouvernée par les feldspaths. De plus, ces minéraux faisant partie des premiers qui cristallisent et ce pendant une grande partie de l'histoire de la roche, ce biais d'observation n'en est finalement pas un. Le report de la pétrographie sur la carte de la péninsule de RdB permet d'aboutir à la Figure 4.48 :



Figure 4.48: Carte pétrographique du complexe sud de Rallier du Baty.

Cette figure permet de montrer que les roches CaS sont exclusivement observées en bordure du complexe et strictement en dessous de 49°38'de latitude, c'est-à-dire de la vallée (autrefois glacier) de la Cascade jusqu'au mont Léon Lutaud. Les roches du groupe NaS sont elles, cantonnées au centre (± nord) de la péninsule, du pic Chastaing au massif du Portillon et s'observent majoritairement sur le massif des Deux Frères. Les roches CaNaS se retrouvent géographiquement entre les deux groupe précédents. Elles entourent les roches NaS et sont elles mêmes entourées par les roches CaS qui constituent la bordure du pluton. Cette caractéristique fait du SRBIC un complexe formé par des anneaux concentriques de pétrographie différente. Seule la bordure NE du complexe n'est pas constituée par les roches du groupe CaS mais formée par l'intrusion de différents complexes satellites, structuralement au dessus du SRBIC et dont les roches appartiennent au groupe CaNaS. Une mission réalisée sous peu permettra de confirmer ce dernier point qui reste pour le moment basé sur un échantillonnage réduit.

#### Mise en relation des résultats précédents :

La combinaison des cartes précédentes, structurale (Figure 2.33) et pétrographique (Figure 4.48) permet donc d'aboutir à la carte géologique du SRBIC présentée en Figure 4.49. La carte géologique ainsi établie permet de montrer qu'il existe une nette corrélation géographique et géochronologique entre la structure et la pétrographie des roches plutoniques à l'échelle du pluton. Cette relation s'illustre également au travers de la coupe NNE-SSO (Figure 4.50).

Les premières roches felsiques mises en place au complexe satellite de l'anse du Gros Ventre appartiennent au groupe pétrographique CaS. L'unité structurale la plus ancienne (unité 1) qui forme la bordure externe du SRBIC est également formée par une alternance de roches felsiques appartenant à ce groupe pétrographique. Au sein de cette unité, dans un temps très court suivant les premières intrusions syénitiques du complexe à proprement dit (à partir de 11.57 ± 0.15 jusqu'à 11.3 ± 0.2Ma sur l'arête Jérémine), se mettent en place les monzonites du complexe satellite de la Plage Jaune. Ces dernières sont suivies des syénites formant le contact du mont de Volz (11.13 ± 0.2Ma). Plus tard, se mettent en place, les intrusions de monzo-diorites au front de la coulée de Vulcain. Cette succession mise en évidence par la géochronologie montre que toutes ces roches de nature variée (monzo-diorite/monzonites/syénites) se mettent en place dans un temps extrêmement courts <1 Ma, voir <0.6Ma si les barres d'erreur ne sont pas prises en compte. Ceci montre également que le contact SRBIC/basalte n'est pas formé par une seule et même syénite (arête Jérémine 11.3±0.2; mont du Commandant 11,53±0.2; 11,13±0.2 mont de Volz; 9.45 mont Lieutard). En effet, même si il est possible de contraindre un âge unique aux vues des barres d'erreur correspondant à une unique et hypothétique intrusion se retrouvant au SSW du complexe, l'âge de la syénite formant le contact de la vallée de Larmor plaide forcément pour des intrusions différentes. Ces dernières sont plus ou moins espacées dans le temps, sachant que les plus vieilles se mettent en place au SSE de la péninsule. Cette caractéristique renseigne également sur le modèle de construction du pluton. Malgré une structure annulaire cartographiquement, les âges du contact SRBIC/basaltes supposent qu'il ne peut pas avoir été formé par un unique filon annulaire (ring-dyke) courant le long des massifs externes. Par extension ce résultat peut être appliqué aux zones plus internes du complexe. La bordure interne de l'unité 1 se caractérise par une zone de forte déformation qui atteste du caractère antérieur de mise en place de cette unité par rapport aux intrusions suivantes. Les écrans de basalte de plateau qui se retrouvent dans cette zone de déformation supportent l'importance structurale de cette zone de transition entre deux unités structurales bien distinctes. Cette déformation est également présente mais moins intense dans la bordure externe de l'unité 2 (voir chapitre 1). Le contact entre les unités 1 et 2 se situe donc dans cette zone de forte déformation.



Figure 4.49: Carte géologique du SRBIC.



Figure 4.50: Comparaison des données structurales, pétrographiques et géochronologiques sur la coupe SSO-NNE.

La syénite caractéristique associée à cette zone de déformation, de texture porphyrique, qui constitue la bordure interne de l'Unité 1 fait partie des roches CaNaS. La transition entre les roches du groupe pétrographique CaS et CaNaS se fait donc au moins dans cette zone déformée, comme c'est le cas au pied du massif du Commandant. Toutefois, cette transition pétrographique s'observe le plus souvent avant le passage de l'unité 1 à l'unité 2 dans l'histoire de construction du complexe. En effet, bien que les roches du groupe CaNaS apparaissent toujours à la base de l'unité 1, elles se trouvent plus ou moins éloignées du contact entre U1 et U2 tel que dans la vallée de Larmor comparé à la vallée Fallot par exemple. Leur apparition semble cependant synchrone à l'échelle du complexe se situant entre 9.45 et 9.38 Ma. Les roches mises en place au sein de l'unité 2 sont toutes de types CaNaS. Le passage à l'unité structurale 3 au nord est marqué par un contact majeur sur le SRBIC. Ce contact structural se traduit également par le passage des roches du groupe CaNaS à la mise en place des roches du groupe NaS. Cette limite structurale est donc également une limite pétrographique. Seul un échantillon de roche (13TK101) appartenant au groupe CaNaS se retrouve enclavé au sein de l'unité 3 au niveau du flanc nord du massif des Deux Frères.



Figure 4.51: Diagramme synthétique des grands ensembles structuraux et pétrographiques du complexe plutonique représentés en fonction des données géochronologiques (à 2σ).

Il est possible que cette enclave se retrouve au sein d'une lentille (ou sills) plus grande qui traverse le massif, s'observant également sur le flanc W des Deux Frères. A cause d'une forte altération tardive qui rend difficile l'observation de la minéralogie originelle, je ne peux pas nier l'existence probable de cette entité, déjà observée par Marot et Zimine (1976). Si une telle extension de roche du groupe CaNaS existe

au sein de l'unité 3, elle est tout à fait en accord avec la structuration des différentes lithologies. Les roches NaS ont été datées entre 8.27  $\pm$  0.1 Ma et 7.88  $\pm$  0.15Ma. Les âges des roches de ce groupe sont tous décroissants du contact sud (Portillon et Deux frères) datés à 8.04  $\pm$  0.1Ma vers le nord (7.88  $\pm$  0.15Ma). Cependant l'âge plus vieux (8.27  $\pm$  0.1 Ma) de l'échantillon 13TK70 pose question. Cet échantillon se trouve structuralement sous les syénites qui forment le contact majeur U2/U3. Ceci suppose donc qu'une première intrusion de type NaS (peut être formant le contact originel U2/U3 sous le massif du portillon) se retrouve structuralement en dessous d'au moins une intrusion plus jeune de syénite sodique, laquelle forme aujourd'hui le contact majeur. Ce recoupement dans les âges pourrait donc traduire l'intercalation d'intrusions au sein des intrusions précédentes telle qu'il a déjà été observé au sein de l'unité 1. Ceci confirme également que la construction du SRBIC n'est pas strictement réalisée par sous-accrétion à petite échelle.

Le diagramme de la Figure 4.51 synthétise les résultats de l'étude structurale et pétrographique en fonction des résultats de l'étude géochronologique. Ces comparaisons montrent clairement une évolution pétrographique des roches plutoniques en lien avec la construction du complexe. Les roches felsiques CaS sont les plus vielles et exclusivement cantonnées à l'unité 1. Les roches CaNaS apparaissent à la base de l'unité 1 et constitue la totalité de l'unité 2. Comme aucune roche CaNaS structuralement dans l'unité 1 n'a été datée, ce chevauchement entre pétrographie et unités structurales n'est pas retranscrit dans la Figure 4.51. Les roches NaS forment l'unité 3, laquelle contient cependant une enclave sous forme de lentilles ou sills appartenant au groupe CaNaS et vraisemblablement à l'unité 2, ce qui est confirmé par la géochronologie et déjà identifié par les précédentes études (Marot and Zimine, 1976). De plus ce diagramme montre que même si les premières intrusions syénitiques à l'anse du gros ventre sont déconnectées dans le temps du reste des syénites, les différents complexes satellites qui forment une partie de la bordure externe du complexe cartographiquement, se mettent en place en même temps que les intrusions qui forment le SRBIC à proprement dit. La pétrographie des roches qui composent ces différents satellites est identique avec la pétrographie des roches intrusives contemporaines au sein du SRBIC. D'autre part, la datation d'un filon tardif de trachyte montre que la fracturation de l'unité 2 est contemporaine de la mise en place des dernières roches de l'unité 3 à l'affleurement. Finalement, la déformation matérialisée par des zones de cisaillement affecte majoritairement la base de l'unité 1. Cette dernière est donc postérieure à la mise en place de l'unité 1 et certainement due à l'intrusion des intrusions suivantes. De plus, des zones de cisaillement ayant été observées au sein de l'enclave de l'unité 2 dans l'unité 3 mais aussi dans des blocs anguleux transportés par la syénite de type NaS sous le contact majeur U2/U3 du Pic Chastaing, la déformation s'étend au moins jusqu'à la mise en place des roches de l'unité 3 centrale. Ayant observé quelques des zones de cisaillement au sein de l'unité 1, il est possible que la déformation est pu débuter plus tôt qu'au moment de l'intrusion de l'unité 2 mais de façon moins intense. De la même manière, il est possible que les déformations visibles dans l'unité 2 soit la conséquence d'une déformation qui se soit poursuivit après l'intrusion des premières syénites formant l'unité 3. Cependant, puisqu'aucune zone de cisaillement n'a été observée dans cette unité, la déformation ne peut être plus tardive.

D'autre par à l'instar des textures (Figure 2.48), les paramètres intensifs de l'analyse de susceptibilité magnétique ne montrent aucune relation avec la pétrographie



Figure 4.52: Corrélation des paramètres intensifs d'anisotropie magnétique en fonction des différentes groupes pétrographique du complexe sud de RdB ; a) T vs. Pp% et b) Pp% vs. Km.

# Chapitre 5 : Géochimie

Cette étude géochimique a pour but de contraindre l'évolution des magmas produisant les roches plutoniques du complexe. Elle fut réalisée sur roches totales à la fois en analysant les éléments majeurs et les éléments traces. Le détail de ces données géochimiques est reporté en annexe.

# 5.1 Géochimie des éléments majeurs

# 5.1.1 Classification et nomenclature

La typologie des roches plutoniques de Rallier du Baty, étudiées au cours de ce travail de thèse, est basée sur la classification chimique de Middlemost (1994). Cette nomenclature est elle-même basée sur des travaux qui remontent au milieu du siècle dernier (e.g. Tilley, 1950) et qui ont montré l'intérêt de confronter les compositions exprimées en % de poids d'oxydes de Na<sub>2</sub>O + K<sub>2</sub>O (Total des Alcalins) et de SiO<sub>2</sub>. Les compositions des roches du complexe sud de Rallier du Baty sont ainsi reportées dans un diagramme TAS (Figure 5.1).



Figure 5.1 : Diagramme TAS (Total Alcalins versus SiO<sub>2</sub>) pour les roches plutoniques étudiées (modifié d'après Middlemost, 1994).

Cette figure illustre également l'étendue des compositions en SiO<sub>2</sub> des roches analysées à l'échelle de l'ensemble du complexe plutonique qui vont de 47.3% pour les plus basiques à 75.9% pour les plus riches en silice.

# 5.1.1.1 Roches mafiques et intermédiaires

7 échantillons de roches plutoniques mafiques et intermédiaires du SRBIC ont fait l'objet d'analyses sur roche totale. Parmi ces échantillons, la roche identifiée comme étant la plus mafique, provient du complexe satellite de l'anse du Gros Ventre. Décrite pétrographiquement (voir Chapitre précédent), cette roche est un monzo-gabbro (Figure 5.1).

3 échantillons provenant des injections mafique-intermédiaires localisées exclusivement dans la partie sud de la péninsule (voir partie 4.4) ont été analysés. Deux de ces échantillons proviennent des injections ou sills situés au pied de la Coulée de Vulcain et le dernier provient d'une lentille située au niveau d'un massif rocheux de la vallée des Sables et situé à l'ouest du Mont du Commandant. Ces trois roches intrusives se projettent, dans la Figure 5.1, dans le champ des monzo-diorites. A la vue des légères différences minéralogiques observées sous le microscope optique entre les deux injections localisées au pied de la coulée de Vulcain, celui situé le plus au Nord avait été décrit pétrographiquement comme un monzo-gabbro.

Les seules roches intermédiaires étudiées proviennent du Sud de la Plage Jaune où elles forment une intrusion plutonique à part entière affleurant de part et d'autre de la vallée et adjacente au SRBIC. Cette intrusion forme le complexe satellite de la Plage Jaune. Les 3 échantillons analysés, représentatifs de ce dernier, ont tous des compositions de monzonites (Figure 5.1).

## 5.1.1.2 Roches felsiques

Les 61 échantillons analysés parmi les roches plutoniques felsiques sensu stricto ont des teneurs en silice qui s'échelonnent entre 60.2 et 75.9%. Ces roches s'échelonnent donc du domaine des syénites jusqu'à celui des granites en passant par des compositions de monzonites quartziques.



Figure 5.2 : Diagramme de classification MALI (Modified Alkaline Lime Index) pour les roches plutonique de la péninsule de Rallier du Baty auxquelles ont été ajoutées les compositions des basaltes de plateau les plus proches du complexe (massif des Trois Ménestrels : Diop, 2008).

Irvine et Baragar (1971) ont défini une limite géochimique dans le diagramme TAS qui est largement utilisée depuis et qui basée sur les différences de compositions observées entre des suites volcaniques alcalines (majoritairement de type point chaud océaniques et continentaux) et sub-alcalines majoritairement associée aux rides médio-océaniques et aux zones de convergence. Cette limite a été étendue et peut être également utilisée pour différencier les suites plutoniques. La grande majorité des roches grenues du complexe sud de Rallier du Baty se projettent au-dessus de cette limite et forme donc une série plutonique alcaline. En effet, seuls une monzonite et trois granites se projettent dans le domaine des séries sub-alcalines. Plus récemment, Frost et al (2001) ont proposé une nouvelle classification basée sur les travaux antérieurs et qui s'appuie davantage sur l'analyse des roches plutoniques. Cette classification basée sur le MALI (Modified Alcalin-Lime Index) prend en compte le CaO et permet de définir 4 domaines entre des séries alcalines et des séries calciques. De la même manière que pour le diagramme TAS (Figure 5.2) montre que la grande majorité des roches plutoniques de Rallier du Baty se projettent dans le champ des suites alcalines. Cependant, deux granites, une monzonite, une monzodiorite et le monzo-gabbro se retrouvent dans le domaine des séries alcalino-calciques. Malgré ces petites variations cantonnées aux compositions extrêmes, l'affinité alcaline des roches plutoniques du SRBIC ne fait aucun doute et est caractéristique du contexte de point chaud dans lequel elles se sont formées (Nougier, 1969; Giret, 1983).

# 5.1.2 Evolution à l'échelle de l'ensemble des roches plutoniques

Afin d'étudier l'évolution des éléments majeurs au sein du SRBIC, j'ai choisi de représenter les compositions des roches en fonction d'un indice de différenciation représenté par le taux de saturation en SiO<sub>2</sub> (Figure 5.3). Ces diagrammes, aussi appelés diagrammes de Harker, sont devenus incontournables et font office de références dans les études géochimiques des roches depuis plus d'un siècle (Harker, 1909).

Les données en éléments majeurs des roches plutoniques du SRBIC montrent un léger gap de composition entre 57 et 60% de silice, séparant l'ensemble des roches mafiques et intermédiaires, de l'ensemble constitué des syénites, Qz-syénites et granites. Cette observation a déjà été faite pour le SRBIC (Marot and Zimine, 1976; Giret, 1983).

L'étude au premier ordre des diagrammes de Harker permet d'identifier la tendance générale associée à chaque élément majeur à l'échelle du complexe plutonique. Ainsi la Figure 5.3 montre, pour des éléments tels que CaO, MgO, TiO<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub>, et P<sub>2</sub>O<sub>5</sub>, des tendances similaires au premier ordre avec une diminution progressive de leur teneurs en allant des roches les plus mafiques vers les roches les plus riches en silice. Par contre, les évolutions du K<sub>2</sub>O, Al<sub>2</sub>O<sub>3</sub> et Na<sub>2</sub>O semblent discontinues. Pour K<sub>2</sub>O et Al<sub>2</sub>O<sub>3</sub>, cette discontinuité provient de l'évolution différente des roches mafiques et intermédiaire par rapport aux roches felsiques. Avec l'enrichissement en silice, le K<sub>2</sub>O semblent augmenter dans les roches mafiques et intermédiaires alors qu'il diminue dans les roches felsiques. De plus, le K<sub>2</sub>O augmente brutalement de  $\leq 4\%$  à  $\leq 6.3\%$  pour passer des roches intermédiaires à SiO<sub>2</sub>  $\leq 57\%$  aux roches felsiques à SiO<sub>2</sub>  $\geq 60\%$ . Ceci crée une forte discontinuité et déconnecte les roches mafiques et intermédiaires des roches felsiques au contraire de tous les autres éléments majeurs.




Les teneurs en  $Al_2O_3$  des roches mafiques et intermédiaires sont très dispersées. Toutefois, on peut noter une relative constance ou une légère augmentation avec l'enrichissement en SiO<sub>2</sub>. Dans les roches felsiques,  $Al_2O_3$  diminue avec l'augmentation du SiO<sub>2</sub>. Ainsi,  $Al_2O_3$  semble avoir deux évolutions distinctes, tout comme K<sub>2</sub>O. Cependant, contrairement à la forte discontinuité des valeurs de K<sub>2</sub>O, la dispersion de  $Al_2O_3$  dans le groupe des roches mafiques et intermédiaires ne permet pas de conclure sur la déconnexion relative de cet ensemble par rapport à celui des roches felsiques.

Les teneurs en Na<sub>2</sub>O, elles, semblent former un ensemble continu depuis les roches mafiques et intermédiaires jusqu'aux roches felsiques. Cependant la tendance générale est discontinue puisque le Na<sub>2</sub>O augmente au sein des roches les moins riches en silice jusqu'aux roches felsiques avant d'atteindre un point d'inflexion autour de 65% de SiO<sub>2</sub>. La tendance s'inverse à partir de ce point puis Na<sub>2</sub>O diminue avec l'enrichissement en silice.

Au premier ordre, les diagrammes de Harker de la Figure 5.3 montrent donc des tendances assez nettes sur l'ensemble des roches plutoniques du SRBIC. Seule l'évolution de MnO est difficile à identifier et décrire, probablement à cause des faibles teneurs de cet oxyde. C'est au sein des roches mafiques et intermédiaires que les corrélations avec le %SiO<sub>2</sub> sont le moins bien définies pour la totalité des éléments majeurs. Ceci s'explique en partie par le nombre d'échantillons étudiés bien inférieur à celui des roches felsiques et qui reflète les proportions volumiques de roches intrusives du complexe sud de Rallier du Baty. De plus, la grande gamme de variabilité pour certains éléments dans ces roches mafiques et intermédiaires par rapport à celle des roches felsiques doit être prise en compte comme c'est le cas pour CaO, MgO, Fe<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub> ( $\pm$ Al<sub>2</sub>O<sub>3</sub>  $\pm$ P<sub>2</sub>O<sub>5</sub>). Il est difficile à ce stade de relier cette dispersion à un processus pétrogénétique en particulier. Cependant, la tendance générale de l'évolution des éléments majeurs telle que la diminution nette de MgO, de Fe<sub>2</sub>O<sub>3(total)</sub>, de CaO et de TiO<sub>2</sub> marque sans doute une évolution chimique contrôlée par des processus de cristallisation fractionnée avec la formation de phase minérales précoces telles que l'olivine, les pyroxènes calciques, les perthites les oxydes de Fe-Ti dans un ou des liquides parents chimiquement proches.

## 5.1.3 Evolution à l'échelle des syénites

La Figure 5.4 représente les mêmes diagrammes de Harker que la Figure 5.3 mais centrés uniquement sur les roches felsiques que sont les syénites, les qz-monzonites et les granites. Les roches plutoniques felsiques de ce complexe forment un ensemble de données relativement bien continu en fonction de l'indice de différenciation exprimé en %SiO2. Les granites sont les roches les moins représentées avec seulement 4 échantillons. Cet ensemble relativement continu permet d'évaluer qualitativement au premier ordre l'évolution de chaque élément majeur à l'échelle de toutes les roches felsiques étudiées. Les diagrammes de CaO, de MgO, de TiO<sub>2</sub> et de P<sub>2</sub>O<sub>5</sub> dont les évolutions des teneurs en fonction de la silice sont très similaires semblent donc être des éléments fortement corrélés entre eux. K<sub>2</sub>O montre une évolution proche de celle des éléments précédents mais la faible variabilité des teneurs ne permet pas de le corréler avec certitude à ces éléments au premier ordre. Les diagrammes de Fe<sub>2</sub>O<sub>3</sub> et de MnO sont également assez similaires et leur ressemblance est en partie due à la grande variabilité de leurs teneurs en fonction de l'enrichissement en SiO2. Al2O3 et Na2O sont tous deux des éléments à part car ils ne montrent pas de similitudes évidentes d'évolution avec les autres éléments majeurs au sein de l'ensemble des roches felsiques. Puisque que toutes les compositions des roches felsiques forment des ensembles relativement continus au sein des diagrammes de Harker, la description de l'évolution des éléments majeurs est faite en premier lieu en fonction de la nature des différentes roches felsiques (syénites / Qz-monzonites / granites).





Considérons tout d'abord, les diagrammes CaO, MgO, TiO<sub>2</sub> et P<sub>2</sub>O<sub>5</sub> vs SiO<sub>2</sub> qui sont très similaires. Dans chacun de ces diagrammes, l'ensemble des roches syénitiques reparties entre 60.2 et 67.3% de SiO<sub>2</sub> (illustré par des cercles dans la Figure 5.3) suit en effet une tendance identique. Chaque oxyde considéré voit sa concentration diminuer, des termes syénitiques les moins différenciés jusqu'aux syénites contenant environ 66% de SiO<sub>2</sub>. Pour les syénites contenant plus de 66% de SiO<sub>2</sub>, les concentrations des différents éléments semblent toujours diminuer mais de façon moins prononcée avec une pente s'approchant de zéro. Cette variation qui s'observe dans les syénites les plus différenciées se poursuit et s'accentue au sein des Qz-monzonites. Dans ces dernières, les concentrations en CaO, MgO, TiO<sub>2</sub> et  $P_2O_5$ ne semblent pas varier avec l'enrichissement en SiO<sub>2</sub>. Cependant, à cause de la faible variation des teneurs en SiO<sub>2</sub> pour ces roches qui s'étalent seulement entre 66.7 et 69.5%, cette tendance à la stabilité peut être discutable. L'évolution des éléments cités ci-dessus montre de nouveau une variation significative en fonction de SiO<sub>2</sub> avec le passage des Qz-monzonites aux granites. Bien que le nombre d'échantillons de granite soit relativement faible, leurs concentrations en CaO, MgO, TiO2 et P2O5 diminuent avec l'enrichissement en SiO₂ de 71.2 à 75.9%. Les diagrammes de CaO, MgO, TiO₂ et P₂O₅ en fonction de SiO<sub>2</sub> sont donc caractérisés par une même évolution des concentrations en fonction de la nature des roches et donc de l'indice SiO<sub>2</sub>. A l'échelle du type de roche, la tendance est à la diminution des teneurs dans les syénites jusqu'à un point d'inflexion situé vers 66% de SiO<sub>2</sub>. Puis, la concentration semble se stabiliser pour atteindre un pallier dans les Qz-monzonites, et finalement diminuer de nouveau et plus nettement dans les granites. Le coefficient négatif de la pente qui modéliserait cette dernière diminution dans les granites est cependant toujours plus faible que celui de la droite représentative de l'évolution des syénites. En définitive l'évolution des roches felsiques dans les diagrammes CaO, MgO,  $TiO_2$  et  $P_2O_5$  en fonction de SiO<sub>2</sub> peut se traduire par une forte diminution de la concentration dans les termes syénitiques jusqu'à un point d'inflexion situé autour de 66% de SiO2 pour se poursuivre de façon moins accentuée vers les termes les plus différenciés.

Les diagrammes Fe<sub>2</sub>O<sub>3total</sub> et MnO en fonction de SiO<sub>2</sub> sont tous deux identiques au premier ordre. Pour les syénites, la dispersion des concentrations de ces deux éléments augmente avec le taux d'enrichissement en silice pour atteindre une dispersion maximale autour de 64% de SiO<sub>2</sub>. Malgré une forte variabilité, les concentrations de Fe<sub>2</sub>O<sub>3</sub> dans les syénites semblent indiquer une diminution des teneurs avec l'augmentation de la concentration en SiO<sub>2</sub>. Une tendance pour le MnO dans les syénites ne peut par contre pas être établie du fait de la trop grande dispersion des concentrations. Le passage des syénites au Qz-monzonites est progressif et montre une diminution de la dispersion avec l'augmentation du SiO<sub>2</sub>. Les Qz-monzonites les plus différenciées montrent des concentrations en MnO proche de celles des syénites les moins différenciées. Les teneurs de ces deux oxydes dans les granites diminuent avec l'enrichissement en SiO<sub>2</sub>. C'est pourquoi, l'évolution de ces deux éléments entre les syénites les moins différenciées et les granites les plus différenciées et globalement à la baisse.

A première vue, l'Al<sub>2</sub>O<sub>3</sub> se comporte de manière unique par rapport aux autres éléments majeurs. Toutefois comme pour le Fe<sub>2</sub>O<sub>3</sub> et le MnO, la dispersion des données augmente jusqu'à atteindre un maximum situé vers 64%. Malgré cette variation dans les compositions avec l'augmentation du SiO<sub>2</sub>, il est clair que l'Al<sub>2</sub>O<sub>3</sub> diminue lorsque le SiO<sub>2</sub> augmente dans les syénites. Cette évolution peut être modélisée par une faible pente négative des termes les moins différenciés jusqu'à ≈64% de SiO<sub>2</sub>, puis par une pente négative avec un coefficient plus élevé vers les syénites les plus riches en SiO<sub>2</sub>. Les compositions des Qzmonzonites suivent l'évolution amorcée dans les syénites les plus enrichies. Malgré la dispersion des teneurs dans les roches granitiques, cette tendance semble se poursuivre vers les termes les plus différenciés. Les compositions en Al<sub>2</sub>O<sub>3</sub> au sein des roches felsiques montrent donc deux tendances qui pourraient être séparées par un point d'inflexion situé entre 64 et 66% de SiO<sub>2</sub>.

Le diagramme de Harker de K<sub>2</sub>O montre, comme ceux de Fe<sub>2</sub>O<sub>3total</sub>, MnO, et Al<sub>2</sub>O<sub>3</sub>, un maximum de variabilité dans les compositions à SiO<sub>2</sub> ≈64%. Malgré cette dispersion, l'évolution de la concentration en K<sub>2</sub>O des syénites les moins différenciées jusqu'à ≈64% de SiO<sub>2</sub> est clairement décroissante. Cette tendance semble se stabiliser dans les syénites les plus différenciées et se poursuivre dans les Qz-monzonites. Finalement, les teneurs en K<sub>2</sub>O décroissent de nouveau nettement lorsque SiO<sub>2</sub> augmente vers les compositions granitiques. Cette évolution est similaire à celles de CaO, MgO, TiO<sub>2</sub> et P<sub>2</sub>O<sub>5</sub>, bien que les courbes d'évolution de K<sub>2</sub>O soient faiblement pentées et leur confèrent une allure quasiment constante.

Na<sub>2</sub>O a lui aussi été considéré au premier ordre comme un élément dont l'évolution en fonction de SiO<sub>2</sub> apparait comme spécifique. Dans les syénites, les teneurs en Na<sub>2</sub>O semblent augmenter en même temps que le taux de silice jusqu'à  $\approx$  64-65% de SiO<sub>2</sub>. Cette valeur correspond au maximum de dispersion des teneurs en Na<sub>2</sub>O dans les syénites comme c'est également le cas pour Fe<sub>2</sub>O<sub>3</sub>, MnO et K<sub>2</sub>O. Cette teneur correspond également à un point d'inflexion dans la courbe qui modélise l'évolution de Na<sub>2</sub>O dans les syénites, correspondant au passage entre cette tendance positive et une tendance négative pour les teneurs en SiO<sub>2</sub> plus élevées. Cette observation doit être tempérée à cause de la gamme de variation des teneurs en Na<sub>2</sub>O dans les syénites. Cependant la diminution avec l'enrichissement en SiO<sub>2</sub> semble se poursuivre au sein des Qz-monzonites et se confirmer avec l'évolution des compositions granitiques. L'augmentation nette de Na<sub>2</sub>O au sein des syénites jusqu'à un point d'inflexion situé autour de 65% de SiO<sub>2</sub> et une tendance décroissante constante jusque dans les termes les plus enrichie en SiO<sub>2</sub>, font bien de Na<sub>2</sub>O un élément au comportement unique dans les diagrammes de Harker.

En résumé, l'étude des diagrammes de Harker en fonction des différents types de roches felsiques permet de mettre en évidence des corrélations nettes entre CaO, MgO, TiO<sub>2</sub>, P<sub>2</sub>O<sub>5</sub> et K<sub>2</sub>O. Ces cinq éléments majeurs montrent un comportement similaire avec l'enrichissement en silice au sein des différentes roches étudiées. Leur diminution dans les syénites les moins différenciées semble marquer le contrôle de leur évolutions respectives par des processus de cristallisation fractionnée impliquant la formation précoce des phases telles que l'olivine, les pyroxènes, les perthites, la biotite, les oxydes de Fer-Ti et l'apatite. Fe2O3 et MnO sont également des éléments qui montrent une corrélation. Celle-ci est moins évidente que pour les éléments précédents due à la forte dispersion des teneurs dans les syénites et Qzmonzonites. Enfin, bien que l'évolution du Na2O et de l'Al2O3 ne puisse être indépendante de celle des autres éléments, elles ne peuvent être mises en corrélation directe avec ces dernières à partir des diagrammes de Harker. Ces deux oxydes se comportent de manière unique avec l'enrichissement en SiO<sub>2</sub>. Cependant, certaines caractéristiques de leur évolution sont communes à d'autres éléments comme la dispersion maximum des teneurs entre  $\approx$ 64 et  $\approx$ 66% de SiO<sub>2</sub>. Cette caractéristique s'observe clairement pour tous les éléments majeurs exceptés MgO et P2O5. Na2O et Al2O3 montrent également un point d'inflexion vers 65% de SiO<sub>2</sub> autour duquel varie la tendance au sein des syénites. Cette inflexion (moins prononcée pour  $Al_2O_3$ ) et la variation dans l'évolution des syénites les plus primitives vers les syénites les plus différenciées et les Qz-monzonites s'observent dans tous les diagrammes de Harker vers ≈65% de SiO<sub>2</sub>. C'est pourquoi, malgré l'absence de corrélation entre Na<sub>2</sub>O et Al<sub>2</sub>O<sub>3</sub> et les autres éléments majeurs, il est clair que leur évolution respective est contrôlée par des processus géochimiques similaires.

J'ai également étudié l'évolution des compositions en éléments majeurs en fonction de l'appartenance des roches étudiées à l'un des trois grands groupes pétrographiques (Chapitre précédent). Cette distinction a pour but d'étudier les similitudes et les différences dans l'évolution des éléments majeurs au travers de chaque groupe pétrographiques en fonction des teneurs en SiO<sub>2</sub> (Figure 5.4 et Figure 5.5).





Une caractéristique importante, illustrée pour tous les éléments majeurs et déjà visible dans le diagramme TAS de la Figure 5.1, correspond à la gamme de % SiO<sub>2</sub> propre à chaque groupe pétrographique. Le groupe CaS s'étale de 60,9% à 75,9% de SiO<sub>2</sub> tandis que le groupe CaNaS couvre seulement des valeurs allant de 60,2% à 66,44% et le groupe NaS de 65,52 à 74,9% de SiO<sub>2</sub>. Ainsi, les compositions des roches appartenant au groupe CaNaS et NaS se recouvrent pour des valeurs de SiO2 comprises entre 65,5 et 66,4%, tandis que les compositions des roches du groupe CaS recouvrent celles des deux groupes précédents de 60,9% à 74,9% de SiO<sub>2</sub>. L'étude des diagrammes de Harker en fonction des différents types de roches (syénites/qz-monzonites/granites) a permis de mettre en évidence des ensembles de compositions relativement continus, pour tous les éléments majeurs (à l'exception de Fe<sub>2</sub>O<sub>3</sub> et MnO), des syénites les moins riches en SiO<sub>2</sub> aux granites les plus différenciés. Cette continuité implique donc que les compositions en éléments majeurs des roches sont relativement similaires quel que soit le groupe pétrographique auxquelles elles appartiennent pour une concentration en SiO<sub>2</sub> donnée. Cette caractéristique est notamment vraie pour les syénites du groupe NaS qui ont toujours les mêmes teneurs en éléments majeurs que les syénites les plus différenciées du groupe CaNaS. Toutefois, du fait d'un point d'inflexion ou de dispersion maximum mis en lumière précédemment entre 64 et 65% pour tour les éléments majeurs, l'évolution des CaNaS et des NaS est toujours différente.

TiO<sub>2</sub> est le seul oxyde pour lequel les compositions des roches du groupe CaS se confondent presqu'en totalité avec celles des roches des groupes CaNaS et NaS. Seule une Qz-monzonite du groupe CaS s'écarte significativement des autres compositions.

Pour MgO, les syénites du groupe CaS et CaNaS ont des compositions similaires et suivent la même évolution avec l'enrichissement en SiO<sub>2</sub>. Seules deux analyses de syénites CaS parmi les moins différenciées s'écartent quelque peu de l'allure générale des syénites. A partir de  $\approx$ 67%, les compositions des Qz-monzonites et granites du groupe CaS sont majoritairement enrichies en MgO par rapport à celles des roches du groupe NaS. Malgré cet enrichissement l'évolution des roches du groupe CaS reste parallèle à celles des roches du groupe NaS.

Le diagramme de  $P_2O_5$  montre des résultats similaires à celui de MgO. Les syénites du groupe CaS ont des compositions et une évolution similaire à celles des syénites du groupe CaNaS. La limite de détection du  $P_2O_5$  est atteinte pour les granites du groupe NaS. Les Qz-monzonites et les granites du groupe CaS sont donc enrichis par rapport à ces derniers. Les Qz-monzonites montrent notamment un enrichissement relatif avec l'augmentation de SiO<sub>2</sub> entre  $\approx$ 68 et  $\approx$ 70%.

Le diagramme de CaO est sensiblement différent. Les syénites du groupe CaS suivent également la même évolution avec SiO<sub>2</sub> que celles appartenant au groupe CaNaS mais ont des compositions majoritairement plus élevées que ces dernières. Après le point d'inflexion situé entre 64 et 66% qui régit l'allure générale des roches felsiques, les compositions des syénites, Qz-monzonites et granites du groupe CaS sont identiques à celles des roches du groupe NaS. L'évolution des teneurs en K<sub>2</sub>O par rapport aux concentrations en SiO<sub>2</sub> en fonction de la nature des roches a montré des caractéristiques communes avec CaO, MgO, TiO<sub>2</sub> et P<sub>2</sub>O<sub>5</sub>. Par contre, l'observation des données en fonction des différents groupes pétrographiques fait ressortir des différences notables. Les syénites les moins enrichies en SiO<sub>2</sub> du groupe CaS ont des compositions identiques à celles des syénites les moins riches en silice du groupe CaNaS. Avec l'enrichissement en SiO<sub>2</sub>, les compositions respectives des deux groupes de syénites se divisent. En effet, les syénites les plus différenciées du groupe CaS ont des teneurs plus élevées en K<sub>2</sub>O que celles du groupe CaNaS. Ceci implique une évolution différente de K<sub>2</sub>O au sein des syénites de ces deux groupes. La diminution de K<sub>2</sub>O avec l'enrichissement en SiO<sub>2</sub> est plus forte dans les syénites du groupe CaNaS que dans celles du groupe CaS. Les Qz-monzonites et granites du groupe CaS montrent également un enrichissement par rapport aux compositions des roches du groupe NaS. Toutefois l'évolution des roches les plus différenciées de ces deux groupes est parallèle.

Le diagramme de l'Al<sub>2</sub>O<sub>3</sub> peut être interprété de la même manière. En effet, les syénites les moins différenciées du groupe Cas et CaNaS ont des compositions similaires et qui semblent se diviser avec l'enrichissement en SiO<sub>2</sub>. La majorité des syénites les plus différenciées du groupe CaS ont des teneurs en Al<sub>2</sub>O<sub>3</sub> supérieures à celles des syénites du groupe CaNaS. Etant donné la répartition des compositions dans les syénites du groupe CaS, il est également possible d'y voir statistiquement des teneurs en Al<sub>2</sub>O<sub>3</sub> majoritairement supérieures à celles des CaNaS dès les plus faibles teneurs en SiO<sub>2</sub>. Ceci implique donc, soit une évolution identique des syénites entre les deux groupes avec des compositions toujours supérieures dans le groupe CaS, soit des évolutions qui divergent légèrement avec l'enrichissement en SiO<sub>2</sub> pour des compositions comparables dans les syénites les plus primitives des deux groupes. Tout comme pour le K<sub>2</sub>O, les compositions des Qz-monzonites et granites du groupe CaS suivent la même évolution que les roches les plus différenciées du groupe NaS, mais avec des teneurs en Al<sub>2</sub>O<sub>3</sub> majoritairement plus élevées.

Pour Na<sub>2</sub>O et de la même façon que pour les autres éléments majeurs, les roches du groupe CaNaS et NaS se juxtaposent au niveau du point d'inflexion situé entre 64 et 66% de SiO<sub>2</sub>. Pour cet élément, la corrélation est positive avec l'enrichissement du SiO<sub>2</sub> dans les syénites du groupe CaNaS alors qu'elle est négative pour les roches du groupe NaS. La syénite du groupe CaS la plus appauvrie en SiO<sub>2</sub> a une teneur en Na<sub>2</sub>O identique aux syénites les moins enrichies en SiO<sub>2</sub> du groupe CaNaS. Dès  $\approx$ 62% de SiO<sub>2</sub> les teneurs en Na<sub>2</sub>O des deux groupes CaS et CaNaS se distinguent. En effet, la corrélation positive avec le SiO<sub>2</sub> au sein des syénites du groupe CaS les plus différenciées. Dans ces dernières l'évolution des compositions peut être considéré comme faiblement positive voire invariante avec l'enrichissement en silice. A partir de  $\approx$ 67%, les compositions et donc l'évolution des roches des groupes CaS et NaS semblent identiques et ce malgré la dispersion des compositions des granites du groupe NaS.

Dans le diagramme de Harker de MnO, les syénites les plus appauvries en SiO<sub>2</sub> du groupe CaS ont des compositions similaires aux syénites les moins enrichies du groupe CaNaS. Cependant, tandis que les teneurs en MnO augmentent dans les syénites du groupe CaNaS jusqu'au point d'inflexion situé entre 64 et 66%, celles des syénites du groupe CaS diminuent. C'est pourquoi dès 64% les compositions des roches du groupe CaS sont majoritairement inférieures à celles des roches du groupe CaNaS. Cette évolution se poursuit jusque dans les Qz-monzonites et les granites du groupe CaS. Toutefois alors que les teneurs en MnO des roches du groupe NaS diminuent avec l'enrichissement en silice, celles du groupe CaS tendent à se stabiliser. Cependant la dispersion et le faible nombre d'échantillons de granites ne permettent pas de conclure avec certitude sur l'évolution des termes les plus enrichis en silice. Les granites du groupe CaS ont toutefois des teneurs inférieures aux granites du groupe NaS. Les roches plutoniques ont donc des compositions et des comportements en MnO bien différents selon le groupe pétrographique auxquelles elles appartiennent.

Fe<sub>2</sub>O<sub>3total</sub> dont l'évolution en fonction du SiO<sub>2</sub> dans l'ensemble des roches felsiques est proche de celui de MnO montre des résultats relativement similaires à ce dernier au regard de son évolution au travers des différents groupes pétrographiques. L'évolution des teneurs et leur dispersion au sein des groupes CaNaS et NaS montrent une continuité flagrante de Fe<sub>2</sub>O<sub>3total</sub> jusque dans les Qz-monzonites les plus différenciées. Les syénites du groupe CaS ont des compositions majoritairement identiques aux compositions des syénites CaNaS. Ainsi, l'évolution globale des syénites des groupes CaNaS et CaS semble identique jusqu'à 65% de SiO<sub>2</sub> malgré le fait que quelques compositions viennent tempérer cette observation. A partir de 66% de SiO<sub>2</sub> les teneurs en Fe<sub>2</sub>O<sub>3total</sub> dans les syénites les plus différenciées du groupe CaS semblent augmenter avec l'enrichissement en silice, tandis que la tendance générale des roches du groupe NaS est à la diminution. De la même façon que pour le MnO, les granites du groupe NaS montrent des teneurs en Fe<sub>2</sub>O<sub>3total</sub> stables tandis que ceux appartenant au groupe CaS montrent une forte diminution pour les plus hauts pourcentages de SiO<sub>2</sub>. Tout comme MnO, les évolutions des roches des groupes en Fe<sub>2</sub>O<sub>3total</sub> des roches appartenant aux groupes NaS et CaS divergent pour des compositions en silice > 66% et montrent la même dispersion. La grande différence entre ces deux éléments réside surtout dans la superposition des champs de compositions des différents groupes pétrographiques. Dans le cas de Fe<sub>2</sub>O<sub>3total</sub>, les teneurs au sein des roches du groupe CaS sont toujours comprises dans les champs définis par les teneurs des roches appartenant aux deux autres groupes pétrographiques (excepté les granites). Dans le cas de MnO et pour les compositions en silice > 64%, les teneurs des roches du groupe CaS sont majoritairement inférieures aux teneurs des roches du CaNaS et NaS.

# 5.2 Géochimie des éléments traces

# 5.2.1 Analyse élémentaire

Afin de tester l'impact de processus d'altération post-magmatiques pouvant avoir affecté les roches analysés, certains éléments traces susceptibles d'avoir été perturbés (Rb, U, Ce) ont été comparés au Nb considéré comme immobile durant de tels processus. Les résultats sont présentés en Figure 5.6. Le diagramme Rb vs Nb montre une bonne corrélation entre les 2 éléments, ce qui laisse supposer que le Rb n'a pas été affecté de façon significative par des processus post-magmatiques pour la plupart des roches. Toutefois, il est possible que les échantillons les plus éloignés de cette droite de corrélation, au niveau des teneurs les plus fortes en Nb, aient subit une altération qui aurait appauvri ces roches en Rb ; notamment les 3 échantillons les plus riches en Nb.





Un même constat peut être établi pour l'uranium qui montre une bonne corrélation avec le Nb. Cependant, plusieurs échantillons, dont les 3 échantillons cités précédemment ainsi que quelques échantillons du groupe CaS, tous situés proches de la zone d'alternance de sills mafiques et syénitiques, montrent un enrichissement en Uranium. Cette observation indiquerait soit (i) un enrichissement en uranium du liquide parent de ces roches ou (ii) une accumulation d'un minéral riche en uranium et pauvre en Nb. Il apparait donc que les trois échantillons considérés comme altérés via le Rb vs Nb soient également enrichi en uranium. Enfin le diagramme du Ce montre une corrélation relativement bonne entre ces deux éléments jusqu'à des compositions d'environ 300ppm de Ce et 120ppm de Nb. Au-delà de ces teneurs, des échantillons de compositions variées se trouvent de part et d'autre de la droite de corrélation. Les syénites et Qz-monzonites du groupe NaS sont nettement enrichies en Ce tandis que les granites de ce même groupe sont appauvris. Une monzonite et quelques échantillons du groupe CaS sont également appauvris. Ces échantillons du groupe CaS font également partie de ceux qui sont enrichis en uranium. Les 3 échantillons les plus riches en Nb, appauvris en Rb et enrichi en uranium se répartissent de chaque côté de la droite de corrélation. La monzonite appauvrit en Rb est également appauvrit en Ce.

A travers la comparaison de ces différents diagrammes, il apparait que la majorité des roches du SRBIC analysées n'ont pas subi d'altération post-magmatique significative ayant affecté Rb, U ou Ce. Cependant, il est clair que certains échantillons ont des compositions qui s'éloignent significativement de la droite de corrélation avec Nb. La plupart de ces échantillons se retrouve d'un diagramme/élément à l'autre. De plus, en fonction de l'élément considéré, ces échantillons semblent plutôt indiquer un enrichissement de leur liquide magmatique parent ou au contraire une altération post magmatique. C'est pourquoi la seule utilisation de ces diagrammes n'est pas suffisante pour discriminer les deux processus à l'échelle de toutes les roches du SRBIC. De plus, les systèmes magmatiques alcalins sont connus pour leur diversité et relative abondance en minéraux « exotiques » accessoires qui en font des sources potentielles de minerais riches en certains éléments traces. Ainsi la proportion de minéraux accessoires tels que la monazite, l'apatite, la baddeléyite, le pyrochlore, le zircon, l'eudyalite, la bastnaésite ou encore la chevkinite parmi les plus communs a un impact considérable sur le contenu en éléments traces de ces roches (e.g. Platt et al., 1987; Chakhmouradian and Zaitsev, 2012). C'est pourquoi les diagrammes U et Ce vs Nb doivent être considérés avec précaution. En supposant qu'une altération post-magmatique ait pu modifier la chimie d'une roche du SRBIC, il est cohérent de penser que l'élément le plus susceptible d'avoir été affecté soit Rb qui se substitue à K dans les feldspaths perthitiques, lesquels représentent 70 à 80% des roches syénitiques. C'est pourquoi les 3 échantillons les plus riches en Nb (TC09-126A, TC09-101 et TC09-102) apparaissent les plus susceptibles d'avoir subi un processus d'altération post-magmatique. Cette hypothèse est en accord avec les observations pétrographiques de TC09-126A et TC09-101. Tandis que l'abondance de chevkinite dans l'échantillon TC09-102 est en accord avec des résultats d'expérimentations montrant que l'altération des chevkinites induit une augmentation du Nb (+Th) (Bagiński and Macdonald, 2013; Bagiński et al., 2015). Cette dernière hypothèse montre bien la difficulté à distinguer un processus d'enrichissement ou d'appauvrissement due à des variations de compositions au niveau des magmas parents des roches plutoniques, de processus physico-chimiques tardimagmatiques. Ces 3 échantillons seront mis en exergue par la suite ainsi que la monzonite enrichie en Nb (13TK47) qui semble se distinguer des autres roches intermédiaires.

A l'instar des éléments majeurs, j'ai choisi de présenter les données en éléments traces sur roches totales à l'aide de diagrammes de Harker. Comme observé précédemment pour les éléments majeurs, les éléments traces montrent tous des ensembles continus au travers des différents types de roches avec l'enrichissement de la silice. C'est pourquoi, ces résultats sont plutôt présentés en fonction du groupe pétrographique auxquelles les roches analysées appartiennent (Figure 5.7). Seules les roches mafiques et intermédiaires forment des ensembles distincts du fait du gap en %SiO2 avec les roches felsiques. La Figure 5.7 et la Figure 5.8 représentent respectivement les données en éléments traces brutes et les interprétations qualitatives de tendances évolutives au sein de chaque groupe. Dans la Figure 5.8 interprétative, les échantillons possiblement altérés et/ou fortement enrichis cités précédemment sont représentés par des symboles noirs. De plus, j'ai choisi de faire ressortir certains groupes d'échantillons appartenant à une même structure sur le terrain lorsque ceux-ci se distinguent au niveau des éléments traces. C'est les cas des échantillons TC09-85, 13TK14 et 13TK23 qui sont représentés par des cercles orange dans cette figure. En effet ces échantillons, considérés comme appartenant au groupe CaNaS, sont tous des syénites porphyriques associées à la zone la plus déformée marquant la limite structurale entre les unités 1 et 2. Ils ont également les teneurs en SiO<sub>2</sub> les plus faibles parmi toutes les roches syénitiques et ne sont donc pas forcément pris en compte pour l'évolution au sein du groupe CaNaS. Sur certains diagrammes, les échantillons TC09-82 et 13TK01 qui constituent les premières intrusions plutoniques de la péninsule de RdB (anse du Gros Ventre) sont aussi mis en évidence pour certains éléments traces.











Sans faire une description minutieuse de l'évolution de chaque élément au travers de chaque groupe comme il a été fait pour les éléments majeurs, les résultats des diagrammes de Harker permettent de distinguer plusieurs types d'évolution au sein des roches plutoniques felsiques. Plus précisément 3 grands types extrêmes d'évolution définissent le comportement des éléments traces au sein du SRBIC en fonction de la teneur en SiO<sub>2</sub>. Il est à noter que certaines de ces évolutions ne prennent pas en compte les granites, leur nombre étant en effet faible et leur composition parfois très dispersées.

Les éléments tels que Rb, Nb, U, Th et Ta montrent une évolution linéaire avec l'enrichissement en SiO<sub>2</sub>. Aucune distinction ne peut être clairement faite quant à l'évolution de ces éléments au travers des différents groupes pétrographiques. Ils sont donc corrélés de la même façon avec SiO<sub>2</sub> quelle que soit la nature de la roche ou le groupe pétrographique auquel elle appartient. Ils définissent donc un premier ensemble d'éléments traces qui évoluent de la même manière.

Les diagrammes Ba et Sr vs SiO<sub>2</sub> sont sensiblement similaires. Les teneurs de ces éléments sont très faibles. Cependant, dans ces deux diagrammes, certaines roches du groupe CaS montrent des compositions bien plus élevées que le reste des roches plutoniques. C'est notamment le cas pour les roches les moins différenciées de ce groupe. Ainsi l'évolution du Ba et du Sr semblent légèrement décroissante pour les roches du groupe CaS avec l'enrichissement en SiO<sub>2</sub>. Au contraire, l'évolution de ces 2 éléments pour les roches des groupes CaNaS et NaS semble stable. Un zoom centré sur les roches felsiques et une échelle logarithmique en ordonnée permet de préciser ces observations.



Figure 5.9: Zoom et interprétation des diagrammes Harker de Ba et Sr, représentés en fonction des groupes pétrographiques.

La Figure 5.9 montre que les évolutions du Ba et Sr sont bien similaires au sein des 3 groupes pétrographiques ave l'enrichissement en SiO<sub>2</sub>. Les roches du groupe CaS ont majoritairement des compositions plus élevées que les roches du groupe CaNAS et NaS quel que soit le %SiO<sub>2</sub> considéré. Seuls 2 échantillons ont des compositions très faibles en Ba et Sr et sont situés à chaque extrémité du SRBIC, 13TK31 étant le plus à l'ouest et TC09-118A le plus à l'est. L'évolution du Ba et du Sr est décroissante au sein des syénites du groupe CaS et se stabilise ou décroit moins fortement après un point d'inflexion situé proche de 66% de SiO<sub>2</sub> marquant la transition vers les Qz-monzonites et les granites. Ces 2 éléments décroissent également dans les syénites du groupe CaNaS et se stabilisent aussi après un point d'inflexion situé autour de 66% de SiO<sub>2</sub> et qui marque ici un passage continu des compositions des roches du groupe CaNaS à celles des roches du groupe NaS. Ainsi, les évolutions des roches du groupe CaS sont comparables à celles des groupes CaNaS et NaS, malgré une plus forte anti-corrélation au sein des syénites du groupe CaNaS. Les évolutions de ces 2 éléments dans les diagrammes de Harker peuvent donc se modéliser par deux accents circonflexes plus ou moins ouverts, retournés et superposés. L'accent supérieur représentant l'évolution des compositions des roches du groupe CaS tandis que l'accent inférieur représente l'évolution dans les roches du groupe CaNaS (premier coté) et NaS (deuxième coté). Cette modélisation simpliste définit cependant une évolution particulière bien marquée au sein des roches du SRBIC. Repérée pour le Ba et Sr, ce type d'évolution caractérise également l'Eu, qui semblait unique parmi les diagrammes de Harker (Figure 5.8). Le Ba, Sr et Eu sont donc corrélés de la même façon avec le SiO<sub>2</sub> dans les roches du SRBIC.

Les diagrammes de Harker du Ce, Sm, Nd, et Ga sont également similaires. Tout comme les précédents, l'évolution de ces éléments dans chaque diagramme peut être modélisée par 2 accents circonflexes plus ou moins ouverts. Ceux-ci bien à l'endroit, avec l'accent supérieur représentant les évolutions au sein du groupe CaNaS et NaS, et l'accent inférieur représentant l'évolution au sein des roches du groupe CaS. En effet, bien que les teneurs soient quelques peu superposées dans les syénites les moins différenciées des groupes CaS et CaNaS, les compositions évoluent vers des termes clairement plus enrichis dans les syénites du groupe CaNaS avec l'enrichissement en silice. Il s'en suit un point d'inflexion commun à tous les groupes pétrographiques autour de 65-66% de SiO<sub>2</sub>, après lesquels les compositions se stabilisent ou décroissent et qui marque également le passage quasiment continu des roches du groupe CaNaS à celles du groupe NaS. Les roches du groupe CaS ont donc des compositions en Ce, Sm, Nd et Ga majoritairement inférieures à celles des roches des groupes CaNaS et NaS quelle que soit la concentration de SiO<sub>2</sub> considérée. L'évolution de ces éléments dans les roches du groupe CaNaS tend vers des échantillons fortement enrichis qui sont également les échantillons possiblement affectés par un ou des processus d'altération post-magmatiques. Cependant, ces échantillons sont probablement enrichis avant d'être altéré (c.f. début de cette partie) car même si ils ne sont pas pris en compte pour l'interprétation des tendances, d'autres échantillons du groupe CaNaS et NaS marquent ce net enrichissement des compositions vers 65-66% de SiO<sub>2</sub>. L'évolution du Ce, Sm, Nd et Ga qui montre une nette corrélation positive se trouve donc être l'inverse de celle du Ba, Sr et Eu pour des teneurs en silice < 67%. Les teneurs élémentaires au sein des différents groupes sont également inversées et toujours plus faibles en Ce, Sm, Nd et Ga dans les roches du groupe CaS. Pour les roches > 67 %SiO2, l'évolution de ces éléments devient comparable avec celle du Ba, Sr et Eu tandis que les teneurs des roches du groupe CaS semblent toujours plus faibles que celles du groupe NaS.

Un dernier type d'évolution peut être caractérisé dans les diagrammes de Harker de Yb, Y, Hf et Zr. En effet, ces éléments montrent des évolutions intermédiaires entre celles des groupes Ce, Sm, Nd, Ga et Rb, Nb, U, Th, Ta. Les teneurs en Yb, Y, Hf et Zr des roches du groupe CaS et CaNaS se superposent pour la

plupart des syénites. Seules les teneurs plus faibles dans les Qz-monzonites du groupe CaS pourraient rapprocher leurs évolutions de celles du Ce, Sm, Nd, Ga. Toutefois, certaines fortes teneurs dans les syénites du groupe CaS tendent également à rapprocher ces évolutions de l'évolution croissante linéaire de Rb, Nb, U, Th, Ta. La dispersion des teneurs dans les roches > 66-67% SiO<sub>2</sub> rend une interprétation des tendances difficiles. Toutefois si les granites ne sont pas considérés, les roches les plus enrichies en Hf, Zr, Yb et Y appartiennent aux groupes CaNaS et NaS et se situent autour de 66% de SiO<sub>2</sub>. Par conséquent, même si il existe des similitudes entre ces éléments et le groupe Rb, Nb, U, Th, Ta, cette dernière observation tend à relier l'évolution de Zr, Hf, Yb, Y dans les roches du SRBIC à celle de Ce, Sm, Nd, Ga.

Les roches mafiques et intermédiaires forment des ensembles discontinus des roches felsiques. Pour la plupart des éléments majeurs, l'évolution au sein de ces roches peut difficilement être associée à celles des roches felsiques. Ceci est d'autant plus vrai pour les éléments traces. Il est clairement difficile d'établir une continuité entre les teneurs en traces des roches mafiques et intermédiaires et celles des roches felsiques. De plus, certains éléments comme Rb, U, Th, Yb et Y (parmi les plus flagrants) montrent une tendance sensiblement distincte de celles des roches felsiques. Seules les évolutions et les teneurs en Ba et Sr pourraient être dans la continuité de celles des roches felsiques.

# 5.2.2 Relation éléments majeurs - éléments traces

Le parallèle entre l'évolution des éléments traces et des éléments majeurs, possible grâce à la comparaison des diagrammes de Harker, montre dans un premier temps que Ba, Sr et Eu ont des comportements similaires à K<sub>2</sub>O et CaO. Tous ces éléments ont des évolutions qui peuvent se modéliser par des accents circonflexes inversés plus ou moins ouverts et des teneurs au sein du groupe CaS toujours supérieures à celles des autres groupes. Dans une moindre mesure, ces éléments traces ont également des évolutions semblables à TiO<sub>2</sub>, MgO et P<sub>2</sub>O<sub>5</sub> qui ont toutefois des compositions identiques entre tous les groupes pétrographiques. Les évolutions des teneurs en Ba, Sr et Eu sont donc bien liés à celle des feldspaths perthitiques, des micas noirs et dans une moindre mesure à celle des autres minéraux magnésiens et de l'apatite.

L'évolution particulière des teneurs en Ce, Sm, Nd et Ga est tout à fait semblable à celle de Na<sub>2</sub>O. Les compositions des roches du groupe CaNaS tendent vers de fortes teneurs et établissent une certaine continuité avec les fortes compositions des roches NaS autour d'un point d'inflexion à 66% de SiO<sub>2</sub>. D'autre part, les teneurs dans les roches du groupe CaS sont toujours inférieures à celles dans les roches des deux autres groupes. Ce type d'évolution peut se modéliser par 2 accents circonflexes (à l'endroit) superposés. Les évolutions des teneurs en Fe<sub>2</sub>O<sub>3</sub> et MnO ne sont pas vraiment modélisable de cette façon, toutefois les teneurs dans les roches du groupe CaS sont toujours inférieures à celles des autres roches et la forte dispersion des teneurs autours de 66% tendent à rapprocher le comportement de ces éléments de celui de Na<sub>2</sub>O. C'est pourquoi, les évolutions des teneurs en Ce, Sm, Nd et Ga sont dépendantes de l'évolution des feldspaths sodiques et des ferro-magnésiens sodiques du SRBIC.

Rb, Nb, Th, U et Ta montrent des évolutions relativement linéaires au sein des roches du SRBIC, jusqu'à des teneurs en silice proches de 70%. Les compositions sont donc relativement identiques quel que soit le groupe pétrographique considéré. Ce résultat tend à lier ces éléments à TiO<sub>2</sub>, MgO et P<sub>2</sub>O<sub>5</sub> qui montrent ce même comportement. Cependant la corrélation positive linéaire implique également que l'impact d'un point d'inflexion doit être minime voire inexistant dans l'évolution des compositions vers les roches les plus différenciées. Les éléments majeurs dont l'évolution des compositions est la moins affectés par le point d'inflexion situé autour de 66% de SiO<sub>2</sub> sont K<sub>2</sub>O et Al<sub>2</sub>O<sub>3</sub>. Le Na<sub>2</sub>O peut être également mentionné car même si les évolutions au sein de chaque type pétrographiques sont affectées par le point d'inflexion,

les compositions ne varient que faiblement sur l'ensemble du SRBIC. C'est pourquoi le Rb, Nb, U, Th et Ga sont donc plutôt à relier au K<sub>2</sub>O et à l'Al<sub>2</sub>O<sub>3</sub> et dans une moindre mesure au Na<sub>2</sub>O. Ces éléments sont donc surtout associés à l'évolution des feldspaths perthitiques ainsi qu'a d'autres phases telles que la biotite et les autres ferromagnésiens.

# 5.3 Etude des spectres en éléments traces

# 5.3.1 Caractéristiques générales des spectres des roches du SRBIC et de ses satellites

L'utilisation des spectres élémentaires permet, en s'affranchissant de l'abondance relative des éléments dans l'univers, de comparer directement les teneurs en éléments traces à un ou plusieurs réservoirs standards. Dans ce but, j'ai normalisé les compositions en éléments traces des roches du SRBIC par rapport au réservoir chondritique (CI). La Figure 5.10 représente donc les teneurs en éléments traces normalisés aux chondrites (McDonough and Sun, 1995) dans des diagrammes multi-élémentaires aussi appelés « spectres étendus ». Dans ces diagrammes, les éléments sont classés des plus incompatibles (à gauche) aux moins incompatibles (à droite) par rapport aux solides, c'est-à-dire leur tendance relative à l'incorporation dans les phases minérales. Cette représentation graphique permet de comparer les différentes caractéristiques en éléments traces des roches plutoniques entre elles et au sein du SRBIC. Les roches mafiques et intermédiaires y sont différenciées des roches felsiques, lesquelles sont représentées en fonction du groupe pétrographique auquel elles appartiennent. En tant que références les teneurs moyennes normalisées pour les basaltes OIB (Ocean Islands Basalts) de Sun and McDonough (1989) ont été superposées dans ces diagrammes.

Le champ grisé représente le domaine de compositions de toutes les roches plutoniques analysées dans cette étude du SRBIC. Ce domaine de compositions comparé au spectre des OIB montre de fortes disparités et anomalies caractéristiques. Il est toutefois intéressant de noter que les roches mafiques et intermédiaires ont des spectres présentant souvent une allure générale assez semblable à celle du spectre représentatif de la moyenne de composition des OIBs (Sun and McDonough, 1989).

Le Ba, Sr et Eu notamment montrent un large domaine de variations allant jusqu'à de fortes anomalies négatives. Ces trois éléments tendent vers des compositions jusqu'à 350 fois appauvries en Ba, 440 fois appauvries en Sr et 20 fois appauvries en Eu par rapport aux OIB de références. Le Sr et l'Eu ne montrent jamais d'enrichissement par rapport aux valeurs des OIB, tandis que le Ba peut être enrichi jusqu'à 2.6 fois la valeur des OIB. Le Nb, Ta, Zr, Hf (+U et +Th) sont des éléments très incompatibles et forment les HFSE (High Field Strength Elements). Ils montrent, au sein du SRBIC, des compositions légèrement appauvries par rapport aux OIB (environ 2 fois moins) jusqu'à des teneurs fortement enrichies d'environ 15 fois plus pour U et Th, 8 à 10 fois pour Nb et Ta, et 12 à 7 fois pour Zr et Hf par rapport aux OIB. Le La, Ce, Pr, Nd et Sm font partie des terres rares dites « légères » (LREE) et sont également très incompatibles. A l'instar des HFSE, leurs compositions au sein du SRBIC varient d'un léger appauvrissement par rapport aux OIB (environ < 1.5 fois moins) jusqu'à des enrichissements 10 fois supérieures aux valeurs des OIB (x15 pour le La, x12, x9.5 pour le Ce, x7 pour le Nd, x3.5 pour le Sm).Les terres rares lourdes (HREE) composées de Gd, Dy, Ho, Er et Yb auquel le Y est classiquement associé, sont les éléments les moins incompatibles. Ce sont également ceux dont les compositions varient le moins au sein du SRBIC. Ils sont appauvris jusqu'à environ 1.7 à 2.3 fois moins que les OIB et enrichie au maximum de 2.9 (Gd) à 4.6 (Lu) fois plus. Enfin, le Rb qui n'est pas une terre rare mais qui un élément en traces incompatible, faisant partie des LILE (Large Ion Lithophile Element), se trouve toujours plus enrichi que les OIB quelle que soit la roche du SRBIC considérée.

Chapitre 5



Figure 5.10: Spectres étendus normalisés aux chondrites, représentés en fonction des différents groupes pétrographiques du SRBIC et de ses satellites

#### 5.3.1.1 Spectres des roches intermédiaires (monzo-gabbro/diorite)

Les 3 échantillons de roches mafiques (±intermédiaires) sont le monzo-gabbro de l'anse du Gros Ventre et 2 monzo-diorites provenant de l'affleurement caractéristique de l'Unité 1 au front de la coulée du Vulcain (13TK43 et 13TK36). Ces 3 roches ont des spectres étendus très proches de celui des OIB. Elles sont légèrement plus enrichies en HFSE (excepté Nb) et LREE, et ont des compositions similaires en HREE. Seul le monzo-gabbro de l'anse du Gros Ventre (TC09-79) à des teneurs en HREE appauvries par rapport aux OIB. C'est également cet échantillon qui présente les anomalies négatives en Sr et Eu les moins fortes, le rapprochant des valeurs des OIBs. Il a également la teneur en Rb la plus faible des échantillons mafiques et la teneur en Ba la plus forte. Le spectre du monzo-gabbro de l'anse du Gros Ventre est donc celui qui se rapproche le plus du référentiel OIB pour les éléments les plus incompatibles et le plus éloigné pour les éléments les moins incompatibles. Les roches mafiques ont des rapports moyens Th<sub>N</sub>/Lu<sub>N</sub> = 23 ±4 et La<sub>N</sub>/Yb<sub>N</sub> = 17 ±3 (1 $\sigma$ ).

## 5.3.1.2 Spectres des roches intermédiaires (monzonites)

Les roches intermédiaires (monzonites) proviennent toutes de l'intrusion satellitaire de la Plage Jaune. L'allure de leurs spectres est comparable en plusieurs points à celui des roches mafiques excepté celui de l'échantillon TC09-79 avec lequel ils diffèrent plus franchement. En effet, les teneurs en Rb sont identiques à celles des roches mafiques les plus enrichies. Seul Ba pour l'échantillon 13TK47 est appauvri par rapport aux OIBs tandis que celui des autres roches intermédiaires est enrichi par rapport à ces derniers et similaire à celui des roches mafiques. Les roches intermédiaires ont également des compositions proches ou légèrement plus enrichis que les roches mafiques en LREE (La, Ce, Pr, Nd, Sm) et les HFSE les moins incompatibles (Zr et Hf). Les plus grandes différences avec les roches mafiques résident dans les HFSE les plus incompatibles (Th, U et Nb) et les HREE (Gd->Lu) pour lesquels les roches intermédiaires sont nettement plus enrichies. Notamment pour le Th et U, les compositions sont jusqu'à x 6.6 et x 4.4 plus enrichies respectivement que celles des roches mafiques. Concernant les HREE, elles ont des teneurs jusqu'à x2 fois celles des roches mafiques. Ces enrichissements sont corrélés avec un appauvrissement des teneurs en Sr et Eu qui sont jusqu'à x3 moins enrichies que celles des roches mafiques. Il est à noter que parmi les roches intermédiaires, l'échantillon TC09-117 a des compositions en éléments traces très proches de l'échantillon mafique le plus enrichi (13TK43), excepté un net enrichissement en U et Th. L'échantillon dont les compositions différent le plus des roches mafiques (et des OIBs) est le 13TK47, considéré plus tôt possiblement comme altéré. Les compositions des roches intermédiaires forment donc un ensemble relativement bien continu avec les roches mafiques avec des allures de spectres semblables, et des anomalies plus prononcées. Toutefois, le net enrichissement en Th, U ( $\pm$ Nd  $\pm$ Ta) confère à ces roches des rapports (Th<sub>N</sub>/La<sub>N</sub>) compris entre 1.7 et 3.4 à celui des roches mafiques compris entre 1 et 1.4. Ces rapports témoignent donc d'un fractionnement plus important entre les HFSE + LREE les plus incompatibles par rapport aux autres éléments en comparaison des roches mafiques. Les roches intermédiaires (monzonites) ont des rapports moyens  $Th_N/Lu_N = 37 \pm 4$  et  $La_N/Yb_N =$ 14 ±2 (1σ).

#### 5.3.1.3 Spectres des syénites du groupe CaS

Les roches plutoniques du groupe CaS ont des spectres qui couvrent une large partie du domaine de variation des compositions analysées pour tout le SRBIC. Les teneurs en Rb couvrent la majeure partie des compositions du SRBIC avec un enrichissement par rapport aux OIB de 2.4 à 9.3. Il en est de même pour le Ba dont quelques compositions montrent un enrichissement jusqu'à 1.5 fois supérieur aux valeurs des OIBs donc identiques à celles des roches mafiques et intermédiaires. Mais la majeure partie des teneurs sont appauvries par rapport à celles des OIBs (et donc aux roches mafiques et intermédiaires) allant jusqu'à des teneurs 62 fois moins enrichies que dans les OIBs.

Les compositions en Th couvrent toutes les compositions du SRBIC, au minimum 2 fois plus appauvries que les valeurs des OIBs et au maximum 14.4 fois plus enrichies. Les teneurs en HFSE, LREE et HREE couvrent également une grande partie du domaine de variations observé pour le SRBIC, allant des teneurs les plus faibles analysées jusqu'à environ les 2/3 des compositions les plus enrichies. Les teneurs des roches du groupe CaS sont toutes appauvries en Sr et Eu. Ces teneurs vont des compositions les plus appauvries des roches intermédiaires jusqu'à des teneurs x257 et x11.2 plus faibles que celles des OIBs pour Sr et Eu respectivement. La majorité des roches du groupe du CaS, sont enrichies en HFSE, LREE et HREE. Seuls 4 échantillons (TC09-10B, TC09-26, TC09-99, 13TK63) montrent un comportement significativement différent pour ces éléments traces et des compositions appauvries par rapport aux OIBs. La majorité de spectres des roches du groupe CaS recouvrent donc ceux des roches intermédiaires avec une majorité de compositions plus enrichies que ces dernières en HSFE (hormis U et Th), LREE et HREE. L'enrichissement en U et Th est moins prononcé que pour les roches intermédiaires et le rapport (Th<sub>N</sub>/Pr<sub>N</sub>) des roches du groupe CaS majoritairement compris entre 2 et 5 contre  $3<(Th_N/Pr_N)_{caNa5} > 6$  pour les roches du groupe CaS. Ces dernières ont des rapports moyens Th<sub>N</sub>/Lu<sub>N</sub> =  $35 \pm 11$  et La<sub>N</sub>/Yb<sub>N</sub> =  $16 \pm 3$  (1 $\sigma$ ).

#### 5.3.1.4 Spectre des syénites du groupe CaNaS

Les spectres étendus des roches du groupe CaNaS montrent une grande variabilité de compositions au sein du SRBIC. 5 échantillons caractérisés par des spectres particuliers se distinguent de la majorité des roches de ce groupe. Considérons dans un premier temps la majorité des roches du groupe CaNaS (en jaune). Toutes ces roches montrent de fortes anomalies en Ba, Sr et Eu. Pour Ba, les teneurs sont appauvries de 9.5 fois la valeur des OIBs jusqu'à des valeurs atteignant la limite de détection de la machine (soit plus de 300 fois moins que la valeur des OIBs). Ces teneurs recouvrent donc en partie les compositions les plus appauvries en Ba des roches du groupe CaS. Même constat pour le Sr, qui montre des compositions similaires aux roches les plus appauvries du groupe CaS et qui s'étendent jusqu'à des valeurs atteignant le seuil de détection de la machine (soit plus de 400 fois moins que la valeur des OIBs). Pour l'Eu, les teneurs du groupe CaNaS recouvrent en grande majorité les teneurs des roches du groupe CaS. Elles varient entre 2.9 fois et 25 fois moins que les valeurs des OIBs. Les compositions des HFSE, LREE et HREE vont des teneurs des OIBs aux valeurs les plus enrichies du SRBIC. Elles recouvrent donc les compositions des roches mafiques, intermédiaires et des roches du groupe CaS. Pour le Rb, les compositions recouvrent une grande partie des compositions du Rb du SRBIC allant des teneurs les plus faibles (x2.3 les teneurs des OIBs) à x6.8 plus enrichies par rapport aux OIBs La majorité des roches du groupe CaNaS (en jaune) ont des rapports moyens  $Th_N/Lu_N = 25 \pm 5$  et  $La_N/Yb_N = 20 \pm 3$  (1 $\sigma$ ).

Les 5 échantillons mis en lumière au sein des CaNaS sont les 3 échantillons de syénite porphyrique (13TK14, 13TK23 et TC09-85, en orange) associée à la zone de transition entre le groupe CaS (unité structurale 1) et le groupe pétrographique CaNaS (unité structurale 2) au niveau de la coulée du Vulcain.

Ces trois échantillons diffèrent clairement du reste des roches CaNaS. Ils possèdent les plus fortes teneurs en Ba, Sr et Eu de ce groupe et ont des teneures en LREE et HFSE parmi les plus faibles. Ces compositions en élément traces les rapprochent nettement des teneurs mesurées dans les roches les plus mafiques du complexes (monzo-gabbro/diorite), excepté pour le Sr qui est plus appauvri que dans ces dernières. L'échantillon 13TK120A se situe sur le flanc nord du mont Lieutard. Il constitue l'une des premières roches du groupe CaNaS dans la vallée de Larmor, au contact avec les roches structuralement au dessus du groupe CaS. Cet échantillon a les teneurs les plus faibles de la majorité des roches du groupe CaNaS (en jaune) pour la plupart des éléments en traces excepté le Ba, Sr et le Eu qui y sont les plus fortes. Excepté ces derniers le spectre de cette roche est également très proche de celui des monzo-gabbro/diorite. Finalement, l'échantillon TC09-131, qui se situe à l'embouchure du Val de Longue Attente, sur le flanc nord du mont L. Lutaud, et qui forme vraisemblablement la bordure intrusive du complexe de l'anse Syénite, montre les teneurs en éléments traces les plus faibles des roches de ce groupe pétrographique. Ses compositions rapprochent le spectre de cet échantillon de celui des roches très appauvries du groupe CaS, à l'exception et Th, U pour lesquels celui-ci est plus enrichi.

# 5.3.1.5 Spectre des syénites du groupe NaS :

Les teneurs en éléments traces des roches du groupe NaS sont parmi les plus éloignées des compositions de référence des OIBS. En effet ces roches comptent parmi les roches les plus enrichies en Rb, HFSE, LREE et HREE. Ce sont également les roches ayant majoritairement les plus fortes anomalies en Ba, Sr et Eu. Seul l'échantillon TC09-126A, considéré comme possiblement altéré, montre une composition en Eu de l'ordre de celle de la monzonite la plus appauvrie (possiblement altéré également), soit 2.9 fois moins enrichi que les OIBS. Les teneurs en Rb sont également les plus enrichies du SRBIC. L'allure générale des spectres des roches du groupe NaS peut être définie par un Th<sub>N</sub>/Lu<sub>N</sub> = 25±5 et un La<sub>N</sub>/Yb<sub>N</sub>= 24 ± 8(1 $\sigma$ ).

## 5.3.1.6 Evolution des éléments traces en fonction de la différenciation

Afin d'étudier l'évolution des teneurs en éléments traces en fonction de la différenciation et en complément des diagrammes de Harker, j'ai choisi de représenter les différents types de roches (syénite/Qz-monzonite/granite) dans des diagrammes de terres rares normalisées aux chondrites.

Les roches du groupe CaNaS montrent le plus grand étalement des niveaux de concentrations des terres rares contrairement à celui des groupes CaS et NaS. Les roches du groupe CaS montrent une plus forte densité de spectres vers les plus faibles teneurs tandis que cette tendance est opposée pour les roches du groupe NaS.

Les roches du groupe CaS, montrent un enrichissement progressif et relativement continu de leurs teneurs en éléments traces avec la différenciation (SiO<sub>2</sub> étant l'indice de différenciation choisi). Ceci s'observe assez bien au niveau des HREE tandis que les spectres des roches les plus différenciées se chevauchent au niveau des LREE. Cette différence se traduit par un rapport La/Lu plus faible dans les roches les plus différenciées traduisant un fractionnement moins important. De plus, le calcul des rapports  $La_N/Sm_N$  et  $Gd_N/Lu_N$  montre qu'avec la différenciation le fractionnement des LREE est légèrement à la hausse, tandis que celui des HREE est plutôt à la baisse. Enfin, malgré quelques particularités, l'anomalie en Eu est globalement plus forte avec l'enrichissement en silice.





Figure 5.11: Diagrammes de terres rares normalisées aux chondrites.

Les roches du groupe CaNaS comprises entre 60 et 66.5% de SiO<sub>2</sub> montrent un enrichissement grossier. Toutefois celui semblent nettement moins continu que pour le groupe CaS. En effet beaucoup des roches de ce groupe se trouvent entre 62 et 65% de SiO<sub>2</sub> et ne montrent donc pas d'enrichissement sur une si faible gamme de silice. Il apparait néanmoins qu'avec la différenciation, le fractionnement des LREE augmente tandis que celui des HREE diminue. La gamme de variation est sensiblement égale à celle des roches du groupe CaS. L'anomalie négative en europium est également moins bien corrélée avec le degré de différenciation bien que la tendance soit dans l'ensemble à son augmentation. Enfin, tout comme pour les roches du groupe CaS, le rapport La<sub>N</sub>/Lu<sub>N</sub> reste sensiblement constant pour les mêmes taux de silice.

Les roches du groupe NaS sont nettement plus enrichies en éléments traces que les autres roches plutoniques. Cependant, il n'y pas de vraiment d'évolution dans les compositions au travers des syénites et des Qz-monzonites. Seuls les spectres des granites diffèrent légèrement et montrent un appauvrissement relatif en LREE et un enrichissement en HREE. En effet, le fractionnement des éléments traces, assez stable dans les syénites et Qz-monzonites diminue avec le passage aux roches de type granite. Toutefois, l'évolution de l'anomalie négative semble bien corrélée avec le degré de différenciation.

#### 5.3.1.7 Evolution des éléments traces dans le temps

Les études structurales et géochronologiques ont permis de mettre en évidence que les roches plutoniques ont été mises en place du sud vers le nord au centre de la péninsule de RdB. En prenant en compte les premiers âges déconnectés du complexe principal, la mise en place s'est déroulée entre environ 13.74 à 7.88 Ma, le volume le plus important formant le SRBIC s'étant mise en place entre 11.57 et 7.88 Ma. Ainsi, un moyen d'appréhender l'évolution des éléments traces au cours du temps est de retracer l'évolution de ces éléments au travers d'une coupe grossièrement N-S. Les analyses géochimiques des roches ont donc été replacées (ou projetées pour les échantillons un peu éloignés) sur

la coupe NNE-SSO réalisée pour l'étude structurale (voir Chapitre 2). Grâce aux échantillons datés le long de cette coupe, l'évolution des éléments en traces peut donc être bornée dans le temps.

La Figure 5.12 représente 7 portions de la coupe NNE-SSO, classées du sud (les plus vieilles) vers le nord (les plus jeunes), et pour lesquels les spectres multi-élémentaires des roches analysées ont été reportés. Dans chaque diagramme représentatif d'une portion de coupe, ont été reportés :(i) les noms d'échantillons classés selon leur teneur pour un élément donné, (ii) la position relative de ces échantillons le long de la coupe. La première portion de coupe (Figure 5.12a) comprend 3 échantillons constitutifs de la plus vieille intrusion de la péninsule de RdB, celle de l'anse du Gros Ventre. Le spectre de référence des OIBs (Sun and McDonough, 1989) a également été ajouté sur ce diagramme à titre de comparaison. Les âges des syénites s'étalent entre 13.74 Ma et 11.87 Ma. Le monzogabbro (TC09-79) est daté entre 13.6 Ma (biotite séparées, Dosso et al., 1979) et 15.7 Ma (K-Ar sur roche totale, (Lameyre et al., 1976). Les compositions de ce monzogabbro sont très proches de celle des OIBs de référence. Son spectre montre tout de même un enrichissement en Rb, en HFSE les plus incompatibles et en LREE ; contrairement au HREE qui sont légèrement appauvris par rapport aux compositions des OIBs. Les 2 syénites précoces ont un spectre tout à fait comparable qui montre un fort enrichissement en LREE et HFSE. Les teneurs en Th notamment sont parmi les plus fortes du SRBIC. Les HREE sont quant à elles faiblement enrichies comparées au monzo-gabbro et aux OIBs. Ces spectres illustrent donc un fractionnement important en élément traces dans les syénites les plus précoces. Bien que les rapports élémentaires soit sensiblement différents, ce fractionnement est également visible dans le plus vieux monzo-gabbro de la péninsule. Les anomalies en Ba, Sr et Eu sont toutes négatives mais d'amplitude relativement faible comparées au spectre des OIBs.

La deuxième portion de coupe (Figure 5.12b) comprend 4 échantillons (3 syénites et une Qz-monzonite) prélevées entre le contact intrusif du SRBIC avec les basaltes de plateau (échantillon TCO9-41 daté à 11.53 ±0.2Ma) et un des petits massifs de syénite situé au SE du front de la Coulée de Vulcain et daté à 11.57 ±0.15Ma (échantillon TCO9-06). Cette portion de coupe du SRBIC s'est donc construite très rapidement. Les spectres de ces 4 roches sont très similaires. La Qz-monzonite est toutefois plus enrichie que les trois syénites pour tous les éléments traces (excepté Zr et Hf). Cependant l'allure du spectre est tout à fait identique à ceux des syénites. Cet enrichissement semble donc être lié à une simple différenciation du même liquide parent que celui des syénites. Comparées aux 2 syénites précoces de l'anse du Gros Ventre ces 4 roches ont relativement les mêmes compositions en éléments traces. Les syénites ont cependant des compositions légèrement plus appauvries en HFSE et LREE, tandis que la Qz-monzonite à des teneurs plus enrichies en HREE. Seules les teneurs en Th et U de ces 4 roches sont moins élevées que celles des syénites plus précoces donnant un aspect plus plat aux spectres au niveau des éléments les plus incompatibles. La grande différence avec les syénites les plus précoces réside dans les anomalies en Ba, Sr et Eu qui sont bien plus importantes pour ces 4 échantillons.

Donc en l'espace de 2.5 Ma pour des roches de même nature, le niveau d'enrichissement en éléments traces n'a pas changer significativement mais les teneurs en Ba, Sr, et Eu se sont nettement appauvries. Ceci implique un fractionnement important des minéraux porteurs tels que les feldspaths perthitiques en profondeur.

La troisième portion de coupe (Figure 5.12c) est constituée de 4 échantillons : 2 syénites, un qzmonzonite et une monzodiorite. Cette portion de coupe prend donc en compte le sill de monzodiorite datée à 11 Ma et localisé au pied de la Coulée de Vulcain. Le premier échantillon de cette portion est une syénite à 60.9% de SiO<sub>2</sub> (TC09-10B) prélevée sur le massif syénitique le plus au sud en contact avec le front de la Coulée du Vulcain. Cette roche montre un spectre clairement différent des autres roches felsiques de cette partie de coupe et des précédentes syénites. Elle est appauvrie en élément traces comparée à la monzodiorite et aux OIBs. Elle possède cependant un spectre de même allure que la monzodiorite en de nombreux points. En effet, seule l'anomalie en Sr donne à cette syénite une allure différente de celle du spectre de la monzodiorite. Plus au nord, une syénite suivie d'une Qz-monzonite montrent des spectres de composition et d'allure identiques entre eux. Ces spectres ont des caractéristiques identiques aux syénites précoces de l'anse du Gros Ventre tels que l'enrichissement en éléments les moins incompatibles. Mais ces 2 roches ont également des caractéristiques proches des syénites de la portion de coupes précédentes telles que des anomalies en Ba, Sr et Eu négatives, prononcées et des teneurs relativement élevées en HREE. Cette partie de coupe du SRBIC contient une succession de sills syénitiques et plus mafiques qui montrent des niveaux d'enrichissements différents. De plus, une des syénites mise en place après la monzodiorite est moins enrichie que cette dernière. Pour un taux de différenciation (SiO<sub>2</sub>) plus élevé cette syénite est moins enrichie en éléments incompatibles que la monzodiorite. Cette syénite ne peut donc être pas le résultat d'une différenciation du même liquide parent ayant formé la monzodiorite. De plus, les différences de compositions entre cette syénite et les autres roches felsiques rencontrées plus au sud impliquent un changement des processus d'enrichissement et/ou un changement au niveau de la source des magmas.



Figure 5.12: Evolution des spectres normalisés aux CI le long d'une coupe SSO-NNE : anse du Gros Ventre – Pic Chastaing

La quatrième partie de la coupe étudiée comprend 4 échantillons et s'étend jusqu'au dernier sill de monzo-diorite mis en place vers le nord et daté à 10.77 Ma. Cette portion de coupe comprend donc les alternances d'intrusions mafiques et syénitiques qui caractérisent l'unité structurale 1. Dans cette petite portion de coupe, l'échantillonnage plus abondant, a permis de mettre en évidence des recoupements chronologiques entre les différentes injections en accord avec les observations de terrain. La syénite la plus jeune étant datée à 10.22 Ma. Dans l'ordre chronologique, c'est la monzodiorite (13TK36) qui s'est mise en place en premier. Les erreurs sur les âges U-Pb peuvent laisser penser que cette monzodiorite  $(10.77 \pm 0.15 \text{ Ma})$  et celle de la partie précédente  $(11 \pm 0.1 \text{ Ma})$  font partie d'une seule et même intrusion. Toutefois, le contact entre les 2 roches ne peut pas être observé car il est aujourd'hui recoupé par des syénites et/ou recouvert par des dépôts récents. De plus, la légère différence minéralogique observée entre les deux roches suggère l'existence de 2 intrusions distinctes bien qu'une variation locale au sein d'une seule intrusion ne peut être exclue. Ceci ne change en rien le propos exposé ici. Cette monzodiorite a en effet un spectre en éléments traces similaire à la précédente monzodiorite. Elle est suivie dans le temps par l'intrusion d'une syénite datée à 10.65 Ma (13TK42) qui a, à peu de chose près, le même spectre. En effet, cette syénite est moins de 1.5 fois plus enrichie que la monzo-diorite en Rb et autres éléments les plus incompatibles jusqu'au Ce. Elle possède en outre les mêmes teneurs en Pr, Nd, Sm, Gd et Dy. Les éléments les moins incompatibles sont jusqu'à deux fois plus enrichis par rapport à la monzodiorite, tout comme le Zr et l'Hf. Seul le Sr montre une anomalie négative avec un appauvrissement de x4.6 par rapport à la monzodiorite. Ainsi, les roches mises en place entre 11 et 10.65 Ma ont des spectres relativement similaires mais l'une d'entre elles est une syénite à 67.2% de SiO<sub>2</sub> présentant une anomalie en Sr. Tout comme pour la syénite TC09-10B de la portion de coupe précédente, il est clair que les différences de compositions entre cette syénite et les autres roches felsiques rencontrées plus au sud impliquent une différence dans les processus d'enrichissement et/ou une différence au niveau de la source. Cette syénite datée à 10.65 Ma est suivie d'une injection de syénite (67.1% de SiO<sub>2</sub>) à 10.22 Ma et de granite (75.9% de SiO<sub>2</sub>). La syénite 13TK45 est une syénite porphyrique qui possède un spectre similaire aux syénites rencontrées plus au sud ou au niveau de l'anse du Gros Ventre. Elle montre également de fortes anomalies en Ba, Sr et Eu. Le granite provenant d'une injection pegmatitique a un spectre différent qui montre des anomalies négatives en Ba, Sr et Eu moins fortes que la syénite porphyrique. Hormis le Th, U, Nb et Ta, il est également moins enrichi que cette syénite. Cet échantillon granitique ne peut donc pas provenir de la différenciation du magma parent de la syénite porphyrique. Cependant, le spectre de ce granite est assez cohérent avec les spectres des syénites rencontrées plus au sud et de celles de l'anse du Gros Ventre. Les différences en LREE et Zr, Hf sont sans doute à mettre en relation avec une proportion plus faible de minéraux porteurs ayant cristallisé dans ce granite tels que les chevkinites et les zircons.

La cinquième portion de coupe (Figure 5.12e) s'étend du dernier sill plutonique mafique alternant avec les syénites au front de la coulée de Vulcain jusqu'aux échantillons de l'unité structurale 2 projetés dans la Vallée des Sables. Cette partie de coupe comprend donc le passage de l'unité 1 constitué des roches du groupe CaS à l'unité 2 constitué des roches du groupe CaNaS. Le diagramme illustre les compositions des 6 échantillons de syénites de cette partie de la coupe et datés entre 9.94 (13TK63) et 9.31 Ma (13TK81A). La première syénite mise en place est en contact avec la monzodiorite précédente datée à 10.77 Ma. Cette syénite du groupe CaS (62.3 %SiO2) est à l'image des syénites précédentes les moins enrichies (TCO9-10B et 13TK42). De ces trois syénites relativement appauvries, celle-ci possède les anomalies les plus négatives en Ba et Sr. De par ses teneurs en HREE, elle ressemble davantage à la syénite appauvrie (TCO9-10B) située la plus au sud de la coupe. Viennent ensuite les syénites porphyriques associées à la zone déformée au front de la Coulée de Vulcain. Ces syénites font partie du groupe pétrographique

CaNaS et marque donc le passage des roches du groupe CaS au groupe CaNaS. Ces deux syénites porphyriques ont des spectres (oranges) de même allure. La syénite porphyrique la moins enrichie est la 13TK14 dont les teneurs sont similaires aux compositions des monzodiorites et monzogabbros rencontrés plus au sud. Seuls le Zr et l'Hf semblent légèrement appauvris par rapport à ces derniers. Elle montre donc des anomalies positives en Ba, négative en Sr et peu ou pas d'anomalie en Eu. La seconde syénite porphyrique a un spectre semblable avec des compositions plus enrichies hormis en Eu. Ces syénites particulières montrent donc une différence notable de niveau d'enrichissement et/ou de source avec les syénites rencontrées au niveau de l'anse du Gros Ventre et dans la majeure partie de l'unité 1. Elles montrent davantage de similitude avec les roches plutoniques mafiques et les syénites les plus appauvries de l'unité 1. Ces syénites porphyriques sont suivies vers le nord par des syénites qui marquent le passage entre l'unité structurale 1 déformée à sa base et l'unité structurale 2. Ces syénites ont des compositions qui sont bornées par celles des 2 syénites porphyriques précédentes. Elles ont notamment les mêmes teneurs en REE. Toutefois ces 3 échantillons de syénites ont des anomalies très négatives en Ba, Sr et Eu (notamment en Ba et Sr pour lesquels elles atteignent presque la limite de détection). Le passage de l'unité 1 à l'unité 2 est donc marqué par un net changement affectant au moins le fractionnement des feldspaths.

La sixième portion de coupe (Figure 5.12f) comprend 9 échantillons et s'étend le long du Massif du Portillon jusqu'aux roches de l'unité structurale 3. Cette partie de coupe illustre donc le passage entre les roches du groupe CaNaS et les premières roches intrusives du groupe NaS (projetées sur la coupe). Les syénites du groupe CaNaS les plus au sud de cette coupe ont les mêmes spectres que les syénites les plus enrichies de la partie de coupe précédente. Elles sont aussi grossièrement de plus en plus enrichies vers le nord mêmes si les deux échantillons les plus riches du groupe des CaNaS ne sont pas strictement les plus au nord. Ces deux échantillons sont les plus riches en silice. Toutefois, il est clair que depuis les syénites les plus vielles de l'unité 2 jusqu'au plus jeunes (< 8.05 Ma) l'enrichissement semble corréler avec la position structurale et, dans une moindre mesure, le taux de différenciation. Au vu des spectres étendus, le passage à l'unité structurale 3 et aux roches appartenant au groupe NaS n'implique pas de changement significatif. Les compositions du granite et de la syénite sont relativement similaires aux syénites les plus enrichies du groupe CaNaS. La différence de nature des échantillons du groupe NaS est due à la position des échantillons, le granite 13TK78 se trouvant sous le contact majeur du portillon et la syénite 13TK80 se trouvant sous le contact sud du massif des Deux Frères. Ces deux échantillons ont les mêmes compositions en HREE. Le granite est plus enrichi en Rb et HFSE les moins incompatibles tandis que la syénite est plus enrichie en LREE. Cette différence est sans doute à relier à la cristallisation plus importante de chevkinite dans la syénite.

La dernière portion de coupe étudiée comprend 5 échantillons (3 syénites et 2 qz-monzonites) de l'unité structurale 3 et s'étend du massif en forme de molaire dans la Vallée jusqu'à la pointe nord-ouest du Massif des Deux Frères. Ces roches du groupe NaS sont parmi les roches les plus enrichies du SRBIC. Bien que la teneur en SiO<sub>2</sub> varie de 66.2 à 68.9% l'enrichissement ne semble pas corrélé avec la différenciation et toutes les roches ont des compositions relativement similaires. Les spectres ont une allure semblable aux syénites du groupe CaNaS de la portion précédente et des compositions semblables à celle qui sont les plus enrichies. Les teneurs varient surtout pour les LREE (La, Ce, Pr) les HFSE les moins incompatibles Zr et Hf, ainsi que les MREE Nd et Sm. Ces variations sont à relier aux différences de proportions de minéraux riches en terres rares telles que les chekvinites et les zircons. Les roches du groupe NaS présentent des anomalies en Ba, Sr et Eu très négatives, similaires ou légèrement plus fortes que celles des syénites CaNaS.

Au travers de cette « coupe géochimique », l'évolution des éléments traces dans le temps a donc permi d'identifier deux comportements distincts entre la succession des roches de l'unité 1 et la succession des roches des unités 2 et 3. Rappelons dans un premier temps que chaque unité est formée par différentes injections successives de roches ayant des degrés de différenciation plus ou moins variés (c.f. Chapitre 1). L'unité 1 est particulièrement caractérisé par des alternances de roches plutoniques mafiques et syénitiques. L'unité 2 et l'unité 3 ne montrent pas une telle variation de degré de différenciation. Toutefois, les roches de l'unité 3 sont majoritairement les plus différenciées du SRBIC.

L'évolution des éléments traces au sein de l'unité 1 se caractérise par l'alternance de spectres enrichis et de spectres appauvris. Les spectres enrichis correspondent à la majorité des roches felsiques. Les spectres appauvris comprennent les roches plutoniques mafiques et quelques roches syénitiques dont certaines sont encore plus appauvries que les monzo-gabbros/diorites. Bien défini dans le temps par la géochronologie, cet appauvrissement des teneurs en éléments traces ne peut donc pas s'expliquer par de simples variations de différenciation d'un même magma parent. Il est clair que ce « reset » des teneurs est induit par un changement dans les processus d'enrichissement lié au changement de composition des magmas parents de ces différentes syénites.

Le passage aux roches du groupe CaNaS (dans la zone déformée) est marqué par des spectres de compositions intermédiaires entre ceux des roches plutoniques mafiques et syénitiques enrichis du groupe CaS. Le passage de l'unité 1 (zone déformée) à l'unité 2 est marqué par le retour à des spectres de syénites de même allure que ceux de la majorité des syénites du groupe CaS mais moins enrichis que ces derniers. L'évolution des éléments traces au sein de l'unité 2 est caractérisée par un enrichissement progressif vers le nord. Malgré des recoupements relatifs à la variation des teneurs en silice dans la superposition des spectres, cet enrichissement est bien corrélé avec la progression vers le nord.

Le passage de l'unité 2 à l'unité 3, donc des roches du groupe CaNaS aux roches du groupe NaS ne peut être distingué dans les éléments traces. Les roches du groupe NaS ont les mêmes spectres que les roches les plus enrichies du groupe CaNaS. Elles montrent également des variations relatives au taux de différenciation mais surtout des variations dues à la proportion de minéraux accessoires tels que les chevkinites et les zircons.

Ainsi, l'évolution des éléments traces au sein de l'unité 2 et de l'unité 3 peut être considérée continue et progressive dans l'espace et dans le temps. Cette unique évolution est directement liée à la structure et donc indirectement au degré de différenciation. Au contraire, l'évolution des éléments traces au sein de l'unité 1 est discontinue et sans relation directe avec le taux de différenciation.

# 5.4 Synthèse de l'étude des éléments majeurs et traces

Les roches plutoniques du SRBIC sont majoritairement des syénites et des monzonites à quartz avec quelques monzogabbros, monzodiorites, monzonites et granites. Elles forment une série plutonique typiquement alcaline avec seulement quelques roches qui ont une affinité alcalino-calcique (Figure 5.1 et Figure 5.2).

Cette étude confirme le gap de composition qui existe entre 57 et 60% de silice et qui sépare les roches mafiques et intermédiaires des roches felsiques sur la péninsule. Ce gap nommé « Daly gap », déjà été observé dans les études précédentes des roches plutoniques des lles Kerguelen (e.g. Bonin and Giret, 1990; Scoates et al., 2007), s'observent également dans de nombreuses séries alcalines volcaniques en domaine océanique (Baker, 1992) comme les Canaries (Chayes, 1977); l'Ascension (Clague, 1978), Hawaii (Cousens et al., 2003) ou encore l'Islande (Bindeman et al., 2012).

La tendance générale de l'évolution des éléments majeurs et traces dans toutes les roches plutoniques du SRBIC, telle que la diminution nette du MgO, du Fe<sub>2</sub>O<sub>3</sub>(total), du CaO, du TiO<sub>2</sub>, du Ba et du Sr et l'augmentation nette en Nb, U et Th lorsque la teneur en SiO2 augmente, marque sans doutes une évolution chimique contrôlée, du moins en partie, par des processus de cristallisation fractionnée avec la formation de phase minérales précoces telles que l'olivine, les pyroxènes calciques, les perthites et les oxydes de Fe-Ti dans un ou des magmas parents chimiquement proches.

Les roches mafiques et intermédiaires ont des spectres présentant une allure générale assez semblable à celle du spectre représentatif de la moyenne de composition des OIBs (Sun and McDonough, 1989). L'allure des spectres des roches felsiques montrent bien plus de différences avec ces derniers, à cause des très importantes anomalies négatives en Ba, Sr et Eu mais aussi des teneurs plus élevées pour les éléments les plus incompatibles.

Concernant les roches felsiques de loin les plus abondantes, l'étude des diagrammes de Harker en fonction des différents types de roches (syénites/Qz-monzonites/granites) permet de mettre en évidence des ensembles de compositions relativement continus, pour de nombreux éléments majeurs et traces, des syénites les moins enrichies en SiO2 aux granites les plus différenciés (Figure 5.3, Figure 5.4 et Figure 5.7). Cette continuité implique donc que les compositions des roches sont relativement similaires quel que soit le groupe pétrographique auxquelles elles appartiennent pour une concentration en SiO2 donnée. Cette caractéristique est notamment vraie pour les syénites les moins riches en silice du groupe NaS qui ont toujours les mêmes teneurs en éléments majeurs et traces que les syénites les plus différenciées du groupe CaNaS.

Toutefois dans le détail, il est clair que les roches du groupe CaS définissent une série qui se distingue d'une série formée des roches CaNaS et NaS. Que ce soit par des évolutions et/ou compositions légèrement différente avec l'augmentation du degré de différenciation cette distinction se retrouve aussi bien au niveau des éléments majeurs que des éléments en traces (Figure 5.5 et Figure 5.8). Au niveau des traces, ces évolutions sont souvent en partie floutées par le contrôle qu'exerce certaines phases minérales accessoires sur les concentrations de certains éléments traces, comme par exemple le zircon pour Zr, Hf, U et Th et la chevkinite pour les terres rares (en particulier les légères). De plus, les roches felsiques les moins différenciées de ces deux lignées ont des teneurs en éléments très similaires. Ceci pourrait supposer que les compositions des magmas parents de ces deux séries sont identiques.

Finalement, l'étude géochimique des éléments majeurs et des éléments traces va dans le même sens que l'étude pétrographique en montrant qu'il existe deux grandes unités plutoniques au niveau du SRBIC sensu lato:

-une plus ancienne (entre 13.7 et environ 9.45Ma) constituée par l'ensemble des roches du groupe pétrographique CaS auxquelles peuvent être associées les roches mafiques/intermédiaires. Dans le temps, cette série est discontinue montrant des variations hétérogènes du degré de différenciation ainsi que des épisodes répétés d'appauvrissement en éléments traces. Ce résultat porte à croire que cette série dont l'évolution est en partie contrôlée par des processus de cristallisation fractionnée subit des épisodes répétés de recharges magmatique du réservoir magmatique à partir duquel elles sont extraites. Cette série semble donc avoir évolué dans un système magmatique relativement ouvert.

- une plus récente (entre 9.45 et 7.88 Ma) qui regroupe les roches felsiques CaNaS et NaS dont les termes sodiques sont les plus différenciées et les plus jeunes. Ce résultat montre que cette série dont l'évolution est également contrôlée par des processus de cristallisation fractionnée, évolue au sein d'un système magmatique clos.

# Chapitre 6 : Géochimie isotopique

La détermination des compositions isotopiques en Sr et Nd a été effectuée pour 34 échantillons dont 2 monzogabbro/diorites, 1 monzonite, 24 syénites (<66.5% SiO<sub>2</sub>), 4 monzonites à quartz (<67.1% SIO<sub>2</sub>), 2 granites (>70% SiO<sub>2</sub>) et 1 trachyte. Les rapports père/fils pour les deux systèmes isotopiques ont été directement mesurés sur un ELEMENT XR, sur une aliquote de chaque échantillon destiné à la mesure des compositions isotopiques. Les syénites et lithologies associées sont susceptibles de présenter des très forts rapports Rb/Sr et donc de développer rapidement des signatures fortement radiogéniques en Sr, ce qui justifie la détermination précise des rapports père/fils. Les rapports isotopiques ont été mesurés au GET sur un TIMS Finnigan Mat 261 (1987). Le comportement des deux systèmes isotopiques étant très différents pour ce type de faciès, les deux géochronomètres sont traités séparément. Les résultats et détails des traitements appliqués sont reportés en annexe.

## 6.1 Système Rb/Sr

## 6.1.1 Résultats à l'actuel

Les données sont reportées dans un diagramme isochrone (Figure 6.1) classique en fonction des affinités pétrographiques.



Ce diagramme rend compte de la grande variabilité des rapports isotopiques mesurés sur le SRBIC. Les rapports isotopiques mesurés varient entre 0.705720 et 0.706947 pour les roches mafiques. Le 13TK47 est la seule roche intermédiaire (monzonite) à avoir été analysée et présente un rapport de 0.705833. Les roches mafiques et intermédiaires montrent donc des rapports isotopiques relativement semblables contrairement aux roches felsiques. Les syénites du groupe CaS qui se situent entre 62.3 et 67.1% de SIO<sub>2</sub> présentent des rapports isotopiques mesurés entre 0.706130 et 0.714997. Une seule Qz-monzonite (TC09-75) a été mesurée avec un rapport de 0.706173. Enfin, un seul granite du groupe CaS a également été mesuré avec un rapport de 0.713863. L'ensemble des roches appartenant au groupe pétrographique CaS (entre 62,3 et 71,6 % SiO<sub>2</sub>) présentent donc des rapports isotopiques variant de 0,706130 à 0,714997.

Les syénites du groupe pétrographiques CaNaS (entre 60,25 et 64,8% SiO<sub>2</sub>), dont fait partie la syénite 13TK23 de la zone fortement déformée, présentent des rapports isotopiques allant de 0,705790 à 0,722467. Ce sont les échantillons du groupe NaS qui montrent la plus grande amplitude de variation isotopique, avec des syénites allant de 0.719495 à 0.725521, jusqu'au granite à 0.716503, en passant par deux Qz-monzonites ayant des rapports de 0.749252 et 0.757258. Ces deux dernières ont donc des rapports isotopiques bien supérieurs aux autres roches du complexe. Pour élargir le champ des données mesurées sur les syénite du SRBIC, une trachyte tardive recoupant les syénites a également été mesuré et se situe à 0.710447. Et finalement, un échantillon de syénite appartenant au groupe NaS, situé à l'entrée de la Vallée Milady et faisant partie du CRBIC donne un rapport isotopique mesuré de 0.719442.

Globalement, l'ensemble des échantillons se répartit de manière hétérogène autour d'une isochrone théorique moyenne montrant un âge cohérent (environ 12Ma) avec ceux connus dans le massif. Cependant, il semble que la dispersion des données augmente avec le rapport <sup>87</sup>Rb/<sup>86</sup>Sr, ce dernier pouvant atteindre des valeurs extrêmes, autour de 230. Avec de telles valeurs, les syénites vont développer en un bref laps de temps des signatures très radiogéniques. Effectuer une correction d'âge est donc critique si l'on veut discuter de la source de ces magmas. C'est pourquoi, j'ai représenté une seconde isochrone théorique ne prenant pas en compte les 2 qz-monzonites au rapport père/fils les plus élevés. Bien que cette deuxième isochrone montre également un âge cohérent avec les données géochronologiques, la dispersion des rapports isotopiques ne peut s'expliquer par une source isotopiquement homogène commune à tous les échantillons.

Sans faire un zoom détaillé des valeurs les plus faibles en (<sup>87</sup>Rb/<sup>86</sup>Sr)<sub>calculé</sub>, il apparait également impossible d'identifier sur ce diagramme isochrone une source homogène pour chaque groupe pétrographique.

La majorité des échantillons ayant été datés par la méthode U/Pb in situ sur zircon, les rapports isotopiques du Sr ont été corrigés de l'âge déterminé pour chaque échantillon. Parmi ces échantillons, seuls 4 échantillons n'ont pas été datés par cette méthode. L'âge du monzo-gabbro (13TK002) provient de l'étude géochronologique de Dosso et al., 1979 qui ont également daté un gabbro provenant du même affleurement (anse du Gros Ventre / K-Ar sur biotite séparées). Cet âge est identique à l'âge obtenu ici par U-Pb pour la première intrusion syénitique dans la même aire géographique (échantillon TC09-82). Les âges des échantillons 13TK77 et TC09-59 ont été estimés de par leur position structurale en accord avec la géométrie et géochronologie de mise en place du complexe. En plus de ces critères, l'âge estimé de l'échantillon TC09-131 (Anse !syénite) est supporté par une datation Ar-Ar sur apatites séparées (F.Ahadi et al, in progress – communication personnelle).

# 6.1.2 Résultats à l'état initial

Les données ont été reportées dans un diagramme isochrone initial, c'est à dire où les rapports <sup>87</sup>Sr/<sup>86</sup>Sr et <sup>87</sup>Rb/<sup>86</sup>Sr sont corrigés des âges U-Pb de chaque roche obtenus précédemment.



La plupart des échantillons tombe dans un intervalle de compositions isotopiques initiales plus restreint, tout en conservant une grande variabilité des rapports <sup>87</sup>Rb/<sup>86</sup>Sr. Toutefois, certaines syénites des groupes CaNaS et NaS présentent des compositions isotopiques initiales fortement radiogéniques (0.713196 pour CaNaS-13TK81A et 0.723058 à 0.733282 pour NaS-13TK106 et 13TK108 respectivement) et non documentées dans cette région.

Ce résultat pose la question de la validité de la correction d'âge et surtout de la propagation d'erreur de ce calcul sur la valeur initiale. Dans des lithologies anciennes ou métamorphisées, la perte de Rb, préférentiellement au Sr, est souvent envisagée pour expliquer la mauvaise estimation des compositions initiales. Cette hypothèse ne peut cependant pas s'appliquer dans le cas des roches plutoniques de la péninsule. Une autre explication peut être un décalage temporel entre la fermeture des géochronomètres U/Pb sur zircon et Rb/Sr sur roche totale. En effet, les rapports <sup>87</sup>Rb/<sup>86</sup>Sr extrêmes vont favoriser le développement de signatures différentes si ces deux chronomètres s'initialisent avec un décalage dans le temps. Là aussi, les signatures initiales calculées nécessiteraient un décalage temporel trop élevé (de l'ordre de plusieurs millions d'années pour les Qz-monzonites par exemple), incompatible avec le temps de refroidissement d'un corps magmatique de cette taille (e.g. Annen et al., 2015). Etant donné que la correction de l'âge a un impact cohérent pour la majorité des échantillons, je suppose que les échantillons dont les rapports isotopiques initiaux sont les plus forts (13TK81, 13TK106 et 13TK108) et
qui divergent fortement des autres données ont donc certainement subit un biais analytique (tel qu'une hétérogénéité lors du prélèvement avant la mise en solution). Ils ne peuvent pas être considérés comme viables dans le système Rb/Sr et ne seront donc pas considérés par la suite.



Figure 6.3: Diagramme de compositions isotopiques initiales en Sr reportées en fonction des âges de chaque échantillon.

Considérant de manière pragmatique ces résultats, les rapports initiaux en Sr pourraient s'interpréter comme le reflet de sources isotopiques aussi diverses que le nombre d'échantillons analysés (

Figure 6.3). Cette première interprétation peu réaliste doit être mise en parallèle des données isotopiques acquises dans le système suivant. Toutefois la carte de répartition des valeurs initiales montre un net signal au centre du complexe (Figure 6.4).



 Figure 6.4: Carte de répartition
des compositions isotopiques
initiales en strontium corrigés de l'âge U-Pb des échantillons.

# 6.2 Système Sm/Nd

Deux échantillons de plus ont été analysés par rapport aux analyses en Strontium que sont le 13TK117B (daté à 8.75Ma) et le 13TK118A (9.45Ma). Le même traitement de données a été effectué pour le couple père-fils Sm/Nd.

Les rapports isotopiques <sup>147</sup>Nd/<sup>144</sup>Nd mesurés sur l'ensemble des échantillons du SRBIC s'échelonnent entre 0.512276 et 0.512628. Toutefois, mis à part un échantillon de composition intermédiaire (monzo gabbro) et trois syénites (deux CaS et une CaNaS), la plupart des mesures se concentrent dans une gamme assez restreinte entre 0.512502 et 0.512628 qui sont 2 syénites du groupe CaS. Les roches du appartenant au groupe CaNaS s'étalent entre 0.512542 et 0.512613. Les roches du groupe NaS se concentrent entre 0.512563 et 0.512627. Les 4 échantillons dont les rapports isotopiques sont très faibles en comparaison des autres roches du SRBIC s'étalent entre 0.5122276 et 0.512418. Ces échantillons sont un monzo-gabbro, deux syénites du groupe CaS et une syénite du groupe CaNaS. L'échantillon de trachyte tardive et la syénite du CRBIC ont des rapports isotopiques similaires aux autres échantillons du SRBIC.

De la même façon que pour le couple Rb/Sr, les données isotopiques du système Sm/Nd sont reportées sur un diagramme isochrone (Figure 6.5).





Il n'apparait aucun alignement particulier, contrairement à celui présenté dans le diagramme isochrone Rb/Sr, mais la gamme de variation du rapport <sup>147</sup>Sm/<sup>144</sup>Nd est beaucoup plus faible. Ceci ajouté à la période de demi-vie du <sup>147</sup>Sm fait que le développement de signatures radiogéniques sur des échantillons jeunes est assez improbable. De la même manière que pour le Sr, les données ont été corrigées de l'âge en utilisant les âges U/Pb sur zircon et reportées dans un diagramme isochrone initiale (Figure 6.6).



Les valeurs corrigées sont pratiquement identiques aux valeurs mesurées et les échantillons avec des valeurs nettement moins radiogéniques conservant leurs spécificités. La correction maximale est de  $-1.10^{-5}$  et de  $-6.10^{-6} \pm 1.10^{-5}$  en moyenne du rapport isotopique <sup>143</sup>Nd/<sup>144</sup>Nd sur l'ensemble des échantillons. Cette correction se situe donc dans l'erreur sur la mesure des rapports isotopiques actuels.

Mis à part les 4 échantillons les moins radiogéniques (13TK001, 13TK002, TC09-131 et TC09-82), le fait que les compositions isotopiques initiales en Nd présentent peu de différences est un argument de plus pour affirmer que certaines des compositions isotopiques initiales en Sr sont entachées d'erreur, en particulier celles des échantillons possédant de très forts rapports corrigés. En effet, à part sur des roches ayant subi de fortes interactions avec des fluides hydrothermaux comme l'eau de mer, il n'est pas documenté de découplage aussi fort entre ces deux traceurs isotopiques sur des lithologies magmatiques. Les données en Nd confirment donc la non-viabilité des données Rb/Sr envisagée précédemment des deux monzonites à quartz (13TK106 et 13TK108) et de la syénite du groupe CaNaS (13TK81).

A l'instar du couple Rb/Sr les rapports isotopiques initiaux en Nd ont été reportés en fonction de l'âge des échantillons afin d'étudier l'évolution de ces rapports dans le temps à l'échelle du complexe plutonique.



Figure 6.7 : Diagramme des compositions initiales en Nd reportées en fonction de l'âge de chaque échantillon

A l'exception des 4 échantillons les moins radiogéniques, la Figure 6.7 précédente permet de montrer une certaine évolution non linéaire de la composition isotopique initiale au sein des différents groupes pétrographiques. En effet, ne considérant que les valeurs médianes de chaque groupe pétrographique, un signal à grande échelle semble se dessiner. Ces valeurs ont été calculées sans tenir compte des 4 échantillons particuliers, ni des échantillons 13TK008 (filons trachytique tardif) et TC09-135 (complexe CRBIC). Ces valeurs médianes sont respectivement de  $0.512547 \pm 0.000056$  (2 $\sigma$ ),  $0.512561 \pm 0.000037$  et 0.512572 ± 0.000030 pour les roches du groupe CaS, CaNaS et NaS respectivement. Les roches appartenant au groupe pétrographique CaS datées entre 11.57 et 9.35 Ma ont la valeur médiane la plus faible. Avec le passage aux roches du CaNaS comprises entre 9.38 et 8.1 Ma cette valeur médiane isotopique augmente. Cette augmentation semble se prolonger vers les roches appartenant au groupe NaS datées entre 8.1 et 7.88 Ma. Ces observations doivent être modérées de la dispersion des valeurs isotopiques au sein de chaque groupe. En effet, l'évolution entre les roches du groupe CaNaS et NaS peut également être considérée comme stable. Malgré l'amplitude de variation, il parait plus difficile de considérer une évolution stable en partant des roches du groupe CaS. Le filon de trachyte tardif 13TK008 (7.93 Ma) et la syénite TC09-135 (7.31 Ma) qui appartient au CRBIC semblent confirmer une certaine augmentation des rapports isotopiques vers les termes les plus jeunes.

Quatre échantillons ont des compositions initiales qui sont très différentes du reste des échantillons du SRBIC. Trois de ces échantillons proviennent d'une même zone géographique. De nature différente, ces échantillons sont les plus vieux du SRBIC et forment le petit complexe plutonique, structuralement déconnecté du complexe majeur SRBIC, anciennement décrit et nommé « satellite » de l'anse du Gros Ventre. Les compositions initiales de ces trois échantillons sont clairement les plus faibles de la péninsule de RdB avec une moyenne de  $0.512297 \pm 0.000046$  (2 $\sigma$ ). La composition isotopique initiale la plus faible (0.512268) est atteinte pour l'échantillon syénitique le plus vieux (13.74Ma). Un dernier échantillon donne une composition isotopique initiale de  $0.512412 \pm 0.000017$  intermédiaire entre ces roches les plus vieules et la majorité des échantillons du SRBIC. Cet échantillon (TC09-131) dont l'âge est estimé autour de

9.45Ma est lui aussi situé au niveau d'une intrusion considérée comme satellite du SRBIC et nommée « l'anse Syénite ».

Pour résumer, en dépit de variations relative d'un échantillon à l'autre, il semble exister une source relativement homogène en néodyme à l'origine de la majeure partie des roches du SRBIC. Il est possible que cette source unique ait pu évoluer légèrement entre 11.5 et 7.3 Ma vers des compositions légèrement plus radiogéniques. D'autre part, il existe au moins une composante bien moins radiogénique à l'origine (ou au moins en partie) d'intrusions mineures structuralement déconnectées du volume le plus important de roches plutoniques mises en places formant le SRBIC. La Figure 6.8 suivante illustre cartographiquement les compositions initiales en Néodyme du SRBIC (réalisée avec le logiciel Surfergoldensoftware.com).



Figure 6.8 : Carte de répartition des valeurs initiales en Nd sur la péninsule de Rallier du Baty.

#### 6.3 Corrélation des deux systèmes isotopiques

De nombreuses études isotopiques ont été conduites sur l'archipel et le Plateau de Kerguelen depuis les années 70. Elles ont permis de contraindre et d'affiner les compositions isotopiques des sources mises en jeu dans la genèse des roches constitutives du plateau depuis environ 118Ma. Plus récemment, les dernières études isotopiques ont permis de relier génétiquement le plateau océanique de Kerguelen à plusieurs localités continentales attestant de l'impact du point chaud dès 140-130Ma, précédant de peu la dislocation du Gondwana. Afin de replacer les échantillons du SRBIC dans le contexte du plateau océanique, les résultats isotopiques des couples Rb/Sr et Sm/Nd ont été comparés aux données disponibles sur le plateau de Kerguelen dans la littérature.



← Figure 6.9: Diagramme de corrélation Nd<sub>initial</sub> et Sr<sub>initial</sub> des données provenant du LIP lié à la présence du panache de Kerguelen. a) à grande échelle, b) zoomée sur les roches intrusives de l'archipel.

La  $\leftarrow$  Figure 6.9 représente les différentes compositions isotopiques corrigées des âges attribués dans la littérature. L'ensemble des compositions isotopiques utilisées est reportée en annexe.



Figure 6.10: Diagramme de corrélation Nd<sub>initial</sub> vs Sr<sub>initial</sub> centré sur les données obtenues de péninsule de RdB.

Dans cette représentation  $\leftarrow$  Figure 6.9a, les basaltes du plateau océanique (>68 Ma CKP et SKP) présentent tous l'implication d'une contamination crustale continentale (en brun). Les basaltes du NKP (bleu) ainsi que ceux de la Ninetyeast Ridge se retrouvent entre les pôles des MORB typiques de la SEIR et du panache de Kerguelen, témoignant de l'interaction des deux pôles à l'origine de ces basaltes. Les basaltes qui forment l'archipel témoignent donc également de ces deux influences mais le pôle du plume de Kerguelen devient de plus en plus prédominant avec l'éloignement de l'archipel par rapport à la dorsale au cours du temps. Les roches intrusives mises en place dans les basaltes de l'archipel dont les premières forment le pluton du Val Gabbro (24.25 Ma – en pourpre) ont toutes été interprétées comme formées par la source de type panache de Kerguelen, plaidant pour une certaine hétérogénéité intrinsèque menant à une certaine variation de compositions (en rose). Les données isotopiques en Rb/Sr qui sont utilisées dans la littérature comme référence pour le panache de Kerguelen (e.g. Mattielli et al., 2002; Ingle et al., 2003; Scoates et al., 2007) proviennent de l'échantillonnage du Mont Crozier alors considéré comme son expression la plus pure (notamment grâce à ces compositions isotopiques extrêmes en Pb). Au contraire des données isotopiques Pb et Hf, les données géochimiques (majeurs et traces) et isotopiques en Sr et Nd de ce dernier ne sont pas publiées et uniquement cité sous cette appellation : Weis et al. 1998 unpublished data. Seule une moyenne des données du plume Rb/Sr = 0.70523 et Sm/Nd = 0.51259 apparait dans Weis et Frey (2002). En prenant en compte ce manque de données et les variations isotopiques du pôle utilisé comme référentiel dans la littérature, j'ai utilisé des valeurs de 0.7053 en Rb/Sr et 0.512598 en Sm/Nd pour la composition isotopique du plume de Kerguelen. Ces valeurs qui sont des moyennes graphiques et numériques, sont tout à fait cohérentes avec les valeurs recensées dans la littérature pour le plume (e.g. Weis et al., 1998; Weis and Frey, 2002; Doucet et al., 2002; Mattielli et al., 2002; Ingle et al., 2003; Delpech, 2004; Scoates et al., 2007; Xu et al., 2007).

Les données isotopiques du SRBIC et de ses satellites ne se répartissent pas au hasard, mais tombent pour la majorité dans un domaine correspondant aux roches issues du point chaud de Kerguelen (en rose), du moins pour les compositions isotopiques en Nd. Il est donc cohérent de supposer que la source de type panache de Kerguelen soit à l'origine de la majorité de ces roches telle qu'il a déjà été proposé auparavant (Dosso et al., 1979; Dosso and Murthy, 1980).

Les 4 échantillons les moins radiogéniques en Nd se retrouvent dans le champ des basaltes continentaux de Bundury (137 Ma – Australie) et proches de ceux de Rajmahal (118Ma). Hormis ces derniers, comme documenté précédemment, les valeurs en (<sup>87</sup>Sr/<sup>86</sup>Sr)initial sont toujours très variables, jusqu'à des rapports corrigés fortement radiogéniques, décorrélés du Nd. Cependant la majeure partie des syénites du groupe CaS sont anti-corrélées en Sr et Nd (Figure 6.10). Ce type de comportement est habituellement attribué à un phénomène de mélange ou de contamination crustale. Afin de déterminer les sources potentiellement responsables d'un tel comportement toutes les données isotopiques disponibles ont été corrigées à 14Ma, c'est-à-dire l'âge de la première intrusion plutonique de la péninsule de Raller du Baty. Les données isotopiques des roches plus jeunes n'ont pas subi cette correction (Figure 6.11).

La tendance des roches du groupe CaS anti-corrélées en Sr et Nd nécessite l'implication d'une source fortement radiogénique en Sr et faiblement radiogénique en Nd. D'après la Figure 6.11, ces caractéristiques sont remplies par les sources formant les domaines du site 1137 qui implique une participation de la croûte continentale, soit limitée (1137-CC : conglomérat, grès, trachyte et rhyolite) soit totale (gneiss d'Elan Bank). La contribution d'une telle source est bien connue dans la genèse des complexes plutonique continentaux (e.g. Eby, 1985; Landoll et al., 1994; Harris et al., 1999 parmi d'autre) sachant que la migration et différentiation magmatique de ces corps sont des facteurs facilitant les interactions avec l'encaissant.

Afin de tester cette hypothèse, j'ai réalisé une modélisation du comportement des signatures isotopiques lors d'un processus de contamination crustale de type AFC (assimilation-fractionnal crystallisation) entre un pôle primaire de composition type « panache de Kerguelen » et un pôle de type croûte continentale. Les détails de cette modélisation sont reportés en annexe. N'ayant pas réalisé de modélisation pétrogénétique, j'ai utilisé la composition d'un microgabbro de Val Gabbro (24.25Ma - péninsule de Jeanne d'Arc) comme proxy de la composition du magma parent des syénites de RdB. Cette considération repose sur l'étude Scoates et al, (2007) montrant qu'il était possible de former les roches plutoniques felsiques du Val Gabbro à partir de cette composition typique de liquide basaltique alcalin et dont les corroborée par de nombreuses études montrant que les magmas felsiques alcalins en domaine océanique peuvent être produit par différenciation ultime de liquide basaltique alcalin (Marsh et al., 1991; Bonin et al., 1994; Gagnevin et al., 2003; Cousens et al., 2003; Martin and Sigmarsson, 2007). Le pôle contaminant de type « croûte continentale » est représenté par l'équivalent récent (dont les compositions isotopiques ont été recalculées à 14 Ma) du « vieux » gneiss d'Elan Bank.

Chapitre 6



Figure 6.11: haut) Diagramme de corrélation Nd<sub>initial</sub> vs. Sr<sub>initial</sub> avec toutes les compositions recalculées à 14Ma (excepté les plus jeunes), bas) résultats de modélisation AFC entre le panache de Kerguelen et le gneiss d'Elan Bank et mélange entre le panache de Kerguelen et le manteau métasomatisé à l'origine des lamproïtes du Gaussberg.

Les résultats de cette modélisation sont illustrés dans la Figure 6.11. L'AFC montre qu'il est possible de modéliser les compositions de la majeure partie des roches du CaS grâce à l'assimilation de croûte continentale par les liquides primitifs des roches du SRBIC avec un rapport de Masse assimilée/Masse cristallisée de r = 0.4 et ce dans les premiers 10 pourcents de cristallisation fractionnée.

Si les incertitudes sur les compositions du pôle primitif ou le % de masse assimilée permettent d'obtenir différentes modélisations, il est n'en reste pas moins clair que la majeure partie des compositions des roches du groupe CaS sont le reflet de l'interaction de liquide basaltique issu d'une source type panache de Kerguelen avec un contaminant de type croûte continentale probablement identique au gneiss d'Elan Bank.

Même si cette modélisation est satisfaisante pour les roches CaS, elle ne peut expliquer les valeurs faiblement radiogéniques en Nd qui caractérisent les échantillons de l'anse du Gros Ventre et de l'Anse Syénite. En effet, le seul contaminant « continental » ne peut expliquer ces compositions. Ces dernières traduisent donc l'implication d'une autre composante faiblement radiogénique en Sr et faiblement radiogénique en Nd dans leur genèse. Cet autre contaminant, dictée par la position de ces échantillons dans le diagramme (Nd/Nd)initial vs (Sr/Sr)initial pourrait être la source supposée à l'origine des lamproites du Gaussberg (Antarctique). Cette source a été récemment identifiée par (Olierook et al., 2017) comme étant un manteau métasomatisé. Afin de tester également cette hypothèse, j'ai donc réalisé une seconde modélisation isotopique. Toutefois, les concentrations élémentaires des pôles sont telles qu'une assimilation de type AFC ne permet pas d'expliquer les valeurs faiblement radiogéniques en Nd. Ces compositions isotopiques particulières ne peuvent être modélisées que grâce au mélange en profondeur entre des liquides basaltiques issus de la fusion d'un manteau métasomatisé à l'origine des Kerguelen » et des liquides basaltiques issus de la fusion d'un manteau métasomatisé à l'origine des roches du Gaussberg dans des proportions inférieures à 20%. Les résultats de cette modélisation (mixing curve) sont représentés dans la Figure 6.11bas.



Figure 6.12: Diagramme de corrélation Nd<sub>initial</sub> vs Sr<sub>initial</sub> illustrant les résultats de l'AFC (avec r=0.4) des roches CaS vieillies (jusqu'à 6Ma) par les suivantes. Le domaine en dégradé rouge représente le faible impact du gneiss et/ou du manteau métasomatisé. Les pourcentages représentent le taux de CF de l'AFC.

Les résultats des modélisations d'AFC et de mélange magmatique permettent donc d'expliquer la plupart des roches du groupe CaS ainsi que les échantillons faiblement radiogénique en Nd. Plusieurs échantillons tels que la monzodiorite au front de la coulée de Vulcain, la monzonite de l'intrusion satellite de la plage jaune (CaS), la syénite de la zone déformée proche de la coulée du Vulcain, ainsi qu'une syénite du groupe CaNaS sur le mont des Deux Frères peuvent également s'expliquer soit par la simple origine du panache de Kerguelen soit par des processus semblables aux modélisations précédentes. Toutefois, les compositions initiales pour 2 syenites du groupe CaS mais surtout celles de la majeure partie des roches CaNaS et toutes celles des NaS sont trop radiogéniques en Sr pour être expliquées par ces processus. L'explication la plus plausible est que les magmas à l'origine des roches les plus jeunes du complexe (CaNaS et nas) aient intérLes roches des groupes CaNaS et NaS étant plus jeunes que les roches CaS, ces syénites plus récentes ont probablement interagit avec les roches déjà cristallisées. Une dernière modélisation d'AFC, dont les résultats sont illustrés dans la Figure 6.12, permet de vérifier cette hypothèse. Un laps de temps suffisant permet aux syénites les plus anciennes de développer des signatures plus radiogéniques en Sr et Nd. Ce décalage est représenté par les traits pleins à 4 et 6 Ma issus du vieillissement des compositions « idéales » provenant de la première modélisation d'AFC avec le gneiss d'Elan Bank. Si les compositions des liquides syénitiques qui vont former les syénites les plus récentes sont au départ identiques à ces compostions CaS modélisées, alors l'assimilation des premières syénites ayant vieilli de plusieurs millions d'années permet de fortement enrichir en Sr les plus récentes sans affecter le Nd. Ces processus d'assimilation sont représentés par les traits en pointillés.



Figure 6.13: Diagramme de corrélation Ndinitial vs Srinitial corrigés à 14 Ma centré sur les données obtenues de péninsule de RdB.

Il est donc possible de modéliser les compositions initiales des roches les plus récentes du SRBIC grâce l'assimilation des roches préalablement formées. En effet, la composition initiale calculée pour l'échantillon NaS le plus radiogénique en Sr (13TK80) est atteinte pour une masse assimilée/Masse cristallisée de 0.4 dans les 15 premiers pourcents de cristallisation fractionnée. Même si la contamination crustale qui dicte les compositions d'entrée des ces liquides syénitiques récents peut être discutable, il est clair que le manteau métasomatisé « contaminant » n'est pas ou très peu impliqué dans la genèse de ces roches au vu de la gamme de variation des rapports en Nd.

Pour résumer, les modélisations isotopiques précédentes ont permis d'expliquer les compositions isotopiques de la majeure partie des échantillons. Cependant, au moins un granite appartenant aux roches du groupe CaS reste inexpliqué. Sa composition en néodyme suggère qu'il est sans doute un produit majoritairement issu du panache de Kerguelen. Pourtant sa faible composition en Sr ne permette pas d'en faire l'unique source. Ce granite tombe proche du domaine des basaltes de plateau issus du site 1137 d'Elan Bank sans doute contaminés par la croûte continentale lorsqu'ils sont corrigés à 14Ma (Figure 6.13). De plus, il est également dans le domaine des basaltes continentaux du Rajmahal (Inde). Bien qu'un peu faible en Sr, ceci est un argument pour bien relier ce granite avec les autres roches CaS modélisées par la contamination crustale.

L'un des paramètres les plus sujets à controverse dans l'interprétation de ces données isotopique réside dans l'incertitude sur les valeurs isotopiques du panache de Kerguelen. En effet, comme illustré sur la ← Figure 6.9, les données disponibles dans la littérature permettent de contraindre ce panache entre 051255 et 0.51256. Même si cette gamme de variation parait faible, c'est dans cette gamme que se situent la plupart des données du SRBIC et notamment les roches les plus récentes. C'est pourquoi, la contamination crustale à l'origine des liquides syénitiques les plus récents ne peut être vérifiée et, si elle a bien eu lieu, son impact a été minime. Au contraire, l'anti-corrélation à l'intérieur du groupe des roches CaS ne laisse pas de place au doute. Le décalage des compositions les plus récentes vers des valeurs plus radiogéniques en Sr sans variations en Nd s'explique par « l'auto-contamination » des roches du SRBIC. L'assimilation des roches les plus anciennes permet de modéliser ces compositions récentes. Ce processus peut également être invoqué pour deux roches du groupe CaS enrichies en Sr radiogénique. Cette hypothèse est cohérente avec les arguments géochronologiques de terrains et in-situ qui montrent que ces roches 13TK42 et 13TK45 recoupent des roches préalablement mises en places. Il faut noter que l'assimilation + cristallisation nécessaire pour modéliser leurs compositions est moindre que pour les roches plus récentes. Enfin, le mélange entre une source dominante qu'est le panache de Kerguelen et une source mantellique métasomatisé permet de modéliser les compositions les moins radiogéniques en Nd des roches provenant de plusieurs satellites du SRBIC. Comme évoqué précédemment pour la contamination continentale, il est difficile d'impliquer ce type de mélange pour le reste des roches du complexe étant donné la gamme de variation du Nd. La encore, si ce type d'interaction a eu lieu, son impact fut tellement faible qu'il ne peut être décelé pour le reste des roches du complexe.

Contrairement à l'échelle des différentes unités pétrographiques, cette prédominance du panache de Kerguelen sur la plupart des roches du complexe par rapport aux faibles pourcentages d'interactions avec les différents « contaminants » ne permet pas de corréler avec exactitudes l'influence des différents pôles avec l'âge de mise en place des différents échantillons au sein de ces ensembles. Par exemple, il n'est pas possible d'établir de corrélation entre l'âge des différentes syénites CaS et l'importance de la contamination crustale à l'intérieur de ce groupe.

Finalement, l'étude isotopique a permis de montrer pour la première fois que plusieurs sources ont été impliquées dans la genèse des roches plutoniques de la péninsule de RdB.

Les premières roches mises en place à l'anse du gros Ventre résultent du mélange profond entre des liquides basaltiques majoritairement issus de la fusion du manteau de type panache de Kerguelen et des fractions de liquides basaltiques issus de la fusion d'un manteau relativement plus ancien et métasomatisé.

Par la suite, les nouveaux liquides basaltiques issus du panache de Kerguelen interagissent et assimilent en proportion variable des fragments de croûte continentale pour donnent les premières roches formant le SRBIC et appartenant au groupe CaS.

Les liquides basaltiques qui vont évoluer par différenciation par la suite pour former les roches plus récentes CaNaS et NaS sont majoritairement ou uniquement issus de la fusion du manteau de type panache de Kerguelen. Une fois différenciée ces liquides syénitiques interagissent et assimilent des proportions de roches mise en place précédemment avant de se mettre en place à leur tour.

Les roches plutoniques de la péninsule ont donc une origine prédominante qui est le manteau du panache de Kerguelen et des origines « contaminantes » mineures. Ces origines ou contaminations mineures sont : premièrement, un manteau relativement ancien métasomatisé dont l'implication semble effective entre 14 et 9.5 Ma mais discontinue dans le temps car affectant des roches d'âges différents,

: deuxièmement, une contamination mineure continentale qui affecte les liquides magmatiques qui forment les premières intrusions du laccolithe entre 11.5 et 10Ma,

: troisièmement, une auto-contamination des roches nouvellement mise en place par assimilation partielle des précédentes entre au moins entre 9.5 et 8 Ma.

Les roches du complexe du SRBIC et de ces satellites montrent donc en 6 Ma plusieurs sources impliquées dans leur(s) genèse(s) suggérant différents niveaux d'interactions magmatiques évoluant dans le temps depuis les niveaux sources profond jusqu'aux niveaux supra-crustaux/hypo-crustaux/plus superficiels de la croûte océanique proche de la mise en place.

# Chapitre 7 : Synthèse et discussion

### 7.1 Le SRBIC : un complexe plutonique composite

L'étude pétrographique m'a permis de confirmer que les roches plutoniques de la partie sud de la péninsule Rallier du Baty, sont majoritairement des roches felsiques de type syénites et syénites à quartz accompagnées de quelques granites lorsque le quartz est abondant. Ces roches felsiques sont associées à des roches plutoniques plus mafiques de type monzogabbros, monzodiorites et monzonites dans la partie sud mais qui restent volumétriquement subordonnées aux roches felsiques. Au sein de l'ensemble felsique, trois grands ensembles pétrographiques ont pu être définis en se basant sur la nature des silicates ferro-magnésiens que sont les amphiboles et les clinopyroxènes.

Les roches du groupe CaS sont définies par la cristallisation exclusive de clinopyroxènes et d'amphiboles calciques. Le groupe NaS est défini par l'apparition de ferromagnésiens très majoritairement sodiques dès les premiers stades de cristallisation. Le groupe CaNaS est défini comme un groupe intermédiaire entre les 2 précédents. Dans ce groupe CaNaS, les premiers clinopyroxènes et amphiboles à cristalliser dans les roches les moins différenciées sont calciques et/ou calco-sodiques, tandis que les derniers stades de cristalliser dans les roches les moins différenciées sont calciques et/ou calco-sodiques. Ainsi, chacun de ces 3 ensembles est défini par une séquence paragénétique qui lui est propre. Etant données les relations de terrains et l'étude géochronologique, il est clair que les roches plutoniques felsiques appartenant au groupe CaS et roches plus mafiques associées, sont les plus anciennes de la péninsule Rallier du Baty (13,74 - 9,45 Ma-Figure 4.51). Les roches appartenant au groupe CaNaS se positionnent entre les deux précédentes (9,38 - 8,47 Ma). Le caractère sodique semble s'étendre vers le nord dans les intrusions plus jeunes du CRBIC (TCO9-135 à 7,31 Ma).

Les études antérieures et notamment les travaux précurseurs de Marot et Zimine (1976) avaient mis en évidence au moins sept grands types pétrographiques de roches plutoniques. En accord avec leurs observations de terrain, les premières roches intrusives sont bien composées par des silicates Fe-Mg exclusivement calciques quelle que soient leur place dans la séquence de cristallisation. Les intrusions plutoniques qui suivent, montrent une nette évolution minéralogique des pyroxènes et amphiboles entre un pôle calcique précoce (augite et hornblende) et un pôle sodique tardif (aegyrine et arfvedsonite). Enfin, ce pôle sodique caractérise bien les silicates Fe-Mg des roches grenues les plus récentes qu'ils avaient observés. La classification pétrographique et la répartition des roches felsiques en 3 grands ensembles pétrographique. Cette nouvelle approche pétrographique s'affranchit des compositions modales et notamment celle des minéraux accessoires tout en se concentrant sur la nature des clinopyroxènes et des amphiboles qui s'observent dans toutes les roches plutoniques du SRBIC et de ses satellites. Cette classification est donc plus simple que celle de Marot et Zimine (1976), tout en rendant compte des différentes roches qui composent le SRBIC et de leur évolution.

Il existe donc trois ensembles de roches plutoniques au sein desquelles l'évolution des silicates ferromagnésiens au cours de la différenciation magmatique est la suivante :

1- Au sein du groupe le plus ancien CaS, une évolution de la minéralogie d'un pôle précoce calcique vers un pôle tardif également calcique. La nature des ferro-magnésiens ne change pas et reste calcique.

2- Au sein du groupe intermédiaire CaNaS, une évolution d'un pôle calcique précoce vers un pôle sodique, en passant par des clinopyroxènes et amphiboles calco-sodiques

3- Dans le groupe des roches NaS, les plus jeunes, une évolution des clinopyroxènes et amphiboles depuis des termes calco-sodiques vers des termes franchement sodiques.

Au cours du temps et des intrusions successives, il y a donc le passage d'une phase magmatique pendant laquelle la nature des silicates ferro-magnésiens n'évolue pas puisqu'ils sont toujours de type calcique vers une phase magmatique caractérisée par l'apparition et l'implication de plus en plus tôt dans la séquence de cristallisation de minéraux ferromagnésiens sodiques. Sur cette base, je propose donc que les 3 ensembles pétrographiques forment deux lignées d'évolution distinguant d'une part les roches les plus âgées appartenant au groupe CaS et d'autre part les roches des groupes CaNaS et NaS mises en place plus tardivement.

Débuté par Aubert de la Rüe (1932), les études géochimiques des éléments majeurs des roches du SRBIC ont été poursuivies par Nougier (1969), Marot et Zimine (1976) et Giret (1983). Ce dernier a de plus étudié les éléments en traces sur roche totale de quelques échantillons du SRBIC. Ces études ont été conduites essentiellement dans le but de comparer ces roches grenues aux autres roches intrusives de la péninsule Rallier du Baty (Marot and Zimine, 1976), à celles de l'archipel dans son ensemble, ainsi qu'à des roches similaires d'autres contextes géodynamiques (Giret, 1983).

En accord avec ces travaux antérieurs, les compositions en éléments majeurs que j'ai obtenu lorsqu'elles sont reportées en fonction des teneurs en SiO<sub>2</sub> (considéré comme indice de différenciation), montrent un ensemble de compositions relativement continu au sein des roches plutoniques felsiques (Figure 5.3). Les compositions des roches plus mafiques, que sont les monzogabbros, monzodiorites et monzonites (les deux dernières étant des roches qualifier d'intermédiaires), sont d'autre part séparées des roches felsiques par un gap de composition. En accord avec les travaux antérieurs, ce gap entre 57 et 60% de SiO<sub>2</sub> interrompt une certaine continuité géochimique entre les deux familles de roches. Ce gap est comparable au « Daly gap » observé au niveau des suites de roches de plusieurs systèmes volcaniques océaniques (e.g. Baker, 1968; Chayes, 1977; Clague, 1978). Sur la base des premiers travaux géochimiques, les roches plutoniques du SRBIC ont donc été interprétées au premier ordre, comme une suite ou une lignée magmatique unique issue de la différenciation d'un magma parent de composition monzonitique. Dans un tel schéma, ces études antérieures ont donc proposé que les roches felsiques représentent les liquides différenciés et que les roches plus « mafiques » représentent les cumulats.

Toutefois, l'étude géochimique conduite à une échelle plus fine pendant ma thèse permet de mettre en évidence une évolution beaucoup plus complexe. En effet, couplée à l'étude géochronologique elle montre clairement qu'il existe deux lignées de différenciation bien distinctes : (i) une première correspondant aux roches les plus anciennes qui englobe les roches intermédiaires et les syénites de type CaS et (ii) une seconde plus récente qui va des syénites du groupe CaNaS aux granites les plus différenciés du groupe NaS (Figure 5.4 et Figure 5.8). En effet, le comportement des éléments au sein des trois groupes pétrographiques définis pour les roches felsiques, et caractérisés par des âges de mise en place différents, montre une évolution relativement bien continue depuis les roches du groupe CaNaS jusqu'aux roches du groupe NaS. Cette continuité semble donc souligner l'appartenance de ces deux groupes à une unique lignée magmatique régit par les mêmes processus d'évolution géochimique. D'autre part, bien que les compositions des roches felsiques les moins différenciées du groupe CaS et CaNaS soient similaires pour la plupart des éléments majeurs, l'ensemble des compositions des roches du groupe CaS se distinguent des compositions formant la lignée précédente (en particulier pour Al2O3, K2O et MnO). Malgré un comportement élémentaire relativement similaire en fonction du SiO<sub>2</sub> qui suppose une évolution régit par des processus proches de ceux qui régissent la suite CaNaS-NaS, l'évolution et les compositions des roches plus anciennes se distinguent généralement de la série précédente à partir de 63% de silice. Les plus fortes disparités s'illustrant majoritairement entre 63 et 68%, les roches du groupe CaS forme donc une série magmatique évoluant différemment de la série CaNaS-NaS au cours de la différenciation.

Associés aux résultats géochronologiques, l'étude géochimique des éléments majeurs montre donc que l'ensemble des roches du SRBIC ne peut pas représenter une seule série de roches plutoniques produite par la différenciation continue dans le temps d'un seul magma parent quelle que soit la nature de ce dernier. Ce résultat géochimique est tout à fait en accord avec les observations pétrographiques qui montrent une lignée plus ancienne exclusivement calcique (suite roches intermédiaires-groupe felsique CaS) et une lignée récente calco-sodique/sodique (groupes felsiques CaNaS et NaS).

L'étude des éléments traces mène à la même conclusion. En effet, l'évolution de ces derniers au cours de la différenciation souligne l'enrichissement relativement bien continu des roches CaNaS aux roches NaS, tandis que l'évolution au sein des roches CaS les plus anciennes est clairement dissociée de cette lignée.

A l'instar des éléments majeurs, la géochimie des éléments en traces des roches du SRBIC avait été regardée au 1<sup>er</sup> ordre par les auteurs précédents, c'est-à-dire à des fins de comparaison et d'identification de processus pétrogénétiques à grande échelle. L'évolution des éléments traces a donc également été interprétée comme traceur de l'évolution par différenciation d'un magma parent unique, malgré une mise en évidence d'incohérences entre le degré de différenciation et l'enrichissement relatif au cours du temps par Giret (1983). Ces incohérences constatées n'ont pas été expliquées ni considérées dans ces études à grandes échelles. Tout comme pour les éléments majeurs, il est clair que les roches du SRBIC les plus enrichies en éléments traces correspondent aux roches les plus jeunes et majoritairement les plus différenciées, celles du groupe NaS. Et tout comme précédemment soulignée par les éléments majeurs, les roches du groupe CaNaS plus anciennes et moins enrichies montrent des concentrations en éléments traces inférieures mais corrélées à celles du groupe NaS. De plus, dans cette suite CaNaS-NaS, l'augmentation des anomalies négatives en Ba, Sr et Eu au cours des injections successives marquent une évolution des éléments en trace contrôlée par la cristallisation fractionnée. Les éléments en traces confirment donc l'appartenance de ces deux groupes à une même série de différenciation magmatique essentiellement contrôlée par des processus de cristallisation fractionnée. C'est sans doute cette lignée magmatique que les premières études géochimiques avaient mises en évidence. Cependant, l'évolution des éléments traces au sein des roches les plus anciennes du SRBIC n'est pas si simple. En effet, au sein du groupe CaS, certaines syénites mises en place à des moments différents, ont des compositions en éléments traces semblables voire inférieures aux compositions des roches intermédiaires. Par conséquent, il n'existe pas de corrélation entre l'enrichissement en éléments traces et le degré de différenciation pour les intrusions qui forment cet ensemble magmatique CaS-roches mafiques/ intermédiaires (monzogabbros, monzodiorites et monzonites). Il n'existe donc pas non plus de corrélation entre l'évolution des éléments traces et l'âge de mise en place des différentes intrusions de ce groupe. Les éléments en traces confirment donc les résultats des études pétrographiques et géochimiques des éléments majeurs et supportent les interprétations suivantes :

- Les roches des groupes CaNaS et NaS forment une unique série magmatique différenciée dont l'évolution est essentiellement contrôlée par des processus de cristallisation fractionnée. Cette différenciation se traduit par le passage relativement progressif de syénites jusqu'à des monzonites-à quartz et granites à l'échelle du pluton. De plus, cette évolution se traduit pétrographiquement par l'implication de plus en précoce d'un pôle sodique dans la cristallisation des minéraux ferro-magnésiens par rapport à un pôle calcique primaire.

- Les roches les plus anciennes de nature intermédiaire (monzogabbros, monzodiorites et monzonites) et appartenant au groupe felsique CaS sont clairement distinctes de la lignée magmatique précédente.

232

L'évolution chimique de ces roches ne peut être expliquée par une différenciation simple au cours du temps. Le comportement proche des éléments majeurs et traces avec ceux de la série précédente suggère toutefois une implication certaine des processus de cristallisation fractionnée dans l'évolution de ces roches. L'évolution des éléments traces au fil de ces intrusions successives suggère des recharges plus ou moins régulières de matériel plus juvénile permettant de ré-appauvrir la composition des magmas parents des ces roches produites au moins en partie par des processus de cristallisation fractionnée. La dernière phase d'appauvrissement en éléments traces correspond à la recharge qui marque le passage dans le temps aux roches du groupe CaNaS à partir de laquelle les intrusions suivantes sont enrichies progressivement. Cette transition est également corrélée avec l'apparition du pôle sodique dans la minéralogie des minéraux ferromagnésiens jusque là exclusivement calciques.

La géochronologie et les observations de terrains montrent que l'emplacement des monzogabbros, monzodiorites et monzonites du SRBIC est synchrone de celles des syénites. Les compositions en éléments traces de ces roches intermédiaires sont tout à fait semblables à celles des syénites les moins différenciées. Ces caractéristiques supposent que ces roches ne sont pas des cumulats issus du processus de différenciation qui aurait produit les roches syénitiques les moins évoluées et illustrent donc le caractère bimodal du magmatisme dans les premiers millions d'années de formation du complexe.

Les spectres des terres rares et d'éléments en traces des roches du SRBIC ont des caractéristiques typiques des OIBs (Figure 5.10). Ils confirment les résultats des études antérieures qui pointaient l'affinité alcaline de ces roches et les reliaient à une origine issue de l'activité du point chaud de Kerguelen (Dosso et al., 1979; Giret, 1983).

Finalement l'étude pétrographique et géochimique plus détaillée et centrée sur le complexe du SRBIC m'ont permis de mieux caractériser l'évolution de ces roches plutoniques au cours du temps :

1- Un magmatisme alcalin bimodal a produit les premières roches plutoniques (monzogabbros, monzodiorites, monzonites et syénites CaS), caractérisées par des minéraux silicatés ferro-magnésiens calciques (clinopyroxènes et amphiboles) ; lesquelles se sont mises en places entre 14 et 10 Ma. La géochimie de ces roches met en évidence des processus de ré-appauvrissement en éléments traces répétés dans le temps. Ces épisodes traduisent donc une évolution magmatique en système ouvert avec des processus de réinjections magmatiques réguliers dans les premiers millions d'années. Les nouveaux apports de magma conduisent à des teneurs similaires en éléments traces à celles des roches intermédiaires synchrones des syénites à cette époque.

2 - Puis un changement du magmatisme alcalin s'opère entre environ 10 et 9,5 Ma. Ce changement souligne le début de l'évolution magmatique en système clos ; marquée par la disparition de la bimodalité et l'apparition de la lignée de roches felsiques CaNaS-NaS qui va évoluer presque complètement par des processus de cristallisation fractionnée et dont les phases silicatées ferro-magnésiennes évoluent progressivement depuis un pôle calcique vers un pôle sodique en passant par des termes calco-sodiques.

## 7.2 Origines et sources des roches plutoniques du SRBIC et de ses satellites

De par leur contexte géodynamique intraplaque et de par leurs caractéristiques géochimiques : (i) série alcaline sur-saturée en silice, (iia) fort enrichissement en éléments incompatibles, (iib) présence de minéraux de terres rares et (iii) caractère bimodal ; les roches grenues de la partie sud de la péninsule Rallier du Baty sont comparables à de nombreux exemples intrusifs en domaine continental (exemples plutoniques et volcaniques) et en domaine océanique (volcaniques) liés à l'activité d'un point chaud. Ainsi l'origine de ces roches rejoint un débat plus large sur l'origine de la production de produits felsiques issus d'un magmatisme alcalin en contexte géodynamique de type intraplaque anorogénique. Les références sont nombreuses et se retrouvent compilées (entre autres) dans les reviews suivantes : (Sørensen, 1974; Fitton and Upton, 1987; Eby, 1990; Frost et al., 2001; Bonin, 2007; Dall'Agnol et al., 2012). Basées sur les conclusions des études de ces exemples continentaux et océaniques, deux grandes hypothèses peuvent être avancées pour la formation des roches du SRBIC et particulièrement les roches felsiques qui sont de loin les plus abondantes :

- Les hypothèses purement mantelliques : dans ce cas, les roches felsiques de type syénites et associées (syénites à quartz, granites alcalins) mais aussi les roches intermédiaires associées (monzogabbros, monzodiorites et monzonites) sont issues de la différenciation d'un magma basaltique alcalin. Cette hypothèse suppose que la formation du magma parent basaltique provient soit de la fusion partielle d'un manteau asthénosphérique de type point chaud, soit celle d'un manteau lithosphérique métasomatisé. Dans les deux cas, ce manteau source est relativement enrichi en éléments incompatibles, et suppose des taux de fusion partielle faibles à des profondeurs de l'ordre de 100 Km. Des exemples récents se retrouvent dans Jung et al. (2007); Kogarko et al. (2010); Owen-Smith et al. (2013) parmi d'autres dans les reviews citées plus haut.
- Les hypothèses avec implication totale ou partielle de la croûte continentale. Dans ce cas, ces roches seraient issues de la contamination d'un magma basaltique par des roches provenant de la croûte continentale (assimilation, mélange...) voire même directement de la fusion de roches en base de croûte continentale (e.g. Foland et al., 1993; Marks et al., 2003; Riishuus et al., 2008; Markl et al., 2010; Elburg and Cawthorn, 2017 et reviews précédentes). La digestion de roches crustales relativement enrichies en éléments incompatibles par rapport au liquide basaltique permettrait notamment d'expliquer les teneurs en incompatibles des roches felsiques issues de la différenciation de ce liquide. L'implication possible de la croûte continentale ne fait aucun doute dans la plupart des intrusions en domaine continental même si les conséquences pétro-géochimiques de cette implication sont encore mal comprises. En domaine océanique, plusieurs études isotopiques appuyées par des évidences xénolithiques ont prouvé l'implication de la croûte continentale dans la genèse des produits felsiques (Ascension, Açores et Seychelles). Ce concept d'influence continentale, lié à la rareté des roches felsiques en domaine océanique, est apparu très tôt dans les études sur l'archipel de Kerguelen conduisant Watkins et al. (1974) à s'interroger sur la nature même de l'archipel : « Kerguelen : Continental Fragment or Oceanic Island ? ».

Ces deux hypothèses n'étant pas exclusives, il est possible que plusieurs des processus associés à l'un ou l'autre de ces deux extrêmes aient joué un rôle plus ou moins important dans la genèse des roches du SRBIC. Ces deux grandes hypothèses et leur relation montrent bien la difficulté d'identification des paramètres susceptibles de conduire à la formation des roches différenciées alcalines.

Une seule étude impliquant une modélisation pétrogénétique a été réalisée sur les roches plutoniques de l'archipel de Kerguelen (Scoates et al., 2007). Elle s'est focalisée sur le massif plutonique du Val Gabbro, situé au niveau de la presqu'île Jeanne d'Arc, c'est-à-dire au sud-est de l'archipel. Cet édifice plutonique à tendance moyennement alcaline est la plus vielle intrusion datée de l'Archipel (U-Pb sur zircons : 24,25 ± 0,15 Ma). Les roches qui composent ce pluton sont essentiellement des cumulats ultrabasiques et différents types de gabbros et microgabbros associés à des roches felsiques (monzonites et monzonites à quartz). Les auteurs ont démontré que les compositions felsiques de ce pluton peuvent être modélisées à partir de la composition d'un microgabbro de composition alcaline échantillonné sur le complexe. Cette composition supposée la plus représentative du magma parent de ces roches felsiques est typique de celle d'un magma basaltique alcalin. Il est donc possible de former, au niveau de l'archipel de Kerguelen, des roches felsiques (monzonites et monzonites à quartz dans le cas du Val Gabbro) à partir de la différenciation d'un liquide basaltique alcalin. Cette étude montre donc qu'il n'est nul besoin d'impliquer des contaminations crustales pour former des roches felsiques sur l'archipel. Tout comme pour le complexe du SRBIC, le pluton du Val Gabbro présente un gap de composition entre les roches mafigues (type gabbros) et les roches felsiques (type monzonites). Scoates et al (2008) expliquent ce caractère bimodal, qui ne s'observe pas pour toutes les suites magmatiques de Kerguelen, comme le résultat du piégeage des compositions intermédiaires en profondeur du fait essentiellement d'une augmentation de la viscosité au cours du processus de différenciation magmatique. Toujours concernant le pluton du Val Gabbro, les données isotopiques quelque peu hétérogènes mesurées sont représentatives de l'hétérogénéité du plume de Kerguelen lui-même selon Scoates et al. (2007). Ces données sont également très proches des données isotopiques obtenues pour la majorité des roches du SRBIC. Je suppose donc que la composition du microgabbro du Val gabbro utilisé par Scoates et al. (2007) peut être utilisée comme un « proxy » de la composition du magma parent des deux séries plutonique du SRBIC.

Les sources du magma parent des roches du SRBIC ont déjà fait l'objet de travaux antérieurs, il y a plusieurs décennies, via l'utilisation du couple isotopique Rb/Sr comme traceur. Ces travaux (Watkins et al., 1974; Lameyre et al., 1976; Dosso et al., 1979) ont permis d'identifier à l'aide d'isochrones, un rapport isotopique <sup>87</sup>Sr/<sup>86</sup>Sr initial commun à toutes les roches autour de 0,7057  $\pm$  0.0003. A l'époque de ces études, les auteurs ne pouvaient pas savoir que cette valeur est extrêmement proche de la composition isotopique admise aujourd'hui comme la plus représentative du panache de Kerguelen (Weis and Frey, 2002). Ils avaient justement conclu à l'époque que l'unique source des roches du SRBIC était un manteau enrichi quelque peu hétérogène (type panache) et qu'aucune contamination crustale n'était impliquée dans la genèse des roches plutoniques de la péninsule Rallier du Baty. Un couplage avec le système Sm/Nd (Dosso and Murthy, 1980) sur quelques échantillons du complexe SRBIC a abouti aux mêmes conclusions avec des valeurs du rapport <sup>143</sup>Nd/<sup>144</sup>Nd initial situées entre 0.512500  $\pm$  25.10<sup>-6</sup> et 0.512550  $\pm$  37.10<sup>-6</sup>. Ces mesures semblent donc supporter l'hypothèse d'une source strictement mantellique telle qu' elle a été proposée pour le pluton du Val Gabbro.

Reportées à l'échelle des compositions isotopiques du plateau de Kerguelen, les compositions isotopiques des roches de la péninsule obtenues au cours de cette thèse montrent que la majorité est voisine de celle représentative du panache de Kerguelen (Figure 6.10). En accord avec les interprétations antérieures, le plume de Kerguelen est donc bien la source principale de la plupart des roches magmatiques de l'archipel de Kerguelen, y compris des roches plutoniques du SRBIC.

Cependant, l'étude isotopique que j'ai conduite sur plusieurs systèmes radiogéniques durant cette thèse sur les roches du SRBIC apporte beaucoup de précisions et vient modérer l'hypothèse de cette unique source mantellique. Dans ce cadre, la modélisation AFC a permis de montrer que les compositions isotopiques des roches du groupe CaS peuvent être expliquées par l'assimilation de croûte continentale (représenté par le gneiss d'Elan Bank) par un liquide de composition de type basalte alcalin (microgabbro du Val Gabbro) au cours de sa cristallisation. En effet, pour un ratio de masse assimilée/ masse cristalisée = 0.4, les premiers 11% de cristallisation fractionnée permettent d'obtenir des compositions isotopiques similaires à celles observées pour les roches felsiques de type CaS du SRBIC. Il apparait donc que le liquide basaltique parent des roches du groupe CaS et issu de la fusion partielle de la source mantellique « Plume de Kerguelen » a interagi à un moment de son histoire avec un fragment de croûte continentale certainement similaire au gneiss de l'Elan Bank. Ce processus de contamination ne s'observe pas pour les roches les plus récentes du SRBIC (CaNaS et NaS). Entre ≈10 et≈ 9,5 Ma, l'implication de la composante continentale a donc soit (i) cessé, soit (ii) ne fut plus assez significative pour être perçue dans les roches mises en place par la suite. Ces dernières ont des compositions isotopiques caractéristiques, bien plus radiogéniques en Strontium que les roches CaS. Mon étude isotopique met en évidence pour la première fois un autre processus d'assimilation résultant de l'interaction entre la majorité des magmas felsiques les plus récents (formant la suite CaNaS et NaS) avec des roches felsigues plus anciennes de la suite roches intermédiaires-CaS (Figure 6.11). Le processus d'AFC suggère qu'il faut un maximum de 6 Ma pour permettre l'évolution isotopique d'une première syénite de type CaS qui soit ensuite assimilée par une nouvelle syénite permettant d'expliquer les compositions les plus radiogéniques en strontium. Cette hypothèse est en accord avec les données géochronologiques qui stipulent une construction du SRBIC en 4 Ma. La différence de 2 Ma peut être modérée du fait que les 6 Ma sont un maximum mais également du fait qu'il peut exister des intrusions en profondeur plus anciennes similaires aux roches de type CaS aujourd'hui à l'affleurement. Cette dernière hypothèse enfin est supportée par l'existence d'intrusions au niveau de la péninsule Rallier du Baty datée à ≈14 Ma, c'est-à-dire mises en place environ 2 Ma d'années avant le SRBIC. D'autre part, les résultats isotopiques montrent qu'au moins 4 échantillons issus de complexe plutonique satellitaire du complexe majeur SRBIC sont très faiblement radiogéniques en Nd comparés à la valeur du panache de Kerguelen. Les signatures isotopiques de ces échantillons ne peuvent donc pas s'expliquer comme provenant de l'unique source de type « panache de Kerguelen ». Elles ne peuvent pas non plus s'expliquer par l'assimilation de matériel crustal du même type que le gneiss d'Elan Bank. Elles suggèrent donc l'implication d'une 3<sup>ème</sup> composante isotopique dans la genèse de ces roches. Grâce à la modélisation, ces compositions isotopiques particulières peuvent être expliquées par des processus de mélange en profondeur. Ces processus impliquent que le liquide basaltique issu de la fusion partielle du composant panache (représenté encore une fois par le microgabbro du Val Gabbro) a interagi avec de faibles fractions d'un liquide hyperalcalin provenant de la fusion partielle d'un manteau lithosphérique métasomatisé (type source des lamproites du Gaussberg, (Olierook et al., 2017). Ces échantillons proviennent de complexes plutoniques satellites (anse du Gros Ventre et anse Syénite) d'âges différents et constitués de roches appartenant à des groupes pétrographiques différents (CaS et CaNaS, respectivement). Ce type de liquide « contaminant » est donc impliqué à différents moments ou étapes de la construction du complexe plutonique de la péninsule Rallier du Baty.

Ainsi, contrairement, à ce qui avait été proposé auparavant, les résultats isotopiques Rb/Sr et Sm/Nd obtenus au cours de ce travail de thèse mettent en évidence l'influence de plusieurs sources dans la genèse des roches plutoniques du SRBIC : une source principale (la seule mise en avant auparavant) qui correspond au manteau asthénosphérique de type « Panache de Kerguelen », et deux sources secondaires : (i) des fragments de croûte continentale et (ii) des fractions de liquides hyperalcalins issus d'un manteau lithosphérique métasomatisé.

Entre 14 et 11,5 Ma, les premières roches intrusives de la péninsule ont été formées à partir d'un liquide basaltique parent issu d'un mélange profond entre la source typique du panache de Kerguelen et un manteau métasomatisé. A partir de 11,5 Ma, la construction du SRBIC débute avec des syénites formées par un liquide basaltique issu du plume de Kerguelen et ayant assimilé de la croûte continentale en faible proportion. A partir de 9,5 Ma, l'implication de cette composante crustale disparait pour ne laisser que la prédominance du panache de Kerguelen. Jusqu'à 8 Ma les liquides syénitiques formés à partir de ce dernier assimilent en proportion variable les roches felsiques préalablement mises en place. Ce processus plaide en faveur d'au moins un dernier réservoir commun de différenciation du magma parent des roches felsiques du SRBIC, lequel empreinte des chemins relativement identiques à travers les niveaux supérieurs de la coute durant la construction du complexe. Ce processus d'assimilation semble perdurer au delà de 8 Ma comme le montrent les compositions isotopiques d'un filon trachytique tardif et au moins une intrusion du nord de la péninsule (échantillons 13TK008 et TC09-135 respectivement).

Ces résultats ont été mis en parallèle avec les résultats issus des mesures isotopiques Lu/Hf réalisées sur les zircons ayant servi précédemment à l'étude géochronologique. Les détails des données mesurées et calculées pour l'initial (t) sont reportés en annexe.



□ Qz-monzonite ○ Syenite ◇ Monzodiorite □ variation intra-echantillon Figure 7.1: Données isotopiques Lu/Hf sur zircon, corrigés de l'âge de chaque échantillon et reportés en fonction du temps.

En dépit des grandes variations intra-échantillons qui reflètent des fluctuations analytiques, ces résultats montrent que les compositions initiales en Hf s'étalent de part et d'autre de la composition du CHUR(t) quel que soit l'échantillon considéré (Figure 7.1). Seul l'échantillon TC09-82, le plus vieux, a des compositions strictement inférieures au CHUR(t). En effet, à l'exception de ce dernier, les rapports isotopiques initiaux qui forment un nuage de compositions indépendant de la nature et de l'âge de la roche hôte. Lorsqu'ils sont comparés aux données de la littérature (Figure 7.2), les résultats Hf forment également un nuage de point situé entre le panache de Kerguelen (Mont Crozier) et les basaltes du plateau moins radiogéniques en Hf affectés par une faible contamination crustale (site 747). Ils forment donc un ensemble cohérent avec les données des autres roches intrusives de l'archipel considérées comme formées majoritairement par le panache de Kerguelen étant plus ou moins hétérogène. Seule la syénite la plus ancienne de l'anse du Gros Ventre (TC09-82) se distingue réellement du reste des échantillons du SRBIC vers des compositions proches du site 738 (à 112 Ma) du SKP.



Figure 7.2: Diagramme de corrélation ɛNd vs ɛHf à l'état initial des roches étudiées et comparées aux données existantes sur le plateau de Kerguelen.

Ces données isotopiques en Hf in-situ sont donc cohérentes avec les systèmes Nd et Sr (roches totales) précédents. Même si une partie de l'hafnium est sans doute contenu dans d'autres minéraux non analysés comme l'apatite, ces résultats sur zircons confirment néanmoins le caractère particulier de l'anse du Gros Ventre par rapport au reste du complexe. Toutefois, si cette particularité traduit l'influence du manteau métasomatique dans la genèse des premières roches mise en place sur la péninsule, la contamination crustale identifiée précédemment avec les systèmes Sr et Nd est transparente dans le système de Lu/Hf.

A plus grande échelle, les deux composantes isotopiques secondaires mises en avant pour expliquer les compositions isotopiques des roches plutoniques du SRBIC ont été identifiées comme ayant une influence à un moment donné de l'histoire de l'activité magmatique du « Grand Plateau de Kerguelen » (c'est-à-dire le plateau de Kerguelen et les basaltes continentaux plus anciens lié à l'existence du panache mantellique, Olierook et al., 2017). En effet, l'assimilation de matériel crustal a été proposée pour rendre compte des signatures isotopiques des basaltes tholeiitiques des sites du SKP et CKP : ODP 738 (Mahoney et al., 1995) ; ODP 747, 749 et 750 (Frey et al., 2002b). Le gneiss dragué au niveau de l'Elan Bank est à ce jour le seul témoin direct de la présence de fragments continentaux emballés dans les produits magmatiques issus de l'activité du point chaud de Kerguelen (site ODP 1137 - Nicolaysen et al., 2001; Ingle et al., 2002). L'influence d'une source de type manteau lithosphérique métasomatisé a été plus récemment mise en avant pour expliquer les caractéristiques isotopiques d'une partie du « Grand plateau de Kerguelen » reléguant la participation du plume en tant que source effective influente seulement à partir de 95 Ma (Olierook et al., 2017). Les lamproïtes de Gaussberg (Sushchevskaya et al., 2014) ainsi que des enclaves de péridotites mantelliques remontées par les laves alcalines l'archipel de Kerguelen témoignent de l'existence d'un tel manteau lithosphérique métasomatisé dans la région (Delpech et al., 2004; Grégoire et al., 2000, 2001; Wasilewski et al., 2017). De plus, des filons de lamprophyres ont été décrits au niveau de l'archipel de Kerguelen (Leyrit, 1992; B. Moine, J-Y Cottin et M Grégoire, communications personnelles). Or les lamprophyres sont des roches magmatiques hyperalcalines qui présentent des compositions proches de celles des lamproites, lesquelles sont souvent pensés comme provenant de sources de type manteau supérieur métasomatisé ou ayant assimilé une lithosphère océanique (Bergman, 1987; Neal and Davidson, 1989; Riley et al., 2003; Tappe et al., 2006).

Il est également à noter que plusieurs données « oubliées » dans la littérature, volontairement ou pas, peuvent également s'expliquer par un mélange entre la source de type panache de Kerguelen et le même manteau lithosphérique métasomatisé (Figure 7.3). Parmi ces données se trouvent les roches plutoniques de l'île de l'Ouest (Dosso and Murthy, 1980), datés (Giret and Lameyre, 1983) entre 16.6 ± 0.9Ma (gabbros) et 12.4 ±0.7Ma (syénites), qui présentent un caractère bimodal identique à celui du SRBIC. Le complexe de l'île de l'Ouest qui est vraisemblablement plus jeune que le SRBIC semble donc indiquer que l'interaction entre les deux sources mantelliques est bien à l'origine des premières intrusions au sudouest de l'archipel. En outre, quelques trachytes et phonolites provenant de la péninsule Jeanne d'Arc et Loranchet, ainsi qu'une monzonite provenant de la péninsule de Courbet tendent également vers des compositions isotopiques très faibles en Nd, potentiellement explicables par ce type d'interaction à la source.



Figure 7.3: Diagramme de corrélation Nd<sub>initial</sub> vs Sr<sub>initial</sub> (corrigés à 14Ma), centré sur les données isotopiques obtenues. Les domaines en rouge correspondent aux données non présentées dans la ←Figure 6.9. Les noms en gras correspondent aux données sur roches felsiques (volcaniques et plutoniques), « oubliées » dans la littérature, de Dosso et al. (1979), Dosso et Murphy (1980), Weis et al. (1994), et celles plus récentes de Gagnevin et al. (2003).

Ainsi, au niveau du seul complexe plutonique sud de Rallier du Baty (SRBIC) et de ses satellites, les roches plutoniques montrent l'influence des différentes sources proposées par les études isotopiques pour expliquer certaines compositions de roches de l'archipel et même du plateau océanique dans son ensemble. Ce résultat prouve également que les deux « contaminants » (croûte continentale et manteau lithosphérique métasomatisé), dont l'implication n'était établie que jusqu'à 68 Ma au niveau du plateau de Kerguelen, ont encore eu une influence sur le magmatisme de l'archipel il y a moins de 10 Ma.

#### 7.3 Les deux suites plutoniques du SRBIC

L'étude isotopique a permis de mettre en évidence un réservoir de différenciation commun aux deux suites magmatiques Mafiques/intermédiaires–Cas et CaNaS-NaS (= assimilation). L'étude géochimique a permis de montrer que les différentes sources impliquées dans la genèse des roches du SRBIC n'ont eu que très peu d'impact sur la composition des magmas parents des deux lignées magmatiques qui peuvent donc être considérés comme identiques. Pourtant il existe bien deux séries de roches felsiques géochimiquement et pétrographiquement différentes. Les processus qui ont donc permis de faire évoluer ces 2 lignées de roches différentent ont opéré par conséquent ;(i) soit dans le réservoir au sein duquel les liquides syénitiques se sont différenciés, (ii) et/ou entre ce réservoir et le niveau de mise en place.

L'évolution des minéraux silicatés ferromagnésiens calciques précoces vers des termes sodiques plus tardifs qui s'observe au travers de la série formée des roches felsiques CaNaS et NaS est une évolution « classique » reconnue dans de nombreux complexes plutoniques et volcaniques d'affinité alcaline. Cette évolution s'observe en effet aussi bien dans les systèmes sursaturés que sous-saturés en silice (Sørensen, 1974; Mitchell, 1990; Bonin, 2007; Marks and Markl, 2017). Elle est souvent associée dans la littérature à la transition des termes dits « miaskitiques » aux termes « agpaïtiques ». D'abord basés sur l'index d'agpaïcité, qui est en réalité l'index de peralcalinité (Na<sub>2</sub>O+K<sub>2</sub>O)/Al<sub>2</sub>O<sub>3</sub> en % molaire (Ussing, 1912), ces deux termes ont été révisés et redéfinis comme marqueurs minéralogiques dans les systèmes peralcalins (e.g. Sørensen, 1974; Marks and Markl, 2017). Les roches miaskitiques sont les moins alcalines et sont caractérisées par des minéraux porteurs des HFSE tels que la titanite, la pérovskite, le zircon et la baddeléyite. Les principaux minéraux porteurs des HFSE des roches agpaïtiques sont l'eudyalite, la rinkite, les minéraux des groupes de la wöhlerite et de l'aenigmatite, l'astrophyllite, la catapleiite, la dalyite, l'elpidite, l'hilairite, la lampro-phyllite, la lorenzénite, la lovozérite, la parakeldyshite, la vlasovite, et la wadéite.

Toutes les roches felsiques du SRBIC contiennent du zircon. La titanite est présente en majorité dans les roches les plus anciennes de type CaS et CaNaS. L'aenigmatite est présente dans les roches du type CaNaS mais surtout dans les roches les plus jeunes de type NaS, tandis que l'astrophyllite et la fluorite ont également été identifiées dans ces dernières. Ainsi, le SRBIC peut être défini comme composé de roches « agpaïtiques transitionnelles » (Marks and Markl, 2017). Les roches les plus anciennes sont à tendance miaskitique et les plus jeunes à tendance agpaïtique.

Pour la suite CaNaS-NaS, l'évolution des roches les moins alcalines vers les termes les plus alcalins est accompagnée d'une évolution classique des pyroxènes calciques de type Augite vers les pyroxènes sodiques de type Aegyrine. Dans cette suite, l'évolution des amphiboles correspond à la lignée Hastingsite  $\rightarrow$  Katophorite (± Ferro-Edénite)  $\rightarrow$  Arfvedsonite. Ces deux évolutions ne s'observent pas pour la suite roches intermédiaires-CaS au sein desquelles les silicates ferromagnésiens restent calciques tout au long du processus de différenciation magmatique.

La minéralogie exacte des silicates ferromagnésiens dépend de chaque complexe alcalin (Figure 7.4), toutefois l'évolution générale des termes calciques précoces riches en Ca + Fe<sup>2+</sup> vers les termes sodiques



tardifs riche en Na + Fe<sup>3+</sup> est indéniable (e.g. Sørensen, 1974; Giret et al., 1980; Bonin and Giret, 1985; Mitchell, 1990, 1996; Marks and Markl, 2001; Marks et al., 2008 parmi d'autres).

Figure 7.4: Exemples et comparaison d'évolution des pyroxènes (a et b) et des amphiboles (c et d) au sein de complexes alcalins sur-saturés et sous saturés de par le monde. a) évolution des pyroxènes du SRBIC (voir Figure 4.36) ; b) évolution des pyroxènes de : (1) Ilimaussaq (Larsen, 1976), (2) Coldwell (Mitchell and Platt, 1982) ; (3) South Qôroq (Stephenson, 1972) ; (4) Alnö (Vuorinen, 2005), (5) Iron Hill (Nash, 1972), (6) Kilombe (Ridolfi et al., 2006), (7) Tenerife (Wolff, 1987) ; c) évolution des amphiboles du SRBIC ; d) évolution des amphiboles de : (A) Ilimaussaq (Larsen, 1976; Marks et al., 2004) , (B) Zomba-Malosa (Woolley and Jones, 1992), (C) Pulken (Marks et al., 2004).

L'enrichissement en alcalin d'un liquide magmatique se fait de manière naturelle au cours de la différenciation, la cristallisation précoce des minéraux anhydres tel que l'olivine et les pyroxènes permettant d'augmenter les rapports Na/Ca et Fe<sup>3+</sup>/Fe<sup>2+</sup> dans le magma résiduel. Ce processus est d'autant plus efficace dans un système magmatique évoluant en système clos (e.g. Byers et al., 1984; Bézos and Humler, 2005). Cet enrichissement est également une conséquence directe du fractionnement des plagioclases connu sous le nom d'« effet de Bowen » (Bowen, 1945). La cristallisation de ces minéraux permet en effet d'appauvrir le liquide résiduel en Al et d'en augmenter les teneurs en Na et K. Le caractère agpaïtique des roches les plus jeunes de la lignée CaNaS-NaS peut donc s'expliquer par un simple processus de différenciation au cours du temps dans un réservoir clos. La spéciation du Fer est, d'autre part, en relation directe avec les conditions d'oxydo-réduction qui sont approchées au travers des estimations de la fugacité en O<sub>2</sub>. Il a été montré que lorsqu'un liquide se différencie, le liquide différencié s'enrichi en Fe<sup>3+</sup> (+Na+K) et sa fugacité d'oxygène augmente via l'équation  $4Fe^{3+} + 2O^{2-} = 4Fe2^+ +O^2$ . (Kress

and Carmichael, 1988; Lange and Carmichael, 1989; Gerlach et al., 1998, 1999; Rüssel and Wiedenroth, 2004). Ceci explique également pourquoi le liquide magmatique résiduel, qui représente une fraction de plus en plus faible en volume est de plus en plus oxydé. En effet, à l'échelle de l'échantillon, les silicates ferromagnésiens précoces riches en Fe<sup>2+</sup> et Ca, clinopyroxènes et amphiboles calciques, témoignent d'une cristallisation en milieu relativement réduit. Cette cristallisation permet d'augmenter le caractère oxydant et l'alcalinité du liquide résiduel interstitiel qui va permettre la cristallisation tardive de minéraux ferromagnésiens riches en Na tel que l'ægyrine et l'arfvedsonite. Un simple processus cristallisation fractionnée permet donc d'augmenter naturellement l'alcalinité de concert avec la fugacité d'oxygène (e.g. Carmichael, 1991). Ces variations temporelles de fO<sub>2</sub> à l'échelle de l'échantillon peuvent être étendues à l'échelle de la lignée CaNaS-NaS. En effet, l'évolution des roches CaNaS vers les roches agpaïtiques NaS les plus jeunes pourrait s'expliquer par le caractère réduit du réservoir à partir duquel elles s'injectent au cours du temps. Ces conditions réduites permettraient d'étendre le champ de stabilité de l'olivine aux dépens de celui des oxydes ferro-titanés via l'équation du tampon FMQ : 3Fayalite + O<sub>2</sub> = 2Magnetite + 3Quartz. En conséquence, les termes les plus évolués seraient marqués par un enrichissement en fer et une diminution du SiO<sub>2</sub> dans les termes les plus évolués (Marks and Markl, 2017). Cette interprétation semble cohérente avec la géochimie des majeurs qui montre que les roches du SRBIC les plus jeunes (datées à ≈7.9 Ma) sont des Qz-monzonites à 68% de SiO<sub>2</sub> (échantillons 13TK106 et 13TK108). Aussi et surtout, la présence exclusive de fayalite relativement bien conservée dans les roches plus anciennes de cette série CaNaS-NaS, supporte cette hypothèse. La lignée magmatique CaNaS-NaS qui montrent l'évolution classique miaskitique vers agpaïtique peut donc s'expliquer par un processus simple de différenciation magmatique au sein d'un réservoir clos et dans des conditions de faible fO<sub>2</sub>.

Bien que les deux lignées felsiques CaS et CaNa-NaS soient différentes, elles évoluent toutes les deux à partir d'un magma parent similaire et relativement riche en Ca et Fe<sup>2+</sup>. Toutefois, contrairement à ceux de la série CaNaS-NaS, les clinopyroxènes et les amphiboles des roches du groupe CaS demeurent calciques tout le long du processus de différenciation de cette lignée alors que les amphiboles ne sont remplacées et transformées en actinolites au cours des stades tardifs de l'histoire de ces roches. Ceci suppose donc que pour un échantillon donné, le rapport Ca/Na et Fe<sup>2+</sup>/Fe<sup>3+</sup> des ferromagnésiens augmente au cours du temps. Cette observation pourrait traduire l'évolution du liquide syénitique dans des conditions relativement oxydantes (e.g. Marks and Markl, 2017). Ces dernières pourraient ainsi faciliter l'incorporation du Fe<sup>3+</sup> dans les phases minérales qui cristallisent et enrichir de façon relative le liquide interstitiel différencié en Fe<sup>2+</sup> et donc permettre la cristallisation tardive des actinolites.

Les différences d'évolution des deux lignées magmatiques pourraient donc être liées à une évolution différente des conditions d'oxydo-réduction entre le réservoir syénitique et le niveau de mise en place des intrusions. Cette hypothèse est en accord avec plusieurs études qui ont montré que les roches à tendance miaskitiques sont souvent formées dans des conditions plus oxydantes que les roches à tendance agpaïtiques (e.g. Markl et al., 2010). D'autre part, la cristallisation de calcite interstitielle associée aux derniers stades (actinolites) des roches CaS dénote la présence de phases fluides relativement riche en CO<sub>2</sub>. Cette observation est également en accord avec plusieurs études qui ont montré qu'en conditions oxydantes les phases fluides associées aux liquides magmatiques alcalins sont plutôt à dominante  $H_2O+CO2$  (e.g. Marks et al., 2003). L'absence de carbonates dans les derniers stades de cristallisation des roches de la lignée CaNaS-NaS semble confirmer une évolution des liquides magmatiques dans des conditions plus réduites pouvant traduire un changement de la nature des fluides dans le temps via la réaction « redox » CO<sub>2</sub>+2H<sub>2</sub>O→CH4+2O<sub>2</sub> qui a été mise en évidence dans plusieurs

études (e.g. Schonenberger and Markl, 2008; Marks and Markl, 2017). Un paramètre tel que la fugacité d'oxygène a donc probablement joué un rôle important dans la dichotomie observée entre les 2 séries magmatiques. Ce paramètre est interdépendant des conditions de pression et de température. Il est donc clair que la combinaison de ces trois paramètres intensifs est responsable de l'évolution des produits magmatiques felsiques. Etant donné que les deux lignées partagent au moins un dernier réservoir commun et qu'elles se mettent en place à un niveau structural relativement similaire, la pression n'est pas un paramètre qui a pu varier de manière significative au cours du temps. Au contraire, la température est un paramètre susceptible de varier avec amplitude au cours du temps. Lorsque les premières intrusions de la péninsule Rallier du Baty se mettent en place, elles intrudent les basaltes de plateau qui sont relativement froids. La différence de température entre les intrusions et leur encaissant basaltique est donc relativement élevée. Au cours du temps, les intrusions successives (au moins au niveau de mise en place) ainsi que les recharges magmatiques répétées au niveau du réservoir ont sans doute augmenté les températures du réservoir jusque dans les niveaux d'emplacement. Les liquides syénitiques plus jeunes ont sans doute connu un environnement de cristallisation plus chaud que les premières intrusions. De plus, ces liquides ont évolué et traversé un encaissant non plus seulement formé des basaltes de plateau mais également constitué des intrusions syénitiques qui les ont précédées. Les intrusions successives ont donc formé progressivement un nouvel environnement de cristallisation et d'intrusion. Je propose donc que le passage d'un environnement basaltique froid à un environnement plus chaud et avec une forte proportion de syénites plus anciennes, ait eu un impact progressif sur la fugacité d'oxygène et la température qui contrôlent l'évolution des deux séries magmatiques du SRBIC.

## 7.4 La construction du SRBIC

#### 7.4.1 Comparaison avec les études antérieures

Les premières observations structurales sur la péninsule de Rallier du Baty ont été faites par Jacques Nougier. De nombreuses descriptions de grande valeur ont été consignées dans sa thèse d'état en 1969. Cependant, sa thèse contient une étude géologique complète de l'archipel, dont Rallier du Baty ne représente qu'une partie parmi d'autres. Ce travail remarquable pour l'époque, a posé les bases des deux campagnes d'André Marot et Serge Zimine centrées sur l'étude des complexes de Rallier du Baty. Leur thèse commune présente donc la première étude structurale (entre autre) centrée sur la péninsule qui est aussi la plus complète. Un certain nombre de leurs observations ont pu donc être vérifiées ici et confirmées 40 ans plus tard.

Ces auteurs et les suivants, ont tous observé que le pendage des basaltes de plateaux augmente à l'approche du complexe plutonique. L'érosion a laissé des basaltes de plateaux sur quelques sommets marginaux. Sur ces sommets, le contact intrusif du SRBIC est concordant et ne recoupe pas les coulées basaltiques. Par conséquent, passé un certain point d'inflexion, le pendage des basaltes s'horizontalise vers les parties topographiquement hautes de la zone et épouse la géométrie de l'intrusion plutonique. Pour reprendre les termes utilisés dans les études précédentes, les basaltes à l'échelle de la péninsule sont bien « bombés » et envelopperaient aujourd'hui les roches plutoniques sans les effets de l'érosion.

Egalement observé auparavant, le SRBIC est formée par l'injection successive de magma syénitique de la bordure vers le centre de la péninsule. Les roches les plus vielles forment la bordure externe et le contact avec les basaltes de plateaux tandis que les roches les plus jeunes forment le nord ouest du massif des Deux Frères. Ces différentes injections reportées en 2D sur une carte forment bien des anneaux concentriques (des plus vieux en bordures aux plus jeunes au centre-nord de la péninsule).

Quelques écrans de basaltes pouvant atteindre une centaine de mètres ont été observés à plusieurs endroit sur le complexe et souvent au contact entre deux injections syénitiques. Les plus grands de ces écrans basaltiques marquent une zone particulièrement déformée (zones de cisaillement, cataclases, brèches...), laquelle forme également un arc de cercle cartographiquement.

Toutes ces observations majeures faites par Nougier (1969) et Marot et Zimine (1976) que nous avons confirmées sur le terrain, leur ont permis de proposer que le complexe annulaire du SRBIC se soit mis en place selon un modèle de subsidence en chaudron.

## 7.4.2 Précédent modèle de construction : subsidence en chaudron

Les bases de ce modèle sont posées par Clough et al. (1909) dont les travaux sur le volcanisme établissent un modèle d'effondrement de caldera par subsidence de blocs. Ce modèle a été étendu par la suite aux intrusions plutoniques (Richey, 1928). En 1936, Anderson a proposé un modèle théorique qui permet de justifier les observations de terrains. Ce modèle hypovolcanique prévoit le bombement initial d'un substratum rigide par surpression dans une chambre magmatique sous-jacente. Cette surpression provoque la création de failles radiaires (et plus rarement concentriques = cone-sheets) à fort pendage vers un épicentre situé a l'aplomb de la chambre magmatique. Les failles permettent l'éjection de magma tout en faisant redescendre la pression dans la chambre. Cette chute de pression permet d'individualiser un bloc de la structure, initialement bombée, grâce à la formation de failles annulaires. Ces failles en coupole sont à pendage centripète. Le bloc ainsi découplé de la structure va descendre plus ou moins progressivement dans la chambre magmatique permettant à l'espace laissé libre de se remplir par des injections magmatiques nommées filons annulaires. Suite à une nouvelle hausse de pression (associé à l'augmentation de volume dû à la différenciation dans la chambre magmatique), ce cycle va se répéter plusieurs fois pour permettre la mise en place successives de sills injectés dans les failles annulaires. Ces différentes étapes mécaniques peuvent s'opérer de façon plus ou moins continue dans le temps, ce qui les rendrait parfois difficiles à voir.

## 7.4.3 Arguments en défaveur du modèle de subsidence en chaudron

Au-delà des questions théoriques et mécaniques que pose ce modèle sur l'initiation du bombement ou la taille du bloc descendant, quelques observations nécessaires à l'application de ce modèle sur le SRBIC sont manquantes à notre étude de terrain.

Le modèle de subsidence en chaudron suppose de distinguer un toit et des murs pour les différentes intrusions. D'après Marot et Zimine le contact intrusif est plutôt discordant à la base des massifs, dans les bas niveaux topographiques, et plutôt concordants dans les parties hautes. Le toit et le mur de la première intrusion représentant respectivement les contacts intrusifs concordant et discordant avec les basaltes. Toutefois, nos observations montrent clairement que la géométrie du contact intrusif est soit : (i) fortement pentée et discordante, soit (ii) faiblement pentée et concordante avec les basaltes; et ce à différentes échelles d'observation. Il existe en effet des parties basses aux contacts intrusifs concordants tels que sur le flanc ouest de la Plage Jaune (SRBIC et complexe satellite); mais également des parties topographiquement hautes aux contacts discordants avec les basaltes tels que sur le massif de L. Lutaud dans les vallées de l'Armor et de Longue Attente. Cette géométrie du contact intrusif implique que la distinction entre mur et toit à l'échelle du complexe perd quelque peu de son sens. Il est clair que cette géométrie des basaltes suppose qu'à grande échelle le contact intrusif soit globalement concordant avec les basaltes.

La subsidence de blocs basaltiques est également proposée pour expliquer les intrusions satellites du SRBIC. Or, comme le montre la Figure 2.10, il n'existe pas de traces d'un tel mécanisme sous l'intrusion de l'anse Syénite par exemple. Si une phase de fracturation synchrone de l'intrusion a pu faciliter son passage dans ces derniers la géométrie du contact telle qu'elle s'observe partout sur le SRBIC impliquerait des failles de dislocation « en marche d'escalier » peu compatible avec le modèle de subsidence. Je me permets de remettre en avant les écrits de J.Nougier qui avait déjà décrit et interprété la relation du SRBIC avec les basaltes encaissants en ces termes :

« [...] L'ensemble de ces faits montre l'antériorité du basalte par rapport aux roches grenues. Il faut donc considérer ces roches comme un batholite qui lors de sa montée, a traversé les basaltes préexistants, les a basculés sur son pourtour, expliquant ainsi le fort pendage sud-est des basaltes de la région de la baie de la Mouche. Le batholite grenu, véritable volcano-pluton, a même conservé lors de sa mise en place, des capuchons basaltiques qui couronnent actuellement plusieurs sommets de la périphérie et de l'intérieur de la péninsule. [...] » (Nougier, 1963)

Afin de palier au problème d'épaississement sur l'élongation que suppose le modèle d'intrusion en filon annulaire, les auteurs ont supposé que l'épaisseur des flancs des intrusions était bien plus fine que leur épaisseur verticale. Selon leur interprétation, l'épaisseur des parties formant ce qu'ils ont considéré comme les murs est donc plus fine que l'épaisseur des parties formant les toits. Aucun indice de terrain ne nous a permis de confirmer cette hypothèse, que ce soit la distinction entre des toits et des murs ou bien des différences d'épaisseur entre ces différentes parties. De plus, tel que ce modèle avait été envisagé, il nécessite d'impliquer au moins un découplage de la partie inférieure des intrusions pouvant subsider avec le bloc basaltique ou la subsidence de blocs entiers de syénites pour permettre l'intrusion des nouvelles syénites au même niveau topographique que les précédentes. Si un tel mécanisme avait existé, cela aurait dû laisser des traces de discordances fortes avec la structure générale du pluton, lesquelles n'ont pas été observées.

D'autre part, le manque de bordures figées, noté par Marot et Zimine suppose (entre autres) une température proche dans chaque intrusion, ce qu'il est difficile de concevoir dans un modèle ou le moteur du processus intrusif est la fracturation dans les intrusions précédentes ou à l'interface du bloc en subsidence-intrusions. En outre, la complexité des textures et des injections à l'échelle de quelques mètres sur le terrain est difficilement compatible avec ce modèle qui implique des injections de grands volumes et donc relativement homogènes.

Dans le modèle de subsidence, il se peut que les éventuelles fractures annulaires ne puissent pu être visibles aujourd'hui car masquées par les intrusions qui les ont empruntées. Cependant, aucune fracturation conique à pendage interne n'a pu être observée. Il existe en effet des filons tardifs basiques (interprétés comme des cone-sheets par Marot et Zimine) et trachytiques recoupant les syénites mais leurs orientations ne coïncident pas avec une fracturation conique à l'échelle du complexe (Figure 2.32). Certains de ces filons se propagent dans les massifs basaltiques externes mais ne forment en aucun cas des injections d'une fracturation radiaire. Cette observation est également en accord avec l'étude des orientations de failles et filons de Mathieu et al. (2011). Au-delà de ces filons majoritairement tardifs, toutes les autres entités constituantes de ce complexe sont co-structurées avec le litage magmatique général centripète dont le pendage diminue vers le centre de l'intrusion.

# 7.4.4 Arguments en faveur d'un modèle de construction alternatif : laccolithe

La comparaison de nos observations de terrains avec celles de Marot et Zimine sont bien cohérentes dans les grandes lignes. Cependant, il est clair que leurs données de terrain, pourtant précises, ont été interprétées et probablement adaptées à des modèles de mise en place actifs (diapirs) ou passifs (subsidence en chaudron) largement utilisés pour justifier de la circularité apparente des intrusions en domaine continental. (Jacobson et al., 1958; Bonin and Lameyre, 1978; Black et al., 1985; Vail, 1985; Bowden et al., 1987; Bonin et al., 1998).

Il est clair que le changement de pendage des basaltes à l'approche du SRBIC est une conséquence directe de l'intrusion plutonique. De fait, l'espace nécessaire à la mise en place de l'intrusion est directement accommodé par le soulèvement des basaltes de plateau. Là encore je remets en avant un autre exemple des écrits de J.Nougier qui figure dans sa thèse associés à ses coupes de terrain :

« [...] Un examen tectonique est particulièrement significatif des conditions de mise en place du pluton. Partout où nous avons pu les étudier (Est, Sud, Ouest) les pendages divergent de la région centrale du massif et s'orientent normalement à la cote (voir carte). L'intensité du pendage qui est généralement très faible (O à 10° environ) atteint des valeurs beaucoup plus considérables (40 à 60°) sur la cote Sud. On conçoit que dans ces conditions les strates basaltiques aient été soulevées lors de la poussée verticale provoquée par la mise en place du pluton. [...] » (Nougier, 1969, p. 61)



Figure 7.5: Coupes W-E extraites de la thèse de J.Nougier (1969) qui montrent la concordance à grande échelle entre le SRBIC et les basaltes de plateau soulevés par ce dernier.

Ce soulèvement est estimé à 3 kilomètres (Marot and Zimine, 1976). La géométrie en dôme de ces basaltes de plateau est également en accord avec les profils sismiques réalisés sur l'archipel dont les auteurs avaient conclu :

« In the Kerguelen Isles, at the western end of profile P2-87, velocities of 6.2-6.3 km s-', higher than those observed in lava flows at shallow depth (Fig. 6a), denote the seaward extension of the Rallier du Baty plutonic complex. » (Charvis et al., 1995).

Cette géométrie implique donc que le SRBIC est concordant à grande échelle. Les géométries de contacts intrusifs discordantes et fortement pentées sont dues à des irrégularités impliquant un mécanisme de « stopping » peu développé comme le suggère l'occurrence d'enclaves basaltiques sous ses contacts irréguliers. Il peut également s'agir par endroits de remplissage de failles en extension due à la composante extensive de déformation dans les basaltes induite par le remplissage magmatique. Dans la Figure 7.6 illustrant ces mécanismes, la longueur initiale des basaltes BC = AB est devenue plus grande (BC > AB) après l'injection de syénite impliquant l'ouverture et le remplissage de failles en extension.



Figure 7.6 : Représentation schématique des mécanismes responsables des géométries discordantes au contact SRBIC-basaltes de plateau (opérants à plusieurs échelles).

Nos observations de terrain ont montré que le SRBIC est composé de trois unités structurales majeures constituées par une superposition de sills ou lentilles dont le nombre et la variabilité de taille ne peut être retranscrite cartographiquement avec exactitude. Les cartes de terrains présentées dans cette thèse, ainsi que les cartes géologiques (issue de cette thèse et celle de Marot et Zimine) ne peuvent retranscrire cette complexité. Formé d'une multitude d'injections successives, la structure du SRBIC traduit une construction de l'intrusion par succession de pulses magmatiques. Les contacts entres les différentes intrusions sont francs et ne montrent aucune bordure figée. Ce sont donc des contacts magmatiques impliquant (entre autre) un faible contraste de température entre les intrusions successives. Toutes ces différentes intrusions forment un litage magmatique à pendage centripète dont l'orientation est parallèle au contact intrusif dans les basaltes de plateau.

Les contacts internes entre les différentes injections confirment la structure en dôme à grande échelle du complexe. Comme les roches du SRBIC ne montrent que peu d'orientation préférentielle de forme des minéraux a l'échelle macroscopique, l'étude des fabriques minérales a été conduite indirectement. L'anisotropie de susceptibilité magnétique a permis de mettre en évidence la fabrique magnétique des roches du SRBIC. Les foliations magnétiques sont parallèles aux contacts externes et internes du SRBIC et confirment la structure en dôme. Les linéations magnétiques sont N-S dans les intrusions les plus jeunes au centre –nord du complexe lesquelles évoluent graduellement vers des linéations parallèles au contact SRBIC-basaltes de plateau dans les intrusions les plus anciennes. Ces dernières montrent le contrôle qu'exerce ce contact sur la mise en place/ l'injection des magmas. Ce type de fabrique est similaire à celui de nombreux exemples continentaux (e.g. St Blanquat et al., 2001, 2006). Les linéations N-S observées

dans les syénites les plus jeunes peuvent être interprétées comme représentatives de la direction d'injection du magma lors de sa mise en place.

Les marqueurs de déformation observés sur le SRBIC correspondent essentiellement à plusieurs générations de zones de cisaillement. Ces zones de cisaillement organisées en réseau recoupent et décalent de quelques millimètres à quelques mètres les structures préexistantes. Les relations de terrains ainsi que des évidences macro et microscopiques de déformation à la transition ductile-fragile montrent qu'elles sont syn-plutonisme. Elles se retrouvent de façon hétérogène dans les unités les plus anciennes mais se concentrent surtout à la base de l'unité structurale la plus ancienne. Cette zone définit donc un anneau concordant avec la géométrie des intrusions successives du complexe. La présence de quelques brèches syn-magmatiques à plusieurs endroits atteste de l'intensité de la déformation dans cette zone. Les zones de cisaillement du SRBIC sont tout à fait comparables à celles qui déforment les bordures du pluton d'Eastern Mourne (Stevenson et al., 2007). En accord avec les interprétations de ce dernier, ces déformations marquent le caractère plus ancien de l'unité intrusive externe qui est au contact des basaltes de plateau. Les orientations de ce réseau de déformations traduisent un raccourcissement perpendiculaire aux différents contacts externes et internes (Figure 7.7).



Figure 7.7: Représentation schématique des contraintes subies par l'encaissant lors de la propagation d'un sill.

Ces zones de cisaillement enregistrent l'amincissement d'une injection due à l'injection suivante. La concentration de la déformation à la base de l'unité indique que cette unité était dans un état de cristallisation suffisamment avancée pour enregistrer cette déformation. Cependant des évidences de déformations ductile montrent que la roche n'était pas complètement froide lors de sa déformation (Gapais, 1989; Vigneresse et al., 1996).

La géométrie concordante en dôme ainsi que la construction à partir de pulses/injections magmatiques successives du SRBIC est en accord avec les études conduites depuis une vingtaine d'années sur la formation des plutons en domaine continental. En effet, il est maintenant établi que les plutons sont généralement tabulaires horizontalement ou verticalement (Cruden, 1998; Vigneresse et al., 1999; Mahan et al., 2003; Michel et al., 2008), formés par de nombreux pulses magmatiques (e.g. Coleman et al., 2004; Glazner et al., 2004; Horsman et al., 2009) et que le problème d'espace lié à l'apport intrusif est essentiellement compensé par le déplacement de l'encaissant (e.g. Tikoff et al., 1999; Acocella, 2000; Menand et al., 2015). Ainsi, des modèles de mise en place tels que la montée massive de magma par diapirisme et la subsidence en chaudron sont de plus en plus remis en questions (e.g. Petford et al., 2000; Stevenson et al., 2007; Horsman et al., 2009). De part ces avancées dans la compréhension des mécanismes de formation des plutons et d'après les évidences de terrain décrites plus haut, il est clair que le SRBIC est un complexe plutonique laccolithique dont la construction a soulevé les basaltes de plateau. C'est également dans ce sens que plusieurs massifs continentaux considérés comme des complexes annulaires ont été réinterprétés (e.g. Stevenson et al., 2007; Magee et al., 2012).

Les données sur lesquelles repose ce modèle proposé pour le complexe sud de RdB sont sujettes à un certain biais dû à la sur-représentation de l'étude d'une partie de la péninsule (Figure 7.8). Cependant, la

comparaison entre les mesures de terrain et les mesures attendues pour un laccolithe en fonction de cette répartition montre la compatibilité des données de terrain avec ce modèle.



Figure 7.8: Impact de la sur-représentation des données dans une aire spécifique de la zone d'étude et compatibilité avec le modèle de construction du SRBIC.

7.4.5 Questions en suspens

#### - Forme du laccolithe

Le caractère elliptique de ce laccolithe est indéniable aux vues de la géométrie de l'intrusion bien visible cartographiquement. Toutefois, les épanchements trachytiques plus récents et la couverture glaciaire (prolongement la calotte Cook) ne permettent pas d'observer le contact intrusif avec les basaltes de plateaux au NW du complexe. C'est pourquoi, il est possible que ce laccolithe puisse être asymétrique selon un axe N-S. Seul l'avenir pourra permettre de confirmer cette hypothèse en appliquant des méthodes géophysiques ou en s'armant de patience au vue de l'état actuel du réchauffement climatique et de l'assèchement de l'air (Favier et al., 2016). Qu'il soit asymétrique ou pas, le laccolithe est la géométrie plus simple pour décrire la forme de cette intrusion. De la même manière, le soulèvement des basaltes est le processus mécaniquement le plus simple qui explique la construction de ces intrusions. Une autre possibilité serait que le SRBIC puisse s'interpréter comme un bysmalithe, lequel aurait permis, en plus d'un bombement des basaltes, le soulèvement vertical d'une grande partie par « effet piston » , accommodé par des failles de grande ampleur. Si ce modèle est connu en domaine continental (e.g. St Blanquat et al., 2006), l'absence de ces grandes failles sur RdB ne permet pas de valider ce modèle.

#### - Volume – flux magmatique

Etant donné le manque d'informations sur la structure profonde du SRBIC, l'estimation des volumes magmatiques intrusifs reste à ce jour approximative. Toutefois, les données cartographiques et structurales permettent d'estimer le volume du SRBIC de l'ordre de 550 ± 150 Km<sup>3</sup>. En considérant une durée de mise en place de 3.7 Ma mise en évidence par les données géochronologiques, le flux

magmatique moyen est donc de l'ordre de  $1.5 \times 10^{-4} \text{ Km}^3/\text{an}$  (±  $5.10^{-5} \text{ Km}^3$ ). Ce dernier est tout à fait comparable aux flux moyen observés dans la croûte continentale (voir St Blanquat et al., 2011).

#### - Structure interne – fabrique - feeder

La fabrique magnétique du SRBIC peut s'interpréter comme l'expression de la direction d'injection des intrusions magmatiques du nord vers le sud. Cette dernière pourrait donc indiquer un conduit d'alimentation situé au nord de la péninsule. La géométrie de ce conduit d'alimentation ne peut être définie avec certitude à l'heure actuelle. De plus, le rajeunissement des âges des intrusions successives du sud vers le nord pourrait traduire une migration de cette zone d'alimentation vers le nord au cours du temps. Cette hypothèse semble en accord avec la chronologie des différents complexes identifiés au nord de la péninsule de RdB. Toutefois, même si cette migration est sans doute en lien avec la migration du plateau de Kerguelen vers le sud par rapport à la SEIR et la SWIR, les vitesses d'expansion des fonds océaniques (Royer and Schlich, 1988; Cande et al., 2010) supposent qu'en 4 Ma un point immobile en profondeur aurait parcouru entre 100 et 260 Km sur la plaque. Une migration aussi rapide est incompatible avec la migration de la zone d'alimentation des intrusions estimable à 2.5Km/Ma au maximum (entre l'anse du Gros Ventre ≈14Ma et Castor et Pollux ≈4.9Ma). La migration des intrusions vers le nord n'est donc pas uniquement contrôlée par le mouvement relatif du plateau de Kerguelen par rapport aux dorsales. De façon plus générale, la tectonique régionale extensive liée aux dorsales ne semble pas avoir eu d'impact sur les structures plutonique de mise en place de la péninsule comme le montrent les orientations des marqueurs de déformations.

#### - Textures et thermicité

Les textures magmatiques se développent dans les niveaux superficiels de cristallisation des roches intrusives contrairement aux caractéristiques chimiques qu'elles acquièrent au travers des niveaux plus profonds de la croûte (e.g. Annen et al., 2006; Jagoutz, 2010). Elles dépendent donc des paramètres thermodynamiques qui sont propres à la dynamique d'injection du magma tel que son volume, sa température, sa vitesse d'emplacement, son pourcentage de charge solide et sa composition (notamment en éléments volatiles). Elles dépendent également des contrastes entre ces paramètres du magma et ceux de l'encaissant. A grande échelle, les différent faciès texturaux du SRBIC montrent une certaine évolution au cours du temps. Les syénites porphyriques ne se retrouvent qu'au sein de l'unité 1 recoupant l'alternance monzodiorites-syénites ainsi qu'au contact entre cette dernière et l'unité 2. Certaines passées porphyriques ont également pu être observées ça et là au contact intrusif du SRBIC, lequel est également formé de syénite grenues et injections aphyriques. Au cours du temps et de la construction du complexe le volume de syénite microgrenue injectée diminue. Ce facies est peu abondant dans l'unité 3 structurale la plus récente. C'est pourquoi sur le SRBIC, le fait que les textures soient progressivement dominées par les facies grenus au cours du temps indique une certaine stabilisation des dynamiques d'injection et de mise en place dans l'encaissant. Cette hypothèse est en accord avec les interprétations géochimiques qui montrent que l'environnement d'évolution des liquides syénitiques, les plus anciens, est ouvert avec des recharges magmatiques répétées, tandis que l'environnement d'évolution des liquides syénites les plus jeunes est plus stable, probablement déjà syénitique, avec une évolution classique en système fermé. De plus, il est probable que la température des niveaux de mise en place ait augmenté par l'accumulation des précédentes injections, ce qui pourrait avoir favorisé le développement des faciès grenus. Ainsi, même si la texture se forme lors de la mise en place et la cristallisation, elle contient également des informations sur l'évolution progressive de la dynamique magmatique.
A l'échelle de l'affleurement les variations de textures aux contacts entre les différents sills renseignent sur les contrastes thermiques encaissant – injections. Tous les contacts observés sur le terrain ne montrent pas de bordures figées. Cette particularité s'observe également à l'échelle microscopique ou les rares bordures figées observées sont de tailles millimétriques. Cette observation suggère donc que de faibles contrastes thermodynamiques entre les intrusions successives. Elle suppose notamment que le contraste de température entre les deux intrusions est faible. Par conséquent, la première intrusion ne peut être entièrement refroidie lorsque la suivante se met en place. De telles observations pourraient même traduire une recristallisation ou une homogénéisation des textures aux contacts impliquant une recristallisation ou une nouvelle phase de nucléation dans la première intrusion. Cette hypothèse suppose donc la mise en jeu d'une faible portion de liquide magmatique contenue dans la première intrusion. Cette faible fraction de liquide ne peut exister que si la température de la première intrusion se trouve au dessus du solidus. Deux hypothèses peuvent donc être avancées pour expliquer cette fraction de liquide magmatique résiduelle : soit la température de la première intrusion n'est jamais descendue en dessous du solidus lorsque la seconde se met en place, soit la mise en place de la seconde permet d'augmenter la température de la précédente pour permettre de franchir à nouveau le solidus.

L'observation des textures pose donc plusieurs questions dont les réponses relèvent de l'état thermique du SRBIC. Les premiers travaux de modélisation thermiques des intrusions plutoniques (e.g. Harrison and Clarke, 1979) ont montré que le refroidissement d'une intrusion magmatique dans les niveaux supérieurs froid de la croûte est très rapide : de l'ordre de la centaine de milliers d'années. Les travaux plus récents ont montré que la température du solidus est atteinte d'autant plus vite (<10000 ans) si cette intrusion a la forme d'un sill ou un dyke (e.g. Annen et al., 2008). Evidement, ces considérations dépendent de la taille de l'intrusion, de sa vitesse d'emplacement, de sa composition et de l'état thermique initial de l'encaissant. Toutefois, quelle que soit la forme du pluton, le temps de refroidissement est souvent inférieur au temps de construction total mesuré par différentes méthodes, supportant de fait les modèles de mises en place par succession de pulses magmatiques.

Les observations de contacts magmatiques entre les différentes intrusions à l'intérieur de chaque grande unité structurale du SRBIC supposent donc que, pour la plupart, le temps qui sépare la mise en place d'une intrusion à une autre est inférieur au temps qu'il faut pour refroidir entièrement la première intrusion. Cette hypothèse impliquerait une construction de chaque unité en quelques milliers, dizaine de milliers voire centaine de milliers d'années. Or, les âges U-Pb obtenus sur zircons montrent, au moins pour la première et la seconde unité, des temps de construction qui dépassent le million d'années. Ce résultat devrait conduire à l'observation d'au moins une forte discontinuité temporelle et structurale à l'intérieur de ces unités. Bien que nous ayons observé différents contacts magmatiques, aucune forte discontinuité structurale, telle qu'elle existe entre l'unité 2 et 3 par exemple, n'a pu être identifiée à l'intérieur de ces unités. Cette caractéristique pourrait donc signifier que les âges U-Pb obtenus pour chaque échantillon ne représentent pas seulement les âges minimum d'emplacement. Cependant ces âges obtenus sont tout à fait similaires aux âges précédemment obtenus par K-Ar (Dosso et al., 1979) dont la température de fermeture est inférieure à celle du zircon. La cohérence entre ces deux systèmes est notamment vérifiée dans les parties externes du complexe à la vue de l'âge identique entre le métamorphisme des basaltes au contact intrusif et les syénites directement sous ce contact. De plus, les datations U-Pb sont indirectement vérifiées par la modélisation isotopique qui implique un intervalle de temps de plusieurs Ma entre les premières manifestations plutoniques et les plus récentes. Les âges U-Pb des différents échantillons semblent donc représenter l'âge minimum d'emplacement des différentes intrusions, ce qui devrait permettre des cycles de refroidissement suffisant pour donner lieu à des fortes discontinuités texturales et structurales.

Pourtant, au delà des contacts magmatiques sans bordures figées, l'organisation des fabriques magnétiques au cours de temps, les déformations localisées en zones de cisaillement à la limite fragileductile ainsi que les injections sinueuses trachy-basaltiques tardives supposent que l'environnement de mise en place du SRBIC est un environnement où des températures élevées proches du solidus (estimé autour de 700°C) ont été maintenues ou ont oscillé pendant des temps relativement longs. Il y a donc une incompréhension « temps vs. textures » qui reste en suspens.

Afin de maintenir des températures élevées au sein d'intrusions plutoniques, les travaux récents de modélisation thermique (Annen et al., 2015 et références inclues) supposent que les taux d'accrétion et de flux magmatique doivent être suffisamment élevés. Couplé à des temps de longévité assez long, ces caractéristiques laissent penser que le SRBIC serait formé d'innombrables intrusions accrétées progressivement et dont les contacts sont aujourd'hui masqués sur le terrain. Chaque grande unité structurale étant formée de nombreuses intrusions d'échelle métrique/décamétrique, lesquelles pourraient être également formées de plusieurs injections relativement continues dans le temps et presque invisible à l'affleurement. Les différentes grandes unités structurales représentant des phases ou épisodes magmatiques relativement continus séparés par des discontinuités (au moins) temporelles plus ou moins grandes. Cette hypothèse va dans le sens des résultats obtenus sur d'autres complexes plutoniques tel que le Torres del Paine (Chili) expliquant les contacts francs entre les grandes unités structurales (Baumgartner et al., 2007) et le peu de contacts visibles à l'affleurement entre les intrusions successives qui composent ces unités (Leuthold et al., 2012). Cette hypothèse d'intrusions de petite échelle relativement continues et indiscernables sur le terrain est tout à fait envisageable dans le cas de SRBIC. Ainsi, en fonction de la dynamique d'injection (taille des intrusions, différentiel de température, vitesses, charge solide etc...) la température élevée du système pourrait permettre la rééquilibration texturale des intrusions déjà mises en place, voire permettre à une faible portion de liquide magmatique d'être maintenue à chaque instant t au sein de l'intrusion fraichement mise en place. Les intrusions suivantes s'injecteraient donc dans ou au contact d'un « mush » syénitique capable de masquer ce contact par rééquilibration texturale ou nouvelle phase de cristallisation expliquant ainsi l'absence de bordures figées entre les différentes intrusions (Wiebe, 2004; Miller et al., 2011; Leuthold et al., 2014).

Même si cette hypothèse est séduisante, le maintien de températures élevées proche du solidus est difficile à concevoir et correspond certainement plus à des oscillations cycliques autour de cette valeur (e.g. Johnson and Glazner, 2010; Mills and Glazner, 2013). Elle reste également et surtout difficile à concevoir en termes de temps. Bien que 32 échantillons aient pu être datés pendant cette thèse, il est clair que la maille d'échantillonnage est trop grande pour permettre de contraindre avec assez de précisions des injections multiples à l'échelle métrique ou inférieure. De plus, les erreurs analytiques sur la mesure des âges par ablation laser obtenus sont de l'ordre de la centaine de milliers d'années. Cette technique n'est pas la plus adaptée pour quantifier des processus de refroidissement du même ordre de grandeur et inférieur. A l'échelle de l'échantillon, le traitement des données géochronologiques montre que tous les zircons n'ont pas exactement le même âge (aux erreurs près). En effet, même s'il est cohérent d'estimer l'âge concordant comme l'âge de fermeture du système U-Pb le plus représenté au sein de l'échantillon, tous les zircons ne montrent pas strictement le même âge de fermeture. Certains échantillons présentent ainsi des zircons dont les âges se répartissent sur des intervalles avoisinant le million d'années (mais toujours inférieur). Faisant abstraction des erreurs relatives, ceci implique que la température de fermeture de chaque zircon a été atteinte à des moments différents dans un même

échantillon. La répartition de ces âges au sein d'un seul échantillon pourrait s'expliquer soit (i) par un biais dans les âges obtenus directement lié au traitement analytique mis en œuvre soit (ii) à la présence de zircons « hérités » dont les systèmes U-Pb ont été fermés précocement. La présence de ces zircons hérités peut être envisagée comme le transport de cristaux cristallisés plus profondément. Cette hypothèse semble cohérente avec des circulations et multi-injections dans un mush, lesquelles auraient engendré un certains brassage minéral. Cependant, le magma transportant ces zircons permet également la cristallisation des zircons plus récents dont les plus jeunes cristallisent au minimum au niveau de cristallisation finale de la roche. Cela suppose que la saturation en zircon atteinte à un moment donné aurait dû former des couronnes de croissance récentes sur les premiers zircons transportés. Or, si ces surcroissances existent, je les ai assurément manqués en cathodoluminescence. Ces zircons devraient donc être plutôt assimilés à des « antecryst » similaires à ceux décrits par Charlier et al., 2005, qui ne présentent pas vraiment de cœurs hérités et de bordures. Les rares mesures effectuées sur les cœurs et bordures des zircons du SRBIC montrent néanmoins des périodes espacées de plusieurs centaines de milliers d'années ce qui supporte le maintien ou les oscillations de températures sur des temps relativement longs.

En faisant abstraction de ces problèmes de textures, la répartition des âges des zircons dans un même échantillon ne peut être acquise seulement dans le niveau d'emplacement. Il faudrait donc concevoir différents niveaux de mush contenant des zircons en cours de cristallisation à partir desquels un liquide aurait pu être extrait ou ségrégé pour transporter ces derniers, ou bien le passage d'un liquide au travers ces différents mush. En accord avec la présence de rare zircon clairement hérités, ces hypothèses envisagent donc des niveaux de mush qui se placeraient entre le niveau du dernier réservoir de différenciation des syénites et les niveaux de mise en place.

Il est clair que les données thermiques et géochronologiques dont je dispose ne permettent en aucun cas de valider un tel modèle. Toutefois, elles permettent de l'envisager et mettent surtout en lumière un des axes de recherches futures sur le SRBIC des plus prometteur : la nécessité des observations détaillées à petite échelle.

### 7.4.6 Modèle de formation du SRBIC à l'échelle de la lithosphère

Tous les résultats obtenus durant ce travail et synthétisés dans ce chapitre permettent de proposer un modèle interprétatif à l'échelle de la lithosphère. Ce dernier est illustré par un schéma évolutif sous forme de coupe verticale synthétique à différents instants de la formation du pluton. Cette évolution est reportée sur la structure de la croûte océanique épaissie du plateau (Figure 7.9), elle-même basée sur les études antérieures de la structure profonde sous l'archipel (Recq et al., 1990; Charvis et al., 1995; Grégoire et al., 1998; Chevet, 2009). Cette structure est composée d'une première épaisseur de croute basaltique (layer 2) qui s'étend jusqu'à environ 9.5 Km. Délimitée par une limite physique mise en évidence par la sismique, elle est distinguée d'une croute de plus forte vitesse de propagation d'onde p pensée comme une croûte gabbroïque (layer 3). Cette dernière s'étend de 9.5 à 18Km de profondeur sous l'archipel. La transition croûte manteau est repérée par une zone de forte vitesse de propagation entre 18 et 20 Km. Cette zone d'approximativement 2 Km correspond à une aire de sous-plaquage et d'intrusions magmatiques. Elle est formée par de nombreux cumulats mafiques et ultramafiques, principalement reliée à l'activité de la dorsale océanique dont les produits montrent des évidences de métamorphisme HP-HT de type granulitique. Il est possible que cette zone puisse également contenir des cumulats alcalins présents à 14 Ma (dont les xénolithes, contrairement aux roches ultramafiques n'ont pas été récupérés en tant que tels sur le terrain jusqu'à présent). Un peu avant et surtout après cette zone particulière, les vitesses augmentent progressivement jusqu'à atteindre les vitesses de propagation « classiques » d'un manteau de type harzburgitique. Cette particularité suppose donc qu'au-delà de cette zone de cumulats bien marquée la transition croute-manteau sous l'archipel est très diffuse. Il est assez évidement que cette transition est marquée par de nombreux niveaux d'intrusions et de cumulats qui se superposent progressivement jusqu'à former cette zone de forte concentration entre 18 et 20 Km. C'est pourquoi il est assez difficile de délimiter la transition croûte-manteau en profondeur. D'âpres les études antérieures, je la conçois et la dessine comme pouvant s'étendre proche des 30 Km de profondeur.



Figure 7.9: Structure de la croute océanique épaissie sous l'archipel de Kerguelen, a) d'après Grégoire et al. (1998) ; (b) détaillée sous le complexe de RdB

Sur la base de cette structure de croûte du plateau océanique sous l'archipel, la  $\leftarrow$  Figure 7.10 suivante schématise les différentes étapes de construction du SRBIC à 14 Ma (âge des premières roches mises en place) ; 11 Ma et 7.5 Ma (âge-limite connu des dernières roches mises en place sur le complexe). Les différentes interactions étant déjà exposées ci-dessus, je serais bref quant à la description de ce modèle.

- Peu avant 14 Ma et jusqu'à 11.5 Ma : Les liquides de fusion partielle du manteau asthénosphérique du panache de Kerguelen (qui s'effectue entre 60 et 100Km de profondeur) se mélangent avec des liquides basaltiques issus d'un manteau sub-continental métasomatisé. Les liquides ainsi mélangés sont transportés par densité vers les niveaux supérieurs de la lithosphère. Ils traversent la zone de transition manteau-croute, ainsi que la croûte gabbroïque et viennent se localiser dans un niveau de différenciation semblable à une chambre magmatique que je situe à la limite croûte basaltique/gabbroïque à 9.5 Km. A l'intérieur de ce niveau intermédiaire, ces liquides vont se différencier pour donner les premiers liquides syénitiques alcalins calciques. Ces derniers sont ensuite, ou en même temps mais de façon progressive, injectés dans la croute basaltique. Ils se stoppent et finissent la plus grande partie de leur cristallisation



dans les niveaux de mise en place que je situe entre 2 et 3 Km. Ces premières intrusions forment le massif de l'anse du Gros Ventre.

#### ← Figure 7.10: Modèle de la formation du SRBIC à l'échelle de la lithosphère, à travers 3 schémas évolutifs

- Aux alentours de 11.5 Ma : Le mélange en profondeur avec les liquides de fusion du manteau métasomatisé n'ont plus lieu. Seuls les liquides basaltiques de signature du panache de Kerguelen remontent à travers les différentes enveloppes de la croûte océanique épaissie. Ces liquides basaltiques dont la production est plus volumineuse forment probablement des conduits de drainage ou d'alimentation de plus grande envergure. Ils vont interagir avec un fragment de croûte continentale qui se localise forcément entre le niveau de différenciation et le niveau d'extraction ou de drainage de ces liquides (AFC). Je propose donc que ce fragment soit situé proche du niveau de différenciation, dans la croûte inférieure gabbroïque, aux alentours de 12-13 Km. La production de ces liquides semble discontinue avec des phases répétées d'alimentation dans le niveau de différenciation. L'assimilation et la différenciation de ces liquides forment des magmas alcalins calciques. Ces derniers sont ensuite mise en place sous forme de sills ou lentilles diachrones dans les hauts niveaux de la croûte pour donner la série des roches mafiques/intermédiaires-CaS.

- Depuis 9.5Ma jusqu'à 7.5 Ma: Les liquides basaltiques précédents ayant interagi avec le fragment de croûte continentale ont progressivement diminué son pouvoir de contamination. Aussi, la dernière recharge magmatique issue du panache de Kerguelen ne contient plus cette signature continentale. De plus, le système qui était auparavant ouvert se ferme et les derniers liquides basaltiques produits se différencient dorénavant en système clos de manière plus « classique ». De par les précédentes intrusions de liquides au travers de la croûte océanique froide, leur différenciation et leur mise en place, cette croute océanique a changé progressivement. Le système magmatique actif depuis environ 5 Ma, a engendré l'augmentation de la température de cette croute qui fut initialement froide. Mais il a également changé les conditions de fugacité d'oxygène qui sont devenues de plus en plus réduites ainsi que la nature des fluides associés, auparavant chargés en H2O et CO2, vers des compositions de type CH4. Ces changements ont pu s'opérer sur l'ensemble de la croute traversée mais sont sans doute concentrés depuis le niveau de différenciation jusque dans les niveaux de mise en place. L'activité de ce système dynamique a même changé la nature de la croute sur son passage. Auparavant, supposée strictement basaltique, les liquides différenciés ont drapés les murs des conduits d'alimentation et certainement formé plusieurs petits niveaux intrusifs syénitiques entre le niveau de différenciation et le niveau de mise en place. Entre 10 et 3 Km cette croute basaltique est donc maintenant lardée d'intrusions filonniennes syénitiques et sa composition est probablement intermédiaire entre une syénite et un basalte. C'est pourquoi, les derniers liquides qui vont se différencier depuis 9.5Ma évoluent dans un environnement nettement différent de celui qui existait à 14 Ma. Cette différence a pour conséquence de former des magmas de plus en plus sodiques. Au cours de leur différenciation en système clos cette caractéristique s'accentue pour donner des magmas de plus en plus agpaïtique. Lors de leur injection progressive via les mêmes conduits, ces liquides syénitiques assimilent les premières roches intrusives CaS, qu'ils croisent entre le niveau de différentiation et le SRBIC (AFC). Finalement, ces magmas qui forment la série magmatique CaNaS-NaS se mettent en place progressivement de manière pulsée sous les premiers niveaux intrusifs CaS et termine la construction du laccolithe.

Ce modèle, et les schémas qui l'illustrent, synthétise clairement les différents résultats obtenus. Bien qu'il ait l'avantage de découpler clairement les différentes sources impliquées dans la genèse du SRBIC, ce modèle pose plusieurs questions. Notamment sur la signification et la viabilité de ce niveau intermédiaire requis, pour la différenciation des roches, et dont le volume est probablement sous estimé ici. En effet, mis à part la limite physique qu'il existe à 9.5 Km entre la croûte sup et inf., il n'y a pas d'autres d'arguments qui justifient de le placer à cet endroit. De plus, où sont les basaltes qui lui ont laissé la place ? Ont-ils été digérés ? Et si non, ne devrait il pas y avoir quelconques indices de déplacement visibles 6-7 Km plus haut (dans les niveaux basaltiques aujourd'hui à l'affleurement). A là vue de cette incertitude majeure, je propose un modèle alternatif où ce niveau nécessaire à la différenciation des liquides basaltiques est situé dans la zone de transition manteau-croute. Par conséquent, afin de respecter les résultats obtenus il est également nécessaire de placer le fragment continental sous ce niveau de différenciation dans la zone de transition. Ce modèle alternatif ne change en rien les différentes interactions, dynamiques et processus exposé dans le précédent modèle. Il translate simplement les processus supposés entre 14 et 7 Km dans la zone de transition manteau-croute. C'est pourquoi je ne représente que la dernière coupe à 7.5 Ma en comparaison du modèle précédent.

Ce second modèle semble plus viable que le précédent car la zone de transition croûte-manteau sous l'archipel est une autre discontinuité forte dans la lithosphère océanique. En plus d'être plus franche, son épaisseur permet de supposer que de nombreuses interactions y prennent place. L'importance physique de cette zone est déjà mise en évidence par les cumulats granulitiques qui s'y concentrent. D'autre part, une zone de production de magmas felsiques située en base de croûte est une hypothèse aujourd'hui largement envisagée en domaine continental (Annen et al., 2006). Si tel semble également le cas dans la lithosphère sous l'archipel de Kerguelen, ce modèle mettrait en évidence l'une des premières « Deep Oceanic Hot Zone ».



Figure 7.11: Modèle alternatif à l'échelle de la lithosphère, impliquant une Deep Hot Zone en domaine océanique.

Quel que soit le modèle privilégié, il implique nécessairement la présence d'un fragment continental ; lequel je situe dans la croûte inférieure (à l'intérieur de celle-ci ou à sa base). Ces deux modèles supposent donc que ce fragment continental a dû être incorporé dans la croûte océanique lors de la dislocation du Gondwana. Je propose que ce fragment continental constitue une des parties manquantes, non-identifiée jusqu'ici, entre la marge indienne et la marge antarctique dans les modèles actuels de reconstruction de l'Océan Indien. Situé entre l'Elan Bank et la butte de Gulden Draak à 120 Ma, ce fragment est certainement issus de la marge indienne. La position de ce fragment, reportée sur les cartes de reconstruction paléogéographique de l'Océan indien, met clairement en évidence une logique continue de dislocation et incorporation de fragments continentaux ; lesquels forment aujourd'hui des monts sous-marins ou plateaux océanique dans cet océan tels que le NKP.



Figure 7.12: Position du fragment continental reportée (par une flèche en a) sur les cartes de reconstruction de l'ouverture de l'Océan indien de Gibbons et al., (2013).

# **Conclusions et perspectives**

# 8.1 Conclusions générales

Ce travail de thèse avait pour objectif spécifique de revoir la géologie du complexe sud de Rallier-du-Baty à la lumière des progrès réalisés dans les analyses et la compréhension des systèmes magmatiques plutoniques. Au travers d'une approche multi-disciplinaire ce travail fournis de nouveaux résultats qui permettent de répondre aux questions à l'origine de cette étude :

### $\rightarrow$ Quelle est l'origine des magmas ?

L'étude isotopique sur roche totale, menée au travers des couples Rb/Sr et Sm/Nd a permis d'identifier plusieurs composantes impliquées dans la genèse des roches plutoniques du SRBIC et de ses satellites. Il est clair que la composante principale est le plume de Kerguelen. L'origine des roches plutoniques se situe donc dans le manteau enrichi qui forme ce panache et qui les relie directement au magmatisme de point chaud. Le magma parent des syénites et monzonites/diorite/gabbros du complexe est donc un liquide basaltique alcalin. Cependant, trois autres composantes isotopiques impliquées de façon plus discrète ont pu être identifiées. Ces dernières interagissent en faible proportion avec les liquides primaires extraits du manteau enrichi de type plume de Kerguelen. Elles peuvent donc être considérées comme des « contaminants ». La première de ses composantes, faiblement radiogénique en Nd, trouve son origine dans un manteau métasomatisé relativement ancien, dont les liquides issus de la fusion partielle se sont mélangés en proportion variable avec les liquides alcalins issus du panache de Kerguelen (« mixing »). Cette interaction semble être prédominante dans les liquides magmatiques à l'origine des premières intrusions plutoniques sur la péninsule (Massif du Gros Ventre). La seconde composante, faiblement radiogénique en Nd et fortement radiogénique en Sr, est de type croûte continentale. Il s'agit vraisemblablement d'un (ou plusieurs) fragment(s) de croûte continentale d'âge Crétacé assimilé(s) en faible proportion par les liquides alcalins issus du plume (« AFC »). Cette interaction s'observe dans premiers volumes de syénite qui constituent le laccolithe du SRBIC. La dernière composante isotopique identifiée, isotopiquement identique au panache de Kerguelen en Nd et fortement radiogénique en Sr, correspond à des syénites du SRBIC lui-même. En effet, les premières syénites mises en place, développant des signatures très radiogéniques en Sr au cours du temps, ont été en partie assimilées à de faibles degrés par des nouveaux liquides syénitiques. Ces derniers ne montrent pas de traces de contamination crustale. Les dernières syénites mises en place sur la péninsule résultent donc d'une « auto-contamination » du SRBIC.

Cette étude confirme donc l'origine essentiellement mantellique du complexe sud de Rallier du Baty comme cela avait été déjà mis en avant par les travaux antérieurs pour ce pluton et pour les autres complexes plutoniques de l'archipel (Dosso et al., 1979; Scoates et al., 2007). Cependant, cette étude montre pour la première fois la complexité des sources secondaires impliquées dans la genèse des roches plutoniques qui forment ce complexe. Elle met en évidence trois sources secondaires n'ayant jamais été décrites pour les roches plutoniques de l'archipel de Kerguelen, dont une source syénitique jamais décrite auparavant quelques soient les roches intrusives. Les interactions entre ces différentes sources impliquent plusieurs niveaux d'interactions magmatiques, évoluant dans le temps, depuis les niveaux sources profonds jusqu'aux niveaux plus superficiels de la croûte océanique. Ces résultats montrent également que les différentes sources reconnues ou supposées ayant joué un rôle dans la construction du plateau océanique de Kerguelen (KP) se retrouvent au sein d'un pluton 7000 à 9000 fois plus petit à l'affleurement (estimation, SRBIC : 175 km<sup>2</sup> / KP : 1,395 ( $\pm$ 0,045) x 10<sup>6</sup> km<sup>2</sup>). Ces résultats confirment enfin que ces différentes sources presenties dans les roches intrusives de l'archipel (<25Ma) et reconnues au niveau du plateau océanique (jusqu'à 68 Ma) ont bien eu une influence dans la construction de ce plateau

entre 14 et 9,5 Ma. D'autre part, il n'est donc définitivement pas nécessaire d'impliquer avant tout la croûte continentale pour former d'importants volumes de roches syénitiques en contexte océanique.

#### ↔ Comment (ces magmas) ont-ils évolué pour former les roches plutoniques?

Les observations de terrain, les études pétrographiques, minéralogiques et géochimiques montrent que les roches plutoniques qui composent le SRBIC et ses satellites sont largement dominées par les syénites (± monzonites à Qz) et forment une série alcaline strictement sur-saturée en silice. Les roches les moins felsiques sont des monzo-gabbros et monzo-diorites non-cumulatifs. Le spectre de composition et les relations de terrain montrent donc que le magmatisme fut bimodal et ce, exclusivement dans les premiers épisodes du magmatisme intrusif de RdB. L'étude pétrographique a permis de définir, sur la base des caractéristiques des amphiboles et des pyroxènes, trois grands ensembles pétrographiques au sein des roches plutoniques felsiques du complexe. Ces minéraux ferro-magnésiens, montrent une évolution d'un pôle calcique vers un pôle sodique à l'échelle du complexe, depuis les syénites les plus anciennes (groupe CaS) vers les syénites les récentes (groupe NaS) en passant par des syénites intermédiaires (groupe CaNaS). Couplée aux relations de terrain, la pétrographie et la géochimie (majeurs et traces) montre un lien génétique entre les syénites des types CaNaS et NaS (plus différenciées). Elles définissent une lignée magmatique unique formée à partir de la différenciation d'un liquide basaltique alcalin par des processus de cristallisation fractionnée en système clos. Les syénites du groupe CaS forment une autre série magmatique, plus ancienne, également formée par des processus de cristallisation fractionnée, associées à plusieurs épisodes de recharges magmatiques du réservoir à partir duquel elles se sont formées. Les liquides, qui se sont différenciés pour former les premières syénites mises en place, ont donc évolué au sein d'un système magmatique ouvert. Les roches plutoniques intermédiaires (monzo-gabbros/diorites et monzonites) sont exclusivement associées avec ces syénites précoces. L'étude isotopique a permis de montrer que l'implication des contaminants était très faible au regard de la source primaire mantellique du panache de Kerguelen. L'absence d'évidences de ces différentes contaminations en géochimie élémentaire (majeurs et traces) appuie cette conclusion. C'est pourquoi, les compositions des magmas parents de toutes les syénites du SRBIC peuvent être considérées comme identiques. De plus, le phénomène d'assimilation des syénites les plus vielles par les syénites les plus jeunes supposent que le (dernier ?) réservoir de différenciation est commun aux deux séries magmatiques. Ces résultats impliquent donc que le passage de la série magmatique CaS à la série magmatique CaNaS-NaS ne se fait pas dans les niveaux plus profonds que celui de ce dernier réservoir de différenciation. L'existence de ces deux séries magmatiques se traduit également par l'évolution des minéraux ferro-magnésiens à l'échelle de l'échantillon. Les amphiboles et pyroxènes secondaires des roches de la série CaS (+intermédiaires) sont exclusivement calciques tandis qu'ils sont majoritairement sodiques dans la lignée CaNaS. L'évolution des ferromagnésiens (primaires et secondaires) ainsi que la paragénèse associée (notamment les minéraux accessoires) traduit également un changement affectant le système magmatique jusque dans les niveaux de mise en place. Les roches plutoniques du SRBIC évoluent depuis des roches à tendance miaskitique vers des roches à tendance agpaïtique au cours du temps. Ce passage est révélateur des changements des conditions d'évolution magmatique (température - fugacité d'O<sub>2</sub>) entre le (dernier ?) niveau de différenciation et le niveau de mise en place. Je propose que ces changements soient le reflet du degré de contrôle des basaltes encaissants sur le système magmatique se mettant en place pour former le SRBIC. Les basaltes de plateaux directement en contacts avec les premiers magmas de compositions intermédiaires ou felsiques ascendants forceraient ces derniers à évoluer au sein d'un environnement relativement froid et oxydé. Avec la dynamique des injections magmatiques qui continuent de fonctionner, la croûte océanique épaissie se retrouverait progressivement intrudée par de nombreux dykes felsiques. Ce mécanisme entrainerait un changement local de sa composition au cours du temps. Ce changement s'accompagne d'une augmentation en température via l'accumulation des intrusions ainsi qu'une diminution de la fugacité d'oxygène. Les liquides syénitiques plus récents n'évolueraient donc plus directement au contact avec les basaltes de plateaux mais au travers d'un environnement plus syénitique. La preuve en est donnée par l'étude isotopique qui met en évidence des processus d'assimilation des syénites les plus vieilles par les plus récentes.

#### ↔ Comment ce complexe syénitique s'est mis en place ?

#### $\hookrightarrow$ En combien de temps ?

Les observations de terrains montrent sans doute possible que la place nécessaire à la mise en place du complexe est accommodée par le soulèvement des basaltes de plateau. La forme en dôme de cette intrusion est donc concordante à l'échelle de la péninsule. Le complexe est constitué de trois grandes unités structurales. Les relations de terrains montrent que l'unité intrusive dans les basaltes est la plus ancienne, suivent des deux unités plus jeunes situées structuralement en dessous de la première. Ces trois unités correspondent grossièrement aux unités pétrographiques, de l'unité la plus ancienne formée en majorité par des syénites CaS (+ monzo-diorites) à l'unité la plus jeune située au centre du complexe et constitué des syénites NaS. Chaque unité est formée par l'alternance des roches syénitiques de textures différentes. Les contacts entre ces différentes roches sont souvent francs et sans bordures figées. Ces alternances texturales reflètent la dynamique d'injection des intrusions successives qui forment un litage magmatique à l'échelle du SRBIC. L'unité la plus ancienne est la seule qui présente des alternances entre injections plutoniques de compositions intermédiaires (monzo-diorites) et syénitiques. L'orientation de ce litage est parallèle au contact intrusif SRBIC/basaltes ainsi qu'aux contacts internes qui séparent les grandes unités. Ces observations et mesures confirment donc la structure concordante en dôme du complexe formée par des injections successives sous accrétées à l'échelle de l'ensemble du complexe. L'analyse des fabriques de forme, via l'analyse des fabriques magnétiques, soulignent également cette structure. En mettant en évidence la déformation accumulée, elles confirment également le basculement progressif des unités vers le sud induit par les accrétions successives vers le nord, en accord avec les observations de terrain. Les évidences de déformation (zones de cisaillement) exclusivement observées dans les unités les plus anciennes, et concentrées à la base de la première, confirment cette conclusion. La géochronologie in-situ sur zircons montrent que les intrusions plutoniques de la péninsule de RdB, (comprenant le SRBIC et ses satellites situés structuralement au dessus de celui-ci) s'étalent entre 13.7 ± 0.2 Ma à 7.88 ± 0.15 Ma. La construction du SRBIC se fait sans discontinuité temporelle marquée entre 11.57 + 0.15 Ma et 7.88 ± 0.15 Ma de la bordure externe au sud vers le centre du complexe au nord. Ces résultats montrent donc que l'étude géochronologique ne rend pas compte des discontinuités structurales observées à l'échelle des différentes injections ou même à l'échelle des grandes unités structurales. Cependant, quelques recoupement dans les âges confirment les observations de terrains et suppose que le complexe n'est pas strictement former par sous-accrétion des intrusions mais qu'une partie d'entre elles ont pu être injectées à l'intérieur (ou entre) les précédentes. L'âge de 7.31 Ma d'une intrusion appartenant au complexe situé plus au nord (CRBIC) dans la province plutonique de RdB suppose que migration des âges vers le nord constaté sur la péninsule se poursuit au travers de la province plutonique. Ces résultats montrent également que la mise en place des intrusions les plus récentes du SRBIC voire du CRBIC est synchrone de l'injection d'au moins une partie des trachytes (et basaltes?) sous forme de dyke tardif recoupant le SRBIC au sud.

Ces conclusions sont en accord avec la plupart des observations de terrain antérieures, à savoir :

Oui : le SRBIC est bien formé par les intrusions successives de magmas majoritairement syénitiques, sous accrétées à l'échelle du complexe et de plus en plus jeune de l'extérieur vers le centre de ce dernier.

Oui : les basaltes de plateau sont soulevés et le complexe a une géométrie en dôme légèrement aplatie verticalement.

Oui : Les différentes intrusions décrivent cartographiquement des anneaux concentriques. De plus :

Oui : La fabrique magnétique analysée pour la première fois au niveau d'un complexe plutonique océanique confirme ces conclusions.

La géochronologie in-situ sur zircon réalisée pour la première fois sur ce complexe confirme et affine considérablement les âges précédents obtenus par K-Ar et Rb/Sr. Et oui, elle confirme également les conclusions précédentes.

Finalement,

Non : Toutes les caractéristiques et les nouvelles interprétations issues des relations de terrain, révélatrices de la construction du SRBIC, ne peuvent pas s'expliquer par un modèle de subsidence en chaudron. Ce complexe plutonique est un laccolithe.

Ce type de mise en place, similaire à de nombreux exemples continentaux, implique donc que la croûte océanique épaissie du plateau de Kerguelen joue un rôle identique à celui de la croûte continental dans la construction et la mise en place d'un pluton dans les niveaux superficiels. Il semble donc que la nature de la croûte ne joue aucun rôle dans le mode de construction et de mise en place des corps plutoniques.

## 8.2 Perspectives

La construction du laccolithe de Rallier du Baty est similaire à de nombreux exemples continentaux. Ceci signifie donc qu'au moins dans les niveaux superficiels de mise en place, la composition, la densité, la rigidité, ou le géotherme de la croûte n'a pas un impact différent de celui de la croûte continentale sur la construction d'un pluton. L'épaisseur totale de la croûte (env. 18 km sous l'archipel) n'a pas non plus d'influence. Le mode de construction dans les niveaux d'intrusion plutonique est donc régit par la dynamique magmatique plutôt que par les caractéristiques physico-chimique de l'encaissant. La construction d'un pluton est donc le reflet des processus magmatiques profonds entre la source et la croûte moyenne qui contrôlent cette dynamique. Pour aller plus loin dans la formation des corps plutoniques, il faut donc s'intéresser plus en détail à ces processus profonds. Cette idée est peu réjouissante car les occurrences de manteau, de croûte inférieure et moyenne sont rares et souvent perturbés, modifiés ou altérés. Une des façons d'accéder à ces parties profondes, serait d'utiliser par exemple la modélisation numérique en constante évolution couplé à des études pétrographiques et géochimiques expérimentales sous pression contrôlée.

Les conclusions sur la construction du SRBIC montrent également que les modèles classiques de construction par diapirisme et/ou chaudron doivent être revus. Elles permettent notamment de poser une question plus précise qui va dans le sens de plusieurs études récentes : le modèle de subsidence en chaudron est –il obsolète ? Il semble que non. Plusieurs études montrent que ce mode de construction est toujours d'actualité (e.g. Troll et al., 2002; Kennedy and Stix, 2007). Cependant, ce modèle ne semble aujourd'hui s'appliquer qu'aux systèmes volcaniques et hypovolcaniques caractérisés par l'effondrement d'une caldéra. La question est donc plutôt de savoir à partir de quelle profondeur ce modèle ne semble – t- il plus opérer et pourquoi? Cette question s'inscrirait également dans un débat plus large et relativement vif sur le couplage ou découplage volcanisme – plutonisme.

Les résultats de cette thèse démontrent qu'un seul et unique pluton, dont le contexte et les roches uniquement sur-saturées en silice, laisseraient supposer à un mode de formation et une histoire magmatique « simple », peut avoir une histoire très complexe. Là encore, la plomberie magmatique et le transport magmatique au travers de la croûte (niveaux de différenciation, chemins empruntés...) ont un impact évident sur l'évolution des magmas à une échelle de quelques millions d'années et ce, sur une zone géographique très restreinte. La nécessité de pouvoir accéder de manière indirecte à la structuration de la croûte en profondeur est encore une des clés pour comprendre cette évolution, que ce soit en domaine océanique ou ailleurs. C'est pourquoi, il faut conduire sur Kerguelen plusieurs campagnes géophysiques. En lien avec la nécessité de comprendre la structuration de la croûte, les résultats isotopiques obtenus dans cette thèse et leur interprétation permettent de porter un nouveau regard sur les données isotopiques des roches intrusives de l'archipel de la littérature. En effet, si des processus d'assimilation continue ou d'auto-assimilation ont pu être mis en évidence sous RdB, il est probable que ce phénomène ait pu se produire ailleurs dans les systèmes intrusifs de l'archipel. Cette hypothèse expliquerait les données isotopiques précédentes « tombées dans l'oubli » du SRBIC et CRBIC mais pourrait également expliquer, les forts rapports isotopiques en Sr des syénites de l'île de l'Ouest, des syénites du Val gabbro et des trachytes et phonolites (LMS) de la péninsule Jeanne d'Arc, dont certaines ont été considérés comme inutilisables. Sans remettre en cause les interprétations issues des précédentes études isotopiques, il me semble cependant cohérent d'évoquer la possible mise en jeu des processus d'assimilation pour les roches les plus évoluées plutôt qu'une simple hétérogénéité du Plume de Kerguelen. Une hypothèse qu'il reste à vérifier sur les différents complexes intrusifs.

Pour 4 échantillons plutoniques (1 intermédiaire et 3 syénitiques) la croûte continentale n'a pas à être impliquée dans leur genèse et donc pour expliquer la formation de faciès sursaturés en silice. Pour les roches les plus anciennes du laccolithe SRBIC, l'influence de la croûte continentale ne fait par contre aucun doute. Ainsi, l'implication obligatoire de la croûte continentale dans la formation et l'évolution des roches magmatiques alcalines sursaturées, proposée par de nombreuses études ne peut pas être clairement réfutée avec les résultats de cette thèse. Toutefois, que ce soit par des fragments de croûte continentale, ou par des produits de fusion d'un manteau lithosphérique métasomatisé, les roches du SRBIC d'origine mantellique sont « contaminées ». Par conséquent, les roches plutoniques alcalines sursaturées, semblent donc très souvent être affectée par des processus de contamination qui peuvent être d'origine mantellique ou continentale. Pour aller plus loin sur le complexe, peut-on supposer que de tels processus de contamination puissent avoir affecté toutes les roches plutoniques mais que les systèmes isotopiques du Sr et du Nd (tel qu'ils ont été utilisés ici) ne soient pas assez sensibles et puissent pas rendre compte d'une très faible contamination mantellique ou crustale ? Afin de tester cette hypothèse il me parait nécessaire de coupler ces systèmes avec d'autres traceurs de sources isotopiques comme le système Lu/Hf (dont les premiers essais sur zircons sont peu satisfaisant) et Pb/Pb, lequel a déjà été appliqué à d'autres roches magmatiques de l'archipel. Conscient des limites et des complémentarités, la multiplication des traceurs isotopiques (mais aussi élémentaires) permettra certainement d'encore mieux comprendre et contraindre l'origine et l'évolution des roches alcalines de l'archipel (et plus globalement terrestre) et notamment les différences entre suites sursaturées et soussaturées.

Les questions en suspens évoquées en fin du chapitre précédent montrent également la nécessité de conduire des études plus approfondies et mieux contraintes dans les différents aspects du travail qui fut conduit durant cette thèse. Avec des travaux plus détaillés de terrain (ce qui nécessite plus de temps sur place), de meilleur contraintes géochronologiques (la mesure via ID-TIMS est plus précise mais comment

séparer les cœurs de zircons des bordures pour garder une trace de l'héritage ?), une étude pétrographique et minéralogique élargie à l'ensemble des minéraux (notamment les accessoires), les prochains résultats permettraient d'établir l'un des premiers modèle thermique basé sur un pluton en domaine océanique ; un modèle pétrogénétique qui permettrait de contraindre la composition du magma parent en s'approchant de la dualité série sur-saturée-sous-saturée; ainsi que d'aborder les conditions P-T fO2 de formation de ces roches.

N'en déplaise à la direction de la Réserve Naturelle des T.A.A.F., tous ces futurs chantiers d'investigations sur les roches de Kerguelen sont très prometteurs. En ce qui me concerne, rien n'est plus exaltant que la promesse d'y retourner un jour.

# Références

- Acocella, V., 2000. Space accommodation by roof lifting during pluton emplacement at Amiata (Italy). Terra Nova 12, 149–155. https://doi.org/10.1046/j.1365-3121.2000.00286.x
- Andersen, T., 2002. Correction of common lead in U–Pb analyses that do not report 204 Pb. Chemical geology 192, 59–79. https://doi.org/10.1016/S0009-2541(02)00195-X
- Anderson, E.M., 1936. The Dynamics of the Formation of Cone-sheets, Ring-dykes, and Cauldronsubsidences. Proceedings of the Royal Society of Edinburgh 56, 128–157. https://doi.org/10.1017/S0370164600014954
- Annell, H., 2005. Petrology and geochemistry of the 25 Ma Mt. Marion Dufresne basaltic section on the Kerguelen Archipelago : constraining the transition from tholeiitic to mildly alkalic volcanism on a major oceanic island. The University of British Columbia. https://doi.org/10.14288/1.0052331
- Annen, C., Blundy, J.D., Leuthold, J., Sparks, R.S.J., 2015. Construction and evolution of igneous bodies: Towards an integrated perspective of crustal magmatism. Lithos 230, 206–221. https://doi.org/10.1016/j.lithos.2015.05.008
- Annen, C., Blundy, J.D., Sparks, R.S.J., 2006. The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones. Journal of Petrology 47, 505–539. https://doi.org/10.1093/petrology/egi084
- Annen, C., Pichavant, M., Bachmann, O., Burgisser, A., 2008. Conditions for the growth of a long-lived shallow crustal magma chamber below Mount Pelee volcano (Martinique, Lesser Antilles Arc). Journal of Geophysical Research 113. https://doi.org/10.1029/2007JB005049
- Aubert de la Rüe, E., 1932. Etude géologique et géographique de l'archipel de Kerguelen. Revue de Géographie Physique et de Géologie Dynamique.
- Bagiński, B., Macdonald, R., 2013. The chevkinite group: underestimated accessory phases from a wide range of parageneses. Mineralogia 44. https://doi.org/10.2478/mipo-2013-0006
- Bagiński, B., Macdonald, R., Dzierżanowski, P., Zozulya, D., Kartashov, P.M., 2015. Hydrothermal alteration of chevkinite-group minerals: products and mechanisms. Part 1. Hydration of chevkinite-(Ce). Mineralogical Magazine 79, 1019–1037. https://doi.org/10.1180/minmag.2015.079.5.01
- Bailey, J., 1974. Origin of alkaline magmas as a result of anatexis-crustal anatexis., in: The Alkaline Rocks. H. Sorensen, London, pp. 436–442.
- Baker, I., 1968. Intermediate oceanic volcanic rocks and the 'Daly gap.' Earth and Planetary Science Letters 4, 103–106. https://doi.org/10.1016/0012-821X(68)90002-2
- Baker, P.E., 1992. Oceanic islands and the mantle: historical perspectives. Journal of Volcanology and Geothermal Research 50, 17–32. https://doi.org/10.1016/0377-0273(92)90034-B
- Baksi, A.K., 2005. Evaluation of radiometric ages pertaining to rocks hypothesized to have been derived by hotspot activity, in and around the Atlantic, Indian, and Pacific Oceans, in: Special Paper 388: Plates, Plumes and Paradigms. Geological Society of America, pp. 55–70. https://doi.org/10.1130/0-8137-2388-4.55
- Bardintzeff, J.-M., Bellon, H., Bonin, B., Brousse, R. & McBirney, A. R. (1988). Plutonic rocks from Tahiti-Nui caldera (Society Archipelago, French Polynesia): a petrological, geochemical and mineralogical study, *Journal of Volcanology and Geothermal Research*, 35, 31–53.
- Bardintzeff, J.-M., Leyrit, H., Guillou, H., Guille, G., Bonin, B., Giret, A., Brousse, R., 1994. Transition between tholeiitic and alkali basalts: Petrographical and geochemical evidence from Fangataufa, Pacific Ocean, and Kerguelen, Indian Ocean. Geochemical Journal 28.
- Barker, F., Wones, D.R., Sharp, W.N., Desborough, G.A., 1975. The Pikes Peak batholith, Colorado front range, and a model for the origin of the gabbro—anorthosite—syenite—potassic granite suite. Precambrian Research 2, 97–160. https://doi.org/10.1016/0301-9268(75)90001-7
- Baumgartner, L.P., Jürgen, M., Putlitz, B., Leuthold, J., Müntener, O., Robyr, M., Darbellay, B., Demant, A., Hervé, F., Menichetti, M., Tassone, A., 2007. Field guide to the Torres del Paine Igneous Complex

and its contact aureole, International Congress on the Southern Hemisphere. ed, GEOSUR 2007. Demant A., Santiago.

- Beaux, J., 1986. Le complexe volcano-plutonique de la Presqu'Ile de la Société de Géographie (Iles Kerguelen). Structure et Pétrologie. Université Paris 6.
- Belousova, E.A., 2005. Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modelling: Examples From Eastern Australian Granitoids. Journal of Petrology 47, 329–353. https://doi.org/10.1093/petrology/egi077
- Belousova, E.A., Griffin, W.L., Shee, S.R., Jackson, S.E., O'Reilly, S.Y., 2001. Two age populations of zircons from the Timber Creek kimberlites, Northern Territory, as determined by laser-ablation ICP-MS analysis. Australian Journal of Earth Sciences 48, 757–765. https://doi.org/10.1046/j.1440-0952.2001.485894.x
- Bénard, F., Callot, J.-P., Vially, R., Schmitz, J., Roest, W., Patriat, M., Loubrieu, B., 2010. The Kerguelen plateau: Records from a long-living/composite microcontinent. Marine and Petroleum Geology 27, 633–649. https://doi.org/10.1016/j.marpetgeo.2009.08.011
- Benisek, A., Finger, F., 1993. Factors controlling the development of prism faces in granite zircons: a microprobe study. Contributions to Mineralogy and Petrology 114, 441–451. https://doi.org/10.1007/BF00321749
- Bergman, S.C., 1987. Lamproites and other potassium-rich igneous rocks: a review of their occurrence, mineralogy and geochemistry. Geological Society, London, Special Publications 30, 103–190. https://doi.org/10.1144/GSL.SP.1987.030.01.08
- Bézos, A., Humler, E., 2005. The Fe3+/ΣFe ratios of MORB glasses and their implications for mantle melting. Geochimica et Cosmochimica Acta 69, 711–725. https://doi.org/10.1016/j.gca.2004.07.026
- Bindeman, I., Gurenko, A., Carley, T., Miller, C., Martin, E., Sigmarsson, O., 2012. Silicic magma petrogenesis in Iceland by remelting of hydrothermally altered crust based on oxygen isotope diversity and disequilibria between zircon and magma with implications for MORB: Silicic magma petrogenesis in Iceland. Terra Nova 24, 227–232. https://doi.org/10.1111/j.1365-3121.2012.01058.x
- Black, L.P., Gulson, B.L., 1978. The age of the Mud Tank Carbonatite, Strangways Range, Northern Territory. Journal of Australian Geology & Geophysics 3, 227–232.
- Black, R., Lameyre, J., Bonin, B., 1985. The structural setting of alkaline complexes. Journal of African Earth Sciences (1983) 3, 5–16.
- Blanc, P., Baumer, A., Cesbron, F., Ohnenstetter, D., Panczer, G., Rémond, G., 2000. Systematic Cathodoluminescence Spectral Analysis of Synthetic Doped Minerals: Anhydrite, Apatite, Calcite, Fluorite, Scheelite and Zircon, in: Pagel, M., Barbin, V., Blanc, Philippe, Ohnenstetter, D. (Eds.), Cathodoluminescence in Geosciences. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 127– 160. https://doi.org/10.1007/978-3-662-04086-7\_5
- Boher, M., Abouchami, W., Michard, A., Albarede, F., Arndt, N.T., 1992. Crustal growth in West Africa at 2.1 Ga. Journal of Geophysical Research 97, 345. https://doi.org/10.1029/91JB01640
- Bonin, B., 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos 97, 1–29. https://doi.org/10.1016/j.lithos.2006.12.007
- Bonin, B., Azzouni-Sekkal, A., Bussy, F., Ferrag, S., 1998. Alkali-calcic and alkaline post-orogenic (PO) granite magmatism: petrologic constraints and geodynamic settings. Lithos 45, 45–70. https://doi.org/10.1016/S0024-4937(98)00025-5
- Bonin, B., Bardintzeff, J.-M., Giret, A., 1994. The distribution of felsic rocks within the alkaline igneous centres. Mémoires de la Société géologiques de France.
- Bonin, B., Ethien, R., Gerbe, M.C., Cottin, J.-Y., Feraud, G., Gagnevin, D., Giret, A., Michon, G., Moine, B., 2004. The Neogene to Recent Rallier-du-Baty nested ring complex, Kerguelen Archipelago (TAAF, Indian Ocean): stratigraphy revisited, implications for cauldron subsidence mechanisms. Geological Society, London, Special Publications 234, 125–149. https://doi.org/10.1144/GSL.SP.2004.234.01.08

- Bonin, B., Giret, A., 1990. Plutonic alkaline series: Daly gap and intermediate compositions for liquids filing up crustal magma chambers. Schweizerische Mineralogische und Petrographische Mitteilungen 70, 175–187.
- Bonin, B., Giret, A., 1985. Clinopyroxene compositional trends in oversaturated and undersaturated alkaline ring complexes. Journal of African Earth Sciences (1983) 3, 175–183. https://doi.org/10.1016/0899-5362(85)90035-1
- Bonin, B., Lameyre, J., 1978. Réflexions sur la position et l'origine des complexes magmatiques anorogeniques. Bulletin de la Société géologique de France S7-XX, 45–59. https://doi.org/10.2113/gssgfbull.S7-XX.1.45
- Borisova, A.Y., Faure, F., Deloule, E., Grégoire, M., Béjina, F., de Parseval, P., Devidal, J.-L., 2014. Lead isotope signatures of Kerguelen plume-derived olivine-hosted melt inclusions: Constraints on the ocean island basalt petrogenesis. Lithos 198–199, 153–171. https://doi.org/10.1016/j.lithos.2014.03.022
- Bouchez, J.L., 1997. Granite is Never Isotropic: An Introduction to AMS Studies of Granitic Rocks, in: Bouchez, J. L., Hutton, D.H.W., Stephens, W.E. (Eds.), Granite: From Segregation of Melt to Emplacement Fabrics. Springer Netherlands, Dordrecht, pp. 95–112. https://doi.org/10.1007/978-94-017-1717-5\_6
- Bowden, P., Black, R., Martin, R.F., Ike, E.C., Kinnaird, J.A., Batchelor, R.A., 1987. Niger-Nigerian alkaline ring complexes: a classic example of African Phanerozoic anorogenic mid-plate magmatism. Geological Society, London, Special Publications 30, 357–379. https://doi.org/10.1144/GSL.SP.1987.030.01.17
- Bowen, N.L., 1945. Phase equilibria bearing on the origin and differentiation of alkaline rocks. American Journal of Science 243, 75–89.
- Brooks, C.K., 1982. Compositional Variation in the Pyroxenes and Amphiboles of the Kangerdlugssuaq Intrusion, East Greenland: Further Evidence for the Crustal Contamination of Syenite Magma. Mineralogical Magazine 45, 1–9. https://doi.org/10.1180/minmag.1982.045.337.01
- Burchardt, S., Tanner, D.C., Krumbholz, M., 2010. Mode of emplacement of the Slaufrudalur Pluton, Southeast Iceland inferred from three-dimensional GPS mapping and model building. Tectonophysics 480, 232–240. https://doi.org/10.1016/j.tecto.2009.10.010
- Byers, C.D., Christie, D.M., Muenow, D.W., Sinton, J.M., 1984. Volatile contents and ferric-ferrous ratios of basalt, ferrobasalt, andesite and rhyodacite glasses from the Galapagos 95.5°W propagating rift. Geochimica et Cosmochimica Acta 48, 2239–2245. https://doi.org/10.1016/0016-7037(84)90220-5
- Cande, S.C., Patriat, P., Dyment, J., 2010. Motion between the Indian, Antarctic and African plates in the early Cenozoic: Indian Ocean Plate motions. Geophysical Journal International 183, 127–149. https://doi.org/10.1111/j.1365-246X.2010.04737.x
- Carmichael, I.S.E., 1991. The redox states of basic and silicic magmas: a reflection of their source regions? Contributions to Mineralogy and Petrology 106, 129–141. https://doi.org/10.1007/BF00306429
- Chakhmouradian, A.R., Zaitsev, A.N., 2012. Rare Earth Mineralization in Igneous Rocks: Sources and Processes. Elements 8, 347–353. https://doi.org/10.2113/gselements.8.5.347
- Charlier, B.L.A., Wilson, C.J.N., Lowenstern, J.B., Blake, S., Van Calsteren, P.W., Davidson, J.P., 2005.
  Magma Generation at a Large, Hyperactive Silicic Volcano (Taupo, New Zealand) Revealed by U–
  Th and U–Pb Systematics in Zircons. Journal of Petrology 46, 3–32.
  https://doi.org/10.1093/petrology/egh060
- Charvis, P., Recq, M., Operto, S., Brefort, D., 1995. Deep structure of the northern Kerguelen Plateau and hotspot-related activity. Geophysical Journal International 122, 899–924.
- Chayes, F., 1977. The oceanic basalt–trachyte relation in general and in the Canary Islands. American Mineralogist 62, 666–671.
- Chen, C.-Y., Frey, F.A., 1985. Trace element and isotopic geochemistry of lavas from Haleakala Volcano, east Maui, Hawaii: Implications for the origin of Hawaiian basalts. Journal of Geophysical Research: Solid Earth 90, 8743–8768. https://doi.org/10.1029/JB090iB10p08743

- Chevet, J., 2009. INTRUSIVE BASALTIC ROCKS AND ASSOCIATED MAFIC/ULTRAMAFIC CUMULATES FROM THE THICKENED OCEANIC CRUST OF THE KERGUELEN ARCHIPELAGO. Macquarie.
- Chiaradia, M., Schaltegger, U., Spikings, R., Wotzlaw, J.-F., Ovtcharova, M., 2013. How accurately can we date the duration of magmatic-hydrothermal events in porphyry systems?—an invited paper. Economic Geology 108, 565–584.
- Claesson, S., Pallister, J.S., Tatsumoto, M., 1984. Samarium-neodymium data on two late Proterozoic ophiolites of Saudi Arabia and implications for crustal and mantle evolution. Contributions to Mineralogy and Petrology 85, 244–252. https://doi.org/10.1007/BF00378103
- Clague, D.A., 1978. The Oceanic Basalt-Trachyte Association: An Explanation of the Daly Gap. The Journal of Geology 86, 739–743. https://doi.org/10.1086/649740
- Clarke, I., 1983. Volcanic evolution of Heard and McDonald Islands, southern Indian Ocean, in: Antarctic Earth Science.
- Clough, C.T., Maufe, H.B., Bailey, E.B., 1909. The Cauldron-Subsidence of Glen Coe, and the Associated Igneous Phenomena. Quarterly Journal of the Geological Society 65, 611–678. https://doi.org/10.1144/GSL.JGS.1909.065.01-04.35
- Coffin, M.F., Eldholm, O., 1994. Large igneous provinces: Crustal structure, dimensions, and external consequences. Reviews of Geophysics 32, 1. https://doi.org/10.1029/93RG02508
- Coffin, M.F., Pringle, M.S., Duncan, R.A., Gladczenko, T.P., Storey, M., Muller, R.D., Gahagan, L.A., 2002. Kerguelen Hotspot Magma Output since 130 Ma. Journal of Petrology 43, 1121–1137. https://doi.org/10.1093/petrology/43.7.1121
- Coleman, D.S., Gray, W., Glazner, A.F., 2004. Rethinking the emplacement and evolution of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32, 433. https://doi.org/10.1130/G20220.1
- Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry 53, 469–500. https://doi.org/10.2113/0530469
- Cousens, B.L., Clague, D.A., Sharp, W.D., 2003. Chronology, chemistry, and origin of trachytes from Hualalai Volcano, Hawaii: HUALALAI VOLCANO TRACHYTES. Geochemistry, Geophysics, Geosystems 4, n/a-n/a. https://doi.org/10.1029/2003GC000560
- Crisp, J.A., 1984. Rates of magma emplacement and volcanic output. Journal of Volcanology and Geothermal Research 20, 177–211. https://doi.org/10.1016/0377-0273(84)90039-8
- Cruden, A.R., 1998. On the emplacement of tabular granites. Journal of the Geological Society-London 155, 853–862. https://doi.org/10.1144/gsjgs.155.5.0853
- Dall'Agnol, R., Frost, C.D., Rämö, O.T., 2012. IGCP Project 510 "A-type Granites and Related Rocks through Time": Project vita, results, and contribution to granite research. Lithos 151, 1–16. https://doi.org/10.1016/j.lithos.2012.08.003
- Davies, G.R., Macdonald, R., 1987. Crustal Influences in the Petrogenesis of the Naivasha Basalt--Comendite Complex: Combined Trace Element and Sr-Nd-Pb Isotope Constraints. Journal of Petrology 28, 1009–1031. https://doi.org/10.1093/petrology/28.6.1009
- Deer, W., Howie, R., Zussman, J., 1992. An introduction to the Rock-Forming Minerals, 2nd ed. Longman Group UK Limited, Essex.
- Delpech, G., 2004. Etude des enclaves ultramafiques des Iles Kerguelen: caractérisation du métasomatisme sous un plateau océanique. Jean Monnet Macquarie, Sydney.
- Delpech, G., Grégoire, M., O'Reilly, S.Y., Cottin, J.Y., Moine, B., Michon, G., Giret, A., 2004. Feldspar from carbonate-rich silicate metasomatism in the shallow oceanic mantle under Kerguelen Islands (South Indian Ocean). Lithos 75, 209–237. https://doi.org/10.1016/j.lithos.2003.12.018
- DePaolo, D.J., 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters 53, 189–202. https://doi.org/10.1016/0012-821X(81)90153-9
- Diop, H.E.H.S., 2008. Geochemical investigation of basalts from Trois Menestrels, Kerguelen Archipelago. Kansas State University.

- Dosso, L., Murthy, V.R., 1980. A Nd isotopic study of the Kerguelen Islands: Inferences on enriched oceanic mantle sources. Earth and Planetary Science Letters 48, 268–276. https://doi.org/10.1016/0012-821X(80)90190-9
- Dosso, L., Vidal, P., Cantagrel, J.M., Lameyre, J., Marot, A., Zimine, S., 1979. "Kerguelen: Continental fragment or oceanic island?": Petrology and isotopic geochemistry evidence. Earth and Planetary Science Letters 43, 46–60. https://doi.org/10.1016/0012-821X(79)90154-7
- Doucet, S., Weis, D., Scoates, J., Nicolaysen, K., Frey, F., Giret, A., 2002. The Depleted Mantle Component in Kerguelen Archipelago Basalts: Petrogenesis of Tholeiitic-Transitional Basalts From the Loranchet Peninsula. Journal of Petrology 43, 1341–1366. https://doi.org/10.1093/petrology/43.7.1341
- Droop, G.T.R., 1987. A General Equation for Estimating Fe3+ Concentrations in Ferromagnesian Silicates and Oxides from Microprobe Analyses, Using Stoichiometric Criteria. Mineralogical Magazine 51, 431–435. https://doi.org/10.1180/minmag.1987.051.361.10
- Duncan, R.A., 2002. A Time Frame for Construction of the Kerguelen Plateau and Broken Ridge. Journal of Petrology 43, 1109–1119. https://doi.org/10.1093/petrology/43.7.1109
- Duncan, R.A., Quilty, P.G., Barling, J., Fox, J.M., 2016. Geological development of Heard Island, Central Kerguelen Plateau. Australian Journal of Earth Sciences 63, 81–89. https://doi.org/10.1080/08120099.2016.1139000
- Eby, G.N., 1990. The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26, 115–134. https://doi.org/10.1016/0024-4937(90)90043-Z
- Eby, G.N., 1985. Sr and Pb isotopes, U and Th chemistry of the alkaline Monteregian and White Mountain igneous provinces, eastern North America. Geochimica et Cosmochimica Acta 49, 1143–1153. https://doi.org/10.1016/0016-7037(85)90005-5
- Eby, G.N., Woolley, A.R., Din, V., Platt, G., 1998. Geochemistry and Petrogenesis of Nepheline Syenites: Kasungu-Chipala, Ilomba, and Ulindi Nepheline Syenite Intrusions, North Nyasa Alkaline Province, Malawi. Journal of Petrology 39, 1405–1424. https://doi.org/10.1093/petroj/39.8.1405
- Elburg, M.A., Cawthorn, R.G., 2017. Source and evolution of the alkaline Pilanesberg Complex, South Africa. Chemical Geology 455, 148–165. https://doi.org/10.1016/j.chemgeo.2016.10.007
- Elhlou, S., Belousova, E., Griffin, W.L., Pearson, N.J., O'Reilly, S.Y., 2006. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochimica et Cosmochimica Acta 70, A158. https://doi.org/10.1016/j.gca.2006.06.1383
- Estrade, G., Béziat, D., Salvi, S., Tiepolo, M., Paquette, J.-L., Rakotovao, S., 2014. Unusual evolution of silica-under- and -oversaturated alkaline rocks in the Cenozoic Ambohimirahavavy Complex (Madagascar): Mineralogical and geochemical evidence. Lithos 206–207, 361–383. https://doi.org/10.1016/j.lithos.2014.08.008
- Favier, V., Verfaillie, D., Berthier, E., Menegoz, M., Jomelli, V., Kay, J.E., Ducret, L., Malbéteau, Y., Brunstein, D., Gallée, H., Park, Y.-H., Rinterknecht, V., 2016. Atmospheric drying as the main driver of dramatic glacier wastage in the southern Indian Ocean. Scientific Reports 6. https://doi.org/10.1038/srep32396
- Fielding, P.E., 1970. The distribution of uranium, rare earths, and color centers in a crystal of natural zircon. The American Mineralogist 55, 428–440.
- Fitton, J.G., 1987. The Cameroon line, West Africa: a comparison between oceanic and continental alkaline volcanism. Geological Society, London, Special Publications 30, 273–291. https://doi.org/10.1144/GSL.SP.1987.030.01.13
- Fitton, J.G., Upton, B.G.J., 1987. Alkaline Igneous Rocks: Introduction. Geological Society, London, Special Publications 30, ix-xiv. https://doi.org/10.1144/GSL.SP.1987.030.01.01
- Foland, K.A., Henderson, C.M.B., 1976. Application of age and Sr isotope data to the petrogenesis of the Marangudzi ring complex, Rhodesia. Earth and Planetary Science Letters 29, 291–301. https://doi.org/10.1016/0012-821X(76)90133-3

- Foland, K.A., Landoll, J., Henderson, C.M.B., Jiangfeng, C., 1993. Formation of cogenetic quartz and nepheline syenites. Geochimica and Cosmochimica Acta 57, 697–704. https://doi.org/10.1016/0016-7037(93)90380-F
- Frey, F.A., Coffin, M.F., Wallace, P.J., Weis, D., 2003. Leg 183 synthesis: Kerguelen Plateau-Broken Ridge a large igneous province, in: Proc. Ocean Drill. Program Sci. Results. pp. 1–48.
- Frey, F.A., Coffin, M.F., Wallace, P.J., Weis, D., Zhao, X., Wise, S.W., Wähnert, V., Teagle, D.A.H., Saccocia, P.J., Reusch, D.N., others, 2000. Origin and evolution of a submarine large igneous province: the Kerguelen Plateau and Broken Ridge, southern Indian Ocean. Earth and Planetary Science Letters 176, 73–89. https://doi.org/10.1016/S0012-821X(99)00315-5
- Frey, F.A., Nicolaysen, K., Kubit, B.K., Weis, D., Giret, A., 2002a. Flood Basalt from Mont Tourmente in the Central Kerguelen Archipelago: the Change from Transitional to Alkalic Basalt at 25 Ma. Journal of Petrology 43, 1367–1387. https://doi.org/10.1093/petrology/43.7.1367
- Frey, F.A., Nobre Silva, I.G., Huang, S., Pringle, M.S., Meleney, P.R., Weis, D., 2015. Depleted components in the source of hotspot magmas: Evidence from the Ninetyeast Ridge (Kerguelen). Earth and Planetary Science Letters 426, 293–304. https://doi.org/10.1016/j.epsl.2015.06.005
- Frey, F.A., Pringle, M., Meleney, P., Huang, S., Piotrowski, A., 2011. Diverse mantle sources for Ninetyeast Ridge magmatism: Geochemical constraints from basaltic glasses. Earth and Planetary Science Letters 303, 215–224. https://doi.org/10.1016/j.epsl.2010.12.051
- Frey, F.A., Weis, D., Borisova, A. Y., Xu, G., 2002b. Involvement of Continental Crust in the Formation of the Cretaceous Kerguelen Plateau: New Perspectives from ODP Leg 120 Sites. Journal of Petrology 43, 1207–1239. https://doi.org/10.1093/petrology/43.7.1207
- Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Davis, J.E., Frost, C.D., 2001. A Geochemical classification for granitic rocks. Journal of petrology.
- Furman, T., Meyer, P.S., Frey, F., 1992. Evolution of Icelandic central volcanoes: evidence from the Austurhorn intrusion, southeastern Iceland. Bulletin of volcanology 55, 45–62.
- Gagnevin, D., Ethien, R., Bonin, B., Moine, B., Féraud, G., Gerbe, M., Cottin, J., Michon, G., Tourpin, S., Mamias, G., Perrache, C., Giret, A., 2003. Open-system processes in the genesis of silicaoversaturated alkaline rocks of the Rallier-du-Baty Peninsula, Kerguelen Archipelago (Indian Ocean). Journal of Volcanology and Geothermal Research 123, 267–300. https://doi.org/10.1016/S0377-0273(02)00509-7
- Gaina, C., Müller, R.D., Brown, B.J., Ishihara, T., 2003. Microcontinent formation around Australia. Geological Society of America Special Papers 372, 405–416.
- Ganerod, M., Torsvik, T.H., van Hinsbergen, D.J.J., Gaina, C., Corfu, F., Werner, S., Owen-Smith, T.M., Ashwal, L.D., Webb, S.J., Hendriks, B.W.H., 2011. Palaeoposition of the Seychelles microcontinent in relation to the Deccan Traps and the Plume Generation Zone in Late Cretaceous-Early Palaeogene time. Geological Society, London, Special Publications 357, 229–252. https://doi.org/10.1144/SP357.12
- Gapais, D., 1989. Shear structures within deformed granites: Mechanical and thermal indicators. Geology 17, 1144. https://doi.org/10.1130/0091-7613(1989)017<1144:SSWDGM>2.3.CO;2
- Garver, J.I., 2014. Radiation-damage and cooling ages of Precambrian detrital zircon. Presented at the 14th International Conference on Thermochronology, chamonix.
- Garver, J.I., Kamp, P.J.J., 2002. Integration of zircon color and zircon fission-track zonation patterns in orogenic belts: application to the Southern Alps, New Zealand. Tectonophysics 349, 203–219. https://doi.org/10.1016/S0040-1951(02)00054-9
- Gautier, I., 1987. Les basaltes des îles Kerguelen. Université Paris 6.
- Gautier, I., Weis, D., Mennessier, J.P., Vidal, P., Giret, A., Loubet, M., 1990. Petrology and geochemistry of the Kerguelen Archipelago basalts (South Indian Ocean)evolution of the mantle sources from ridge to intraplate position. Earth and Planetary Science Letters 1–3, 59–76. https://doi.org/10.1016/0012-821X(90)90176-X
- Gerlach, S., Claußen, O., Rüssel, C., 1999. A voltammetric study on the thermodynamics of the Fe3+/Fe2+equilibrium in alkali–lime–alumosilicate melts. Journal of Non-Crystalline Solids 248, 92–98. https://doi.org/10.1016/S0022-3093(99)00103-9

- Gerlach, S., Claußen, O., Rüssel, C., 1998. Thermodynamics of iron in alkali–magnesia–silica glasses. Journal of Non-Crystalline Solids 238, 75–82. https://doi.org/10.1016/S0022-3093(98)00681-4
- Gibbons, A.D., 2012. Regional plate tectonic reconstructions of the Indian Ocean, PhD thesis, the University of Sydney.
- Gibbons, A.D., Whittaker, J.M., Müller, R.D., 2013. The breakup of East Gondwana: Assimilating constraints from Cretaceous ocean basins around India into a best-fit tectonic model. Journal of Geophysical research: Solid Earth 118, 808-822. https://doi.org/10.1002/jgrb.50079e.
- Giret, A., 1983. Le plutonisme oceanique intraplaque: exemple des Iles Kerguelen, CNFRA. Comité national français pour les recherches antarctiques. Laboratoire de pétrologie, Université Pierre et Marie Curie.
- Giret, A., Bonin, B., Leger, J.-M., 1980. Amphibole compositional trends in oversaturated and undersaturated alkaline plutonic ring-composition. The Canadian Mineralogist 18, 481–495.
- Giret, A., Chotin, P., Verdier, O., 1988. Des laves aux roches plutoniques. L'exemple du mont Ross, îles Kerguelen. Comptes rendus de l'Academie des Sciences.
- Giret, A., Lameyre, J., 1983. A study of Kerguelen plutonism Petrology, Geochronology and Geological Implications, in: Antarctic Earth Science. Oliver, R. L., James, P. R. & Jabo, J. B., Cambridge, pp. 647–651.
- Gladczenko, T.P., Coffin, M.F., 2001. Kerguelen Plateau crustal strucure and basin formation from seismic and gravity data. Journal of Geophysical Research 106, 16583–16601. https://doi.org/10.1029/2001JB000370
- Glazner, A.F., Bartley, J.M., Coleman, D.S., Gray, W., Taylor, R.Z., 2004. Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14, 4. https://doi.org/10.1130/1052-5173(2004)014<0004:APAOMO>2.0.CO;2
- Götze, J., Kempe, U., Habermann, D., Nasdala, L., Neuser, R.D., Richter, D., 1999. High-resolution cathodoluminescence combined with SHRIMP ion probe measurements of detrital zircons. Mineralogical Magazine 63, 179–187.
- Grégoire, M., 1994. Pétrologie des enclaves ultrabasiques et basiques des îles Kerguelen. Les contraintes minéralogiques et thermobarométriques et leurs implications géodynamiques. Jean Monnet, Saint Etienne.
- Grégoire, M., Cottin, J.Y., Giret, A., Mattielli, N., Weis, D., 1998. The meta-igneous granulite xenoliths from Kerguelen Archipelago: evidence of a continent nucleation in an oceanic setting. Contributions to Mineralogy and Petrology 133, 259–283. https://doi.org/10.1007/s004100050451
- Grégoire, M., Jackson, I., O'Reilly, S., Cottin, J., 2001. The lithospheric mantle beneath the Kerguelen Islands (Indian Ocean): petrological and petrophysical characteristics of mantle mafic rock types and correlation with seismic profiles. Contributions to Mineralogy and Petrology 142, 244–259. https://doi.org/10.1007/s004100100289
- Grégoire, M., Moine, B.N., O'Reilly, S.Y., Cottin, J.Y., Giret, A., 2000. Trace element residence and partitioning in mantle xenoliths metasomatized by highly alkaline, silicate-and carbonate-rich melts (Kerguelen Islands, Indian Ocean). Journal of Petrology 41, 477–509. https://doi.org/10.1093/petrology/41.4.477
- Griffin, W.L., Belousova, E.A., Shee, S.R., Pearson, N.J., O'Reilly, S.Y., 2004. Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambrian Research 131, 231–282. https://doi.org/10.1016/j.precamres.2003.12.011
- Griffin, W.L., Powell, W.J., Pearson, N.J., O'Reilly, S.Y., 2008. Glitter: Data reduction software for laser ablation ICP-MS, in: Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues, Mineralogical Association of Canada Short Course Series. Vancouver, pp. 308–311.
- Griffiths, R.W., Campbell, I.H., 1990. Stirring and structure in mantle starting plumes. Earth and Planetary Science Letters 99, 66–78. https://doi.org/10.1016/0012-821X(90)90071-5
- Gutscher, M.-A., Olivet, J.-L., Aslanian, D., Eissen, J.-P., Maury, R., 1999. The "lost inca plateau": cause of flat subduction beneath peru? Earth and Planetary Science Letters 171, 335–341. https://doi.org/10.1016/S0012-821X(99)00153-3

- Halden, N.M., Hawthorne, F.C., 1993. The fractal geometry of oscillatory zoning in crystals: Application to zircon. American Mineralogist 78, 1113–116.
- Hanchar, J.M., Miller, C.F., 1993. Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: Implications for interpretation of complex crustal histories. Chemical Geology 110, 1–13. https://doi.org/10.1016/0009-2541(93)90244-D
- Hanchar, J.M., Watson, E.B., 2003. Zircon Saturation Thermometry. Reviews in Mineralogy and Geochemistry 53, 89–112. https://doi.org/10.2113/0530089
- Harker, A., 1909. The Natural History of Igneous Rocks. MacMillan, New York. https://doi.org/10.1017/CBO9780511920424
- Harris, C., 1983. The Petrology of Lavas and Associated Plutonic Inclusions of Ascension Island. Journal of Petrology 24, 424–470. https://doi.org/10.1093/petrology/24.4.424
- Harris, C., Marsh, J.S., Milner, S.C., 1999. Petrology of the Alkaline Core of the Messum Igneous Complex, Namibia: Evidence for the Progressively Decreasing Effect of Crustal Contamination. Journal of Petrology 40, 1377–1397. https://doi.org/10.1093/petroj/40.9.1377
- Harrison, T.M., Clarke, G.K.C., 1979. A model of the thermal effects of igneous intrusion and uplift as applied to Quottoon pluton, British Columbia. Canadian Journal of Earth Sciences 16, 411–420. https://doi.org/10.1139/e79-039
- Hassler, D.R., Shimizu, N., 1998. Osmium Isotopic Evidence for Ancient Subcontinental Lithospheric Mantle Beneath the Kerguelen Islands, Southern Indian Ocean. Science 280, 418–421. https://doi.org/10.1126/science.280.5362.418
- Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C., Welch, M.D., 2012. Nomenclature of the amphibole supergroup. American Mineralogist 97, 2031–2048. https://doi.org/10.2138/am.2012.4276
- Henderson, C.M.B., Pendlebury, K., Foland, K.A., 1989. Mineralogy and Petrology of the Red Hill Alkaline Igneous Complex, New Hampshire, U.S.A. Journal of Petrology 30, 627–666. https://doi.org/10.1093/petrology/30.3.627
- Hoffman, J.F., Long, J.V.P., 1984. Unusual sector zoning in Lewisian zircons. Mineralogical magazine 48, 513–517. https://doi.org/10.1180/minmag.1984.048.349.05
- Hopkinson, J., 1890. Magnetic properties of alloys of nickel and iron. Proceedings of the Royal Society of London 1–13.
- Horsman, E., Morgan, S., St Blanquat, M. (de), Habert, G., Nugent, A., Hunter, R.A., Tikoff, B., 2009.
  Emplacement and assembly of shallow intrusions from multiple magma pulses, Henry Mountains, Utah. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 100, 117–132. https://doi.org/10.1017/S1755691009016089
- Horsman, E., Tikoff, B., Morgan, S., 2005. Emplacement-related fabric and multiple sheets in the Maiden Creek sill, Henry Mountains, Utah, USA. Journal of Structural Geology 27, 1426–1444. https://doi.org/10.1016/j.jsg.2005.03.003
- Hoskin, P.W., Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in mineralogy and geochemistry 53, 27–62. https://doi.org/10.2113/0530027
- Hoskin, P.W.O., 2000. Patterns of chaos: fractal statistics and the oscillatory chemistry of zircon. Geochimica et Cosmochimica Acta 64, 1905–1923. https://doi.org/10.1016/S0016-7037(00)00330-6
- Ingle, S., Weis, D., Doucet, S., Mattielli, N., 2003. Hf isotope constraints on mantle sources and shallowlevel contaminants during Kerguelen hot spot activity since ~120 Ma: Hf isotope constraints on mantle sources. Geochemistry, Geophysics, Geosystems 4, n/a-n/a. https://doi.org/10.1029/2002GC000482
- Ingle, S., Weis, D., Scoates, J.S., Frey, F.A., 2002. Relationship between the early Kerguelen plume and continental £ood basalts of the paleo-Eastern Gondwanan margins. Earth and Planetary Science Letters 197, 35–50. https://doi.org/10.1016/S0012-821X(02)00473-9
- Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian journal of earth sciences 8, 523–548. https://doi.org/10.1139/e71-055

- Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablationinductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211, 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017
- Jacobson, R.R.E., MacLeod, W.N., Black, R., 1958. Ring-complexes in the younger granite province of Northern Nigeria, Geologycal Society of London. ed. London.
- Jagoutz, O.E., 2010. Construction of the granitoid crust of an island arc. Part II: a quantitative petrogenetic model. Contributions to Mineralogy and Petrology 160, 359–381. https://doi.org/10.1007/s00410-009-0482-6
- Johnson, B.R., Glazner, A.F., 2010. Formation of K-feldspar megacrysts in granodioritic plutons by thermal cycling and late-stage textural coarsening. Contributions to Mineralogy and Petrology 159, 599–619. https://doi.org/10.1007/s00410-009-0444-z
- Jung, S., Hoffer, E., Hoernes, S., 2007. Neo-Proterozoic rift-related syenites (Northern Damara Belt, Namibia): Geochemical and Nd–Sr–Pb–O isotope constraints for mantle sources and petrogenesis. Lithos 96, 415–435. https://doi.org/10.1016/j.lithos.2006.11.005
- Kennedy, B., Stix, J., 2007. Magmatic processes associated with caldera collapse at Ossipee ring dyke, New Hampshire. Geological Society of America Bulletin 119, 3–17. https://doi.org/10.1130/B25980.1
- Kent, D.V., Gradstein, F.M., 1986. A Jurassic to recent chronology, in: The Geology of North America. pp. 45–50.
- Kent, R.W., Pringle, M.S., Muller, R.D., Saunders, A., Ghose, N.C., 2002. 40Ar/39Ar Geochronology of the Rajmahal Basalts, India, and their Relationship to the Kerguelen Plateau. Journal of Petrology 43, 1141–1153. https://doi.org/10.1093/petrology/43.7.1141
- Kieffer, B., Arndt, N.T., Weis, D., 2002. A bimodal alkalic shield volcano on shiff bank: its place in the evolution of the Kerguelen plateau. Journal of Petrology 43, 1259–1286.
- Klinger, M., Kempe, U., Pöpl, A., Böttcher, R., Trinkler, M., 2012. Paramagnetic hole centres in natural zircon and zircon colouration. European Journal of Mineralogy 24, 1005–1016. https://doi.org/10.1127/0935-1221/2012/0024-2236
- Kogarko, L.N., 1974. Role of volatiles, in: The Alkaline Rocks. H. Sorensen, London, pp. 474–487.
- Kogarko, L.N., Lahaye, Y., Brey, G.P., 2010. Plume-related mantle source of super-large rare metal deposits from the Lovozero and Khibina massifs on the Kola Peninsula, Eastern part of Baltic Shield: Sr, Nd and Hf isotope systematics. Mineralogy and Petrology 98, 197–208. https://doi.org/10.1007/s00710-009-0066-1
- Köksal, S., Cemal Göncüoglu, M., Toksoy-Köksal, F., Möller, A., Kemnitz, H., 2008. Zircon typologies and internal structures as petrogenetic indicators in contrasting granitoid types from central Anatolia, Turkey. Mineralogy and Petrology 93, 185–211. https://doi.org/10.1007/s00710-007-0228-y
- Kostov, I., 1973. Zircon morphology as a Crystallogenetic indicator. Kristall und Technik 8, 11–19. https://doi.org/10.1002/crat.19730080103
- Kramm, U., Kogarko, L.N., 1994. Nd and Sr isotope signatures of the Khibina and Lovozero agpaitic centres, Kola Alkaline province, Russia. Lithos 32, 225–242. https://doi.org/10.1016/0024-4937(94)90041-8
- Kress, V., Carmichael, I.S., 1988. Stoichiometry of the iron oxidation reaction in silicate melts. American Mineralogist 73, 1267–1274.
- Kroenke, L.W., 1974. Origin of continents through development and coalescence of oceanic flood basalt plateaus. EOS. Trans. AGU, Fall Meeting 443.
- Lameyre, J., Marot, A., Zimine, S., Cantagrel, J.M., Dosso, L., Vidal, P., 1976. Chronological evolution of the Kerguelen Islands syenite–granite ring complex. Nature 263, 306–307. https://doi.org/10.1038/263306a0
- Landoll, J.D., Foland, K.A., Henderson, C.M.B., 1994. Nd isotopes demonstrate the role of contamination in the formation of coexisting quartz and nepheline syenites at the Abu Khruq Complex, Egypt. Contributions to Mineralogy and Petrology 117, 305–329. https://doi.org/10.1007/BF00310871
- Lange, R.A., Carmichael, I.S., 1989. Ferric-ferrous equilibria in Na2O-FeO-Fe2O3-SiO2 melts: Effects of analytical techniques on derived partial molar volumes. Geochimica et Cosmochimica Acta 53, 2195–2204. https://doi.org/10.1016/0016-7037(89)90343-8

- Larsen, L.M., 1976. Clinopyroxenes and Coexisting Mafic Minerals from the Alkaline Ilimaussaq Intrusion, South Greenland. Journal of Petrology 17, 258–290. https://doi.org/10.1093/petrology/17.2.258
- Larsen, L.M., Sørensen, H., 1987. The Ilímaussaq intrusion—progressive crystallization and formation of layering in an agpaitic magma. Geological Society, London, Special Publications 30, 473–488. https://doi.org/10.1144/GSL.SP.1987.030.01.23
- Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, E., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., Youzhi, G., 1997. Nomenclature of amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy 9, 623–651. https://doi.org/10.1127/ejm/9/3/0623
- Leake, B.E., Woolley, A.R., Birch, W.D., Burke, E.A.J., Ferraris, G., Grice, J.D., Hawthorne, F.C., Kisch, H.J., Krivovichev, V.G., Schumacher, J.C., Stephenson, N.C.N., Whittaker, E.J.W., 2004. Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association's amphibole nomenclature. Mineralogical Magazine 68, 209–215. https://doi.org/10.1180/0026461046810182
- Leclaire, L., Bassias, Y., Denis-Clocchiatti, M., Davies, H., Gautier, I., Gensous, B., Giannesini, P.-J., Patriat, P., Segoufin, J., Tesson, M., others, 1987. Lower Cretaceous basalt and sediments from the Kerguelen Plateau. Geo-marine letters 7, 169–176. https://doi.org/10.1007/BF02242768
- Leuthold, J., Blundy, J.D., Holness, M.B., Sides, R., 2014. Successive episodes of reactive liquid flow through a layered intrusion (Unit 9, Rum Eastern Layered Intrusion, Scotland). Contributions to Mineralogy and Petrology 168. https://doi.org/10.1007/s00410-014-1021-7
- Leuthold, J., Müntener, O., Baumgartner, L.P., Putlitz, B., Ovtcharova, M., Schaltegger, U., 2012. Time resolved construction of a bimodal laccolith (Torres del Paine, Patagonia). Earth and Planetary Science Letters 325–326, 85–92. https://doi.org/10.1016/j.epsl.2012.01.032
- Leyrit, H., 1992. Kerguelen: Cartographie et magmatologie des presqu'îles Jeanne d'arc et Ronarc'h. Paris Sud, Orsay.
- Locock, A.J., 2014. An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Computers & Geosciences 62, 1–11. https://doi.org/10.1016/j.cageo.2013.09.011
- Loftus, T., Weis, D., Scoates, J.S., Giret, A., 2011. The 13 Ma Monts Ballons alkalic plutonic suite, Kerguelen Archipelago, Indian Ocean, in: American Geophysical Union, Fall Meeting 2011. Presented at the AGU.
- Magee, C., Stevenson, C., O'Driscoll, B., Schofield, N., McDermott, K., 2012. An alternative emplacement model for the classic Ardnamurchan cone sheet swarm, NW Scotland, involving lateral magma supply via regional dykes. Journal of Structural Geology 43, 73–91. https://doi.org/10.1016/j.jsg.2012.08.004
- Mahan, K.H., Bartley, J.M., Coleman, D.S., Glazner, A.F., Carl, B.S., 2003. Sheeted intrusion of the synkinematic McDoogle pluton, Sierra Nevada, California. Geological Society of America Bulletin 115, 1570. https://doi.org/10.1130/B22083.1
- Mahoney, J.J., Jones, W.B., Frey, F.A., Salters, V.J.M., Pyle, D.G., Davies, H.L., 1995. Geochemical characteristics of lavas from Broken Ridge, the Naturaliste Plateau and southernmost Kerguelen Plateau: Cretaceous plateau volcanism in the southeast Indian Ocean. Chemical Geology 120, 315–345. https://doi.org/10.1016/0009-2541(94)00144-W
- Markl, G., Marks, M.A.W., Frost, B.R., 2010. On the Controls of Oxygen Fugacity in the Generation and Crystallization of Peralkaline Melts. Journal of Petrology 51, 1831–1847. https://doi.org/10.1093/petrology/egq040
- Marks, M., Halama, R., Wenzel, T., Markl, G., 2004. Trace element variations in clinopyroxene and amphibole from alkaline to peralkaline syenites and granites: implications for mineral?melt traceelement partitioning. Chemical Geology 211, 185–215. https://doi.org/10.1016/j.chemgeo.2004.06.032

- Marks, M., Markl, G., 2001. Fractionation and Assimilation Processes in the Alkaline Augite Syenite Unit of the Ilímaussaq Intrusion, South Greenland, as Deduced from Phase Equilibria. Journal of Petrology 42, 1947–1969. https://doi.org/10.1093/petrology/42.10.1947
- Marks, M., Vennemann, T., Siebel, W., Markl, G., 2003. Quantification of Magmatic and Hydrothermal Processes in a Peralkaline Syenite-Alkali Granite Complex Based on Textures, Phase Equilibria, and Stable and Radiogenic Isotopes. Journal of Petrology 44, 1247–1280. https://doi.org/10.1093/petrology/44.7.1247
- Marks, M.A.W., Markl, G., 2017. A global review on agpaitic rocks. Earth-Science Reviews 173, 229–258. https://doi.org/10.1016/j.earscirev.2017.06.002
- Marks, M.A.W., Schilling, J., Coulson, I.M., Wenzel, T., Markl, G., 2008. The Alkaline-Peralkaline Tamazeght Complex, High Atlas Mountains, Morocco: Mineral Chemistry and Petrological Constraints for Derivation from a Compositionally Heterogeneous Mantle Source. Journal of Petrology 49, 1097– 1131. https://doi.org/10.1093/petrology/egn019
- Marot, A., Zimine, S., 1976. Les complexes annulaires de syenites et granites alcalins dans la peninsule de Rallier du Baty (Iles Kerguelen, T.A.A.F). Université Pierre et Marie Curie-Paris VI, Laboratoire Scientifique des T.A.A.F.
- Marsh, B.D., Gunnarsson, B., Congdon, R., Carmody, R., 1991. Hawaiian basalt and Icelandic rhyolite: Indicators of differentiation and partial melting. Geologische Rundschau 80, 481–510. https://doi.org/10.1007/BF01829378
- Martin, E., Martin, H., Sigmarsson, O., 2008. Could Iceland be a modern analogue for the Earth's early continental crust? Terra Nova 20, 463–468. https://doi.org/10.1111/j.1365-3121.2008.00839.x
- Martin, E., Sigmarsson, O., 2007. Crustal thermal state and origin of silicic magma in Iceland: the case of Torfajökull, Ljósufjöll and Snæfellsjökull volcanoes. Contributions to Mineralogy and Petrology 153, 593–605. https://doi.org/10.1007/s00410-006-0165-5
- Martin, R., 2006. A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environment. Lithos 91, 125–136. https://doi.org/10.1016/j.lithos.2006.03.012
- Mathieu, L., Byrne, P., Guillaume, D., van Wyk de Vries, B., Moine, B., 2011. The field and remote sensing analysis of the Kerguelen Archipelago structure, Indian Ocean. Journal of Volcanology and Geothermal Research 199, 206–215. https://doi.org/10.1016/j.jvolgeores.2010.11.013
- Mattielli, N., Weis, D., Blicherttoft, J., Albarède, F., 2002. Hf Isotope Evidence for a Miocene Change in the Kerguelen Mantle Plume Composition. Journal of Petrology 43, 1327–1339. https://doi.org/10.1093/petrology/43.7.1327
- Mattielli, N., Weis, D., Scoates, J.S., Shimizu, N., Grégoire, M., Mennessier, J.P., Cottin, J.-Y., Giret, A., 1999. Evolution of Heterogeneous Lithospheric Mantle in a Plume Environment Beneath the Kerguelen Archipelago. Journal of Petrology 40, 1721–1744. https://doi.org/10.1093/petroj/40.11.1721
- Mattinson, J.M., Graubard, C.M., Parkinson, D.L., McClelland, W.C., 1996. U-Pb Reverse Discordance in Zircons: The Role of Fine-Scale Oscillatory Zoning and Sub-Micron Transport of Pb, in: Basu, A., Hart, S. (Eds.), Earth Processes: Reading the Isotopic Code. American Geophysical Union, Washington, D. C., pp. 355–370. https://doi.org/10.1029/GM095p0355
- McDonough, W.F., Sun, S. -s., 1995. The composition of the Earth. Chemical Geology 120, 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
- Menand, T., Annen, C., St Blanquat, M. (de), 2015. Rates of magma transfer in the crust: Insights into magma reservoir recharge and pluton growth. Geology 43, 199–202. https://doi.org/10.1130/G36224.1
- Menand, T., St Blanquat, M. (de), Annen, C., 2011. Emplacement of magma pulses and growth of magma bodies. Tectonophysics 500, 1–2. https://doi.org/10.1016/j.tecto.2010.05.014
- Michel, J., Baumgartner, L.P., Putlitz, B., Schaltegger, U., Ovtcharova, M., 2008. Incremental growth of the Patagonian Torres del Paine laccolith over 90 k.y. Geology 36, 459–465.
- Middlemost, E.A.K., 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews 37, 215–224. https://doi.org/10.1016/0012-8252(94)90029-9

- Miller, C.F., Furbish, D.J., Walker, B.A., Claiborne, L.L., Koteas, G.C., Bleick, H.A., Miller, J.S., 2011. Growth of plutons by incremental emplacement of sheets in crystal-rich host: Evidence from Miocene intrusions of the Colorado River region, Nevada, USA. Tectonophysics 500, 65–77. https://doi.org/10.1016/j.tecto.2009.07.011
- Miller, C.F., McDowell, S.M., Mapes, R.W., 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31, 529. https://doi.org/10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
- Mills, R.D., Glazner, A.F., 2013. Experimental study on the effects of temperature cycling on coarsening of plagioclase and olivine in an alkali basalt. Contributions to Mineralogy and Petrology 166, 97–111. https://doi.org/10.1007/s00410-013-0867-4
- Mingram, B., Trumbull, R., Littman, S., Gerstenberger, H., 2000. A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia: evidence for mixing of crust and mantle-derived components. Lithos 54, 1–22. https://doi.org/10.1016/S0024-4937(00)00033-5
- Mitchell, R.H., 1996. Compositional Variation of Pyroxene and Mica from the Little Murun Ultrapotassic Complex, Aldan Shield, Russia. Mineralogical Magazine 60, 907–925. https://doi.org/10.1180/minmag.1996.060.403.06
- Mitchell, R.H., 1990. A review of the compositional variation of amphiboles in alkaline plutonic complexes. Lithos 26, 135–156. https://doi.org/10.1016/0024-4937(90)90044-2
- Mitchell, R.H., Platt, R.G., 1982. Mineralogy and Petrology of Nepheline Syenites from the Coldwell Alkaline Complex, Ontario, Canada. Journal of Petrology 23, 186–214. https://doi.org/10.1093/petrology/23.2.186
- Montelli, R., 2004. Finite-Frequency Tomography Reveals a Variety of Plumes in the Mantle. Science 303, 338–343. https://doi.org/10.1126/science.1092485
- Moore, J., White, W.M., Paul, D., Duncan, R.A., Abouchami, W., Galer, S.J.G., 2011. Evolution of shieldbuilding and rejuvenescent volcanism of Mauritius. Journal of Volcanology and Geothermal Research 207, 47–66. https://doi.org/10.1016/j.jvolgeores.2011.07.005
- Morgan, J., Reston, T., Ranero, C., 2004. Contemporaneous mass extinctions, continental flood basalts, and 'impact signals': are mantle plume-induced lithospheric gas explosions the causal link? Earth and Planetary Science Letters 217, 263–284. https://doi.org/10.1016/S0012-821X(03)00602-2
- Morgan, S., Stanik, A., Horsman, E., Tikoff, B., de Saint Blanquat, M., Habert, G., 2008. Emplacement of multiple magma sheets and wall rock deformation: Trachyte Mesa intrusion, Henry Mountains, Utah. Journal of Structural Geology 30, 491–512. https://doi.org/10.1016/j.jsg.2008.01.005
- Morgan, W.J., 1971. Convection Plumes in the Lower Mantle. Nature 230, 42–43. https://doi.org/10.1038/230042a0
- Nasdala, L., Lengauer, C.L., Hanchar, J.M., Kronz, A., Wirth, R., Blanc, P., Kennedy, A.K., Seydoux-Guillaume, A.-M., 2002. Annealing radiation damage and the recovery of cathodoluminescence. Chemical Geology 191, 121–140. https://doi.org/10.1016/S0009-2541(02)00152-3
- Nash, W.P., 1972. Mineralogy and Petrology of the Iron Hill Carbonatite Complex, Colorado. Geological Society of America Bulletin 83, 1361. https://doi.org/10.1130/0016-7606(1972)83[1361:MAPOTI]2.0.CO;2
- Neal, C.R., Davidson, J.P., 1989. An unmetasomatized source for the Malaitan alnöite (Solomon Islands): Petrogenesis involving zone refining, megacryst fractionation, and assimilation of oceanic lithosphere. Geochimica et Cosmochimica Acta 53, 1975–1990. https://doi.org/10.1016/0016-7037(89)90318-9
- Neal, C.R., Mahoney, J.J., Chazey III, W.J., 2002. Mantle sources and highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen Plateau and Broken Ridge LIP: Results from ODP Leg 183. Journal of Petrology 43, 1177–1205. https://doi.org/10.1093/petrology/43.7.1177
- Nesbitt, R.W., Talbot, J.L., 1966. The layered basic and ultrabasic intensives of the Giles Complex, Central Australia. Contributions to Mineralogy and Petrology 13, 1–11. https://doi.org/10.1007/BF00518123
- Nicolaysen, K., Bowring, S.A., Frey, F.A., Weis, D., Pringle, M.S., Coffin, M.F., 2001. Provenance of Proterozoic garnet-biotite gneiss recovered from Elan Bank, Kerguelen Plateau, southern Indian

Ocean. Geology 29, 235–238. https://doi.org/10.1130/0091-7613(2001)029<0235:POPGBG>2.0.CO;2

- Nicolaysen, K., Frey, F.A., Hodges, K.V., Weis, D., Giret, A., 2000. 40Ar/39Ar geochronology of flood basalts from the Kerguelen Archipelago, southern Indian Ocean: implications for Cenozoic eruption rates of the Kerguelen plume. Earth and Planetary Science Letters 174, 313–328. https://doi.org/10.1016/S0012-821X(99)00271-X
- Nougier, J., 1972. Geochronology of the Volcanic activity in îles Kerguelen, in: Antarctic Geology and Geophysics, Scientific Committee on Antarctic Research. R.J. Adie, Oslo, pp. 809–815.
- Nougier, J., 1969. Contribution à l'étude géologique et géomorphologique des îles Kerguelen, CNFRA. Comité national français pour les recherches antarctiques.
- Nougier, J., 1963. Les phases volcaniques successives dans la péninsule Rallier du Baty (archipel des Kerguelen). Comptes rendus de l'Academie des Sciences.
- Nougier, J., Ballestracci, R., Blavoux, B., 1982. Les manifestations post-volcaniques dans les îles australes françaises 'TAAF): zones fumerolliennes et sources thermo-minérales. Comptes rendus de l'Academie des Sciences 295, 389–392.
- Nougier, J., Pawlowski, D., Cantagrel, J.-M., 1983. Chronospatial Evolution of the Volcanic Activity in Southeastern Kerguelen (T.A.A.F.), in: Antarctic Earth Science. Oliver, R. L., James, P. R. & Jabo, J. B., Cambridge, pp. 640–645.
- Nur, A., Ben-Avraham, Z., 1982. Oceanic plateaus, the fragmentation of continents, and mountain building. Journal of Geophysical Research 87, 3644. https://doi.org/10.1029/JB087iB05p03644
- Olierook, H.K.H., Jourdan, F., Merle, R.E., Timms, N.E., Kusznir, N., Muhling, J.R., 2016. Bunbury Basalt: Gondwana breakup products or earliest vestiges of the Kerguelen mantle plume? Earth and Planetary Science Letters 440, 20–32. https://doi.org/10.1016/j.epsl.2016.02.008
- Olierook, H.K.H., Merle, R.E., Jourdan, F., 2017. Toward a Greater Kerguelen large igneous province: Evolving mantle source contributions in and around the Indian Ocean. Lithos 282–283, 163–172. https://doi.org/10.1016/j.lithos.2017.03.007
- Olierook, H.K.H., Merle, R.E., Jourdan, F., Sircombe, K., Fraser, G., Timms, N.E., Nelson, G., Dadd, K.A., Kellerson, L., Borissova, I., 2015. Age and geochemistry of magmatism on the oceanic Wallaby Plateau and implications for the opening of the Indian Ocean. Geology 43, 971–974. https://doi.org/10.1130/G37044.1
- Operto, S., Charvis, P., 1996. Deep structure of the southern Kerguelen Plateau (southern Indian Ocean) from ocean bottom seismometer wide-angle seismic data. Journal of Geophysical Research 101, 25077–25103. https://doi.org/10.1029/96JB01758
- Operto, S., Charvis, P., 1995. Kerguelen Plateau: A volcanic passive margin fragment? Geology 23, 137–140.
- Owen-Smith, T.M., Ashwal, L.D., Torsvik, T.H., Ganerød, M., Nebel, O., Webb, S.J., Werner, S.C., 2013. Seychelles alkaline suite records the culmination of Deccan Traps continental flood volcanism. Lithos 182–183, 33–47. https://doi.org/10.1016/j.lithos.2013.09.011
- Pankhurst, R.J., Beckinsale, R.D., Brooks, C.K., 1976. Strontium and oxygen isotope evidence relating to the petrogenesis of the Kangerdlugssuaq alkaline instrusion, East Greenland. Contributions to Mineralogy and Petrology 54, 17–42. https://doi.org/10.1007/BF00370870
- Petford, N., Cruden, A.R., McCaffrey, K.J., Vigneresse, J.-L., 2000. Granite magma formation, transport and emplacement in the Earth's crust. Nature 408, 669–673. https://doi.org/10.1038/35047000
- Pidgeon, R.T., 1992. Recrystallisation of oscillatory zoned zircon: some geochronological and petrological implications. Contributions to Mineralogy and Petrology 110, 463–472. https://doi.org/10.1007/BF00344081
- Pidgeon, R.T., Compston, W., 1992. A SHRIMP ion microprobe study of inherited and magmatic zircons from four Scottish Caledonian granites. Transactions of the Royal Society of Edinburgh: Earth Sciences 83, 473–483. https://doi.org/10.1017/S0263593300008142
- Platt, R.G., Wall, F., Williams, C.T., Woolley, A.R., 1987. Zirconolite, chevkinite and other rare earth minerals from nepheline syenites and peralkaline granites and syenites of the Chilwa Alkaline Province, Malawi. Mineralogical Magazine 51, 253–263.

- Poldervaart, A., 1955. Zircons in rocks; Part 1, Sedimentary rocks; Part 2, Igneous rocks. American Journal of Science 253, 433–461. https://doi.org/10.2475/ajs.253.8.433
- Pringle, M.S., 2008. A simple linear age progression for the Ninetyeast Ridge, Indian Ocean: New constraints on Indian plate motion and hot spot dynamics. EOS. Trans. AGU, Fall Meeting, Fall Meet. Suppl. 89, Abstract T54B-03.
- Pringle, M.S., 2007. New Ar/Ar ages from the Ninetyeast Ridge, Indian Ocean: Beginning of a robust Indo-Atlantic hotspot reference frame. EOS. Trans. AGU, Fall Meeting 88, Abstract U13A-0871.
- Pupin, J.P., 1980. Zircon and granite petrology. Contributions to Mineralogy and Petrology 73, 207–220. https://doi.org/10.1007/BF00381441
- Quilty, P.G., Wheller, G.E., 2000. Heard Island and the McDonald Islands: a window into the Kerguelen Plateau, in: Papers and Proceedings of the Royal Society of Tasmania. pp. 1–12.
- Recq, M., Brefort, D., Malod, J., Veinante, J.-L., 1990. The Kerguelen Isles (southern Indian Ocean): new results on deep structure from refraction profiles. Tectonophysics 182, 227–248. https://doi.org/10.1016/0040-1951(90)90165-5
- Remond, G., Phillips, M.R., Roques-Carmes, C., 2000. Importance of Instrumental and Experimental Factors on the Interpretation of Cathodoluminescence Data from Wide Band Gap Materials, in: Pagel, M., Barbin, V., Blanc, P., Ohnenstetter, D. (Eds.), Cathodoluminescence in Geosciences. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 59–126. https://doi.org/10.1007/978-3-662-04086-7\_4
- Richey, J.E., 1928. The Structural Relations of the Mourne Granites, Northern Ireland. Quarterly Journal of the Geological Society 83, 653–687. https://doi.org/10.1144/GSL.JGS.1927.083.01-05.27
- Ridolfi, F., Renzulli, A., Macdonald, R., Upton, B., 2006. Peralkaline syenite autoliths from Kilombe volcano, Kenya Rift Valley: Evidence for subvolcanic interaction with carbonatitic fluids. Lithos 91, 373–392. https://doi.org/10.1016/j.lithos.2006.03.026
- Riishuus, M.S., Peate, D.W., Tegner, C., Wilson, J.R., Brooks, C.K., 2008. Petrogenesis of Cogenetic Silica-Oversaturated and -Undersaturated Syenites by Periodic Recharge in a Crustally Contaminated Magma Chamber: the Kangerlussuaq Intrusion, East Greenland. Journal of Petrology 49, 493–522. https://doi.org/10.1093/petrology/egm090
- Riley, T.R., Leat, P.T., Storey, B.C., Parkinson, I.J., Millar, I.L., 2003. Ultramafic lamprophyres of the Ferrar large igneous province: evidence for a HIMU mantle component. Lithos 66, 63–76. https://doi.org/10.1016/S0024-4937(02)00213-X
- Romé De l'Isle (de), J.-B.L., 1772. Essai de cristallographie ou description des figures géométriques propres à différents corps du règne minéral. Didot, Paris.
- Roubault, M., 1963. Détermination des minéraux des roches au microscope, Lamarre-Poinat. ed. Paris.
- Royer, J.-Y., Coffin, M.F., 1988. 50. Jurassic to eocene plate tectonic reconstructions in the Kerguelen plateau region, in: Proceedings of the Ocean Drilling Program: Scientific Results. pp. 917–928.
- Royer, J.-Y., Sandwell, D.T., 1989. Evolution of the eastern Indian Ocean since the Late Cretaceous: Constraints from Geosat altimetry. Journal of Geophysical Research: Solid Earth 94, 13755–13782. https://doi.org/10.1029/JB094iB10p13755
- Royer, J.-Y., Schlich, R., 1988. Southeast Indian Ridge Between the Rodriguez Triple Junction and the Amsterdam and Saint-Paul Islands: Detailed Kinematics for the Past 20 m.y. Journal of Geophysical Research: Solid Earth 93, 13524–13550. https://doi.org/10.1029/JB093iB11p13524
- Rubatto, D., Gebauer, D., 2000. Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: Some Examples from the Western Alps, in: Pagel, M., Barbin, V., Blanc, P., Ohnenstetter, D. (Eds.), Cathodoluminescence in Geosciences. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 373– 400. https://doi.org/10.1007/978-3-662-04086-7\_15
- Rüssel, C., Wiedenroth, A., 2004. The effect of glass composition on the thermodynamics of the Fe2+/Fe3+ equilibrium and the iron diffusivity in Na2O/MgO/CaO/Al2O3/SiO2 melts. Chemical Geology 213, 125–135. https://doi.org/10.1016/j.chemgeo.2004.08.037
- Saunders, A.D., Tarney, J., Kerr, A.C., Kent, R.W., 1996. The formation and fate of large oceanic igneous provinces. Lithos 37, 81–95. https://doi.org/10.1016/0024-4937(95)00030-5

- Schärer, U., 1984. The effect of initial230Th disequilibrium on young UPb ages: the Makalu case, Himalaya. Earth and Planetary Science Letters 67, 191–204. https://doi.org/10.1016/0012-821X(84)90114-6
- Schärer, U., Tapponnier, P., Lacassin, R., Leloup, P.H., Zhong Dalai, Ji Shaocheng, 1990. Intraplate tectonics in Asia: A precise age for large-scale Miocene movement along the Ailao Shan-Red River shear zone, China. Earth and Planetary Science Letters 97, 65–77. https://doi.org/10.1016/0012-821X(90)90099-J
- Schonenberger, J., Markl, G., 2008. The Magmatic and Fluid Evolution of the Motzfeldt Intrusion in South Greenland: Insights into the Formation of Agpaitic and Miaskitic Rocks. Journal of Petrology 49, 1549–1577. https://doi.org/10.1093/petrology/egn037
- Scoates, J.S., Weis, D., Franssens, M., Mattielli, N., Annell, H., Frey, F.A., Nicolaysen, K., Giret, A., 2007. The Val Gabbro Plutonic Suite: A Sub-volcanic Intrusion Emplaced at the End of Flood Basalt Volcanism on the Kerguelen Archipelago. Journal of Petrology 49, 79–105. https://doi.org/10.1093/petrology/egm071
- Scott, D.J., Helmstaedt, H., Bickle, M.J., 1992. Purtuniq ophiolite, Cape Smith belt, northern Quebec, Canada: A reconstructed section of Early Proterozoic oceanic crust. Geology 20, 173. https://doi.org/10.1130/0091-7613(1992)020<0173:POCSBN>2.3.CO;2
- Shaw, H.R., 1985. Links between magma-tectonic rate balances, plutonism, and volcanism. Journal of Geophysical Research 90, 11275. https://doi.org/10.1029/JB090iB13p11275
- Sørensen, H., 1974. The Alkaline Rocks, Wiley and Sons. ed. H. Sorensen, London.
- St Blanquat, M. (de), Habert, G., Horsman, E., Morgan, S.S., Tikoff, B., Launeau, P., Gleizes, G., 2006. Mechanisms and duration of non-tectonically assisted magma emplacement in the upper crust: The Black Mesa pluton, Henry Mountains, Utah. Tectonophysics 428, 1–31. https://doi.org/10.1016/j.tecto.2006.07.014
- St Blanquat, M. (de), Horsman, E., Habert, G., Morgan, S., Vanderhaeghe, O., Law, R., Tikoff, B., 2011. Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophysics 500, 20–33. https://doi.org/10.1016/j.tecto.2009.12.009
- St Blanquat, M. (de), Law, R.D., Bouchez, J.-L., Morgan, S.S., 2001. Internal structure and emplacement of the Papoose Flat pluton: An integrated structural, petrographic, and magnetic susceptibility study. Geological Society of America Bulletin 113, 976–995. https://doi.org/10.1130/0016-7606(2001)113<0976:ISAEOT>2.0.CO;2
- Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207–221. https://doi.org/10.1016/0012-821X(75)90088-6
- Stephenson, D., 1972. Alkali clinopyroxenes from nepheline syenites of the South Qôroq Centre, south Greenland. Lithos 5, 187–201. https://doi.org/10.1016/0024-4937(72)90069-2
- Stevenson, C.T.E., Owens, W.H., Hutton, D.H.W., Hood, D.N., Meighan, I.G., 2007. Laccolithic, as opposed to cauldron subsidence, emplacement of the Eastern Mourne pluton, N. Ireland: evidence from anisotropy of magnetic susceptibility. Journal of the Geological Society 164, 99–110. https://doi.org/10.1144/0016076492006-008
- Stevenson, R., Upton, B.G.J., Steenfelt, A., 1997. Crust-mantle interaction in the evolution of the Ilímaussaq Complex, South Greenland: Nd isotopic studies. Lithos 40, 189–202. https://doi.org/10.1016/S0024-4937(97)00025-X
- Sun, S. -s., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications 42, 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
- Sushchevskaya, N.M., Migdisova, N.A., Antonov, A.V., Krymsky, R.S., Belyatsky, B.V., Kuzmin, D.V., Bychkova, Y.V., 2014. Geochemical features of the quaternary lamproitic lavas of Gaussberg Volcano, East Antarctica: Result of the impact of the Kerguelen plume. Geochemistry International 52, 1030–1048. https://doi.org/10.1134/S0016702914120106
- Tappe, S., Foley, S.F., Jenner, G.A., Heaman, L.M., Kjarsgaard, B.A., Romer, R.L., Stracke, A., Joyce, N., Hoefs, J., 2006. Genesis of Ultramafic Lamprophyres and Carbonatites at Aillik Bay, Labrador: a

Consequence of Incipient Lithospheric Thinning beneath the North Atlantic Craton. Journal of Petrology 47, 1261–1315. https://doi.org/10.1093/petrology/egl008

- Tikku, A.A., Cande, S.C., 2000. On the fit of Broken Ridge and Kerguelen plateau. Earth and Planetary Science Letters 180, 117–132. https://doi.org/10.1016/S0012-821X(00)00157-6
- Tikoff, B., St Blanquat, M. (de), Teyssier, C., 1999. Translation and the resolution of the pluton space problem. Journal of Structural Geology 21, 1109–1117. https://doi.org/10.1016/S0191-8141(99)00058-9
- Tilley, C.E., 1950. Some aspects of magmatic evolution. Quarterly Journal of the Geological Society 106, 37–61. https://doi.org/10.1144/GSL.JGS.1950.106.01-04.04
- Timms, N.E., Reddy, S.M., 2009. Response of cathodoluminescence to crystal-plastic deformation in zircon. Chemical Geology 261, 12–24. https://doi.org/10.1016/j.chemgeo.2008.09.008
- Troll, V.R., Walter, T.R., Schmincke, H.-U., 2002. Cyclic caldera collapse: Piston or piecemeal subsidence? Field and experimental evidence. Geology 30, 135. https://doi.org/10.1130/0091-7613(2002)030<0135:CCCPOP>2.0.CO;2
- Tucker, R.D., Ashwal, L.D., Torsvik, T.H., 2001. U–Pb geochronology of Seychelles granitoids: a Neoproterozoic continental arc fragment. Earth and Planetary Science Letters 187, 27–38. https://doi.org/10.1016/S0012-821X(01)00282-5
- Uenzelmann-Neben, G., 2013. Volcanology: Magma giant. Nature Geoscience 6, 902–903. https://doi.org/10.1038/ngeo1958
- Ussing, N.V., 1912. Geology of the country around Julianehaab, Greenland. Meddelelser om Grønland, C.A. Reitzel. ed. Copenhagen.
- Vail, J.R., 1985. Alkaline ring complexes in Sudan. Journal of African Earth Sciences (1983) 3, 51–59. https://doi.org/10.1016/0899-5362(85)90022-3
- Vavra, G., 1993. A guide to quantitative morphology of accessory zircon. Chemical Geology 110, 15–28. https://doi.org/10.1016/0009-2541(93)90245-E
- Vavra, G., 1990. On the kinematics of zircon growth and its petrogenetic significance: a cathodoluminescence study. Contributions to Mineralogy and Petrology 106, 90–99.
- Vigneresse, J.L., Barbey, P., Cuney, M., 1996. Rheological Transitions During Partial Melting and Crystallization with Application to Felsic Magma Segregation and Transfer. Journal of Petrology 37, 1579–1600. https://doi.org/10.1093/petrology/37.6.1579
- Vigneresse, J.-L., Tikoff, B., Améglio, L., 1999. Modification of the regional stress field by magma intrusion and formation of tabular granitic plutons. Tectonophysics 302, 203–224. https://doi.org/10.1016/S0040-1951(98)00285-6
- Vuorinen, J.H., 2005. The Alnö alkaline and carbonatitic complex, east central Sweden a petrogenetic study. Stockholm, Stockholm.
- Wasilewski, B., Doucet, L.S., Moine, B., Beunon, H., Delpech, G., Mattielli, N., Debaille, V., Delacour, A., Grégoire, M., Guillaume, D., Cottin, J.-Y., 2017. Ultra-refractory mantle within oceanic plateau: Petrology of the spinel harzburgites from Lac Michèle, Kerguelen Archipelago. Lithos 272–273, 336–349. https://doi.org/10.1016/j.lithos.2016.12.010
- Watkins, N.D., Gunn, B.M., Nougier, J., Baksi, A.K., 1974. Kerguelen: Continental Fragment or Oceanic Island? Geological Society of America Bulletin 85, 201. https://doi.org/10.1130/0016-7606(1974)85<201:KCFOOI>2.0.CO;2
- Watson, E.B., Liang, Y., 1995. A simple model for sector zoning in slowly grown crystals; implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. American Mineralogist 80, 1179–1187. https://doi.org/10.2138/am-1995-11-1209
- Wedepohl, K.H., 1991. Chemical composition and fractionation of the continental crust. Geologische Rundschau 80, 207–223. https://doi.org/10.1007/BF01829361
- Weis, D., Frey, F.A., 2002. Submarine Basalts of the Northern Kerguelen Plateau: Interaction Between the Kerguelen Plume and the Southeast Indian Ridge REvealed at ODP Site 1140. Journal of Petrology 43, 1287–1309. https://doi.org/10.1093/petrology/43.7.1287
- Weis, D., Frey, F.A., Giret, A., Cantagrel, J.M., 1998. Geochemical characteristics of the youngest volcano (Mount Ross) in the Kerguelen Archipelago: inferences for magma flux, lithosphere assimilation

and composition of the Kerguelen plume. Journal of Petrology 39, 973–994. https://doi.org/10.1093/petroj/39.5.973

- Weis, D., Frey, F.A., Leyrit, H., Gautier, I., 1993. Kerguelen Archipelago revisited: geochemical and isotopic study of the Southeast Province lavas. Earth and Planetary Science Letters 118, 101–119. https://doi.org/10.1016/0012-821X(93)90162-3
- Weis, D., Frey, F.A., Schlich, R., Schaming, M., Montigny, R., Damasceno, D., Mattielli, N., Nicolaysen, K.E., Scoates, J.S., 2002. Trace of the Kerguelen mantle plume: Evidence from seamounts between the Kerguelen Archipelago and Heard Island, Indian Ocean. Geochemistry, Geophysics, Geosystems 3, 1–27. https://doi.org/10.1029/2001GC000251
- Weis, D., Giret, A., 1994. Kerguelen plutonic complexes: Sr,Nd,Pb isotopic study and inferences about their sources, age and geodynamic settings. Mémoires de la Société géologiques de France.
- Weis, D., Ingle, S., Damasceno, D., Frey, F.A., Nicolaysen, K., Barling, J., others, 2001. Origin of continental components in Indian Ocean basalts: Evidence from Elan Bank (Kerguelen Plateau, ODP Leg 183, Site 1137). Geology 29, 147–150. https://doi.org/10.1130/0091-7613(2001)029<0147:OOCCII>2.0.CO;2
- White, R., Tarney, J., Kerr, A., Saunders, A., Kempton, P., Pringle, M., Klaver, G., 1999. Modification of an oceanic plateau, Aruba, Dutch Caribbean: Implications for the generation of continental crust. Lithos 46, 43–68. https://doi.org/10.1016/S0024-4937(98)00061-9
- White, S.M., Crisp, J.A., Spera, F.J., 2006. Long-term volumetric eruption rates and magma budgets: Eruption rates and magma budgets. Geochemistry, Geophysics, Geosystems 7. https://doi.org/10.1029/2005GC001002
- Whitechurch, H., Montigny, R., Sevigny, J., Storey, M., Salters, V., 1992. K-Ar and 40Ar-39Ar ages of central Kerguelen Plateau basalts, in: Proc. Ocean Drill. Program Sci. Results. pp. 71–77.
- Widom, E., Gill, J.B., Schmincke, H.-U., 1993. Syenite Nodules as a Long-Term Record of Magmatic Activity in Agua de Pao Volcano, Sao Miguel, Azores. Journal of Petrology 34, 929–953. https://doi.org/10.1093/petrology/34.5.929
- Wiebe, R.A., 2004. Late-Stage Mafic Injection and Thermal Rejuvenation of the Vinalhaven Granite, Coastal Maine. Journal of Petrology 45, 2133–2153. https://doi.org/10.1093/petrology/egh050
- Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Quadt, A. von, Roddick, J.C., Spiegel, W., 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards newsletter 19, 1–23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x
- Wolff, J.A., 1987. Crystallisation of nepheline syenite in a subvolcanic magma system: Tenerife, canary islands. Lithos 20, 207–223. https://doi.org/10.1016/0024-4937(87)90009-0
- Woolley, A.R., Jones, G.C., 1992. The alkaline/peralkaline syenite-granite complex of Zomba-Malosa, Malawi: mafic mineralogy and genesis. Journal of African Earth Sciences (and the Middle East) 14, 1–12. https://doi.org/10.1016/0899-5362(92)90050-M
- Xu, G., Frey, F.A., Weis, D., Scoates, J.S., Giret, A., 2007. Flood basalts from Mt. Capitole in the central Kerguelen Archipelago: Insights into the growth of the archipelago and source components contributing to plume-related volcanism: FLOOD BASALTS IN KERGUELEN ARCHIPELAGO. Geochemistry, Geophysics, Geosystems 8, n/a-n/a. https://doi.org/10.1029/2007GC001608
- Yang, H.-J., Frey, F.A., Weis, D., Giret, A., Pyle, D., Michon, G., 1998. Petrogenesis of the flood basalts forming the northern Kerguelen Archipelago: implications for the Kerguelen plume. Journal of Petrology 39, 711–748. https://doi.org/10.1093/petroj/39.4.711
- Zhao, D., 2015. Multiscale Seismic Tomography, in: Multiscale Seismic Tomography. Springer Japan, Tokyo. https://doi.org/10.1007/978-4-431-55360-1\_1
- Zhao, D., 2009. Multiscale seismic tomography and mantle dynamics. Gondwana Research 15, 297–323. https://doi.org/10.1016/j.gr.2008.07.003
- Zhu, D.-C., Chung, S.-L., Mo, X.-X., Zhao, Z.-D., Niu, Y., Song, B., Yang, Y.-H., 2009. The 132 Ma Comei-Bunbury large igneous province: Remnants identified in present-day southeastern Tibet and southwestern Australia. Geology 37, 583–586. https://doi.org/10.1130/G30001A.1
- Zimmerle, W., 1975. Accessory Zircon from Rhyolite, Yellowstone National Park (Wyoming, U.S.A.). Zeitschrift der Deutschen Geologischen Gesellschaft 130, 361–369.

# Annexes

- Annexe n°1 : Carte topographique IGN de la péninsule de Rallier du Baty
- Annexe n°2 : Liste des abréviations utilisées
- Annexe n°3 : Liste des points GPS des échantillons
- Annexe n°4 : Carte de localisation des échantillons (13TKXX)
- Annexe n°5 : Carte de localisation des échantillons (TC09 -KXX)
- Annexe n°6 : Mesures des fabriques (foliations magmatiques) observées sur le terrain
- Annexe n°7 : Protocole d'échantillonnage et d'analyse pour l'anisotropie de susceptibilité magnétique
- Annexe n°8 : Données d'anisotropie de susceptibilité magnétique
- Annexe n°9 : Données U-Pb sur zircons
- Annexe n°10 : Données d'analyses microsondes et formules structurales des pyroxènes
- Annexe n°11 : Données d'analyses microsondes et formules structurales des amphiboles
- Annexe n°12 : Données d'analyses en éléments majeurs et traces sur roche totale
- Annexe n°13 : Protocole de séparation des isotopes Rb/Sr et Sm/Nd
- Annexe n°14 : Résultats des modélisations isotopiques (Mixing / AFC)
- Annexe n°15 : Compilation des données isotopiques (et géochronologiques) disponibles dans la littérature modifiée d'après Olierook et al. (2017) et calculs à l'état initial (âge biblio + âge à 14 Ma)

. 94 5 km LA MOUCHE ш LL L 50190 Potillon np -14 2 m 1ª Coules 7 LEG ш ă 0 la Grande Coulée 2 3 **filles** 2

Annexe n° 1 : Carte topographique IGN de la péninsule de Rallier du Baty
## Annexe n° 2 : Liste des abréviations

Structure :

| RdB:    | Rallier du Baty                          | Di  | Diopside                       |
|---------|------------------------------------------|-----|--------------------------------|
| SRBIC : | South Rallier du Baty Igneous Complex    | En  | Enstatite (clino)              |
| CRBIC : | Central Rallier du Baty igneous complex  | Prg | Pargasite                      |
| NKP:    | North part of the Kerguelen Plateau      | Ар  | Apatite                        |
| CKP:    | Center part of the Kerguelen Plateau     | Zrn | Zircon                         |
| SKP:    | South part of the Kerguelen Plateau      | Bt  | Biotite                        |
| KIR :   | Kerguelen Intrusive Rocks                | Hbl | Hornblendes                    |
| BR:     | Broken Ridge                             | Ру  | Pyrite                         |
| EB:     | Elan Bank                                | Ttn | Titanite                       |
| SB:     | Skiff Bank                               | Ox  | Oxydes (Fe-Ti)                 |
| CR:     | Crozet Islands                           | Act | Actinolite                     |
| ASP:    | Amsterdam-and Saint Paul islands         | Fsp | Feldspaths                     |
| C :     | Crozet islands                           | Opq | Opaques (oxydes de Fe-Ti)      |
| CR:     | Conrad Rise                              | Prt | Perthites                      |
| G :     | Gaussberg volcano                        | Qz  | Quartz                         |
| К:      | Kerguelen archipelago                    | Chv | Chevkinite                     |
| PE:     | Prince Edouard islands                   | Срх | Clinopyroxènes                 |
| U1      | Unité structurale 1                      | Arf | Arfvedsonite                   |
| U2      | Unité structurale 2                      | Eck | Eckermannite                   |
| U3      | Unité structurale 3                      | Aeg | Aegirine                       |
| ASM     | Anisotropie de Susceptibilité Magnétique | Ang | Aenigmatite                    |
| Km      | Susceptibilité moyenne                   | FI  | Fluorite                       |
| Рр      | Anisotropie totale                       | Ast | Astrophyllite                  |
| Т       | Paramètre de forme                       | Pcl | Pyrochlore                     |
|         |                                          | Ab  | Albite                         |
| Pétrogr | aphie:                                   | Hd  | Hédenbergite                   |
| CaS     | Groupe des syénites calciques            | Jd  | Jadéite                        |
| CaNaS   | Groupe des syénites calco-sodiques       | Fs  | Ferrosilite                    |
| NaS     | Groupe des syénites sodiques             | Q   | Quad = Wollastonite, Enstatite |
| Chl     | Chlorite                                 | Et  | Ferrosilite                    |
| Ep      | Epidote                                  | Ed  | Edenite                        |
| Ol      | Olivine                                  | Tr  | Trémolite                      |
| Px      | Pyroxènes                                | Hst | Hastingsite                    |
| Amp     | Amphibole                                | Ktp | Katophorite                    |
| Pl      | Plagioclases                             | Rct | Richtérite                     |
| Phl     | Phlogopite                               | Wnc | Winchite                       |
|         |                                          |     |                                |

| Annexe n°3 : Liste des points GI | PS des échantillons |
|----------------------------------|---------------------|
|----------------------------------|---------------------|

|   |                                              | UTI                | Μ      | Decimal of            | degrees  | Degree                    | s Minutes Seconds               |   |
|---|----------------------------------------------|--------------------|--------|-----------------------|----------|---------------------------|---------------------------------|---|
|   | SAMPLE                                       | lat                | lon    | lat                   | lon      | lat                       | lon                             |   |
| х | □ 13TK001                                    | 4492472            | 494060 | -49.72023             | 68.91759 | 49°43'12.81"              | S 68°55'03.34"                  | Е |
| v | 13TK002                                      | 4492607            | 493966 | _40 71001             | 68 01620 | 40°43'08 43"              | S 68°54'58 65"                  | F |
| ^ | □ 13TK007                                    | 4498502            | 496228 | -49 66601             | 68 94773 | 49°39'57 62"              | S 68°56'51 82"                  | F |
| x | 13TK008                                      | 4498992            | 496344 | -49 66160             | 68 94934 | 49°39'41 75"              | S 68°56'57 63"                  | F |
| ~ | □ 13TK021                                    | 4495936            | 495603 | -49 68908             | 68 93904 | 49°41'20 69"              | S 68°56'20 54"                  | F |
|   | □ 13TK022                                    | 4496063            | 495639 | -49.68794             | 68.93954 | 49°41'16.58"              | S 68°56'22.34"                  | Ē |
| х | □ 13TK023                                    | 4496063            | 495639 | -49.68794             | 68.93954 | 49°41'16.58"              | S 68°56'22.34"                  | Е |
|   | □ 13TK026                                    | 4497722            | 495386 | -49.67302             | 68.93605 | 49°40'22.85"              | S 68°56'09.79"                  | E |
| х | 13TK031                                      | 4499670            | 491714 | -49.65545             | 68.88520 | 49°39'19.64"              | S 68°53'06.72"                  | E |
|   | □ 13TK032                                    | 4495281            | 495059 | -49.69497             | 68,93149 | 49°41'41.88"              | S 68°55'53.36"                  | Е |
|   | □ 13TK034                                    | 4495352            | 495053 | -49.69433             | 68.93141 | 49°41'39.59"              | S 68°55'53.06"                  | Е |
|   | 13TK036                                      | 4495241            | 495035 | -49.69533             | 68.93116 | 49°41'43.18"              | S 68°55'52.16"                  | Е |
|   | □ 13TK041                                    | 4495228            | 494815 | -49.69544             | 68.92811 | 49°41'43.59"              | S 68°55'41.18"                  | Е |
| х | 13TK042                                      | 4495126            | 494725 | -49.69636             | 68.92686 | 49°41'46.89"              | S 68°55'36.68"                  | Е |
| х | <ul> <li>13TK043</li> </ul>                  | 4495126            | 494725 | -49.69636             | 68.92686 | 49°41'46.89"              | S 68°55'36.68"                  | Е |
| х | <ul> <li>13TK045</li> </ul>                  | 4495126            | 494725 | -49.69636             | 68.92686 | 49°41'46.89"              | S 68°55'36.68"                  | Е |
| х | <ul> <li>13TK047</li> </ul>                  | 4494657            | 501167 | -49.70060             | 69.01618 | 49°42'02.16"              | S 69°00'58.26"                  | Е |
|   | 13TK053                                      | 4493914            | 494121 | -49.70726             | 68.91846 | 49°42'26.12"              | S 68°55'06.46"                  | Е |
|   | □ 13TK054                                    | 4494183            | 494187 | -49.70484             | 68.91938 | 49°42'17.41"              | S 68°55'09.77"                  | Е |
|   | □ 13TK055                                    | 4494469            | 494481 | -49.70227             | 68.92346 | 49°42'08.16"              | S 68°55'24.47"                  | Е |
|   | □ 13TK057                                    | 4494709            | 494489 | -49.70011             | 68.92358 | 49°42'00.39"              | S 68°55'24.88"                  | Е |
|   | □ 13TK059                                    | 4494943            | 494594 | -49.69800             | 68.92504 | 49°41'52.81"              | S 68°55'30.13"                  | Е |
|   | □ 13TK060                                    | 4495725            | 495524 | -49.69098             | 68.93794 | 49°41'27.52"              | S 68°56'16.59"                  | Е |
|   | □ 13TK061                                    | 4495648            | 495511 | -49.69167             | 68.93776 | 49°41'30.01"              | S 68°56'15.94"                  | E |
|   | □ 13TK062                                    | 4495648            | 495487 | -49.69167             | 68.93743 | 49°41'30.01"              | S 68°56'14.74"                  | E |
| х | 13TK063                                      | 4495387            | 495341 | -49.69402             | 68.93540 | 49°41'38.46"              | S 68°56'07.44"                  | E |
|   | □ 13TK064                                    | 4495345            | 495212 | -49.69439             | 68.93361 | 49°41'39.82"              | S 68°56'85601"                  | E |
|   | □ 13TK065                                    | 4495220            | 494934 | -49.69552             | 68.92976 | 49°41'43.86"              | S 68°55'47.12"                  | E |
|   | □ 13TK066                                    | 4498152            | 495070 | -49.66915             | 68.93168 | 49°40'08.92"              | S 68°55'54.04"                  | E |
|   | □ 131K067                                    | 4499295            | 495349 | -49.65887             | 68.93556 | 49°39'31.92"              | S 68°56'08.01"                  | E |
|   | □ 131K068                                    | 4500364            | 495545 | -49.64925             | 68.93829 | 49*38'57.3'1"             | S 68°56°17.83°                  | E |
| X | ■ 131K009<br>- 12TK060                       | 4503394            | 490121 | -49.62200             | 68.94630 | 49 37 19.21               | 5 08 00 40.00<br>6 60°56'47 45" |   |
| v | = 13TK009                                    | 4503394            | 490121 | -49.02200             | 68 03811 | 49 30 03.09<br>40°30'10"  | 5 00 00 17.10<br>S 68°56'08 30" |   |
| × | ■ 13TK070                                    | 4302020            | 495551 | -49.03430             | 68 03566 | 49 39 10<br>40°30'10"     | S 68°56'08 30"                  |   |
| × | 13TK077                                      | 4499972            | 495356 | -49.05278             | 68 03566 | 49 39 10<br>40°30'10"     | S 68°56'08 30"                  |   |
|   | □ 13TK079                                    | 4500008            | 496946 | -49.65246             | 68.95769 | 49°39'22.46"              | S 68°58'53.71"                  | Ē |
| v | 13TK080                                      | 1100580            | 108671 | 10 65624              | 68 08150 | 40°40'21 05"              | S 68°54'40 33"                  | F |
| Ŷ | 13TK081                                      | 4497776            | 493593 | -49.67251             | 68 91120 | 49°41'05 1"               | S 68°55'00 41"                  | F |
| ^ | □ 13TK096                                    | 4496416            | 400000 | -49 68475             | 68 91678 | 40°37'30 35"              | S 68°58'840 3"                  | F |
| x | ■ 13TK101                                    | 4503051            | 498401 | -49 62510             | 68 97786 | 40°37'24 55"              | S 68°57'52 75"                  | F |
| ~ | □ 13TK103                                    | 4503230            | 497447 | -49.62349             | 68.96465 | 49°37'24.55"              | S 68°57'52.75"                  | E |
| x | ■ 13TK104                                    | 4502343            | 497474 | -49.63146             | 68.96502 | 49°37'53.27"              | S 68°57'54.07"                  | Ē |
|   | □ 13TK105                                    | 4501927            | 497649 | -49.63521             | 68.96744 | 49°38'06.74"              | S 68°58'02.79"                  | E |
| х | □ 13TK106                                    | 4501744            | 497783 | -49.63685             | 68,96930 | 49°38'12.67"              | S 68°58'09.47"                  | Е |
| х | 13TK108                                      | 4500926            | 498194 | -49.64421             | 68.97498 | 49°38'39.16"              | S 68°58'29.94"                  | Е |
| х | 13TK117                                      | 4498531            | 497844 | -49.66575             | 68.97012 | 49°39'56.71"              | S 68°58'12.44"                  | Е |
| х | <ul> <li>13TK118</li> </ul>                  | 4498549            | 505690 | -49.66557             | 69.07885 | 49°39'56.04"              | S 69°04'43.86"                  | Е |
| х | <ul> <li>TC09-06</li> </ul>                  | 4494112            | 494120 | -49.70547             | 68.91845 | 49°42'19.69"              | S 68°55'06.42"                  | Е |
|   | TC09-13                                      | 4494685            | 494450 | -49.70032             | 68.92303 | 49°42'01.15"              | S 68°55'22.91"                  | Е |
|   | □ TC09-18                                    | 4495071            | 494697 | -49.69685             | 68.92647 | 49°41'48.66"              | S 68°55'35.29"                  | Е |
|   | □ TC09-26                                    | 4497361            | 491752 | -49.67622             | 68.88568 | 49°40'34.39"              | S 68°53'08.45"                  | E |
|   | □ TC09-31                                    | 4494754            | 496488 | -49.69972             | 68.95130 | 49°41'58.99"              | S 68°57'04.68"                  | E |
| х | □ TC09-37                                    | 4494850            | 497112 | -49.69886             | 68.95995 | 49°41'55.9"               | S 68°57'35.82"                  | Ē |
|   | - TOOD 44                                    | 44940/U            | 490403 | -49.09000             | 00.97009 | 49 41 00.20               | 0 00 00 40.20                   |   |
| х | ■ 1C09-41                                    | 4493503            | 496559 | -49.71097             | 68.95227 | 49°42'39.49"              | S 68°57'08.17"                  | E |
|   | □ TC09-45                                    | 4503920            | 495008 | -49.61726             | 68.93089 | 49°37'02.14"              | S 68°55'51.2"                   | E |
| х | TC09-59                                      | 4496910            | 498401 | -49.68033             | 68.97783 | 49°40'49.2"               | S 68°58'40.2"                   | E |
|   | □ TC09-63                                    | 4496472            | 498430 | -49.68427             | 68.97824 | 49°41'03.37"              | S 68°58'41.66"                  | E |
|   | □ TC09-69                                    | 4498921            | 494447 | -49.66222             | 68.92306 | 49°39'44"                 | S 68°55'23"                     | E |
|   | □ TC09-70                                    | 4499230            | 494527 | -49.65944             | 68.92417 | 49°39'34"                 | S 68°55'27"                     | E |
| x | <ul> <li>IC09-75</li> <li>TC00-70</li> </ul> | 4495305            | 491907 | -49.69472             | 60.00050 | 49*41'41"                 | 5 08 53 10"<br>6 68 56 100 40"  | E |
|   |                                              | 4493755            | 495044 | -49.70870             | 00.93958 | 49 42 31.32"              | 5 00 50 22.49"<br>S 60°54/46 0" | E |
| x |                                              | 4492543            | 493729 | -49./1958             | 00.91300 | 49 43 10.5                | 0 00 04 40.0<br>0 60°50'06"     |   |
|   |                                              | 449/05/            | 497715 | -49.07301             | 00.90033 | 49 40 25                  | 00 00 00 00"<br>0 0000145"      |   |
| X |                                              | 4490200<br>1101001 | 500902 | -49.00011<br>10.60922 | 60 01600 | 49 41 10<br>10°11'50 6"   |                                 |   |
| × |                                              | 4434921<br>1101711 | 501162 | -43.03022<br>10 70011 | 60 01611 | 45 41 00.0<br>10°10'00 1" | S 60°00'50.4                    | E |
| v |                                              | 4494711            | 502/10 | -49.70011             | 69.01011 | 43 42 UU.4<br>10°36'22"   | 5 60°00'00 1"                   | Ē |
| ~ |                                              | 4500714            | 502410 | -49.00011             | 69.00000 | 40°38'16"                 | S 60°02'00.1                    | E |
| ¥ | TC09-120                                     | 4502200            | 502352 | -49.04011             | 69 03278 | 49°37'54 7"               | S 69°01'58"                     | F |
| x | □ TC09-131                                   | 4502868            | 505878 | -49.62672             | 69.08139 | 49°37'36.2"               | S 69°04'53"                     | Ē |
| x | TC09-135                                     | 4508347            | 501608 | -49.57746             | 69.02224 | 49°34'38.86"              | S 69°01'20.06"                  | E |



# Annexe n°4 : Carte de localisation des échantillons (13TKXX)



# Annexe n°5 : Carte de localisation des échantillons (TC09 -KXX)

Annexe n°6 : Mesures des fabriques (foliations magmatiques) observées sur le terrain

| Localisation                                    |                                                                   | L                          | JTM                           | Plans            | de fo       | oliation       |
|-------------------------------------------------|-------------------------------------------------------------------|----------------------------|-------------------------------|------------------|-------------|----------------|
| Anse Gros Ventre                                | Gabbro                                                            | 493966                     | 4492607                       | 105              | S           | 18             |
| Zone déformée<br>Zone déformée<br>Zone déformée | Syenite porphyrique<br>Syenite porphyrique<br>Syenite porphyrique | 495592<br>495592<br>493997 | 4495920<br>4495920<br>4496416 | 102<br>85<br>120 | N<br>N<br>S | 68<br>72<br>45 |
| Flanc sud armor                                 | Syenite grenue (+- porphyrique)                                   | 504011                     | 4498280                       | 80               | S           | 39             |



291

# Annexe n°7 : Protocole d'échantillonnage et d'analyse de l'anisotropie de susceptibilité magnétique

Le texte qui suit est extrait sans modification du Data Repository associé à l'article soumis à la revue Geology.

#### Sampling

Field observations and sampling were conducted during two field campaigns of ~1 month each, only possible during the austral summer from November to February because of the weather conditions. The first, realized in 2009, was part of the Dylioker 444 IPEV (Paul Emile Victor Institute, http://www.institut-polaire.fr) program directed by Dr B.N. Moine (LMV, Saint-Etienne, France), and the second occurred in 2013 as part of the Talisker 1077 IPEV program directed by Prof. D. Guillaume (LMV, Saint-Etienne, France). Samples collected during these missions correspond to TC09 and 13TK, respectively.

#### AMS theory and protocol

The magnetic susceptibility (K) is defined by  $M = K \times H$ , where M is the induced magnetization of the material and H is the inducing magnetic field. As both M and H are expressed in amperes per meter, the volumetric susceptibility is dimensionless. Susceptibility varies according to the applied magnetic field and temperature, and may also vary according to the measurement direction resulting in a nonparallelism between H and M vectors. The output of an AMS measurement of one rock sample is an ellipsoid of magnetic susceptibility defined by the length and orientation of its three principal axes, kmax  $\geq$  kint  $\geq$  kmin, which are the three eigenvectors of the susceptibility tensor. Depending on their mineralogy, magmatic rocks may have paramagnetic or ferromagnetic behavior. In paramagnetic rocks, AMS is induced by the Fe-bearing silicates such as biotite or amphibole. In ferromagnetic rocks, i.e. magnetite-bearing granitoids, the paramagnetic contribution of Fe-Mg silicates may become negligible with respect to the ferromagnetic contribution because of the high intrinsic magnetic susceptibility of magnetite. Hence, the magnetic fabric results primarily from the shape anisotropy of the grains of magnetite. This effect was postulated by Stacey (1960), examined by Khan (1962) and Uyeda et al. (1963) by microscopic observations on different rock types, and by Ellwood and Whitney (1980) and Grégoire et al. (1995) on granites. A component of the magnetic anisotropy may also result from the anisotropy of grain distribution, often referred to as distribution anisotropy (Hargraves et al., 1990; Stephenson, 1994; Grégoire et al., 1995; Gaillot et al., 2006).

The magmatic texture is defined by the shape-preferred orientation (SPO) of ferromagnesian minerals and feldspar phenocrysts. Their SPO must be associated with the orientation and the characteristics of the magmatic flow: they are early-crystallized minerals which are oriented in the flow while the magma is still viscous. The shape and distribution of magnetite grains should reflect the geometrical characteristics of the SPO of these early-crystallizing minerals, regardless of when the magnetite crystallized during the emplacement history of the magma: early crystallized magnetite grains would become aligned with the earlier-formed minerals, while later crystallized magnetite would preferentially grow along the pre-existing grain-shape fabric of the ferromagnesian minerals (Knight &

Walker, 1988) (see below). The magnetic anisotropy that results from the mean orientation of these minerals is thought to reflect the orientation and shape of the finite strain ellipsoid. The plane of maximum flattening (foliation) and the direction of maximum elongation (lineation) thus defined can be mapped over an entire pluton and, along with microstructural data, are used to interpret the structural history of the intruding magma.

Due to the particular logistical issues/limits we didn't drill directly in the field. 65 samples were collected (on average 1000-3000 cm<sup>3</sup> per sample) and oriented on the field taking into account the regional declination (-56.5°). All sampled were then drilled at the GET-laboratory, Observatoire Midi-Pyrénées, Université Paul Sabatier, Toulouse (France) with at least 2 oriented cores from 7 to 9 cm in length and 2.5 cm in diameter per sample. Cores were then cut in standard specimens (2.2 cm long, 10.8 cm<sup>3</sup>). Measurements were all acquired with a Kappabridge MKF1 (2 x 10<sup>-8</sup> SI sensitivity from AGICO) at the LMV-laboratory, Saint-Etienne (France). The ANISOFT program package (Hrouda et al., 1990) was used for statistical treatment of the AMS of each sample using the methods of Jelínek and Kropáček (1978). The site averaging was realized with the AMS\_50 spreadsheet of Patrick Launeau (Launeau and Robin, 2005).

| Particular 1      | SHDDHC-Sat. T | SRDBIC 1 | ZNDBIC T | SRDBIC-SHE T | SRDBIC-sat T | SRDBIC 1 | SRDBIC-sat T | SHDBIC 1     | SHORIC T | 2100HC 1 | SNDBIC 1 | SRDBIC T | SHORIC T   | SHORIC T   | SHDBIC 1  | SHDBIC T   | ADBIC 1  | THORY T | SHDBIC 1 | ShiDerc 1    | SRDBHC 1 | SHDBIC 1 | SHDBIC 1    | Sabar 1                                  | SRDBIC 1     | SNDBIC 1 | SHDOIC 1 | SHORIC 1 | SHORIC 1   | SHDBIC 1 | SRDBIC 1    | SHDBIC 1    | SHORIC 1 | SNDBIC 1 | SHDBHC 1 | SHDBIC 1      | SNDBIC 1     | SRDBIC 1 | SND0IC 1 | SHORIC 1 | SRDBIC-Lat 1 | SNDBIC 1    | SNDBIC 1     | SHDBIC 1     | SRDBIC 1 | SKDBIC 1 | SHDBIC 1 | SNDBHC 1 | SHDBIC 1    | SHORE 1 | matult e<br>SRDBIC-sat 1 |  |
|-------------------|---------------|----------|----------|--------------|--------------|----------|--------------|--------------|----------|----------|----------|----------|------------|------------|-----------|------------|----------|---------|----------|--------------|----------|----------|-------------|------------------------------------------|--------------|----------|----------|----------|------------|----------|-------------|-------------|----------|----------|----------|---------------|--------------|----------|----------|----------|--------------|-------------|--------------|--------------|----------|----------|----------|----------|-------------|---------|--------------------------|--|
| CC1-CM1           | 111-100       | C09-129  | 009-125  | C09-120      | C09-115      | C09-109  | 09-082       | 009-076      | C09-069  | C09-063  | 009-045  | 009-041  | 09-038     | (09-037    | 109-025   | C09-018    | 09-013   | 009-006 | 37K117A  | 316105       | 376104   | STR103A  | 3TKLO1      | ATBOALS                                  | 371K080      | 3710079  | 311077   | 3TK070   | STROSS     | 3110067  | 31K066A     | 3110064     | 3780638  | 3110062  | 311060   | 3110059       | 3TK0578      | 311K055  | 378054   | 311K0538 | STK047A      | 3110045     | 311X042      | 3780418      | 3TK034A  | 3TK031   | 310026   | TROST    | 318022      | STKOUTA | ch<br>3760018            |  |
| Anthonized in the |               |          | moyen    | COMPACT NO.  | basique      | gros     | gros         | grue         | moyen    | gros     | gras     | gros     |            | 7          | fin       | uavon      | Tr.      | fron    | and and  | moyen        | fros     | flox     | porphyrique | mayon                                    | 5            | gros     | (Pop     | moven    | 3          | gros     | (ros        | porphylique | gros     | moyen    | grou     | gros          | fin          | gros     | (POS     | fl.co    | basique      | boldpilling | Bas          | fros         | For      | grus     | grou     | 5        | porphyrique | 13      | grain, texture<br>moyen  |  |
|                   | Canas         | CaMaS    | CaNu5    | NaS          | Manzonite    | CuMaS    | Ca5          | Ca5          | CaNas    | Callad   | CaNaS    | ŝ        | 88         | 6          | 8.8       | 2 8        | Ca5      | C15     | CuNas    | CaNas        | MaS.     | NuS      | CaNad       | Canao                                    | NuS          | NaS      | CaNad    | NaS      | Nas        | CaNas    | CaNas       | 88          | 8        | Callad   | CaNas    | ß             | 6            | 8        | 6        |          | Monzonite    | Ca5         | 65           | g            | 65       | 66       | CaNas    | CaNaS    | CaNas       | CaNas   | gpe pétro<br>CaS         |  |
| 5                 | -             | 1500     | 1639     | 167          | 2296         | 956      | 1394         | 2967         | 1831     | 2374     | 2125     | 1737     | 1541       | 1887       | 1149      | 14         | 1034     | 1418    | 1596     | ŝ            | 378      | 1216     | 1512        | 29.05                                    | 472          | 432      | 1456     | ET CODE  | 20         | 1046     | 2851        | 2818        | 1141     | 3074     | 1580     | 1367          | 26           | 3216     | 2420     | 2698     | 3752         | 1027        | 1210         | 1059         | 1998     | 1184     | 1309     | 1804     | 2205        | 3440    | Km 10-55i<br>2655        |  |
| t                 | 1             | 1.0      | t        | 8            | t; t;        | 11       | ŝ            | 5            | : :      | č        | Ľ        | ţ        | t i        | 5          | 5 5       | 5          | r,       | 0       | 1.6      | 2            | 2.1      | ¥.       | 21          | : :                                      | ï            | 8.9      | ţ,       | 2 t      | : 3        | C        | =           | 5 5         | t        | 51       | 2.0      | L             | 51           | : []     | 23       | i ii     | Ľ            | 3           | : 5          | 26           | #        | 5        | Ľ,       | ŭ        | : 3         | 10      | 23                       |  |
| -                 | 12.0          | 0.31     | -0.41    | 0.17         | -0.61        | -0.70    | 0.85         |              | -05      | -0.01    | 0.36     | -0.16    | 0.08       | 0.71       | 0.89      |            | 0.51     | -0.23   | 0.31     | -0.16        | -0.60    | 10       | -           | 0.02                                     | 0.50         | 0.10     | 86.0     | 10.0     | -          | 0.47     | 0.72        | 0.47        | 0.17     | 251      | -0.34    | 0.50          | 10.0         | -0.76    | 235      | 0.85     | 0.47         | -0.0        | 0.19         | 0.19         | 0.01     | 0.92     | 0.30     | -0.14    | 016         | 0.0     | 7 20.0                   |  |
|                   |               |          | 5        |              |              |          | 2            | ι,           |          | 2        |          |          |            |            |           |            |          |         |          | n 30         |          | 4        |             |                                          |              | 10       |          | ut a     | . 10       | u        | 5           |             |          |          |          | -             |              |          | ú .      | , pr     |              | æ. 1        |              |              | ŵ,       |          | 10       |          | -           |         | 9 18                     |  |
| ter               | 1990          | 15002    | 16386    | 1670         | 22963        | 9658     | 13938        | 29671        | 25308    | 23742    | 21254    | 17369    | 15410      | 18872      | 11485     | 8440       | 10340    | 14180   | 15559    | 5427         | 3776     | 12158    | 15120       | 12946                                    | 4716         | 4320     | 16560    | 234      | 103        | 10458    | 28511       | 9657        | 11412    | 30744    | 36775    | 13670         | 2956         | 32164    | 24204    | 26583    | 37516        | 10274       | 12199        | 10588        | 19981    | 49307    | 13092    | 180318   | 22054       | 14403   | Km 10-651 (J<br>26552    |  |
| 101               | 1 20          | 150      | 165      | 167          | 2 2          | 974      | 139          | 5 8          | í ji     | 240      | 213      | 174      | 5 5        | 8          | 117       | 1 43       | ij       | H.      | 16       | 1 2          | 382      | 5        | 5 5         | 1 10                                     | 474          | 433      | 16       | 2 8      | 5 3        | 105      | 100         | 291         | 114      | ii i     | 2 2      | 137           | 88           | 324      | 24.8     | 271      | 378          | 10 10       | 12           | 107          | 202      | 49 13    | 131      | 10       | 88          | 240     | 270                      |  |
| 2                 | : 2           | 66 80    | 56 15    | 2            | 65 23        | 3 3      | 74 14        | 00 34        | 43 31    | 07 10    | 68 33    | 58 35    | 22 22      |            | 09 19     | 1.5        | 84 26    | 46 33   | 31       |              | 10       | 37 17    |             | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 14           | 5        | 66 15    | 10.1     | 15         | 60 14    | 27 25       | 17 23       | 15 28    | 78 31    | 24 20    | N 17          | 19 A<br>15 S | 12       | 26.5     | 11       | 11 85        | 22 12       | 29 14        | 15 74        | 89 27    | 01 11 30 | 91 14    | 26 6     | 01 21       | 10 10   | 90 L2                    |  |
| 1                 |               |          | ें<br>2  | 80<br>       | o •          |          |              | 9. 9<br>0. 1 | 5 U      |          |          | 54       |            |            | ें<br>संस |            | ः<br>    |         |          | ે<br>. મ     |          | -        |             | 1.5                                      | . e          | -        |          | 5<br>    | <u>, 1</u> |          | 100<br>1400 | 4 F         |          | ***      |          | - 14<br>- 14  |              |          | ° '      |          | 50<br>20     | -           |              | -            | е<br>-   | Pr 14    |          |          |             | 127     | 4 044                    |  |
|                   |               | -        | 2        |              | 2 5          |          | 6            | 2.5          |          | 0        | 2        | p        | 2 2        | 2 1        |           |            | 2        | 2       | 0.0      | 0            | 0        | 2        |             |                                          |              | 0        | 2        | 00       |            | 8        | 8           | 9 8         | 2        | 9.1      | 0.0      | 2             | 2.9          |          | 8.5      | 0.0      | 0            | 2 9         | . 0          | 9            | 0        | 2.9      | 2 2      |          | 21          | 2.9     | 2 D.                     |  |
| 100               | 3 3           | 2        | 59       | 8            | 8 3          | 18       | 56           | 8.2          | 197      | 88       | 2        | 8        | 8 5        |            | 5 5       | 1 75       | 3        | 8       | 8 3      | 17           | 32       | 3        | 25          | R 2                                      | 1            | 52       | 2        | 23       | 91         | 91       | 56 I        | 8 8         | 2        | 74       | 47       | 13            | 2.0          | 1 25     | 77       | 1 2      | ž            | H 3         | 5 10         | 1            | 25       | 5 2      | : :7     | 8        | 39 7        | 57      | MdHp1                    |  |
|                   | 2 12          | 82 0     | 25 25    | 5 2          | ti 1         | 17 0     | 87 1         | 5 k<br>0 •   | 15       | 35 2     | 10 1     | 40 2     | 40 10      | 8 d<br>8 d |           | 19 1       | 10 3     | 5       | ¥ 4      | 3.8          | 49 21    | 37 1     | : :<br>: :  | 14 1                                     | 1 32         | 56 3     | 71 7     | 59 2     | 2 2 9      | 36 3     | 8 :<br>t    | 43 3        | 23 3     | 50.00    | 14 1     | 55 3          | 12 10        | 11 1     | 5 5      | 11 17    | 15 1         | 10 10       | 1 4          | 50 1         | 53 21    | 51 1     | 5        | 4        | 11 4        | 10      | 111 11                   |  |
| 104               | 000           | 150      | 163      | 10           | 228          | 195      | 139          | 296          | 252      | 237      | 212      | 173      | 154        | 1          | 116       | 1 10       | 10<br>10 | 141     | 159      | 541          | 376      | 122      | 5           | 0.00                                     | 472          | 432      | 10       | 234      | 700        | tõa      | 285         | 287         | 114      | 308      | 356      | H             | 295          | 320      | 23       | 271      | 376          | 102         | 12           | 106          | 199      | 407      | 133      | 17       | 220         | 333     | 2 Kint<br>265            |  |
| 2                 | 1 2           | 17 22    | H H      | 22           | 94 74        | 1 23     | 8 4          | 67 12<br>12  | 32 59    | 36 19    | 85 12    | 11 55    | 16 10      | 1 10       | 30 35     | 5 0<br>1 N | 17 17    | 71 22   | 84 ·     | ः<br>२       | 6        | 08 26    | 8 2 2       |                                          | 1.00         | 2        | 62 8     | 06<br>ev |            | 95 27    | 2 :         | 32 27       | 19 11    | 8 1      | 53 11    | 10 37         | 5.4          | 19 19    | 22 38    | 07 26    | 42 12        | 71 21       | 11 28        | 04 24        | 10 10    | 10 10    | 14 25    | 11 65    | 70 12       | 22 80   | 67 31                    |  |
|                   |               | 13       | 3        |              |              | 1 13     | 23           |              |          |          | 9 23     | 2 78     | *          |            | 28        |            |          | -       | 2 12     | 1            | =        | -        |             |                                          | 12           | 10       | 1        | 9.0      |            | 1        | 3           | 9 2 7       | -        | 2        |          | 5             | e y          |          | 2        | 1 21     | 8            | is a        |              | 2            | 1 24     | 2 4      |          | 1        | 23          | 1.10    | 2 41                     |  |
|                   |               | ŝ        | 26       | 8            | 2            | 20       | 2            | 0.5          | 2 0      | S        | 3        | 2        | 2          | 2          |           | 2          | 8        | 2       | 2 2      | 0.0          | 2        | 8        | 2 2         |                                          | 3            | 3        | 2        | 6 5      | 2.5        | 29       | 26          | 0.0         | 8        | 21       | 0.0      | 8             | 2 5          |          | 2 1      | 2.2      | 0.9          | 0.8         | 2            | 0.8          | 0.8      | 2 2      | 0.0      | 1.0      | 3           | 2 0     | 6.0                      |  |
| 1                 |               | -        |          | 1            |              |          | 'n           |              |          |          | Č.       | 30       | •          |            |           |            |          | ~       | •        |              | EP-      | 1        |             |                                          |              |          | -        |          | • •        | •        | m 1         |             |          |          |          |               | ••           |          |          | , m      |              |             |              | °            | 1        | 6.4      |          | •        | e .         |         | Mdisp2                   |  |
| 40 1              | 1 1 4         | 77 0     | 63 2     | 22           | 5 0          | 90 0     | 79 2         | 19 0         |          | 35 3     | 1 02     | 55 2     | 1 15       |            | 40 1      | 1 10       | 11 0     | 65 A    | 8 2      | 56 4         | 68 A     | 19 1     | 81          | 2 81                                     | 56 7         | 66 4     | 73 1     | 59 4     | 2 20       | 36 8     | 61 2        | 17 a        | 70 4     | 55 3     | 20 22    | 4 19          | 16 10        | 63 2     | 61 2     | 67 2     | 24 8         | 1           | 1 11         | 51 1         | 47 1     | 51 1     | -        | 6 N      | 22 3        | 1 00 3  | 571 6                    |  |
| +0                |               | 145      | 14       | 16           | 2 2          | 18       | 138          | 3 5          |          | 20       | 21       | 171      | E a        | 5          | 110       |            | 8        | 141     | 15 1     |              | 715 2    |          |             | 100                                      | 5            | 430      | 101      | 233      | 5 6        | 10       | 12          | 2 2         |          | 21       |          | 135           | 190          | 325      | 22       | 18       | 370          | 102         | 12           | 10           | 190      |          | 12       | 15       | 21          | 1       | 5 255                    |  |
| 4                 |               | 23 32    | 62 33    | 8            | 29 2         | 6 16     | 75 24        | 43 1         | 48 18    | 55 M     | 09 30    | 53 24    | 92 10      |            | 005 20    |            | 8        | 23 44   | 8 1      |              | 14       | 28       | 22          |                                          | 2 23         | 0 27     | 59 24    | 3 2      |            | 20 34    | 21 20       | 67 18       | 141 14   | 55 21    | 104 JU   | 12            | 14 4<br>12 4 | 109 34   | 2 2 2    | 12       | 8 22         | 28 31       | 109 1        | 15           | 572 51   | 10 10    | 12 4     | 35 20    | 192 30      | 10.20   | in 80                    |  |
| 1                 | . e           | ्छ<br>-  | 0        |              |              |          | 2            |              | 5.4      |          |          | 4        | 66. G      | un a       |           | 5 W        |          |         |          | 5.77<br>6 16 | 4        | -        |             | а<br>л а                                 | - 64<br>- 14 | 6        | ж.<br>   |          | - u        | N        | т.<br>м 1   |             |          |          |          | - 08<br>- 1/1 | а<br>ж. н    | с.<br>14 | а.<br>   |          | -01          |             | 837.<br>2 16 | - 00<br>- 14 | -        | - FR     |          | 3        | * *         |         | 17 4                     |  |
| 1                 |               | 9 0      | 0        |              |              |          | 1 0          |              |          | 0 0      | 24<br>0  | 0        | ч :<br>о : |            |           |            |          | 8       |          |              | 6 0      |          |             |                                          |              | 9 0      |          | a +      |            | 0        | 7           | 1 9         |          | 0.0      |          |               |              |          | 9 4      | . 0      |              |             | . 0          |              | 9        | 5 8      |          | 0        |             |         | v Inim                   |  |
| 100               | 12            | 96       | 56       | 67           | 100          | .51      | 90           | 10           | 8 3      | 9        | 16       | 85       | 95         | 8 2        | 8.7       | 1 2        | 8        | 70      | 61<br>81 | 73           | 1        | 8        | 8.3         | 92                                       | 98           | 58       | 98       | 23       | 1.01       | 23       | 93          | 9 5         | 5        | 185      | 97       | 19            | 54 9         | 67       | 8        | 10       | 98           | 1 10        | 101          | (95          | 3        | 8 8      | (9)      | 8        | 98          | 34      | 96                       |  |
|                   | 1 5           | 24 0     | 14       | 8            | 8 3          | 0 68     | ×            | 8 8          | 48       | 11 2     | 26 1     | 43 8     | 2          |            | 1 2 2     |            |          | 3       | 5        | 59           | 20 2     | 17       | 8           | 20 1                                     | 12 1         | 79 1     |          | 49 0     |            | 10 5     | 10          | 8 3         | 63 2     | 0 1      | 18 1     | 88            | 25 7         | 66 2     | 37 2     | 8        | 15 8         | 39 1        | 1 2          | 23 1         | 45       | 10 1     | 18 1     | 1        | 22 6        | 1 8     | 22 1                     |  |
|                   |               |          | 1.       | 2            |              |          | 3 1.0        |              |          | 10       | 1        | 5        | -          |            |           |            | =        |         |          |              | 1        | 1        | = =         |                                          | 1 10         | 5 10     | 1        | 1.0      |            | =        | 5           |             |          | 2 10     |          | -             |              |          | = =      |          |              | 5 1         |              | 0            | 3        |          |          |          | = 1         |         | 0 L(                     |  |
| 10.10             | 108 10        | 10 1.    | 18 10    | 05 1.        |              | 14 1.    | 107-1.4      |              | 116 1.   | 1 52     | 12 1.    | 14 1.    | 15 1       |            | 11 61     | 10 10      | 184 1.1  | 09 L    | 16 1     | 127 1.0      | 121 1.0  | 04 1     |             | 202 1.                                   | 16 1.        | 109 11   | 19 1     |          | 107 1.0    | 123 1.   | 11          | 10 10       | 12 10    | 127 1.   | 126 11   | 11 81         | 135 1.1      | 13 14    |          | 15 14    | 122 1.0      | 09 1        | 24 1         | 126 1        | 11 1EC   | 136 1    | 17 1.    | 139 1    | 014 1       | 200 1   | HI L                     |  |
| 10.40             | 100 10        | 11 600   | 1 110    | 02 1/        | 212 1        | 212 1/   | 11 100       | 10 10        | 112 11   | 13 1.    | 100      | 11 800   | 207 1.     | 1 100      | 203 1/    | 006 1.     | 11 020   | 11 500  | 205 1    | 216 L        | 217 13   | 11 1.0   | 217 1.      | 5 00 L                                   | 11 100       | 104 1.0  | 1000     | 11 E00   | 206 1      | 11 906   | 202 11      | 007 14      | 11 500   | 06 1/    | 017 1/   | 104 11        | 10 10        | 11 1/    | 96       | 11 100   | 106 1.0      | 205 1.      | 010 L        | 1 010        | 11 516   | 11 106   | 206 1    | 226 1.   | 206 1       | 105     | 520 L                    |  |
| 20 t              |               | 005 0.   | 11 500   | 000 0.       | 003 1        | 002 L    | 007 0.       | 018 L        | 003 L    | 012 1.   | 0 800    | 00 200   | 0.00       | 25 0       | 154 D     | 004 0      | 063 21   | 001 0.  | 010 0    |              | 004 E    | 324 L.   | 007 1       | 10 976                                   | 012 0.       | 005 0.   | 019 0.   | 0.00     | 0 100      | 017 0.   | 000         | 003 Ø.      | 007 0    | 020 0    | 1 600    | 0 E10         | 018 1        | 202 1    | 9 t      | 015 0.   | 0.910        | 004 0       | DIA L        | 015 1.       | 016 1    | 012 0    | 0 110    | 012 2.   | 008 0       | 014 0   | 022 2                    |  |
|                   |               | 0.6      | 0.5      | 20           | 2 1          | . 0      | 1 0.3        |              |          | E        |          | 8 0.5    | 21         |            |           |            | Ē        | 2       |          |              | 7 0.4    | 2        | 21          | : :                                      |              | .0.5     | 5        | 21       | : 2        | 5        | 0.          | 2 0         | 2        | 21       |          |               |              | 2        |          |          | 5            | 2 1         |              | 5            | 5        |          |          | Ē        | 21          |         | E FN                     |  |
|                   |               | 0.5      | 2.6      | 0.0          | 4 5          | 6.0      | 10           |              | 4.0      | 10       | 20       | 13       | 2          | 2          | 85        | . 5        | 2        | 1.6     | 0.0      | 1            | 12       | 2        | 14          |                                          | 2            | 0.8      | 8        | 0.0      |            | 0.3      | 2           | 213         | 8        | 21       | 1.0      | 2             | 24           | 12       | 2 2      | 20       | 0.3          |             | 12           | 2            | 0.9      | 0.0      |          | 2        | 21          |         | File                     |  |
| 1.10              |               | 1.0      | to       | 5            | 5 5          | 1.0      | 1.0          | 5 5          | 10       | 1.0      | 10       | 10       | 5          | 5          | 10        | . 5        | 10       | 5       | 5 10     | 5            | 10       | 5        | 5 1         | 1.0                                      | 5            | 10       | 10       | 5.5      |            | 5        | 5           | 10          | 5        | 1.0      | 10       | 10            | 10           | 10       | 51       | 10       | 1.0          | 5 10        | 1 10         | 10           | 10       | 1 1      | 1.0      | 10       | 51          | 1.0     | 10                       |  |
| AC 01             | 00 22         | 10 87    | 19 19    | 05 205       | 16 210       | 15 31    | 08 14        | 16 24        | 17 31    | 25 100   | 13 37    | 14 35    | 15 224     | 32 13      | 20 90     | 10 16      | 87 263   | TE 60   | 16 330   | 27 160       | 22 16    | 35 170   | 24 12       | 10 10                                    | 17 14        | 09 15    | 22 15    | 10 11    | 08 19      | 24 140   | 12 25       | 10 238      | 12 28    | 28 JU    | 26 20    | 19 200        | 35 100       | 14 290   | 21 300   | 15 15    | 23 31        | 09 12       | 24 1第        | 26 74        | 31 27    | 41 30    | 17 14    | 00 6     | 14 21       | 20 M    | 42 LD                    |  |
|                   |               | 54       | 2        | 2            | 5 5          | : 2      | 53           | 8 4          |          | 20       |          | 5        | 28 1       |            |           | . 59       |          |         | 32 72    |              |          |          |             |                                          | 13           | 10       | 10       | 5 2      |            | 28       |             | 4 18        | -        | 26       | 3 5      | 22            |              |          |          |          | 2            |             |              | s            | *        | 4 2      | 35       |          |             |         | A4 U                     |  |
| -                 | : 2           | 59       | 8        | 1            | 5 8          | 1 2      | 17           | 5 8          | 8 2      | x        | =        | 12       | 5 ;        | 5 1        | 1 1       |            | 17       | 5       |          | . 12         | ¢1       | 2        |             | ; ;                                      | 5            | en       | ç,       | 50       | : 5        | 12       |             | 10 13       | 10       |          |          | 85            | 1 3          | 1        | # 8      | . =      |              |             | 10           | -            | 14       | 14       |          |          |             | 5 1     | 12 12                    |  |
|                   |               | - 64     | -        | ×            | <b>"</b>     | ĘZ       | m            | П<br>и 2     | . 2      | -        |          | m        |            |            | 5 °       |            | ×        | 5       | ε,       | - 17<br>194  |          | ~        | .,          |                                          |              | -        | Г.<br>Н  | 5 1      | E \$       |          |             |             |          | 2 1      |          |               |              |          | z •      |          | z            | Ξ,          |              |              | W        | * *      |          |          |             |         | Y N                      |  |
|                   |               |          |          |              |              |          |              |              |          |          |          |          |            |            |           |            |          |         |          |              |          |          |             |                                          |              |          |          |          |            |          |             |             |          |          |          |               |              |          |          |          |              |             |              | 2            |          |          | 12       |          |             |         | NOir 1                   |  |
| 1                 |               | 1        | 0        | •            |              | n si     |              | 0 4          |          | -        | *        | 6        | -          | uri è      |           | 6          |          | *       | un é     | .9           |          | *        |             | ÷                                        | 4            | H        | -        | * *      |            | G        | 9           | ¢ #         | e.       | 0        |          | 64            |              | 9        | -        | . 0      | ¢i           | ω ų         | 0            | a l          |          | 6 B      | ŭ        | õ        | 4           | . #     | olPend<br>6              |  |
|                   | 1             | 59       | 8        | 149          | 8            | 251      | 352          | 128          | 152      | X        | a        | 355      | \$ 3       | 343        | 180       | 8          | 173      | 136     | 154      | 128          |          | 2        | 144         | 1                                        | 5            | ø        | 334      | 176      | 15         | 126      | 10          | 108         | 106      | 303      | 122      | 28            | 324          | 129      | 29.5     | E        | 312          | 121         | 104          | 8            | 142      | 140      | 136      | 319      | 36          | 10      | FolD                     |  |
| -                 |               | H        | 8        | 76           | 5 2          | 1 3      | 5            | 8 1          | 5 5      | 2        | 28       | 8        | 2 3        | # 1        | 2         | 8          | \$       | \$      | 5 8      | . 5          | 14       | 5        |             | 5 5                                      | 3            | 2        | =        | 1        | 5 X        | 8        | 8           | 49 H        | 8        | 3        | 5 2      | 8             |              |          | 2 4      | 8        | 5            | 5 3         | 5            | π            | 5        | 5 2      | 75       | 8        | 3           |         | Foll<br>B6               |  |

### Annexe n°9 : Données U-Pb sur zircons

|                          | ISOTOPIC RATIOS                           |                                           |                                           |                                          |              |      |                                      | AGES     | (Ma)                                 |               |             |       |        | CONC        | ENTRA      | TIONS | ppm)       |         |
|--------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|--------------|------|--------------------------------------|----------|--------------------------------------|---------------|-------------|-------|--------|-------------|------------|-------|------------|---------|
| Analysis                 | <sup>247</sup> Pb/ <sup>366</sup> Pb ± 1o | <sup>266</sup> Pb / <sup>256</sup> U ± 10 | <sup>267</sup> Pb / <sup>218</sup> U ± 10 | <sup>368</sup> Pb/ <sup>232</sup> Th ±10 | "Pb/36Pb     | ± 10 | <sup>366</sup> Pb / <sup>256</sup> U | $\pm 10$ | <sup>507</sup> Pb / <sup>218</sup> U | $\pm 1\sigma$ | 586Pb/252Th | +10   | I COLE | Th          | = 20       | U     | # 20       | 2 Cnats |
| 13TK31<br>31 L1 202      | 0.04611 0.0035                            | 0.001505 0.00003                          | 0.00947 0.000                             | 7 0.00047 0.00002                        | 3.5          | 173  | 9.69                                 | 0.19     | 9.6                                  | 0.7           | 0.6         | 0.41  | -0.06  | 121         | 17         | 211   |            | 0.12    |
| 31_L1_Z04                | 0.04656 0.00394                           | 0.001553 0.00004                          | 0.0099 0.0008                             | 1 0.00044 0.00002                        | 26.6         | 191  | 10                                   | 0.23     | 10                                   | 0.81          |             | 0.33  | -0.04  | 283         | 40         | 286   | 11         | 0.22    |
| 31-1.1-205               | 0.04618 0.00333<br>0.04634 0.00253        | 0.001504 0.00003 0.001424 0.00002         | 0.0095 0.0004                             | 5 0.00045 0.00001<br>8 0.00045 0.00001   | 15.3         | 105  | 9.09                                 | 0.17     | 9.0                                  | 0.67          | 8.5         | 0.27  | -0.89  | 217         | 32         | 349   | 10         | 0.19    |
| 31_L1_Z08-B              | 0.04678 0.0021                            | 0.001555 0.00002                          | 0.00993 0.0004                            | 3 0.00049 0.00001                        | 38           | 104  | 10.02                                | 0.15     | 10                                   | 0.43          | 0.0         | 0.27  | -0.16  | 358         | 50         | 673   | - 33       | 0.12    |
| 31_L2_201                | 0.04609 0.00315                           | 0.001554 0.00003                          | 0.00977 0.0006                            | 5 0.00051 0.00001                        | 2.3          | 157  | 10.46                                | 0.18     | 9.9                                  | 0.65          | 10.3        | 9.27  | -1.09  | 187         | 26         | 217   | 10         | 0.19    |
| 31_L2_Z02                | 0.04617 0.00173                           | 0.001524 0.00002                          | 0.00963 0.0003                            | 5 0.00048 0.00001                        | 6.5          | 87   | 9.82                                 | 0.12     | 9.7                                  | 0.35          | 0.7         | 0.18  | -1.21  | 292         | 61         | 800   | 18         | 0.16    |
| 31_L2_Z12                | 0.04638 0.00238                           | 0.001585 0.00002                          | 0.01003 0.000                             | 5 0.00052 0.00001                        | 17.2         | 119  | 10.21                                | 0.16     | 10.1                                 | 0.5           | 10.5        | 0.26  | -1.06  | 223         | 21         | 373   | 17         | 0.13    |
| 31_L2_Z13                | 0.04668 0.00209                           | 0.001563 0.00002                          | 0.00997 0.0004                            | 3 0.0005 0.00001                         | 32.5         | 104  | 10.07                                | 0.14     | 10.1                                 | 0.43          | 10.4        | 82    | 0.29   | 373         | 52         | 405   | 18         | 0.2     |
| 131K36                   | 0.0401 0.00209                            | 0.001002 0.00000                          | 0.01040 0.0003                            | · · · · · · · · · · · · · · · · · · ·    | 2.9          | 135  | 10.71                                | 0.19     | 10.0                                 | 0.79          | 10.5        |       | -1.01  |             |            | 341   | 10         |         |
| 36_L1_Z03<br>36_L1_Z09   | 0.04626 0.00254 0.04641 0.00651           | 0.001675 0.00003 0.001664 0.00004         | 0.01059 0.0005                            | 6 0.00054 0.00002<br>6 0.00047 0.00003   | 11 18.9      | 127  | 10.79                                | 0.17     | 10.7                                 | 0.56          | 11.4        | 0.32  | -0.81  | 249         | 47         | 421   | 20         | 0.12    |
| 36_L1_Z12                | 0.04741 0.00446                           | 0.001654 0.00004                          | 0.0107 0.0009                             | 8 0.00054 0.00003                        | 69.4         | 210  | 10.66                                | 0.26     | 10.8                                 | 0.98          | 10.9        | 0.53  | 1.33   | 133         | 25         | 203   | 28         | 0.15    |
| 36_L1_Z14<br>36_L2_Z03   | 0.04644 0.00536<br>0.04643 0.00618        | 0.001694 0.00004 0.00005                  | 0.01077 0.0012                            | 2 0.00055 0.00002<br>1 0.00057 0.00003   | 20.7         | 256  | 10.91                                | 0.24     | 10.9                                 | 1.23          | 11.5        | 0.47  | -0.09  | 57          | 18         | 119   | 17         | 0.18    |
| 36_L2_Z06                | 0.04673 0.00388                           | 0.001603 0.00003                          | 0.01024 0.0008                            | 3 0.00046 0.00001                        | 35.5         | 188  | 10.32                                | 0.2      | 10.3                                 | 0.83          | 9.3         | 0.28  | -0.22  | 218         | 41         | 191   | 27         | 0.25    |
| 36_L2_Z12<br>36_L3_Z06   | 0.04659 0.00282 0.04992 0.00533           | 0.001674 0.00003 0.001594 0.00004         | 0.01067 0.0006                            | 3 0.00051 0.00001<br>3 0.00042 0.00002   | 28.4         | 231  | 10.78                                | 0.19     | 10.8                                 | 0.63          | 10.4        | 0.47  | 0.19   | 347         | 23         | 196   | 11         | 0.2     |
| 36_L3_Z11                | 0.04674 0.0025                            | 0.0017 0.00003                            | 0.01091 0.0005                            | 6 0.00057 0.00001                        | 35.7         | 123  | 10.95                                | 0.18     | 11                                   | 0.56          | 11.0        | 0.2   | 0.44   | 1057        | 157        | 800   | 13         | 0.39    |
| 42 L1 201                | 0.04678 0.00508                           | 0.001592 0.00004                          | 0.01017 0.0010                            | 8 0.00049 0.00002                        | 37.9         | 242  | 10.26                                | 0.25     | 10.3                                 | 1.08          | 0.0         | 0.38  | 0.42   | 300         | 37         | 245   | 11         | 0.27    |
| 42_L1_Z02                | 0.04643 0.00732                           | 0.001584 0.00004                          | 0.01005 0.0015                            | 6 0.00051 0.00003                        | 19.9         | 340  | 10.2                                 | 0.27     | 10.2                                 | 1.57          | 10.3        | 0.56  | -0.02  | 121         | 1.5        | 150   | 7          | 0.18    |
| 42_L1_203<br>42_L1_204   | 0.04672 0.00675<br>0.04667 0.00518        | 0.001584 0.00004                          | 0.01051 0.001                             | 5 0.00053 0.00003<br>1 0.0005 0.00002    | 35           | 247  | 10.59                                | 0.25     | 10.6                                 | 1.51          | 10.6        | 0.45  | 0.11   | 235         | 1.9        | 268   | 12         | 0.2     |
| 42_L1_Z06                | 0.0462 0.00167                            | 0.001642 0.00002                          | 0.01037 0.0003                            | 6 0.00055 0.00001                        | 8.2          | 84   | 10.58                                | 0.12     | 10.5                                 | 0.36          | 11.1        | 0.22  | -0.72  | 1219        | 150        | 950   | #2         | 0.3     |
| 42_L1_207<br>42_L1_209   | 0.05021 0.00426<br>0.04647 0.00944        | 0.001633 0.00006                          | 0.01148 0.0009                            | 4 0.00058 0.00002<br>7 0.00052 0.00003   | 204.9        | 426  | 10.57                                | 0.24     | 11.6                                 | 2.08          | 10.0        | 0.02  | -0.19  | 110         | 17         | 134   | - 13       | 0.21    |
| 42_L1_Z10                | 0.04739 0.00379                           | 0.001683 0.00004                          | 0.01089 0.0008                            | 4 0.00049 0.00002                        | 68.4         | 181  | 10.84                                | 0.23     | 11                                   | 0.85          | 3.0         | 0.33  | 1.45   | 413         | 58         | 398   | 15         | 0.23    |
| 42_L1_Z12<br>42_L1_Z13   | 0.04653 0.00162                           | 0.001684 0.00002                          | 0.01068 0.0003                            | 8 0.00055 0.00001                        | 25           | 81   | 10.85                                | 0.13     | 10.5                                 | 0.35          | .11         | 0.25  | -0.44  | 500         | 76         | 751   | - 26       | 0.17    |
| 42_L1_Z15                | 0.04639 0.00482                           | 0.001744 0.00004                          | 0.01107 0.0011                            | 3 0.00059 0.00002                        | 17.7         | 232  | 11.23                                | 0.24     | 11.2                                 | 1.13          | 11.0        | 0.48  | -0.3   | 150         | 22         | 226   | 8          | 0.16    |
| 42_L1_Z10<br>42_L1_Z17   | 0.04657 0.00207                           | 0.001654 0.00002                          | 0.01053 0.0004                            | 5 0.00054 0.00001                        | 27.4         | 104  | 10.59                                | 0.14     | 10.4                                 | 0.46          | 10.0        | 0.24  | -0.5   | 578         | 81         | 714   | 26         | 0.18    |
| 42_L2_201                | 0.04713 0.00744                           | 0.001583 0.00005                          | 0.01019 0.0015                            | 8 0.00055 0.00003                        | 55.2         | 339  | 10.2                                 | 0.33     | 10.3                                 | 1.58          | 13.4        | 0.55  | 1      | 177         | 25         | 175   | . *        | 0.23    |
| 43_L1_Z01                | 0.04579 0.00128                           | 0.001669 0.00002                          | 0.01047 0.0002                            | 8 0.00051 0.00001                        | 0.1          | 52   | 10.75                                | 0.12     | 10.6                                 | 0.28          | 10.3        | 0.12  | -1.39  | 3902        | 570        | 1756  | 94         | 0.49    |
| 43_L1_Z02                | 0.04704 0.00085                           | 0.001702 0.00002                          | 0.011 0.0001                              | 9 0.00051 0                              | 50.9         | 42   | 10.96                                | 0.11     | 11.1                                 | 0.19          | 10.4        | 0.1   | 1.23   | 10019       | 1470       | 2561  | 137        | 0.87    |
| 43_L1_208                | 0.04536 0.00084                           | 0.001758 0.00002                          | 0.0109 0.0001                             | 9 0.00053 0.00001                        | 16.1         | 43   | 11.06                                | 0.12     | 11.5                                 | 0.19          | 10.7        | 0.12  | -0.50  | 7799        | 3152       | 3129  | 170        | 0.54    |
| 43_L2_Z04                | 0.04642 0.00444                           | 0.001733 0.00004                          | 0.011 0.0010                              | 3 0.00059 0.00002                        | 19.2         | 215  | 11.16                                | 0.25     | 11.1                                 | 1.03          | 12.0        | 0.4   | -0.55  | 222         | 33         | 206   | 11         | 0.24    |
| 43_L4_201                | 0.04679 0.00127                           | 0.001699 0.00002                          | 0.01089 0.0002                            | 8 0.00053 0.00001                        | 47.8<br>38.5 | 64   | 10.88                                | 0.12     | 11                                   | 0.28          | 10.6        | 0.13  | 0.48   | 4405        | 025        | 2219  | 101        | 0.44    |
| 13TK45                   | 0.04646 0.00116                           | 0.001541 0.00002                          | 0.00070 0.0003                            |                                          | 21.6         |      | 0.01                                 |          |                                      | 0.23          | 36          | 10.00 |        | 6466        | 4.80       | 2100  |            | 1.00    |
| 45_L1_204                | 0.04619 0.0008                            | 0.001591 0.00001                          | 0.01007 0.0001                            | 7 0.00049 0.00001                        | 7.4          | 41   | 10.25                                | 0.09     | 10.2                                 | 0.17          | 0.0         | 0.11  | -0.49  | 5317        | 747        | 3527  | 145        | 0.53    |
| 45_L1_Z09                | 0.04811 0.00113                           | 0.00159 0.00002                           | 0.01045 0.0002                            | 3 0.0005 0.00001<br>6 0.00056 0.00001    | 104.9        | 55   | 10.24                                | 0.1      | 10.6                                 | 0.23          | 10          | 0.13  | 3.38   | 4270        | 800        | 2335  | 195        | 0.41    |
| 45_L1_Z22                | 0.04612 0.0007                            | 0.001579 0.00001                          | 0.00997 0.0001                            | 4 0.00049 0.00001                        | 4.1          | 36   | 10.17                                | 0.09     | 10.1                                 | 0.14          | 30          | 0.12  | -0.69  | 10106       | 1452       | 8745  | 192        | 0.48    |
| 45_L1_Z23<br>45_L2_Z20_A | 0.04737 0.00198                           | 0.00161 0.00002                           | 0.01044 0.0004                            | 2 0.0005 0.00001                         | 67.1         | 97   | 10.37                                | 0.14     | 10.5                                 | 0.42          | 19.2        | 0.17  | 1.21   | 1422        | 200        | 828   | 34         | 9.38    |
| 45_L2_Z20_B              | 0.0463 0.00118                            | 0.00156 0.00002                           | 0.00989 0.0002                            | 4 0.00049 0.00001                        | 13.1         | 59   | 10.05                                | 0.1      | 10                                   | 0.24          | 9.8         | 0.15  | -0.49  | 2737        | 385        | 1510  | 01         | 0.4     |
| 45_L3_Z03<br>45_L3_Z08   | 0.04642 0.00135                           | 0.001582 0.00002                          | 0.01005 0.0002                            | 8 0.0005 0.00001<br>7 0.00058 0.00002    | 19.5         | 68   | 10.19                                | 0.11     | 10.2                                 | 0.28          | 10.2        | 0.17  | 0.07   | 1712        | 213        | 1266  |            | 0.27    |
| 13TK47                   | 0.04090 0.00072                           | 0.001000 0.00000                          | 0.01002 0.0012                            |                                          | 0.1          | 2/1  | 10.79                                | 0.44     | 10.4                                 | 1.47          |             |       |        | 100         | <i>v</i> . |       |            |         |
| 47_L1_203<br>47_L2_202   | 0.04618 0.00066 0.04643 0.00062           | 0.001712 0.00002                          | 0.01083 0.0001                            | 5 0.00052 0.00001<br>4 0.00053 0         | 6.9          | 34   | 11.03                                | 0.1      | 10.9                                 | 0.15          | 10.4        | 0.14  | -1.18  | 4437        | 587        | 3405  | 159        | 0.29    |
| 47,1.2,204               | 0.04624 0.00081                           | 0.001761 0.00002                          | 0.01115 0.0001                            | 8 0.00054 0.00001                        | 10.2         | -41  | 11.34                                | 0.11     | 11.2                                 | 0.19          | 14.6        | 9.12  | -1.29  | 2289        | 309        | 1547  | 80         | 0,33    |
| 47_13_203                | 0.04633 0.00075                           | 0.00168 0.00002                           | 0.01060 0.0001                            | 6 0.00092 0.00001<br>3 0.00097 0.00001   | 14.7         | -38  | 10.82                                | 0.11     | 10.8                                 | 0.18          | 19.4        | 0.11  | -0.19  | 5093        | 687        | 2732  | 141        | 0.41    |
| 47_1.3_209               | 0.04662 0.00073                           | 0.001756 0.00002                          | 0.01128 0.0001                            | 7 0.00056 0.00001                        | 29.7         | 37   | 11.33                                | 0.11     | 11.4                                 | 0.17          | 11.8        | 0.12  | 0.81   | 7536        | 1017       | 2511  | 230        | 0.67    |
| 47_13_210                | 0.04634 0.00106                           | 0.001717 0.00002                          | 0.01105 0.0002                            | 8 0.00053 0.00001<br>3 0.00054 0.00001   | 15.4         | 53   | 11.19                                | 0.12     | 11.2                                 | 0.24          | 10.0        | 0.13  | 80.0   | 3630        | 490        | 1451  | 75         | 0.56    |
| 47_1.4_202               | 0.046 0.00101                             | 0.00176 0.00002                           | 0.01119 0.0002                            | 3 0.00055 0.00001                        | 0.1          | 40   | 11.34                                | 0.12     | 11.3                                 | 6.28          | 81.8        | 9.14  | -0.34  | 6767        | 91.8       | 1540  | 80         | 0.98    |
| 13TK63<br>63 11 211      | 0.04592 8.00135                           | 0.001543 0.00002                          | 100989 0.0002                             | 7 0.00049 0.00001                        | 45.5         | 55   | 0.94                                 | 0.11     | 10                                   | 0.28          | 10          | 0.14  | 0.44   | 1001        |            | 1090  | - 14       |         |
| 63_L1_Z12                | 0.04661 0.00151                           | 0.00156 0.00002                           | 0.00994 0.0003                            | 0.00049 0.00001                          | 29.2         | 76   | 10.05                                | 0.11     | 10                                   | 0.31          | 10          | 0.14  | -0.48  | 1989        | 303        | 1065  | 75         | 4,41    |
| 63_12_202<br>63_12_204   | 0.04629 0.00131<br>0.04642 0.00216        | 0.001551 0.00002 0.001521 0.00002         | 0.00965 0.0003                            | 1 0.0004 0.00001<br>3 0.00048 0.00001    | 12.6         | 26   | 10.06                                | 0.12     | 10                                   | 0.31<br>0.44  | 10          | 0.15  | -0.58  | 1905        | 291        | 1325  | - 50<br>12 | 0.32    |
| 63,12,205                | 0.04813 0.00201                           | 0.001523 0.00002                          | 0.01005 0.000                             | 4 0.00048 0.00003                        | 105.5        | 96   | 9.81                                 | 0.13     | 30.7                                 | 0.4           | 9.6         | 0.2   | 3.82   | 935         | 143        | 906   | 64         | 0.23    |
| 63 1.2 200               | 0.04648 0.00244                           | 0.001544 0.00002<br>0.001534 0.00002      | 0.00977 0.000                             | 9 0.00049 0.00001<br>2 0.00014 0.00001   | 20.4         | 122  | 9.95                                 | 0.14     | 0.0                                  | 0.52          | 9.0         | 0.27  | -0.47  | 359         | 55         | 673   | 35         | 0.16    |
| 63_1.2_209               | 0.0464 0.00112                            | 0.001553 0.00002                          | 0.00986 0.0002                            | 10000.0 10000.0 €                        | 18.3         | 57   | 10.01                                | 0.1      | 10                                   | 0.23          | 10.2        | 0.18  | -0.01  | 1628        | 248        | \$795 | 326        | 0.2     |
| 43_12_211<br>63_13_202   | 0.04642 0.00189<br>0.04655 0.00124        | 0.001583 0.00002 0.001134 0.00002         | 0.01007 0.000                             | 4 0.0005 0.00001<br>5 0.00047 0.00001    | 26.7         | 95   | 9.88                                 | 0.13     | 9.9                                  | 0.4           | 9.0         | 0.21  | 0.08   | 932<br>1078 | 142        | 820   |            | 0.25    |
| 63_1.3_205               | 0.04631 0.00199                           | 0.001553 0.00002                          | 0.00985 0.0003                            | 0.00047 0.00001                          | 13.7         | 95   | 10                                   | 0.12     | 10                                   | 0,39          | 9.6         | 0.18  | -0.02  | 81.5        | 100        | 739   | 34         | 0.34    |
| 13 L3 200                | 0.04679.3.00117                           | 0.001492 0.00002                          | 0.00991_0.0002                            | A 0.00048 0.00001                        | .26.5        | - 58 | 9,61                                 | 0.1      | 9.0                                  | 0,21          |             | 0.15  | -113   | 108.4       | 245        | 1093  | 78         | 0.26    |
| 69_L1_201_A              | 0.04609 0.00269                           | 0.001332 0.00002                          | 0.00854 0.0004                            | 8 0.00042 0.00001                        | 2.4          | 135  | 8.71                                 | 0.14     | 8.4                                  | 0.49          | 8.4         | 0.17  | -1.27  | 512         | 8.8        | 388   | 43         | 0.28    |
| 69 L1 204                | 0.04558 0.01585                           | 0.001404 0.00006                          | 0.00876 0.0030                            | a 0.0004a 0.00003<br>a 0.00043 0.00004   | 0.1          | 665  | 0.04                                 | 0.36     | 8.9                                  | 3.03          | 10.3        | 0.89  | -1.62  | 38          |            | 40    |            | 0.17    |
| 69_11_255_A              | 0.04607 0.0045                            | 0.001384 0.00003                          | 0.00872 0.0008                            | 3 0.00044 0.00002                        | 0.1          | 221  | 8.91                                 | 0.21     | 3.8                                  | 0.84          |             | 0.54  | -1.28  | 226         | 37         | 257   | 28         | 0.2     |
| 40_L1_200                | 0.04668 0.00301                           | 0.001384 0.00002                          | 0.00879 0.0005                            | 5 0.00034 0.00004<br>5 0.00039 0.00001   | 33           | 148  | 8.91                                 | 1.14     | 8.9                                  | 0.56          | 7.8         | 0.75  | -0.04  | 254         | 41         | 288   | 12         | 0.12    |
| 40_L1_Z11                | 0.04597 0.0147                            | 0.001334 0.00006                          | 0.00835 0.0026                            | 5 0.00039 0.00004                        | 0.1          | 628  | 8.59                                 | 0.38     | 8.4                                  | 2.00          |             | 0.83  | -2.29  | 42          | 7          | . 11  | . 6        | 0.18    |
| 49 L1 Z14                | 0.04603 0.01585                           | 0.001222 0.00006                          | 0.00767 0.0030                            | a 0.00017 ±.00001                        | 0.1          | 117  | 7.67                                 | 3.13     | 7.8                                  | 0.45          | 7.4         | 0.16  | -0.58  | 705         | 102        | 576   | 27         | 0.17    |
| 69 12 203                | 0.04635 0.0045                            | 0.001414 0.00003                          | 0.00992 0.0009                            | 3 0.00046 0.00002                        | 15.8         | 506  | 9.11                                 | 0.39     | 9                                    | 2.18          | 9.3         | 0.76  | -1.21  | 75          | 3.8        | 97    | . 5        | 0.17    |
| 60 L2 Z04 A              | 0.04662 0.00788                           | 0.001288 0.00004                          | 0.00770 0.0014                            | 5 0.00035 0.00004<br>5 0.0004 0.00004    | 29.8         | 547  | 7.80                                 | 0.11     | 7.9                                  | 2.19          | 7.8         | 0.95  | 0.15   | 49          | 635        | 1785  | 4          | 0.55    |
| 69_L2_205_A              | 0.04619 0.00301                           | 0.001312 0.00002                          | 0.00829 0.0005                            | 5 0.00038 0.00001                        | 7.5          | 159  | 8.45                                 | 0.16     | 8.4                                  | 0.56          | 7.7         | 0.21  | -0.66  | 522         | 75         | 844   | 21         | 0.36    |
| 69 L7 Z10 A              | 0.04508 0.00364                           | 0.001394 0.00003                          | 0.00879 0.0004                            | 7 0.00045 0.00004                        | 9.1          | 180  | 8.95                                 | 0.19     | 8.0                                  | 0.68          | 5.4<br>8.6  | 0.29  | -0.87  | 367         | 93         | 414   | 19         | 0.14    |
| 49 12 Z13 B              | 0.04556 0.01093                           | 0.001445 0.00005                          | 0.00908 0.0021                            | 4 0.00649 0.00004                        | 0.1          | 487  | 9.31                                 | 0.32     | 9,2                                  | 2.13          | 10          | 0.84  | -1.15  | 49          | 7          | 41    | . 4        | 0.13    |
| 60_12_Z14                | 0.0459 0.00947                            | 0.001234 0.00002                          | 0.00772 0.0015                            | 7 0.00045 0.00003                        | 20.7         | 427  | 7.95                                 | 0.25     | 7.8                                  | 1.59          | 9           | 0.13  | -1.94  | 100         | 17         | 143   | 15         | 0.16    |
| 69,13,211                | 0.0454 0.01256                            | 0.001375 0.00005                          | 0.00852 0.0023                            | 4 0.00036 0.00003                        | 0.1          | 528  | 8.86                                 | 0.33     | 8.6                                  | 2.38          | 31.4        | 1.02  | -2.98  | 44          | .2         | -80   |            | 0.12    |
| 10_L1_202                | 0.04909 0.0022                            | 0.001231 0.00002                          | 0.00824 0.0003                            | 5 0.00042 0.00001                        | 152.1        | 102  | 7.93                                 | 0.12     | 1.2                                  | 0.36          | 8.5         | 0.18  | 4.42   | 1876        | 318        | 1279  | 134        | 0.53    |
| 70_L1_204                | 0.04587 0.00155                           | 0.00129 0.00002                           | 0.00500 0.0002                            | e 0.00038 6.00001                        | 0.1          | 20   | 8.51                                 | 0.3      | 8.2                                  | 0.26          | 7.7         | 0.15  | -1.37  | 9621        | 81.4       | 2078  | 210        | 0.39    |
| 10_L1_200                | 0.04617 0.00198                           | 0.001321 0.00003                          | 0.00833 0.0003                            | 4 0.00045 0.00001                        | 6.5          | 155  | 8.29                                 | 0.16     | 14                                   | 0.54          | 82          | 0.15  | +1.13  | 1008        | 181        | 718   | 75         | 0.37    |
| 70_11_211                | 0.04544 0.00178                           | 0.001309 0.00002                          | 0.00834 0.0003                            | 1 0.00042 0.00001                        | 20.5         | 80   | 8.43                                 | 0.12     | 8.4                                  | 0.31          | 8.5         | 0.19  | -0.4   | 3720        | 632        | 1811  | 181        | 0.46    |
| 70 1.2 204               | 0.0462 0.00126                            | 0.001351 0.00001                          | 0.00515 0.0000                            | 4 0.00044 0.00001                        | 27.5         | 177  | 8.71                                 | 0.18     | 3.4                                  | 0.45          | 1.1         | 0.29  | -1.23  | 872         | 149        | 908   | 6.0        | 0.43    |
| 70_1.2_205               | 0.04633 0.00297                           | 0.001252 0.00002                          | 0.00776 0.0004                            | 8 0.00038 0.00001                        | 14.7         | 147  | 7.94                                 | 0.13     | 7.9                                  | 0.49          | 7.6         | 0.17  | -0.48  | 599         | 108        | 454   | 59         | 0.29    |
| 70 12 Z10                | 0.04811 0.00347                           | 0.001293 0.00001                          | 0.0685 0.0003                             | 3 0.00041 0.00001                        | 15.6         | 171  | 8.12                                 | 0.11     | 8.1                                  | 0.43          | 1.5         | 0.23  | -0.28  | 624         | 402        | 546   | 180        | 0.36    |
| 70_1.2_Z11               | 0.04585 0.00188                           | 0.001317 0.00002                          | 0.00525 0.0003                            | 0.00039 0.00001                          | .0.1         | 85   | 8.49                                 | 0.11     | 8.4                                  | 0.3.8         | 7.8         | 0.11  | -1.04  | 2519        | 456        | Des   | 130        | 0.56    |
| 70 13 207                | 0.04616 0.00179                           | 0.001282 0.00002                          | 0.00906 0.000                             | 0.00037 0.00001                          | 5.0          | 90   | 8.26                                 | 0.11     | 12                                   | 0.38          | 1.8         | 0.16  | -0.44  | 1477        | 267        | 1148  | 149        | 0.29    |
| 70 LJ 209                | 0.04751 0.00245                           | 0.001242 0.00002                          | 0.00908 0.000                             | 4 0.00037 0.00001                        | 74.2         | 119  |                                      | 10.12    | 8.2                                  | 0.41          | 7.5         | 0.16  | 2:41   | 861         | 154        | 681   | 35         | 0.28    |

## Annexe n°9 : Données U-Pb sur zircons (suite)

| Anabois                    | 397Pb/398Pb     | + 10           | 18<br>296 pb /296 U | OTOPIO  | C RATIOS | + 10            | 388 Pb/232 Th | <i>t</i> 1 <i>a</i> | 307pb/586pb | + 10    | <sup>366</sup> Pb / <sup>256</sup> U | AGES | (Ma)<br><sup>307</sup> Pb / <sup>218</sup> U | t la | 588pb/252Th | dite: | here." | CONC  | ENTRA   | nons  | ppun) | 20      |
|----------------------------|-----------------|----------------|---------------------|---------|----------|-----------------|---------------|---------------------|-------------|---------|--------------------------------------|------|----------------------------------------------|------|-------------|-------|--------|-------|---------|-------|-------|---------|
| 13TK80                     | 10 10           | ± 10           | 10. 0               | ± 10    | 107 0    | ± 10            | 10 11         | 110                 | 10 10       | # 10    | 107 0                                | × 10 | 107 0                                        | # 10 | 10 14       | 110   | V/1R-  |       | 1.20    |       | 0.20  | Amoy    |
| 80_L1_Z04                  | 0.04597         | 0.00156        | 0.001262            | 0.00002 | 0.00795  | 0.00026         | 0.00043       | 0.00001             | 0.1         | 75      | 8.13                                 | 0.1  | 8                                            | 0.26 | 8.7         | 0.15  | -1.40  | 2052  | 480     | 3071  | 200   | 0.29    |
| 80_L1_208                  | 0.04628         | 0.00124        | 0.001258            | 0.00001 | 0.00798  | 0.00017         | 0.00036       | 0.00001             | 13.3        | 62      | 8.1                                  | 0.08 | 8.1                                          | 0.17 | 7.3         | 0.11  | -0.05  | 5858  | 783     | 2866  | 96    | 9.52    |
| 80_L1_Z12                  | 0.04753         | 0.00151        | 0.001243            | 0.00001 | 0.00504  | 0.00024         | 0.00038       | 0.00001             | 75.4        | 74      | 8.01                                 | 0.09 | 8.1                                          | 0.25 | 7.7         | 0.12  | 1.13   | 1252  | 169     | 1213  | 48    | 0.23    |
| 80_L2_Z03                  | 0.04664         | 0.00115        | 0.001238            | 0.00001 | 0.00792  | 0.00019         | 0.00038       | ŏ                   | 30.8        | 57      | 7.98                                 | 0.09 | 8                                            | 0.19 | 1.7         | 0.09  | 0.5    | 6832  | #24     | 2936  | 114   | 0.52    |
| 80_1.2_204                 | 0.04641         | 0.00102        | 0.001251            | 0.00001 | 0.00793  | 0.00017         | 0.00038       | 0                   | 19.1        | 51      | 8.06                                 | 0.05 | 8                                            | 0.17 | 2.2         | 0.09  | -0.76  | 3132  | 418     | 2055  | 80    | 0.34    |
| 80_L3_207                  | 0.04615         | 0.0009         | 0.001234            | 0.00001 | 0.00787  | 0.00014         | 0.00045       | 0.00002             | 4.5         | 45      | 7.93                                 | 0.08 | 7.9                                          | 0.03 | 7.5         | 0.52  | -0.30  | 2994  | 400     | 1918  | 74    | 0.15    |
| 13TK81A                    | 0.04684         | 0.00188        | 0.001403            | 0.00000 | 0.00804  | 0.00014         | 0.00041       | 0.00001             |             |         | 0.03                                 |      |                                              | 0.15 | 1.1         |       |        |       |         |       |       |         |
| 81A_L1_206                 | 0.04634         | 0.00184        | 0.001474            | 0.00002 | 0.00933  | 0.00036         | 0.00045       | 0.00001             | 15.6        | 93      | 9.49                                 | 0.12 | 9.4                                          | 0.35 | 9.1         | 0.19  | -0.98  | 609   | 88      | 681   | 32    | 0.2     |
| 81A_L1_Z09                 | 0.04622         | 0.00143        | 0.001433            | 0.00002 | 0.00907  | 0.00027         | 0.00046       | 0.00001             | 9.2         | 72      | 9.23                                 | 0.11 | 9.2                                          | 0.27 | 9.2         | 0.18  | -0.37  | 837   | 111     | 923   | 40    | 0.2     |
| 81A_L2_208-B               | 0.04613         | 0.00163        | 0.001454            | 0.00002 | 0.00897  | 0.00032         | 0.00043       | 0.00001             | 27.6        | 82      | 9.1                                  | 0.12 | 9.1                                          | 0.32 | 8.8         | 0.19  | 0.02   | 1051  | 139     | 881   | 41    | 0.26    |
| 81A_L3_209                 | 0.04618         | 0.00159        | 0.001483            | 0.00002 | 0.00933  | 0.00031         | 0.00046       | 0.00001             | 7.3         | 80      | 9.56                                 | 0.12 | 9.4                                          | 0.31 | 9.3         | 0.18  | -1.65  | 810   | 107     | 564   | 40    | 0.21    |
| 101A_L1_206                | 0.04684         | 0.00963        | 0.001345            | 0.00006 | 0.00858  | 0.00172         | 0.00049       | 0.00006             | 40.7        | 430     | 8.67                                 | 0.38 | 8.7                                          | 1.74 | 9.9         | 1.14  | 0.4    | 42    | .0      | 40    |       | 0.1     |
| 101A_L1_209                | 0.04628         | 0.00871        | 0.001294            | 0.00004 | 0.00817  | 0.00152         | 0.0005        | 0.00003             | 12          | 400     | 8.33                                 | 0.25 | 8.3                                          | 1.53 | 30          | 0.55  | -0.41  | 57    |         | -65   | 1     | 0.19    |
| 101A_L1_Z10                | 0.04688         | 0.00591        | 0.001264            | 0.00003 | 0.0081   | 0.00093         | 0.00042       | 0.00002             | 42.7        | 235     | 8.14<br>8.46                         | 0.22 | 8.2                                          | 0.94 | 1.1         | 0.41  | 3.90   | 127   | 10      | 192   | - 6   | 0.18    |
| 101A_L2_201                | 0.04638         | 0.00777        | 0.001324            | 0.00004 | 0.00836  | 0.00138         | 0.00047       | 0.00003             | 17.1        | 360     | 8.53                                 | 0.27 | 8.4                                          | 1.39 | 9.5         | 0.56  | -1.92  |       | 10      | 82    |       | 0.18    |
| 101A_12_205<br>101A_12_208 | 0.04615         | 0.00518        | 0.001355            | 0.00003 | 0.00855  | 0.000399        | 0.00046       | 0.00003             | 30.8        | 290     | 8.53                                 | 0.45 | 8.5                                          | 3.42 | 9.2         | 0.57  | -0.4   | 55    |         |       | - 1   | 0.13    |
| 101A_L2_Z11                | 0.04609         | 0.00659        | 0.001333            | 0.00003 | 0.00837  | 0.00118         | 0.00047       | 0.00002             | 2.2         | 313     | 8.59                                 | 0.21 | 8.5                                          | 1.19 | 9.6         | 0.39  | -1.04  | 76    | 11      | 76    | 3     | 0.22    |
| 101A_L3_204<br>101A_L3_205 | 0.04707         | 0.000669       | 0.001335            | 0.00005 | 0.00848  | 0.0012          | 0.00052       | 0.00003             | 52.3        | 346     | 8.73                                 | 0.29 | 8.8                                          | 1.35 | 9.7         | 0.5   | 0.1    | 72    | 10      | 83    | - 3   | 0.19    |
| 101A_L3_207                | 0.04578         | 0.00957        | 0.0011443           | 0.00005 | 0.00713  | 0.00146         | 0.00044       | 0.00003             | 0.1         | 426     | 7.37                                 | 0.31 | 7.2                                          | 1.47 | 8.8         | 0.7   | -2.34  | 92    | 13      | 134   | 5     | 0.15    |
| 101A_L3_208<br>101A_L4_202 | 0.04673 0.04617 | 0.01067        | 0.001355            | 0.00006 | 0.00866  | 0.00194 0.00195 | 0.00033       | 0.00005             | 35.4        | 471 483 | 8.73                                 | 0.39 | 8.8<br>8.6                                   | 1.95 | 6.7         | 0.81  | -0.7   | 40    | о.<br>Т | 71    | - 4   | 0.15    |
| 101A_L4_208                | 0.04658         | 0.00766        | 0.001343            | 0.00004 | 0.00856  | 0.00138         | 0.00045       | 0.00002             | 27.8        | 353     | 8.65                                 | 0.28 | 8.7                                          | 1.39 | 9.1         | 0.49  | 0.54   | 94    | 3.3     | - 98  | - 4   | 0.21    |
| 101A_L4_209<br>101A_L5_203 | 0.04609         | 0.00359        | 0.001263            | 0.00003 | 0.00797  | 0.0006          | 0.00038       | 0.00001             | 2.2<br>16.7 | 178     | 8.14                                 | 0.18 | 8.1                                          | 2.75 | 7.8<br>10.3 | 0.29  | -0.49  | 35    | 47      | 45    | 14    | 0.21    |
| 13TK104                    |                 |                |                     |         |          |                 |               |                     |             |         |                                      |      |                                              |      | 133         |       |        | 100   |         |       |       |         |
| TK104_C1_Z1<br>TK104_C1_Z3 | 0.04755         | 0.00145        | 0.001212            | 0.00001 | 0.00734  | 0.00021         | 0.00037       | 0.00001             | 76.4        | 72      | 7.81                                 | 0.09 | 7.4                                          | 0.22 | 7.8         | 0.14  | 1.56   | 1788  | 283     | 11110 | 152   | 0.27    |
| TK104_C3_Z1                | 0.04612         | 0.00924        | 0.001304            | 0.00005 | 0.00818  | 0.00161         | 0.00045       | 0.00003             | 3.8         | 423     | 8.4                                  | 0.34 | 8.3                                          | 1.62 | 9.2         | 0.65  | -1.23  | 106   | 17      | 150   | 13    | 4,16    |
| TK104_C3_Z3<br>TK104_C3_Z4 | 0.04629         | 0.00333        | 0.001286            | 0.00003 | 0.00809  | 0.00056         | 0.00038       | 0.00002             | 12.8        | 165     | 8.28                                 | 0.17 | 8.2                                          | 0.57 | 7.8         | 0.43  | -1.01  | 130   | 19      | 374   | 33    | 0.07    |
| TK104_C4_Z1                | 0.04633         | 0.00169        | 0.001214            | 0.00002 | 0.00768  | 0.00027         | 0.00038       | 0.00001             | 14.8        | 84      | 7.82                                 | 0.11 | 7.8                                          | 0.27 | 7.7         | 0.17  | -0.29  | 610   | 90      | 879   | 77    | 0.15    |
| 13TK108                    | 0.04769         | 0.00163        | 0.001221            | 0.00002 | 0.00708  | 0.00026         | 0.00036       |                     |             | 80      | 7.84                                 | 0.1  |                                              | 0.26 | 1.1         | 2.1   | 2.67   | 1844  | 247     | 1100  | 24    | 1.16    |
| 108A_L1_205                | 0.04545         | 0.00294        | 0.001284            | 0.00002 | 0.00816  | 0.0005          | 0.00041       | 0.00001             | 21.7        | 146     | 8.27                                 | 0.14 | 8.3                                          | 0.51 | 8.4         | 0.25  | 0.31   | 229   | 3.2     | 352   | 15    | 0.14    |
| 108A_L1_207                | 0.04645         | 0.00132        | 0.001221            | 0.00001 | 0.00777  | 0.00021         | 0.00037       | 0                   | 21.2        | 66      | 7.87                                 | 0.09 | 7.9                                          | 0.21 | 7.5         | 0.1   | 0.43   | 1580  | 218     | 1009  | 42    | 0.35    |
| 108A_L1_Z10                | 0.04624         | 0.00105        | 0.001249            | 0.00001 | 0.0079   | 0.00017         | 0.00039       | 0                   | 10.4        | 53      | 8.05                                 | 0.05 | 8                                            | 0.17 | 7.9         | 0.09  | -0.97  | 3157  | 43.5    | 1482  | 61    | 0.47    |
| 108A_L2_202                | 0.04712         | 0.00106        | 0.00124             | 0.00001 | 0.00799  | 0.00017         | 0.00039       | 0                   | 55.1        | 53      | 7.99                                 | 0.08 | 8.1                                          | 0.17 | 2.8         | 0.09  | 1.4    | 2484  | 342     | 1303  | - 22  | 0.42    |
| 108A_L2_Z13                | 0.0466          | 0.0014         | 0.001323            | 0.00001 | 0.00791  | 0.00023         | 0.00039       | 0.00001             | 28.6        | 70      | 7.98                                 | 0.13 | 8.5                                          | 0.23 | 7.8         | 0.09  | 0.19   | 2172  | 400     | 1283  | 122   | 0.41    |
| 108A_L3_202                | 0.04618         | 0.00108        | 0.001238            | 0.00001 | 0.00781  | 0.00017         | 0.00038       | 0                   | 7.1         | 55      | 7.98                                 | 0.08 | 7.9                                          | 0.18 | 7.7         | 0.09  | -0.09  | \$290 | 522     | 1844  | 137   | 0.51    |
| 108A_L4_201                | 0.04626         | 0.00194        | 0.001242            | 0.00002 | 0.00982  | 0.00032         | 0.00037       | 0.00001             | 18.3        | 97      | 8.21                                 | 0.12 | 8.2                                          | 0.38 | 6.1         | 0.16  | -0.07  | 458   | 7.8     | 548   | - 52  | 0.19    |
| 13TK118A                   |                 |                |                     |         |          |                 |               |                     |             |         |                                      |      |                                              |      |             |       |        |       |         |       |       |         |
| TK118A_C2_Z1               | 0.04502         | 0.00249        | 0.001485            | 0.00003 | 0.00972  | 0.00049         | 0.00047       | 0.00001             | 80.3        | 121     | 9.6                                  | 0.17 | 9.8                                          | 0.49 | 9.8         | 0.19  | 2.03   | 1259  | 178     | 730   | 45    | 0.38    |
| TK118A_C3_Z1               | 0.04713         | 0.00312        | 0.001476            | 0.00003 | 0.00949  | 0.0006          | 0.0005        | 0.00002             | 55.5        | 151     | 9.5                                  | 0.2  | 9.6                                          | 0.61 | 10.2        | 0.49  | 0.00   | 131   | 19      | 369   | 28    | 0.08    |
| TK118A_C5_Z1               | 0.04617         | 0.00294        | 0.001464            | 0.00003 | 0.00921  | 0.00056         | 0.00048       | 0.00002             | 6.4         | 147     | 9.43                                 | 0.18 | 9.3                                          | 0.57 | 9.7         | 0.54  | -1.43  | 264   | 37      | 349   | 26    | 0.15    |
| TC09_06                    | 0.04671         | 0.00373        | 0.001814            |         | 0.01161  |                 | 0.0004.4      |                     |             |         | 11.60                                |      |                                              | 0.44 |             |       |        | 204   | 1       |       |       |         |
| 96A_L1_203                 | 0.04071         | 0.00179        | 0.001815            | 0.00002 | 0.01101  | 0.00065         | 0.00054       | 0.00001             | 21.9        |         | 11.69                                | 0.14 | 11.8                                         | 0.66 |             | 0.21  | 2.66   | 298   | 59      | 436   | 24    | 0.2     |
| 06A_L1_204                 | 0.04647         | 0.00246        | 0.001765            | 0.00003 | 0.01119  | 0.00017         | 0.00056       | 0.00002             | 22.1        | 122     | 11.37                                | 0.18 | 11.3                                         | 0,57 | 31.3        | 0.36  | -0.8   | 252   | 37      | 500   | - 28  | 0.11    |
| 06A L1 205                 | 0.04823         | 0.00256        | 0.001803            | 0.00003 | 0.0115   | 0.0005          | 0.00057       | 0.00003             | 110.5       | - 59    | 12.01                                | 0.17 | 12.4                                         | 0.91 | 11.4        | 0.29  | 3.13   | 459   | 65      | 985   | 38    | 0.22    |
| 06A_L1_209                 | 0.04619         | 0.00368        | 0.001784            | 0.00003 | 0.01126  | 0.00068         | 8.0006        | 0.00002             | 7,5         | 182     | 11.49                                | 0,21 | 11.4                                         | 0.85 | 12.1        | 0.37  | -0,79  | 177   | 25      | 229   | . 9   | 0.17    |
| 06A L1 210<br>06A 12 203   | 0.04701         | 0.00399        | 0.001175            | 0.00003 | 0.01138  | 0.00055         | 0.00058       | 0.00002             | 11.7        | 146     | 11.49                                | 0.2  | 11.6                                         | 0.86 | 111.8       | 0.39  | -0.13  | 239   | 54      | 399   | 12    | 0.13    |
| 06A_L2_200                 | 0.04636         | 0.00239        | 0.001823            | 0.00003 | 0.01156  | 0.00058         | 0.00059       | 0.00001             | 16.6        | 1.19    | 11.74                                | 0.18 | 31.7                                         | 0.58 | 12          | 0.27  | -0.26  | 450   | 64      | 444   | 17    | 9.23    |
| 06A_L2_209                 | 0.04649         | 0.00365        | 0.001794            | 0.00003 | 0.01135  | 0.00088         | 0.00099       | 0.00002             | 22.9        | 200     | 11.40                                | 0.21 | 11.4                                         | 0.88 | 12          | 0.4   | 0.07   | 197   | 25      | 250   | 10    | 0.16    |
| TC09_41                    | 0.048000        |                |                     |         |          | ******          |               |                     |             |         | 43.00                                |      |                                              |      |             | 0.46  | P.4.0  | 1     |         |       |       |         |
| TC41_C1_Z1<br>TC41_C1_Z2   | 0.0464          | 0.00033        | 0.001715            | 0.00003 | 0.01064  | 0.00075         | 0.0005        | 0.00002             | 18.4        | 254     | 11.04                                | 0.22 | 10.0                                         | 0.75 | 80.2        | 0.39  | -1.32  | 185   | 26      | 302   | 15    | 0.14    |
| TC41_C2_Z1                 | 0.04648         | 0.00752        | 0.001805            | 0.00004 | 0.01145  | 0.00084         | 0.00067       | 6.00003             | 22.9        | 173     | 11.63                                | 6.24 | 11-0                                         | 0.84 | 13.5        | 0.52  | -0.22  | 122   | 17      | 245   | 12    | 0.11    |
| TC41_C2_Z2                 | 0.04618         | 0.00486        | 0.001343            | 0.00004 | 0.01165  | 0.0012          | 0.00062       | 0.00002             | 6.8         | 238     | 11.87                                | 0.28 | 11.8                                         | 13   | 12.8        | 0.47  | -0.62  | 101   | 15      | 156   |       | 0.2     |
| TC41_C5_Z1                 | 0.04628         | 0.0046         | 0.001564            | 0.00004 | 0.01179  | 0.00115         | 0.00042       | 0.00002             | 12.4        | 223     | 10.11                                | 1.24 | 11.9                                         | 1.15 | 12.5        | 0.42  | -0.86  | 92    | 13      | 106   | 6     | 0.19    |
| TC41_C1_Z2                 | 0.04635         | 0.00319        | 0.001844            | 0.00003 | 0.01167  | 0.00078         | 0.000%6       | 0.00002             | 15.0        | 1.98    | 11.88                                | 0.21 | 11.8                                         | 0.79 | 11.3        | 0.58  | -0.07  | 110   | 16      | 165   |       | 0.15    |
| TC09.75                    | 0.04847         | 0.00399        | 0.001794            | 0.00004 | 0.01119  | 0.00004         | 0.00004       | 0.00004             | ** 1        | 1.04    | 11,09                                |      | 11.3                                         | 0.04 | 14.0        |       | -41.55 | 154   |         | - 234 | -     |         |
| 75_11_200                  | 0.0474          | 0.003999       | 0.001682            | 9.00004 | 0.01094  | 0.00089         | 0.00058       | 0.00002             | 68.6        | 190     | 10.84                                | 0.24 | 11                                           | -6.9 | 81.7        | 9.35  | 1.48   | -848  | 63      | 341   | 19    | 9.26    |
| 75 11 200                  | 0.04626         | 0.01344        | 0.001735            | 0.00001 | 0.01069  | 0.00324         | 0.00055       | 0.00007             | 11          | 599     | 11.11                                | 0.53 | 11                                           | 3.26 | 11.2        | 1.91  | -0.05  | 28    | - 2     | 45    | 2     | 0.14    |
| 75_11_205                  | 0.04611         | 0.00627        | 0.001794            | 0.00001 | 0.01152  | 0.0015          | 0.00064       | 6,00003             | 3.1         | 299     | 11.55                                | 0.35 | 31.4                                         | 1.53 | 12.9        | 0.64  | -1.34  | 11.5  | 10      | 134   | 7     | 0.19    |
| 75_L1_205<br>75_L1_207     | 0.04704         | 0.00554        | 0.001792            | 0.00004 | 0.01157  | 0.00057         | 0.00055       | 0.00002             | 51.3        | 175     | 11.54                                | 0.24 | 11.7                                         | 1.65 | 11.6        | 0.33  | 1.33   | 296   | 42      | 246   | 12    | 0.27    |
| *77.1.1.211                | 0.04705         | 0.0014         | 0.002073            | 0.00003 | 0.01337  | 0.00038         | 0.00065       | 0.00001             | 51.2        | 70      | 13.35                                | 0.16 | 13.5                                         | 0.38 | 13.2        | 0.21  | 1.13   | 856   | 122     | 781   | 310   | 0.25    |
| 75_11_Z14                  | 0.04732         | 0.01003        | 0.001814            | 0.00007 | 0.01171  | 0.00244         | 0.00054       | 0.00004             | 05.1        | 440     | 11.68                                | 0.44 | 11.8                                         | 2.45 | 32.8        | 0.85  | 1.01   | 54    |         | 92    |       | 0,19    |
| 75 12 206                  | 0.04957         | 0.00421        | 0.001744            | 0.00004 | 0.0118   | 0.00097         | 0.00063       | 0.00002             | 174.5       | 187     | 11.23                                | 8.25 | 11.9                                         | 0.98 | 12.7        | 0.44  | 5.62   | 182   | 26      | 216   | 11    | 0.19    |
| 15_13_206                  | 0.04762         | 0.0045         | 0.001752            | 6.00004 | 0.01142  | 0.00104         | 0.00065       | 0.00002             | 79.5        | 211     | 11.28                                | 0.27 | 11.9                                         | 1.08 | 13.1        | 0.39  | 1.89   | 273   | 20      | 198   | -10   | 0.31    |
| \$2A_L1_201                | 0.0466          | 0.00219        | 0.002121            | 0.00003 | 0.01356  | 0.00062         | 0.00067       | 0.00001             | 25.0        | 1.09    | 13.66                                | 0.18 | 13.7                                         | 0.62 | 13.5        | 0.21  | 0.31   | 732   | 104     | 461   | 21    | 0.35    |
| #2A_L1_203                 | 0.04659         | 0.00147        | 0.002184            | 0.00003 | 0.01392  | 0.00042         | 0.00071       | 0.00001             | 28.3        | 74      | 14.06                                | 0.16 | 11                                           | 0.42 | 14.8        | 0.25  | -0.45  | 561   | 80      | 892   | 32    | 0.18    |
| 82A L1 Z19                 | 0.04687         | 0.00165        | 0.002203            | 0.00003 | 0.01413  | 0.00048         | 0.00067       | 0.00001             | 42.6        | 84      | 14.18                                | 0.19 | 163                                          | 0.48 | 13.5        | 0.26  | 0.81   | 1135  | 101     | 10.96 | 47    | 0.24    |
| 82A_L2_204                 | 0.04635         | 0.00156        | 0.002142            | 0.00003 | 0.01361  | 0.00044         | 0.00064       | 0.00001             | 15.4        | 78      | 18.79                                | 0.17 | 13.7                                         | 0.44 | 12.0        | 0.23  | -0.09  | 140.8 | 199     | 1096  | 50    | 0.28    |
| \$2A_1.3_206               | 0.04641         | 0.0012         | 0.002131            | 0.00002 | 0.01398  | 0.00033         | 0.00064       | 0.00001             | 20.5        | 40      | 13.59                                | 0.14 | 13.6                                         | 0.33 | 10.3        | 0.18  | 0.05   | 1812  | 244     | 1112  | 46    | 0.31    |
| 82A_L3_Z09                 | 0.04687         | 0.00224        | 0.002032            | 0.00003 | 6.01392  | 0.0008          | 0.00065       | 0.00001             | 42.3        | 111     | 13.09                                | 0.2  | 13.1                                         | 0.0  | 12.1        | 0.26  | 0.11   | 837   | 113     | 649   | 27    | 0.29    |
| 52A_L3_211<br>52A_L4_208   | 0.04704         | 0.00389        | 0.002013            | 0.00004 | 0.01294  | 0.00104         | 0.00071       | 0.00002             | 213.5       | 187     | 12.97                                | 0.28 | 13.1                                         | 0.72 | 13.2        | 0.48  | 8.13   | 254   | 58      | 554   | 13    | 0.21    |
| TC99_110                   | 10000           | and the second |                     |         | 10000    |                 |               |                     |             | 10.000  |                                      | 1000 |                                              |      |             |       | 100    | 0010  | 500     | 10000 | 1.1   | 0.10055 |
| 110A_L1_Z06                | 0.04628         | 0.0022         | 0.001675            | 0.00003 | 0.01062  | 0.00049         | 0.00055       | 0.00001             | 12          | 110     | 10.79                                | 0.12 | 10.7                                         | 0.48 | 10.0        | 0.27  | -0.8   | 295   | 414     | 490   | 20    | 0.14    |
| 110A_L1_Z14                | 0.04628         | 0.00262        | 0.001664            | 0.00003 | 0.01053  | 0.00058         | 0.00056       | 0.00002             | 12.4        | 131     | 10.72                                | 0.18 | 10.6                                         | 0.58 | 11.3        | 0.3   | -4.11  | 305   | 43      | 403   | 17    | 0.17    |
| 110A_L1_Z18                | 0.04675         | 0.00189        | 0.001665            | 0.00002 | 0.01045  | 0.00042         | 0.00047       | 0.00001             | 36.5        | 94      | 10.78                                | 0.13 | 10.7                                         | 0.42 | 11.4        | 0.26  | -0.23  | 191   | 27      | 409   | 17    | 0.1     |
| 110A_L3_204                | 0.04622         | 0.00284        | 0.001615            | 0.00003 | 0.01021  | 9.00001         | 0.00049       | 0.00002             | 9.1         | 142     | 10.4                                 | 0.18 | 10.3                                         | 0.61 | 9.0         | 0.31  | -0.97  | 238   | 33      | 583   | 14    | 0.14    |
| 110A_L3_208                | 0.0458          | 0.00394        | 8.001634            | 0.00004 | 0.01026  | 0.00088         | 0.00059       | 0.00002             | 0.1         | 183     | 10.53                                | 6.24 | 10.4                                         | 0.88 | 81.6        | 0.45  | -1.23  | 177   | 24      | 270   | 10    | 0.15    |
| 110A_L4_207                | 0.04636         | 0.0032         | 0.001833            | 0.00003 | 0.01035  | 0.00049         | 0.00051       | 0.00002             | 18.5        | 158     | 10.55                                | 0.25 | 10.6                                         | 0.09 | 10.5        | 0.31  | -0.23  | 289   | 40      | 363   | 14    | 0.13    |

## Annexe n°9 : Données U-Pb sur zircons (suite)

|                     |                                      |        | ISOTOPI            | C RATIOS                             |               |                                      |          |             |               |                                      | AGES     | (Ma)                                 |          |                                      |        |        | CONC    | ENTRA | noss a | (mp  | 1,1            |
|---------------------|--------------------------------------|--------|--------------------|--------------------------------------|---------------|--------------------------------------|----------|-------------|---------------|--------------------------------------|----------|--------------------------------------|----------|--------------------------------------|--------|--------|---------|-------|--------|------|----------------|
| Analysis            | <sup>387</sup> Pb/ <sup>366</sup> Pb | ± 10   | 296Pb/29U ± 10     | <sup>207</sup> Pb / <sup>209</sup> U | $\pm 1\sigma$ | <sup>366</sup> Pb/ <sup>232</sup> Th | ±10      | 387Pb/586Pb | $\pm 1\sigma$ | <sup>266</sup> Pb / <sup>256</sup> U | $\pm 10$ | <sup>307</sup> Pb / <sup>238</sup> U | $\pm 10$ | <sup>308</sup> Pb/ <sup>233</sup> Th | +10    | leone. | Th      | * 20  | U      | + 20 | 2 Cmar         |
| TC09_113            |                                      |        |                    |                                      |               |                                      |          |             |               |                                      |          |                                      |          |                                      |        |        |         |       |        |      | and the second |
| 113_L1_202          | 0.04705 0.                           | 00551  | 0.001814 0.00005   | 0.01165                              | 0.00133       | 0.00058                              | 0.00003  | 51.4        | 259           | 11.68                                | 0.32     | 11.8                                 | 1.34     | 11.7                                 | 0.59   | 0.99   | 97.     | 23    | 5.90   | 23   | 0.17           |
| 113_L1_205          | 0.04621 0.                           | 00737  | 0.001774 0.00006   | 0.01121                              | 0.00175       | 0.00056                              | 0.00004  | 8.8         | 345           | 11.43                                | 0.36     | 11.3                                 | 1.76     | 11.3                                 | 0.75   | -1.12  | 10      | 11    | 68     | 12   | 0.17           |
| 113_L1_Z08          | 0.04702 0/                           | 00595  | 0.001755 0.00004   | 0.01125                              | 0.0014        | 0.00058                              | 0.00003  | 50.1        | 278           | 11.3                                 | 0.27     | 11.4                                 | 1.41     | 11.8                                 | 0.7    | 0.86   | 41      |       | 71     | 12   | 0.13           |
| 113_11_210          | 0.04624 0.                           | 00270  | 0.001695 0.00003   | 0.01009                              | 0.000110      | 0.00055                              | 0.000003 | 10.3        | 136           | 10.91                                | 0.19     | 10.8                                 | 0.63     | 12.2                                 | 0.50   | 0.95   | 141     | 3.7   | 314    | 6.5  | 0.17           |
| 113 L1 Z13          | 0.04635 0/                           | 00255  | 0.001743 0.00003   | 0.01104                              | 0.00059       | 0.00055                              | 0.00001  | 15.7        | 127           | 11.23                                | 0.18     | 11.1                                 | 0.59     | 11.2                                 | 0.26   | -1.13  | 303     | 64    | 283    | 50   | 0.24           |
| 113_L3_Z02          | 0.04626 0.                           | 00787  | 0.001664 0.00008   | 0.01054                              | 0.00176       | 0.0006                               | 0.00004  | 10.9        | 365           | 10.72                                | 0.37     | 10.7                                 | 1.77     | 12.2                                 | 0.76   | -0.16  | 64      | 13    | 79     | 14   | 0.18           |
| 113_L3_205          | 0.04649 0.                           | 00522  | 0.001774 0.00004   | 0.0113                               | 0.00124       | 0.00054                              | 0.00002  | 23          | 250           | 11.42                                | 0.28     | 11.4                                 | 1.25     | 30.9                                 | 11.5   | -0.21  | 96      | 20    | 116    | 20   | 0.19           |
| 113_L3_Z09          | 0.04633 0.                           | 00793  | 0.001724 0.00005   | 0.0109                               | 0.00184       | 0.00055                              | 0.00004  | 14.6        | 367           | 11.1                                 | 0.34     | 11                                   | 1.85     | 13.4                                 | 0.73   | -0.95  | 67      | 50    | 00     | 1.5  | 0.17           |
| 113_13_211          | 0.04721 0.                           | 00896  | 0.001785 0.00006   | 0.01152                              | 0.00215       | 0.00071                              | 0.00003  | 59.4        | 399           | 11.5                                 | 0.4      | 11.6                                 | 2.16     | 24.3                                 |        | 1.45   | 43      | .2    | 111    | 1.1  | 0.12           |
| 113_L4_204          | 0.04611 0/                           | 00756  | 0.001544 0.00005   | 0.00097                              | 0.00151       | 0.00044                              | 0.00004  | 3.6         | 354           | 9.94                                 | 0.33     | 10.7                                 | 1.71     | 8.9                                  | 0.55   | 4.41   | 44      | - 52  | 121    | 4    | 0.4            |
| TC09 120            |                                      |        |                    |                                      |               |                                      |          |             |               |                                      |          |                                      |          |                                      | 1.000  | 1.120  |         | - 53  |        |      |                |
| 120_L1_Z07          | 0.04625 0.                           | 00147  | 0.001304 0.00002   | 0.00825                              | 0.00025       | 0.00042                              | 0.00001  | 10.8        | 74            | 8.4                                  | 0.11     | 8.3                                  | 0.25     | 8,5                                  | 0.16   | -1.21  | 856     | 134   | 1336   | 62   | 0.16           |
| 120_L2_Z04          | 0.04607 0.                           | 00366  | 0.00126 0.00004    | 0.00797                              | 0.00059       | 0.00042                              | 0.00001  | 1           | 175           | 8.1                                  | 0.2      | 8.1                                  | 0.6      | 8.5                                  | 0.2    |        | 1078    | 277   | 523    | 24   | 0.54           |
| 120_L2_Z07          | 0.0465 0.                            | 00156  | 0.001305 0.00002   | 0.0083                               | 0.00027       | 0.00044                              | 0.00001  | 23.4        | 79            | 8.41                                 | 0.11     | 8.4                                  | 0.27     | 8.9                                  | 0.2    |        | 459     |       | 1067   | - 28 | 0.1            |
| 120_L3_208          | 0.04773 0.                           | 00287  | 0.001385 0.00003   | 0.0089                               | 0.00051       | 0.00044                              | 0.00002  | 84.9        | 138           | 8.8                                  | 0.17     |                                      | 0.52     |                                      | 0.38   | 2.27   | 404     | 20    | 1012   | 20   | 0.09           |
| 120_13_111          | 0.04504 0.                           | 00824  | 0.001395 0.00003   | 0.00816                              | 0.00144       | 0.00042                              | 0.00002  | 0.1         | 377           | 8.41                                 | 0.10     | 8.2                                  | 1.45     | 0.1                                  | 1.13   | -2.58  | - 40    | 12    | 143    |      | 0.07           |
| 120 L3 Z118         | 0.04926 0.                           | 00155  | 0.0013 0.00002     | 0.00883                              | 0.00024       | 0.00041                              | 0.00001  | 160         | 75            | 8.4                                  | 0.1      | 8.9                                  | 0.2      | 8.3                                  | .0.3   | 5.62   | 031     | 120   | 1912   | 44   | 0.11           |
| 120 L4 Z07          | 0.046 0.                             | 00706  | 0.001336 0.00004   | 0.00835                              | 0.00126       | 0.00042                              | 0.00005  | 0.1         | 331           | 8.61                                 | 0.26     | 8.4                                  | 1.27     | 6.4                                  | 1.04   | -2.45  | -45     |       | 150    |      | 0.06           |
| TC09_129            |                                      |        |                    |                                      |               |                                      |          |             |               |                                      |          |                                      |          |                                      |        |        |         |       |        |      |                |
| 129_L1_Z04          | 0.04725 0                            | 0.0016 | 0.001441 0.00002   | 0.0093                               | 0.0003        | 0.00041                              | 0.00001  | 61.4        | 79            | 9.28                                 | 0.12     | 9.4                                  | 0.3      | 8.2                                  | 0.13   | 1.21   | 1240    | 185   | 636    | 110  | 0.38           |
| 129_L1_205          | 0.04674 0.                           | 00067  | 0.001386 0.00001   | 0.00887                              | 0.00012       | 0.0004                               | 0        | 35.9        | 34            | 8.93                                 | 0.08     | 9                                    | 0.12     | 10                                   | 0.09   | 0.79   | 108.99  | 1014  | 3787   | 500  | 0.04           |
| 129_L1_200          | 0.04685 0                            | 00104  | 0.001402 0.00002   | 0.00897                              | 0.00028       | 0.00041                              | 0.00001  | 41.5        | 57            | 9.03                                 | 0.11     | 9.1                                  | 0.20     | 6.5                                  | 0.11   | 0.11   | 1441    | 114   | 1130   | 140  | 0.18           |
| 129 12 208          | 0.04638 0                            | 0.0018 | 0.001603 0.00002   | 0.01019                              | 0.00038       | 0.00054                              | 0.00001  | 17.2        | 91            | 10.33                                | 0.14     | 10.3                                 | 0.38     | 10.9                                 | 0.23   | -0.26  | 8.61    | 82    | 560    | 74   | 0.22           |
| 129 L3 205          | 0.04642 0.                           | 00123  | 0.001411 0.00002   | 0.00899                              | 0.00023       | 0.00044                              | 0.00001  | 19.7        | 62            | 9.09                                 | 0.11     | 9.1                                  | 0.23     | 8.9                                  | 0.17   | 0.1    | 1761    | 262   | 1170   | 154  | 0.33           |
| 129_L3_Z13          | 0.04618 0.                           | 00078  | 0.0014 0.00001     | 0.00887                              | 0.00014       | 0.00043                              | 0        | 7.3         | 40            | 9.02                                 | 0.08     | 9                                    | 0.14     | 8.6                                  | 0.09   | -0.21  | 4428    | 586   | 2442   | 114  | 0.4            |
| 129_L4_Z04          | 0.04929 0                            | 0.0014 | 0.001383 0.00002   | 0.00931                              | 0.00025       | 0.00043                              | 0.00001  | 161.6       | 65            | 8.91                                 | 0.1      | 9.4                                  | 0.25     | 8.6                                  | 0.13   | 5.24   | 1247    | 145   | 3110   | 82   | 0.25           |
| 129_L4_205          | 0.04619 0.                           | 00063  | 0.001427 0.00001   | 0.00902                              | 0.00012       | 0.00044                              | 0        | 7.7         | 33            | 9.19                                 | 0.08     | 9.1                                  | 0.12     | 8.8                                  | iD, QH | -1.02  | 11478   | 1120  | 4394   | 204  | 0.58           |
| 135 L1 201-A        | 0.04624_0                            | 00293  | 0.001212_0.00002   | 0.00768                              | 0.00047       | 0.00038                              | 0.00001  | 10.4        | 145           | 7.81                                 | 0.15     | 7.8                                  | 0.47     | 7.7                                  | 0.18   |        | 949     | 1.41  | 730    | 18   | 0.29           |
| 135 L1 201-B        | 0.04654 0.                           | 00227  | 0.001134 0.00002   | 0.00719                              | 0.00034       | 0.00035                              | 0.00001  | 25.7        | 113           | 7.3                                  | 0.11     | 7.3                                  | 0.34     | 7.1                                  | 0.17   | -0.05  | 601     | 88    | 700    | 36   | 0.19           |
| 135 L1 207          | 0.04611 0.                           | 00311  | 0.001094 0.00002   | 0.00687                              | 0.00045       | 0.00035                              | 0.00001  | 3.4         | 155           | 7.05                                 | 0.13     | 6.9                                  | 0.45     | 7.1                                  | 0.23   | -2.14  | 383     | 56    | 479    | 25   | 0.18           |
| 135_L1_209          | 0.04627 0.                           | 00225  | 0.001172 0.00002   | 0.00737                              | 0.00034       | 0.00037                              | 0.00001  | 11.8        | 113           | 7.55                                 | 0.12     | 7.5                                  | 0.35     | 7.5                                  | 0.15   | -0.08  | 1044    | 172   | 770    | -40  | 0.3            |
| 135_L1_Z11          | 0.04616 0.                           | 00325  | 0.001153 0.00002   | 0.00727                              | 0.0005        | 0.00036                              | 0.00001  | 5.8         | 161           | 7.43                                 | 0.13     | 7.4                                  | 0.5      | 7.4                                  | 0.2    | -0.42  | 174     | 40    | 293    | 15   | 0.23           |
| 135_L2_Z06          | 0.04839 0.                           | 00158  | 0.001112 0.00001   | 0.00734                              | 0.00023       | 0.00036                              | 0.00001  | 118.6       | 75            | 7.16                                 | 0.09     | 7.4                                  | 0.23     | 7.2                                  | 0.12   | 3.2    | 2287    | 334   | 3710   | - 89 | -0.3           |
| 135_12_207          | 0.04612 0.                           | 00769  | 0.001158 0.00004   | 0.00736                              | 0.00121       | 0.00038                              | 0.00001  | 3.7         | 359           | 7.40                                 | 0.25     | 7.4                                  | 0.20     | 2.0                                  | 0.16   | -0.83  | 1.583   | 1.40  | 1714   |      | 0.11           |
| TC09 37             | 0.04014 0.                           |        | 0.001097 0.00004   |                                      | 0.00040       | 0.000000                             | 0.00001  | 200         | 102           | 1.000                                | 0.11     |                                      | 0.45     | 1.1                                  |        |        | P P C L |       |        |      |                |
| 37A-L1-203          | 0.04612 0.                           | 00094  | 0.00143243 0.00001 | 0.00902                              | 0.00018       | 0.00048                              | 0.00001  | 3.8         | 48            | 9.23                                 | 0.1      | 9.1                                  | 0.18     | 9.7                                  | 0.13   | -1.40  | 2923    | 345   | 2132   | 131  | 9.26           |
| 37A_L1_Z06          | 0.04649 0.                           | 00449  | 0.001615 0.00003   | 0.01026                              | 0.00097       | 0.00057                              | 0.00003  | 23.1        | 217           | 10.40                                | 0.22     | 10.4                                 | 0.97     | 11.0                                 | 0.56   | -0.03  | 94      | 14    | 197    | 12   | 0.33           |
| 37A_L2_Z10          | 0.04646 0.                           | 00140  | 0.001662 0.00002   | 0.01054                              | 0.0003        | 0.00053                              | 0.00001  | 21.6        | 70            | 10.71                                | 0.13     | 10.6                                 | 0.31     | 10:8                                 | 91.0   | -1.01  | 1035    | 149   | 866    | 53   | 0.27           |
| 37A_L3_205          | 0.04589 0.                           | 00138  | 0.001682 0.00002   | 0.01120                              | 0.0003        | 0.00054                              | 0.00001  | 133         | 65            | 10.83                                | 0.13     | 11.3                                 | 0.30     | 20.0                                 | 0.17   | 0.12   | 17.0    | 223   | 262    | 14   | 0.28           |
| 37A L3 207          | 0.04651 0.                           | 00185  | 0.001693 0.00003   | 0.01076                              | 0.00041       | 0.00054                              | 0.00001  | 24.2        | 93            | 10.90                                | 0.15     | 10.9                                 | 0.42     | 20.0                                 | 0.21   | -0.01  | 709     | 102   | 622    | 18   | 0.25           |
| TC09 26             |                                      |        |                    |                                      |               |                                      |          |             |               |                                      |          |                                      |          |                                      |        |        |         |       |        |      |                |
| TC26_C3_Z1          | 0.04657 0.                           | 00580  | 0.001564 0.00005   | 0.00992                              | 0.0012        | 0.00048                              | 0.00003  | 27          | 274           | 10.07                                | 0.32     | 10.0                                 | 1.20     | 9.8                                  | 0.54   | -0.74  | 105     | 22    | 209    |      | 0.18           |
| 137878              |                                      |        |                    |                                      |               |                                      |          |             |               |                                      |          |                                      |          |                                      |        |        |         |       |        |      |                |
| 78_L1_Z10           | 0.04694 0.                           | 00340  | 0.001244 0.00000   | 0.00799                              | 0.00036       | 0.00046                              | 0.00002  | 45.8        | 105           | 8.01                                 | 0.10     | 8.1                                  | 0.50     |                                      | 0.32   | 1.08   | 47116   |       | 2,240  |      | 0.17           |
| 78_1.2_209          | 0.04637 0.                           | 00144  | 0.001242 0.00001   | 0.00789                              | 0.00028       | 0.00037                              | 0.00001  | 16.8        | 78            | 8.00                                 | 0.10     | 8.0                                  | 0.26     | 7.6                                  | 0.12   | -0.03  | 2500    | 171   | 2031   | 121  | 0.28           |
| 78 L3 Z10           | 0.04640 0.                           | 00151  | 0.001252 0.00002   | 0.00796                              | 0.00025       | 0.00040                              | 0.00001  | 18.2        | 75            | 8.07                                 | 0.10     | 8.0                                  | 0.25     |                                      | 0.14   | -0.85  | 2629    | 377   | 2169   | 129  | 0.27           |
| 13TK106             |                                      |        |                    |                                      |               |                                      |          |             |               |                                      |          |                                      |          |                                      |        |        |         |       |        |      |                |
| TC106_C1_Z1         | 0.04696 0.                           | 00225  | 0.001274 0.00002   | 0.00817                              | 0.00038       | 0.00041                              | 0.00001  | 46.8        | 111           | 8.21                                 | 0.13     | 8.3                                  | 0.38     | 8.3                                  | 0.21   | 1.10   |         | 85    | 822    | 31   | 0.16           |
| TC106_C2_Z1         | 0.04632 0.                           | 00275  | 0.001284 0.00002   | 0.00810                              | 0.00047       | 0.00042                              | 0.00001  | 14.4        | 137           | 8.27                                 | 0.13     | 8.2                                  | 0.47     | 8.0                                  | 0.21   | -0.87  | 214     | 31    | 274    | 10   | 0.17           |
| TC108_C4_Z1         | 0.04715 0.                           | 00162  | 0.001192 0.00002   | 0.00769                              | 0.00025       | 0.00038                              | 0.00001  | 56.4        | 80            | 7.68                                 | 0.10     | 7.8                                  | 0.26     | 7.0                                  | 0,12   | 1.52   | 1109    | 101   | 903    | - 22 | 0.27           |
| 117814              | 0.04645 0.                           | 00135  | 0.001229 0.00001   | 0.00781                              | 0.00022       | 0.00038                              | 0.00001  | 20.9        | 07            | 1.94                                 | 0.00     | 1.9                                  | 0.22     | 1                                    |        | 41.25  | 4103    |       | 1794   |      | 0.49           |
| TKIA CI ZI          | 0.01222 0/                           | 00446  | 0.001843 0.00001   | 0.01332                              | 90100.0       | 0.00067                              | 0.00002  | 294.0       | 104           | 12.00                                | 0.30     | 13.4                                 | 1.10     | 0.9                                  | 0.40   | 10.64  | 153     | 28    | 100    | 24   | 0.21           |
| TKIA_C4_ZI          | 0.01212 0.                           | 00102  | 0.001840 0.00002   | 0.01315                              | 0.00024       | 0.00079                              | 0.00001  | 290.6       | 44            | 11.85                                | 0.13     | 13.3                                 | 0.24     | 12                                   | 0.12   | 10.91  | 5428    | 1010  | 2856   | 42.2 | 0.42           |
| TK1A_C6_21          | 0.04614 0/                           | 00172  | 0.001839 0.00002   | 0.01162                              | 0.00042       | 0.00056                              | 0.00001  | 4.9         | 86            | 11.84                                | 0.56     | 11.7                                 | 0.42     | 11.3                                 | 0.16   | 4.23   | 870     | 162   | 414    | 61   | 0.47           |
| TKIA_C6_Z2          | 0.04628 0                            | 00228  | 0.001842 0.00003   | 6.01170                              | 0.00055       | 0.00059                              | 0.00001  | 12.3        | 112           | 11.86                                | 0.20     | 11.4                                 | 0.55     | 11.8                                 | 0.24   | -0.53  | 664     | 124   | 405    | 2.5  | 0.30           |
| THE CL PI           | 0.04804 0                            | 00880  | 0.000128.000000    | 0.00713                              | 0.00112       | 0.00014                              | 0.00005  |             | 100           |                                      |          |                                      |          |                                      | 64     |        |         | 1.0   | 1.04   |      | 111            |
| TKS C2 Z1           | 0.04616 0.                           | 00234  | 0.001773 0.00003   | 6.00502                              | 0.000192      | 0.00043                              | 8.00000  | 0.1         | 118           | 8.20                                 | 0.13     | 1.1                                  | 6.39     | 3.0                                  | 0.19   | 1.26   | 4.71    | 70    | 101    | 29   | 0.17           |
| TK8 C3 Z1           | 0.04652 0                            | 00621  | 0.000273 0.00004   | 0.00805                              | 0.00104       | 0.00036                              | 0.00002  | 14.5        | 294           | 8.20                                 | 0.28     | 8.1                                  | 1.05     | 1.2                                  | 6.37   | -1.23  | 326     | 45    | 303    | 12   | 9.34           |
| TK8_C5_Z1           | 0.04614 0                            | 09266  | 0.000172 0.00002   | 0.00737                              | 0.00041       | 0.00035                              | 0.00001  | 5.1         | 133           | 7.55                                 | 0.14     | 7.8                                  | 0.41     | 7.1                                  | 0.17   | -0.67  | 805     | 124   | 675    | 3.8  | 0.30           |
| 13TK25              |                                      |        |                    |                                      |               |                                      |          |             |               |                                      |          |                                      |          |                                      |        |        |         |       |        |      |                |
| TK23_C5_Z1          | 0.04689 0.                           | 00090  | 0.001480 0.00003   | 0.00949                              | 0.00017       | 0.00047                              | 0.00001  | 33.2        | 47            | 9.53                                 | 0.10     | 9.0                                  | 0.18     | 9.5                                  | 0.12   | 0.71   | 3127    | 495   | 1642   | 130  | 0.43           |
| TK25_C5_72          | 0.04639 0.                           | 00114  | 0.001430 0.00003   | 0.00909                              | 0.00026       | 0.00048                              | 0.00001  | 18.1        | 66            | 9.21                                 | 0.11     | 9.2                                  | 0.26     | 9,7                                  | 0.15   | -0.18  | 2805    | 444   | 1649   | 130  | 0.38           |
| TC1170 C7 71        | 0.04607 0                            | 11100  | 10013E 0.0000      | 0.00244                              | 0.00072       | 0.00044                              | 1        |             |               |                                      | 0.7      | (6.10                                | 0.20     | 6.4                                  | 1.00   | 0.04   | 3001    | 412   | 1267   | 116  | 6.12           |
| 1C117B C7 71        | 0.04628_0                            | 00175  | 0.001322 0.00003   | 0.00814                              | 0.0003        | 0.00041                              | 0.00001  | 12.1        | 80            | 8.51                                 | 0.17     | 1.7                                  | 0.30     | 1.0                                  | 0.12   | -1.11  | 1,203   | 105   | 844    | 80   | 0.31           |
| · I indentified the |                                      |        |                    |                                      | -             |                                      | -        |             |               |                                      |          |                                      |          |                                      |        |        |         |       |        |      |                |

concentration and a concentration of the second seco

| Type roche<br>sample<br>sample | Mz-gabbro<br>TK002<br>TK002A-C1-0010 | Mz-gabbro<br>TK002<br>TK002A-C1-0012 | Mz-gabbro<br>TK002<br>TK002A-C1-0016 | Mz-gabbro<br>TK002<br>TK002A-C1-003 | Mz-gabbro<br>TK002<br>TK002A-C1-004 | Mz-gabbro<br>TK002<br>TK002A-C1-006 | Mz-gabbro<br>TK002<br>TK002A-C1-009 | Mz-gabbro<br>TK002<br>TK002A-C2-0018 | Mz-gabbro<br>TK002<br>TK002A-C2-0023 | Mz-gabbro<br>TK002<br>TK002A-C2-0024 | Mz-gabbro<br>TK002<br>TK002A-C2-0025 | Mz-gabbro<br>TK002<br>TK002A-C2-0026 |
|--------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
|                                |                                      |                                      |                                      |                                     |                                     |                                     |                                     |                                      |                                      |                                      |                                      |                                      |
| SiO2                           | 53.07                                | 53.19                                | 54.62                                | 52.63                               | 51.41                               | 52.61                               | 54.61                               | 51.75                                | 54.67                                | 54.92                                | 49.44                                | 53.21                                |
| TiO2                           | 0.38                                 | 0.42                                 | 0.19                                 | 0.73                                | 1.19                                | 0.81                                | 0.27                                | 1.17                                 | 0.12                                 | 0.11                                 | 1.87                                 | 0.49                                 |
| AI2O3                          | 1.27                                 | 1.36                                 | 0.74                                 | 2.06                                | 3.05                                | 2.10                                | 0.72                                | 3.19                                 | 0.48                                 | 0.56                                 | 4.35                                 | 1.31                                 |
| FeO                            | 8.58                                 | 8.23                                 | 19.09                                | 7.78                                | 7.92                                | 8.07                                | 19.51                               | 6.81                                 | 18.91                                | 18.82                                | 7.66                                 | 8.21                                 |
| MnO                            | 0.15                                 | 0.24                                 | 0.48                                 | 0.17                                | 0.21                                | 0.18                                | 0.42                                | 0.13                                 | 0.46                                 | 0.46                                 | 0.14                                 | 0.26                                 |
| MgO                            | 14.06                                | 14.51                                | 23.90                                | 14.56                               | 13.80                               | 14.32                               | 23.57                               | 13.88                                | 24.51                                | 24.53                                | 13.23                                | 15.02                                |
| CaO                            | 22.42                                | 21.60                                | 1.24                                 | 21.94                               | 22.07                               | 22.06                               | 1.22                                | 23.60                                | 0.70                                 | 0.71                                 | 22.79                                | 21.36                                |
| K2O                            | 0.01                                 | 0.00                                 | 0.01                                 | 0.00                                | 0.00                                | 0.00                                | 0.02                                | 0.02                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.01                                 |
| Na2O                           | 0.36                                 | 0.46                                 | 0.04                                 | 0.42                                | 0.55                                | 0.45                                | 0.06                                | 0.30                                 | 0.00                                 | 0.02                                 | 0.50                                 | 0.40                                 |
| Li2O                           | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 |
| ZnO                            | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 |
| NiO                            | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 |
| Cr2O3                          | 0.02                                 | 0.07                                 | 0.00                                 | 0.04                                | 0.02                                | 0.01                                | 0.02                                | 0.03                                 | 0.01                                 | 0.01                                 | 0.04                                 | 0.02                                 |
| Sc2O3                          | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 |
| Total                          | 100.33                               | 100.05                               | 100.32                               | 100.32                              | 100.21                              | 100.60                              | 100.40                              | 100.88                               | 99.85                                | 100.15                               | 100.01                               | 100.27                               |
| Fe3+ model                     | Droop 1987                           | Droop 1987                           | Droop 1987                           | Droop 1987                          | Droop 1987                          | Droop 1987                          | Droop 1987                          | Droop 1987                           | Droop 1987                           | Droop 1987                           | Droop 1987                           | Droop 1987                           |
| Si                             | 1.97                                 | 1.97                                 | 2.00                                 | 1.94                                | 1.90                                | 1.94                                | 2.01                                | 1.90                                 | 2.01                                 | 2.01                                 | 1.84                                 | 1.97                                 |
| Ti                             | 0.01                                 | 0.01                                 | 0.01                                 | 0.02                                | 0.03                                | 0.02                                | 0.01                                | 0.03                                 | 0.00                                 | 0.00                                 | 0.05                                 | 0.01                                 |
| AL (T)                         | 0.03                                 | 0.03                                 | 0.00                                 | 0.06                                | 0.10                                | 0.06                                | 0.00                                | 0.10                                 | 0.00                                 | 0.00                                 | 0.16                                 | 0.03                                 |
| AL (M1)                        | 0.02                                 | 0.03                                 | 0.03                                 | 0.03                                | 0.04                                | 0.03                                | 0.03                                | 0.04                                 | 0.02                                 | 0.02                                 | 0.03                                 | 0.02                                 |
| Fe3+ (T)                       | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 |
| Fo3+ (M1)                      | 0.01                                 | 0.00                                 | 0.00                                 | 0.01                                | 0.03                                | 0.01                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                 | 0.07                                 | 0.01                                 |
| Fe3+ (T+M1)                    | 0.01                                 | 0.00                                 | 0.00                                 | 0.01                                | 0.03                                | 0.01                                | 0.00                                | 0.01                                 | 0.00                                 | 0.00                                 | 0.07                                 | 0.01                                 |
| Fo2+                           | 0.25                                 | 0.00                                 | 0.50                                 | 0.23                                | 0.03                                | 0.23                                | 0.60                                | 0.20                                 | 0.58                                 | 0.58                                 | 0.17                                 | 0.24                                 |
| Mn                             | 0.00                                 | 0.01                                 | 0.01                                 | 0.01                                | 0.01                                | 0.01                                | 0.00                                | 0.00                                 | 0.01                                 | 0.01                                 | 0.00                                 | 0.01                                 |
| Ma                             | 0.70                                 | 0.01                                 | 1 21                                 | 0.01                                | 0.76                                | 0.70                                | 1.20                                | 0.00                                 | 1.24                                 | 1.24                                 | 0.72                                 | 0.01                                 |
| Co                             | 0.70                                 | 0.80                                 | 0.05                                 | 0.80                                | 0.70                                | 0.77                                | 0.05                                | 0.70                                 | 0.02                                 | 0.02                                 | 0.73                                 | 0.03                                 |
| v v                            | 0.07                                 | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.07                                | 0.00                                | 0.93                                 | 0.03                                 | 0.03                                 | 0.91                                 | 0.00                                 |
| No                             | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 |
| Na                             | 0.03                                 | 0.03                                 | 0.00                                 | 0.03                                | 0.04                                | 0.03                                | 0.00                                | 0.02                                 | 0.00                                 | 0.00                                 | 0.04                                 | 0.03                                 |
| LI<br>70                       | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 |
| 211                            | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 |
| INI<br>Or                      | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 |
| Ur<br>C-                       | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 |
| SC                             | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 |
| Total                          | 4.00                                 | 4.00                                 | 4.00                                 | 4.00                                | 4.00                                | 4.00                                | 4.00                                | 4.00                                 | 4.00                                 | 4.00                                 | 4.00                                 | 4.00                                 |
|                                | Quart                                | 0                                    | 0                                    | 0                                   | Quart                               | Quard                               | Quart                               | Quard                                | Quart                                | 0                                    | Quard                                | 0                                    |
| group                          | Quad                                 | Quad                                 | Quad                                 | Quad                                | Quad                                | Quad                                | Quad                                | Quad                                 | Quad                                 | Quad                                 | Quad                                 | Quad                                 |
| aujective                      | dia matrix                           |                                      | (-II)                                | dia analaha                         | aiuininian                          | dia analaha                         | (-11)+-+1+-                         | aiuininian                           | (-11                                 | (-11                                 | aiuininian                           |                                      |
| pyroxene                       | aiopsiae                             | augite                               | (clino)enstatite                     | aiopsiae                            | aiopsiae                            | aiopsiae                            | (ciino)enstatite                    | aiopsiae                             | (clino)enstatite                     | (clino)enstatite                     | aiopsiae                             | augite                               |
| enstatite                      | 40.1                                 | 41.7                                 | 00.8                                 | 41.9                                | 40.3                                | 41.1                                | 00.2                                | 40.0                                 | 08.3                                 | 08.4                                 | 38.9                                 | 42.8                                 |
| rerrosillite                   | 14.0                                 | 13.7                                 | 30.7                                 | 12.8                                | 13.3                                | 13.3                                | 31.4                                | 11.2                                 | 30.3                                 | 30.2                                 | 12.9                                 | 13.5                                 |
| wollastonite                   | 40.U                                 | 44.0                                 | 2.5                                  | 45.3                                | 40.4                                | 45.0                                | 2.5                                 | 48.8                                 | 1.4                                  | 1.4                                  | 48.2                                 | 43.7                                 |
| jadeite                        |                                      |                                      |                                      |                                     |                                     |                                     |                                     |                                      |                                      |                                      |                                      |                                      |
| aegirine                       |                                      |                                      |                                      |                                     |                                     |                                     |                                     |                                      |                                      |                                      |                                      |                                      |

| Type roche   | Mz-gabbro      | Mz-gabbro        | Monzonite          | Monzonite         | CaS            | CaS            | CaS            | CaS            | CaS            | CaS                      | CaS                      | CaS           |
|--------------|----------------|------------------|--------------------|-------------------|----------------|----------------|----------------|----------------|----------------|--------------------------|--------------------------|---------------|
| sample       | TK0024 C2 0027 | TK002            | TC00 116 TonoD 12  | TC00 116 7emoD 25 | TC09-10        | TC00-10-C10-m2 | TC00-10-C11-p1 | TC00-10-C11-m2 | TC00-10-C12-p1 | TC09-10<br>TC00-10-C4-p1 | TC09-10<br>TC00-10-C4-p1 | TC00-10-C0-p1 |
| sample       | TK002A=C2=0027 | TK002A+02+0029   | 1009-110-2011eb-12 | 1004-110-2016B-30 | 1004-10-010-b1 | 1009-10-010-pz | 1009-10-011-p1 | 1009-10-011-bz | 1009-10-012-p1 | 1009-10-04-p1            | 1004-10-00-b1            | 1009-10-00-b1 |
| SIO2         | 51 10          | 54 54            | 53.00              | 53 11             | 51.82          | 50.97          | 51.41          | 51 30          | 10 02          | 51.01                    | 51.00                    | 51 10         |
| TiO2         | 1 29           | 0.23             | 0.13               | 0.00              | 0.11           | 0.12           | 0.33           | 0.36           | 0.00           | 0.00                     | 0.26                     | 0.41          |
| AI2O3        | 3.12           | 0.58             | 1.40               | 1 76              | 0.25           | 0.16           | 0.53           | 0.85           | 0.00           | 0.00                     | 0.50                     | 0.61          |
| FeO          | 7.40           | 10.01            | 14.27              | 15.45             | 17 10          | 18.23          | 15.24          | 1/ 95          | 21.63          | 10.00                    | 16.01                    | 16.32         |
| MnO          | 0.21           | 0.47             | 0.30               | 0.34              | 1.02           | 0.85           | 0.73           | 0.80           | 1.08           | 0.96                     | 0.92                     | 0.70          |
| MaQ          | 14.22          | 0.47             | 15.00              | 14.52             | 0.54           | 0.03           | 10.73          | 10.77          | 1.00           | 7.26                     | 0.92                     | 10.02         |
| CaO          | 22.42          | 1.24             | 11.20              | 14.52             | 21.00          | 21.40          | 21.55          | 21.24          | 4.71           | 22.42                    | 20.01                    | 21.20         |
| Kao          | 22.42          | 0.00             | 0.40               | 0.04              | 21.00          | 21.40          | 21.00          | 21.24          | 22.39          | 22.42                    | 20.91                    | 21.29         |
| N20          | 0.02           | 0.00             | 0.40               | 0.24              | 0.01           | 0.00           | 0.01           | 0.02           | 0.00           | 0.00                     | 0.00                     | 0.02          |
| Nazu         | 0.45           | 0.04             | 1.10               | 0.86              | 0.26           | 0.41           | 0.37           | 0.39           | 0.44           | 0.34                     | 0.26                     | 0.48          |
| 1120         | 0.00           | 0.00             | 0.00               | 0.00              | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00                     | 0.00                     | 0.00          |
| ZnO          | 0.00           | 0.00             | 0.00               | 0.00              | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00                     | 0.00                     | 0.00          |
| NiO          | 0.00           | 0.00             | 0.00               | 0.00              | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00                     | 0.00                     | 0.00          |
| Cr2O3        | 0.04           | 0.02             | 0.00               | 0.05              | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00                     | 0.02                     | 0.00          |
| Sc2O3        | 0.00           | 0.00             | 0.00               | 0.00              | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00                     | 0.00                     | 0.00          |
| Total        | 100.46         | 99.80            | 98.13              | 98.12             | 102.01         | 100.71         | 100.65         | 100.77         | 100.17         | 101.19                   | 100.30                   | 101.04        |
| Fe3+ model   | Droop 1987     | Droop 1987       | Droop 1987         | Droop 1987        | Droop 1987     | Droop 1987     | Droop 1987     | Droop 1987     | Droop 1987     | Droop 1987               | Droop 1987               | Droop 1987    |
| Si           | 1.89           | 2.01             | 2.05               | 2.03              | 1.96           | 1.97           | 1.96           | 1.95           | 1.98           | 1.97                     | 1.97                     | 1.94          |
| Ti           | 0.04           | 0.01             | 0.00               | 0.00              | 0.00           | 0.00           | 0.01           | 0.01           | 0.00           | 0.00                     | 0.01                     | 0.01          |
| AI (T)       | 0.11           | 0.00             | 0.00               | 0.00              | 0.01           | 0.01           | 0.02           | 0.04           | 0.00           | 0.00                     | 0.02                     | 0.03          |
| AI (M1)      | 0.02           | 0.03             | 0.06               | 0.08              | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00                     | 0.00                     | 0.00          |
| Fe3+ (T)     | 0.00           | 0.00             | 0.00               | 0.00              | 0.03           | 0.03           | 0.02           | 0.01           | 0.02           | 0.03                     | 0.01                     | 0.03          |
| Fe3+ (M1)    | 0.05           | 0.00             | 0.00               | 0.00              | 0.05           | 0.06           | 0.05           | 0.06           | 0.05           | 0.05                     | 0.03                     | 0.07          |
| Fe3+ (T+M1)  | 0.05           | 0.00             | 0.00               | 0.00              | 0.08           | 0.08           | 0.07           | 0.07           | 0.07           | 0.08                     | 0.04                     | 0.10          |
| Fe2+         | 0.18           | 0.59             | 0.45               | 0.49              | 0.47           | 0.50           | 0.41           | 0.40           | 0.65           | 0.54                     | 0.50                     | 0.42          |
| Mn           | 0.01           | 0.01             | 0.01               | 0.01              | 0.03           | 0.03           | 0.02           | 0.03           | 0.04           | 0.03                     | 0.03                     | 0.03          |
| Mg           | 0.78           | 1.30             | 0.85               | 0.83              | 0.54           | 0.49           | 0.59           | 0.61           | 0.28           | 0.42                     | 0.54                     | 0.57          |
| Ca           | 0.89           | 0.05             | 0.46               | 0.48              | 0.89           | 0.88           | 0.88           | 0.86           | 0.95           | 0.93                     | 0.86                     | 0.87          |
| К            | 0.00           | 0.00             | 0.02               | 0.01              | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00                     | 0.00                     | 0.00          |
| Na           | 0.03           | 0.00             | 0.09               | 0.06              | 0.02           | 0.03           | 0.03           | 0.03           | 0.03           | 0.03                     | 0.02                     | 0.04          |
| Li           | 0.00           | 0.00             | 0.00               | 0.00              | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00                     | 0.00                     | 0.00          |
| Zn           | 0.00           | 0.00             | 0.00               | 0.00              | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00                     | 0.00                     | 0.00          |
| Ni           | 0.00           | 0.00             | 0.00               | 0.00              | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00                     | 0.00                     | 0.00          |
| Cr           | 0.00           | 0.00             | 0.00               | 0.00              | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00                     | 0.00                     | 0.00          |
| Sc           | 0.00           | 0.00             | 0.00               | 0.00              | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00                     | 0.00                     | 0.00          |
| Total        | 4.00           | 4.00             | 4.00               | 4.00              | 4.00           | 4.00           | 4.00           | 4.00           | 4.00           | 4.00                     | 4.00                     | 4.00          |
|              |                |                  |                    |                   |                |                |                |                |                |                          |                          |               |
| aroup        | Quad           | Quad             | Quad               | Quad              | Quad           | Quad           | Quad           | Quad           | Quad           | Quad                     | Quad                     | Quad          |
| adjective    | aluminian      | Quuu             | 4444               | 2000              | 2000           | 0000           | 0.000          | 0000           | 4444           | 4000                     | 6000                     | 6000          |
| nyrovene     | dionside       | (clino)enstatite | aurito             | aurite            | aunite         | aurite         | aurito         | aunite         | bodonhoraito   | bodonborgito             | aurite                   | aurita        |
| opstatito    | 41.1           | 66.7             | 17 0               | 45.6              | 27.0           | 24.7           | 20.0           | 20.0           | 14.0           | 20.0                     | 27.4                     | 20 7          |
| forrocillito | 12.5           | 20.0             | 26.2               | 27.0              | 20.0           | 20.0           | 26.7           | 25.4           | 20.0           | 20.7                     | 20.0                     | 20.7          |
| wolloctopito | 12.5<br>46 E   | 2.5              | 26.2               | 21.0              | 44.4           | 44.4           | 44.2           | 42.0           | 10.0           | 32.0<br>A6 A             | 12.6                     | 12.0          |
| indoito      | 40.0           | 2.0              | 20.0               | 20.0              | 44.4           | 44.4           | 44.3           | 43.0           | 40.0           | 40.4                     | 43.0                     | 43.0          |
| Jauene       |                |                  |                    |                   |                |                |                |                | *******        |                          |                          |               |
| acyline      |                | *******          |                    |                   | *****          |                |                |                | *******        |                          | *******                  | *****         |

| Type roche    | CaS           | CaS           | CaS           | CaS           | CaS            | CaS           | CaS           | CaS           | CaS           | CaS           | CaS           | CaS            |
|---------------|---------------|---------------|---------------|---------------|----------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|
| sample        | TC09-10-C9-p1 | TC09-10-C9-p2 | TC09-10-C9-p3 | TC09-10-C9-p4 | TC09-26-C10-p1 | TC09-26-C1-p1 | TC09-26-C2-p1 | TC09-26-C2-p2 | TC09-26-C2-p3 | TC09-26-C5-p1 | TC09-26-C6-p1 | TC09-38-zE-057 |
| SiO2          | 52.00         | 52.69         | 50.39         | 50.04         | 51.75          | 51.34         | 51.91         | 52.42         | 51.16         | 51.49         | 51.95         | 51.89          |
| TiO2          | 0.72          | 0.03          | 0.21          | 0.05          | 0.38           | 0.43          | 0.43          | 0.29          | 0.47          | 0.43          | 0.38          | 0.46           |
| AI2O3         | 0.72          | 0.22          | 0.23          | 0.13          | 0.46           | 0.65          | 0.48          | 0.66          | 0.57          | 0.79          | 0.65          | 1.05           |
| FeO           | 14.67         | 13.70         | 19.07         | 20.74         | 13.80          | 12.76         | 13.12         | 12.61         | 13.36         | 13.00         | 12.55         | 12.86          |
| MnO           | 0.95          | 0.78          | 0.95          | 0.89          | 0.80           | 0.85          | 0.74          | 0.77          | 0.84          | 0.85          | 0.88          | 0.61           |
| MaQ           | 11.67         | 11.21         | 7 10          | 6.24          | 11.16          | 11.15         | 11 30         | 11.40         | 11.21         | 11.25         | 11 34         | 12.10          |
| CaO           | 20.95         | 22.34         | 21.48         | 21 31         | 21.87          | 22.06         | 21.88         | 21.97         | 22.12         | 21.88         | 22.18         | 21.32          |
| K20           | 0.01          | 0.00          | 0.00          | 0.01          | 0.00           | 0.03          | 0.01          | 0.00          | 0.01          | 0.00          | 0.04          | 0.04           |
| Na2O          | 0.44          | 0.15          | 0.45          | 0.47          | 0.66           | 0.72          | 0.64          | 0.72          | 0.70          | 0.74          | 0.71          | 0.65           |
| 1120          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00           | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00           |
| ZnO           | 0.00          | 0.00          | 0.00          | 0.00          | 0.00           | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00           |
| NIO           | 0.00          | 0.00          | 0.00          | 0.00          | 0.00           | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00           |
| Cr2O3         | 0.01          | 0.00          | 0.00          | 0.03          | 0.00           | 0.00          | 0.00          | 0.00          | 0.02          | 0.02          | 0.00          | 0.00           |
| Sc203         | 0.00          | 0.00          | 0.02          | 0.00          | 0.00           | 0.00          | 0.02          | 0.00          | 0.02          | 0.00          | 0.00          | 0.00           |
| Total         | 102.14        | 101 12        | 00.00         | 0.00          | 100.87         | 0.00          | 100.54        | 100.82        | 100.45        | 100.46        | 100.68        | 100.08         |
| Fe3+ model    | Droop 1987     | Droop 1987    | Droop 1987    | Droop 1987    | Droop 1987    | Droop 1987    | Droop 1987    | Droop 1987     |
| ci            | 1.04          | 1.00          | 1 07          | 1.07          | 1.05           | 1.05          | 1.04          | 1 07          | 1.02          | 1.04          | 1.05          | 1.04           |
| 3i<br>Ti      | 0.02          | 0.00          | 0.01          | 0.00          | 0.01           | 0.01          | 0.01          | 0.01          | 0.01          | 0.01          | 0.01          | 0.01           |
| AL (T)        | 0.02          | 0.00          | 0.01          | 0.00          | 0.01           | 0.01          | 0.01          | 0.01          | 0.01          | 0.01          | 0.01          | 0.05           |
| AI (1)        | 0.05          | 0.00          | 0.01          | 0.01          | 0.02           | 0.03          | 0.02          | 0.03          | 0.03          | 0.03          | 0.03          | 0.00           |
| AL (IVII)     | 0.00          | 0.00          | 0.00          | 0.00          | 0.00           | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00           |
| Fe3+ (1)      | 0.05          | 0.00          | 0.01          | 0.02          | 0.03           | 0.02          | 0.02          | 0.00          | 0.04          | 0.02          | 0.02          | 0.01           |
| Fe3+ (IVII)   | 0.05          | 0.02          | 0.05          | 0.06          | 0.08           | 0.08          | 0.06          | 0.07          | 0.09          | 0.09          | 0.08          | 0.08           |
| Fe3+ (1+IVI1) | 0.08          | 0.02          | 0.06          | 0.08          | 0.11           | 0.11          | 0.08          | 0.07          | 0.13          | 0.11          | 0.10          | 0.09           |
| Fe2+          | 0.38          | 0.41          | 0.56          | 0.61          | 0.33           | 0.30          | 0.33          | 0.33          | 0.29          | 0.30          | 0.30          | 0.31           |
| Mn            | 0.03          | 0.02          | 0.03          | 0.03          | 0.03           | 0.03          | 0.02          | 0.02          | 0.03          | 0.03          | 0.03          | 0.02           |
| Mg            | 0.65          | 0.63          | 0.41          | 0.37          | 0.63           | 0.63          | 0.64          | 0.64          | 0.63          | 0.63          | 0.64          | 0.67           |
| Ca            | 0.84          | 0.90          | 0.90          | 0.90          | 0.88           | 0.90          | 0.89          | 0.88          | 0.90          | 0.88          | 0.89          | 0.85           |
| ĸ             | 0.00          | 0.00          | 0.00          | 0.00          | 0.00           | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00           |
| Na            | 0.03          | 0.01          | 0.03          | 0.04          | 0.05           | 0.05          | 0.05          | 0.05          | 0.05          | 0.05          | 0.05          | 0.05           |
| Li            | 0.00          | 0.00          | 0.00          | 0.00          | 0.00           | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00           |
| Zn            | 0.00          | 0.00          | 0.00          | 0.00          | 0.00           | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00           |
| Ni            | 0.00          | 0.00          | 0.00          | 0.00          | 0.00           | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00           |
| Cr            | 0.00          | 0.00          | 0.00          | 0.00          | 0.00           | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00           |
| Sc            | 0.00          | 0.00          | 0.00          | 0.00          | 0.00           | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00           |
| Total         | 4.00          | 4.00          | 4.00          | 4.00          | 4.00           | 4.00          | 4.00          | 4.00          | 4.00          | 4.00          | 4.00          | 4.00           |
| aroup         | Quad          | Quad          | Quad          | Quad          | Quad           | Quad          | Quad          | Quad          | Quad          | Quad          | Quad          | Quad           |
| adjective     |               |               |               |               | ferrian        | ferrian       |               |               | ferrian       | ferrian       |               |                |
| pyroxene      | augite        | diopside      | hedenbergite  | hedenberaite  | diopside       | diopside      | diopside      | diopside      | diopside      | diopside      | diopside      | augite         |
| enstatite     | 32.9          | 31.7          | 21.0          | 18.5          | 31.8           | 32.2          | 32.5          | 32.8          | 32.0          | 32.4          | 32.6          | 34.6           |
| ferrosillite  | 24.7          | 23.0          | 33.3          | 36.0          | 23.4           | 22.1          | 22.4          | 21.6          | 22.7          | 22.4          | 21.7          | 21.6           |
| wollastonite  | 42.4          | 45.4          | 45.7          | 45.5          | 44.8           | 45.8          | 45.2          | 45.5          | 45.3          | 45.2          | 45.8          | 43.8           |
| iadeite       |               |               |               |               |                |               |               |               |               |               |               |                |
| agairing      |               |               |               |               |                |               |               |               |               |               |               |                |
| Quad          |               |               |               |               |                |               |               |               |               |               |               |                |

| Type roche   | CaS            | CaS            | CaS            | CaS            | CaS            | CaS           | CaS           | CaS           | CaS           | CaS          | CaS          | CaS          |
|--------------|----------------|----------------|----------------|----------------|----------------|---------------|---------------|---------------|---------------|--------------|--------------|--------------|
| sample       | TC09-38        | TC09-38        | TC09-38        | TC09-82        | TC09-82        | TC09-82       | TC09-82       | TC09-82       | TC09-82       | TK001A       | TK001A       | TK001A       |
| sample       | TC09-38-zE-058 | TC09-38-zE-061 | TC09-38-zE-062 | TC09-82-C10-p1 | TC09-82-C14-p1 | TC09-82-C2-p1 | TC09-82-C6-p1 | TC09-82-C7-p1 | TC09-82-C8-p1 | TK-001A-C1-2 | TK-001A-C1-5 | TK-001A-C1-6 |
| SIO2         | 51.66          | 52.20          | 52.05          | 51 32          | 50.61          | 50.72         | 50.45         | 51.36         | 50.55         | 52 70        | 51 50        | 51 10        |
| TIO2         | 0.37           | 0.82           | 0.72           | 0.67           | 0.08           | 0.14          | 0.11          | 0.28          | 0.36          | 0.27         | 0.31         | 0.22         |
| AI2O3        | 1.08           | 1.24           | 1.14           | 1.64           | 0.18           | 0.19          | 0.23          | 0.57          | 0.80          | 1 10         | 0.98         | 0.71         |
| F00          | 10.00          | 12.14          | 12.04          | 10.75          | 10.07          | 10.06         | 10.16         | 12 54         | 12.22         | 10.12        | 12.24        | 16.04        |
| MpO          | 0.51           | 0.67           | 0.60           | 0.42           | 0.97           | 0.04          | 0.69          | 0.52          | 0.42          | 0.64         | 0.54         | 0.74         |
| MaO          | 12.27          | 12.51          | 12.07          | 12.02          | 0.07           | 0.70          | 0.00          | 11.67         | 10.42         | 11 42        | 11 /1        | 0.70<br>9.0E |
| lvigO<br>CoO | 12.27          | 12.31          | 13.07          | 12.03          | 0.20           | 0.99          | 0.01          | 11.57         | 10.77         | 11.03        | 11.41        | 0.00         |
| CaO KaO      | 20.40          | 21.14          | 21.30          | 22.77          | 0.01           | 20.21         | 20.13         | 22.30         | 22.40         | 22.00        | 21.70        | 22.04        |
| K2U          | 0.13           | 0.05           | 0.00           | 0.00           | 0.01           | 0.01          | 0.02          | 0.00          | 0.02          | 0.00         | 0.00         | 0.00         |
| Na2O         | 0.81           | 0.76           | 0.71           | 0.46           | 0.51           | 0.44          | 0.49          | 0.40          | 0.40          | 0.46         | 0.46         | 0.51         |
| LI2O         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00          | 0.00          | 0.00          | 0.00          | 0.00         | 0.00         | 0.00         |
| ZnO          | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00          | 0.00          | 0.00          | 0.00          | 0.00         | 0.00         | 0.00         |
| NIO          | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00          | 0.00          | 0.00          | 0.00          | 0.00         | 0.00         | 0.00         |
| Cr2O3        | 0.00           | 0.00           | 0.02           | 0.04           | 0.00           | 0.00          | 0.00          | 0.00          | 0.00          | 0.00         | 0.01         | 0.00         |
| Sc2O3        | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00          | 0.00          | 0.00          | 0.00          | 0.00         | 0.00         | 0.00         |
| Total        | 100.04         | 101.45         | 102.56         | 100.90         | 99.33          | 100.71        | 100.08        | 100.60        | 99.14         | 101.03       | 99.39        | 100.43       |
| Fe3+ model   | Droop 1987     | Droop 1987    | Droop 1987    | Droop 1987    | Droop 1987    | Droop 1987   | Droop 1987   | Droop 1987   |
| Si           | 1.94           | 1.94           | 1.94           | 1.91           | 1.98           | 1.96          | 1.96          | 1.94          | 1.94          | 1.97         | 1.97         | 1.98         |
| Ti           | 0.01           | 0.02           | 0.02           | 0.02           | 0.00           | 0.00          | 0.00          | 0.01          | 0.01          | 0.01         | 0.01         | 0.01         |
| AI (T)       | 0.05           | 0.05           | 0.05           | 0.07           | 0.01           | 0.01          | 0.01          | 0.03          | 0.04          | 0.03         | 0.03         | 0.02         |
| AI (M1)      | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00          | 0.00          | 0.00          | 0.00          | 0.03         | 0.01         | 0.01         |
| Fe3+ (T)     | 0.01           | 0.01           | 0.01           | 0.02           | 0.01           | 0.04          | 0.03          | 0.04          | 0.02          | 0.00         | 0.00         | 0.00         |
| Fe3+ (M1)    | 0.10           | 0.07           | 0.07           | 0.09           | 0.05           | 0.07          | 0.07          | 0.08          | 0.07          | 0.02         | 0.04         | 0.04         |
| Fe3+ (T+M1)  | 0.11           | 0.08           | 0.08           | 0.11           | 0.06           | 0.10          | 0.11          | 0.11          | 0.09          | 0.02         | 0.04         | 0.04         |
| Fe2+         | 0.30           | 0.30           | 0.29           | 0.23           | 0.56           | 0.51          | 0.52          | 0.32          | 0.34          | 0.36         | 0.35         | 0.51         |
| Mn           | 0.02           | 0.02           | 0.02           | 0.01           | 0.03           | 0.03          | 0.02          | 0.02          | 0.01          | 0.02         | 0.02         | 0.02         |
| Ma           | 0.69           | 0.69           | 0.71           | 0.71           | 0.48           | 0.52          | 0.51          | 0.65          | 0.62          | 0.65         | 0.65         | 0.46         |
| Ca           | 0.83           | 0.84           | 0.84           | 0.91           | 0.83           | 0.84          | 0.84          | 0.90          | 0.92          | 0.89         | 0.89         | 0.91         |
| K            | 0.01           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00          | 0.00          | 0.00          | 0.00          | 0.00         | 0.00         | 0.00         |
| Na           | 0.06           | 0.05           | 0.05           | 0.03           | 0.04           | 0.03          | 0.04          | 0.03          | 0.03          | 0.03         | 0.03         | 0.04         |
| 11           | 0.00           | 0.00           | 0.00           | 0.00           | 0.04           | 0.00          | 0.04          | 0.00          | 0.00          | 0.00         | 0.00         | 0.00         |
| 70           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00          | 0.00          | 0.00          | 0.00          | 0.00         | 0.00         | 0.00         |
| ZII<br>Ni    | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00          | 0.00          | 0.00          | 0.00          | 0.00         | 0.00         | 0.00         |
| Cr.          | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00          | 0.00          | 0.00          | 0.00          | 0.00         | 0.00         | 0.00         |
| Ci Co        | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00          | 0.00          | 0.00          | 0.00          | 0.00         | 0.00         | 0.00         |
| JL<br>Tatal  | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00          | 0.00          | 0.00          | 0.00          | 0.00         | 0.00         | 0.00         |
| Total        | 4.00           | 4.00           | 4.00           | 4.00           | 4.00           | 4.00          | 4.00          | 4.00          | 4.00          | 4.00         | 4.00         | 4.00         |
| group        | Quad           | Quad           | Quad           | Quad           | Quad           | Quad          | Quad          | Quad          | Quad          | Quad         | Quad         | Quad         |
| adjective    | ferrian        |                |                | ferrian        |                | ferrian       | ferrian       | ferrian       |               |              |              |              |
| pyroxene     | augite         | augite         | augite         | diopside       | augite         | augite        | augite        | diopside      | diopside      | diopside     | diopside     | hedenbergite |
| enstatite    | 35.6           | 35.9           | 36.8           | 36.2           | 24.6           | 25.9          | 25.6          | 32.6          | 31.1          | 33.6         | 33.3         | 23.8         |
| ferrosillite | 21.6           | 20.5           | 20.0           | 17.7           | 33.1           | 32.3          | 32.4          | 22.2          | 22.3          | 20.6         | 21.1         | 29.4         |
| wollastonite | 42.7           | 43.6           | 43.2           | 46.1           | 42.3           | 41.8          | 42.0          | 45.2          | 46.5          | 45.8         | 45.6         | 46.8         |
| iadeite      |                |                |                |                |                |               |               |               |               |              |              |              |
| aegirine     |                |                |                |                |                |               |               |               |               |              |              |              |
| 0            |                |                |                |                |                |               |               |               |               |              |              |              |

| Type roche   | CaS         | CaS         | CaS         | CaS         | CaS          | CaS           | CaS          | CaS          | CaS          | CaS          | CaS          |
|--------------|-------------|-------------|-------------|-------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|
| sample       | TK31-C1-001 | TK31-C1-005 | TK31-C1-006 | TK31-C1-007 | TK-63B-C1-01 | TK-63B-C1-010 | TK-63B-C1-02 | TK-63B-C1-04 | TK-63B-C1-07 | TK-63B-C1-08 | TK-63B-C1-09 |
|              |             |             |             |             |              |               |              |              |              |              |              |
| SiO2         | 49.85       | 49.81       | 49.80       | 51.31       | 51.71        | 50.37         | 50.17        | 49.93        | 50.42        | 50.26        | 50.05        |
| TiO2         | 0.10        | 0.10        | 0.13        | 0.27        | 0.21         | 0.37          | 0.26         | 0.42         | 0.48         | 0.48         | 0.04         |
| AI2O3        | 0.17        | 0.16        | 0.18        | 0.54        | 0.51         | 0.49          | 0.48         | 0.64         | 0.94         | 0.92         | 0.11         |
| FeO          | 24.66       | 25.01       | 25.60       | 18.05       | 15.30        | 19.06         | 19.12        | 17.04        | 14.44        | 14.99        | 20.98        |
| MnO          | 1.31        | 1.20        | 1.25        | 0.93        | 0.75         | 0.83          | 0.83         | 0.82         | 0.74         | 0.70         | 1.16         |
| MgO          | 3.71        | 3.44        | 3.20        | 7.42        | 9.29         | 6.91          | 6.76         | 8.30         | 10.03        | 9.87         | 5.08         |
| CaO          | 19.22       | 19.02       | 18.86       | 20.36       | 21.65        | 21.16         | 21.32        | 21.36        | 21.26        | 21.02        | 21.52        |
| K2O          | 0.02        | 0.00        | 0.01        | 0.01        | 0.00         | 0.03          | 0.03         | 0.00         | 0.00         | 0.02         | 0.04         |
| Na2O         | 1.02        | 0.92        | 0.94        | 0.79        | 0.47         | 0.42          | 0.42         | 0.36         | 0.40         | 0.44         | 0.62         |
| Li2O         | 0.00        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00          | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         |
| ZnO          | 0.00        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00          | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         |
| NIO          | 0.00        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00          | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         |
| Cr2O3        | 0.01        | 0.00        | 0.01        | 0.01        | 0.00         | 0.00          | 0.00         | 0.00         | 0.01         | 0.00         | 0.01         |
| Sc2O3        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00          | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         |
| Total        | 100.06      | 99.65       | 99.98       | 99.69       | 99.89        | 99.62         | 99.39        | 98.89        | 98.74        | 98.70        | 99.59        |
| Fe3+ model   | Droop 1987   | Droop 1987    | Droop 1987   | Droop 1987   | Droop 1987   | Droop 1987   | Droop 1987   |
| Si           | 1.99        | 2.01        | 2.00        | 2.00        | 1.99         | 1.98          | 1.98         | 1.96         | 1.96         | 1.95         | 1.99         |
| Ti           | 0.00        | 0.00        | 0.00        | 0.01        | 0.01         | 0.01          | 0.01         | 0.01         | 0.01         | 0.01         | 0.00         |
| AL (T)       | 0.01        | 0.00        | 0.00        | 0.00        | 0.01         | 0.02          | 0.02         | 0.03         | 0.04         | 0.04         | 0.01         |
| AL (M1)      | 0.00        | 0.01        | 0.01        | 0.02        | 0.01         | 0.00          | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         |
| Fe3+ (T)     | 0.00        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00          | 0.00         | 0.01         | 0.00         | 0.01         | 0.00         |
| Fe3+ (M1)    | 0.08        | 0.05        | 0.05        | 0.01        | 0.02         | 0.03          | 0.04         | 0.04         | 0.05         | 0.05         | 0.06         |
| Fe3+ (T+M1)  | 0.08        | 0.05        | 0.05        | 0.01        | 0.02         | 0.03          | 0.04         | 0.05         | 0.05         | 0.06         | 0.06         |
| Fe2+         | 0.75        | 0.80        | 0.81        | 0.58        | 0.48         | 0.60          | 0.59         | 0.51         | 0.42         | 0.43         | 0.64         |
| Mn           | 0.04        | 0.04        | 0.04        | 0.03        | 0.02         | 0.03          | 0.03         | 0.03         | 0.02         | 0.02         | 0.04         |
| Ma           | 0.22        | 0.21        | 0.19        | 0.43        | 0.53         | 0.41          | 0.40         | 0.49         | 0.58         | 0.57         | 0.30         |
| Ca           | 0.82        | 0.82        | 0.81        | 0.85        | 0.80         | 0.89          | 0.00         | 0.00         | 0.88         | 0.88         | 0.92         |
| K            | 0.02        | 0.02        | 0.00        | 0.00        | 0.00         | 0.00          | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         |
| Na           | 0.00        | 0.07        | 0.00        | 0.06        | 0.04         | 0.03          | 0.03         | 0.03         | 0.03         | 0.03         | 0.05         |
|              | 0.00        | 0.00        | 0.00        | 0.00        | 0.04         | 0.00          | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         |
| 70           | 0.00        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00          | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         |
| ZII<br>Ni    | 0.00        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00          | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         |
| Cr           | 0.00        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00          | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         |
| 6            | 0.00        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00          | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         |
| Ju           | 4.00        | 4.00        | 4.00        | 4.00        | 4.00         | 4.00          | 4.00         | 4.00         | 4.00         | 4.00         | 4.00         |
| TOLAI        | 4.00        | 4.00        | 4.00        | 4.00        | 4.00         | 4.00          | 4.00         | 4.00         | 4.00         | 4.00         | 4.00         |
| aroup        | Ouad        | Quad        | Quad        | Quad        | Quad         | Quad          | Quad         | Quad         | Quad         | Quad         | Quad         |
| adiective    | Quad        | Quau        | 2000        | 2000        | Quau         | 2000          | 2000         | 2000         | Quuu         | Quuu         | Gasa         |
| aujective    | augito      | audito      | aurito      | augito      | dionsido     | bodophoraito  | bodophoraito | bodonhoraito | dionsido     | augito       | hodophoraito |
| opstatito    | 11.4        | 10.9        | 10.0        | 22.7        | 27.4         | 20.0          | 20.2         | 24.4         | 20.7         | 20.2         | 15.4         |
| forrecillito | 45.4        | 10.0        | 47.4        | 22.7        | 21.4         | 20.0          | 20.3         | 24.0         | 27.7         | 27.2         | 27.7         |
| wollastopito | 42.0        | 42.0        | 12.4        | 14.7        | 46.0         | 4E 7          | 46.0         | 45.6         | 4E 0         | 44.7         | 46.0         |
| indoito      | 43.0        | 43.0        | 42.0        | 44.7        | 40.0         | 40.7          | 40.0         | 40.0         | 4J.Z         | 44.7         | 40.7         |
| Jauente      |             |             |             |             |              |               |              |              |              |              |              |
| acyline      |             |             |             |             |              |               |              |              |              |              |              |
| Qudu         | 1           |             |             |             |              |               |              |              |              |              |              |

| Type roche<br>sample<br>sample | CaNaS<br>TC09-59<br>TC09-59-C2-p1 | CaNaS<br>TC09-59<br>TC09-59-C4-p1 | CaNaS<br>TC09-59<br>TC09-59-C5-p1 | CaNaS<br>TC09-59<br>TC09-59-C7-p1 | CaNaS<br>TC09-59<br>TC09-59-C7-p2 | CaNaS<br>TC09-102<br>TC09-102-7B-021 | CaNaS<br>TC09-102<br>TC09-102-7B-034 | CaNaS<br>TC09-102<br>TC09-102-7D-51 | CaNaS<br>TC09-102<br>TC09-102-7D-61 | CaNaS<br>TC09-109<br>TC09-109-C10-p1 | CaNaS<br>TC09-109<br>TC09-109-C10-p2 | CaNaS<br>TC09-109<br>TC09-109-C1-p1 |
|--------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|
| sample                         | 1007 07 02 p1                     | 1007 07 01 01                     | 1007 07 00 p1                     | 1007070707                        | 1007 07 07 02                     | 1007 102 20 021                      | 1007 102 20 001                      | 1007 102 20 01                      | 1007 102 20 01                      | 1007 107 010 p1                      | 1007 107 010 pz                      | 1007 107 01 p1                      |
| SiO2                           | 52.79                             | 51.82                             | 53.07                             | 51.95                             | 52.33                             | 53.30                                | 52.78                                | 53.74                               | 54.62                               | 51.06                                | 51.42                                | 51.79                               |
| TIO2                           | 3.78                              | 1.20                              | 3.66                              | 1.55                              | 0.96                              | 0.09                                 | 0.89                                 | 0.53                                | 0.73                                | 0.61                                 | 0.39                                 | 0.39                                |
| AI2O3                          | 0.23                              | 0.44                              | 0.10                              | 0.39                              | 0.41                              | 0.55                                 | 0.65                                 | 0.51                                | 0.53                                | 0.50                                 | 0.51                                 | 0.49                                |
| FeO                            | 24.69                             | 25.42                             | 25.00                             | 25.64                             | 25.05                             | 28.34                                | 26.94                                | 27.48                               | 26.12                               | 15.89                                | 13.99                                | 13.30                               |
| MnO                            | 1.39                              | 0.93                              | 1.37                              | 0.86                              | 0.69                              | 0.58                                 | 0.47                                 | 0.58                                | 0.52                                | 0.72                                 | 0.61                                 | 0.89                                |
| MgO                            | 0.83                              | 2.56                              | 0.54                              | 2.17                              | 2.55                              | 0.71                                 | 0.34                                 | 0.68                                | 0.81                                | 10.06                                | 10.67                                | 11.10                               |
| CaO                            | 1.96                              | 6.17                              | 2.11                              | 5.64                              | 6.26                              | 2.67                                 | 2.29                                 | 2.27                                | 1.75                                | 20.91                                | 21.41                                | 21.80                               |
| K2O                            | 0.06                              | 0.00                              | 0.02                              | 0.02                              | 0.00                              | 0.02                                 | 0.00                                 | 0.02                                | 0.00                                | 0.01                                 | 0.00                                 | 0.00                                |
| Na2O                           | 12.97                             | 10.19                             | 12.63                             | 10.60                             | 10.29                             | 11.69                                | 12.73                                | 11.69                               | 12.02                               | 0.64                                 | 0.77                                 | 0.51                                |
| Li2O                           | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                |
| ZnO                            | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                |
| NIO                            | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                |
| Cr2O3                          | 0.02                              | 0.06                              | 0.00                              | 0.05                              | 0.01                              | 0.00                                 | 0.05                                 | 0.00                                | 0.00                                | 0.06                                 | 0.00                                 | 0.00                                |
| Sc2O3                          | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                |
| Total                          | 98.72                             | 98.79                             | 98.50                             | 98.87                             | 98.55                             | 97.94                                | 97.13                                | 97.51                               | 97.08                               | 100.46                               | 99.77                                | 100.27                              |
| Fe3+ model                     | Droop 1987                           | Droop 1987                           | Droop 1987                          | Droop 1987                          | Droop 1987                           | Droop 1987                           | Droop 1987                          |
| Si                             | 1.99                              | 1.96                              | 2.01                              | 1.97                              | 1.98                              | 2.03                                 | 2.01                                 | 2.06                                | 2.09                                | 1.95                                 | 1.96                                 | 1.96                                |
| Ti                             | 0.11                              | 0.03                              | 0.10                              | 0.04                              | 0.03                              | 0.00                                 | 0.03                                 | 0.02                                | 0.02                                | 0.02                                 | 0.01                                 | 0.01                                |
| AI (T)                         | 0.01                              | 0.02                              | 0.00                              | 0.02                              | 0.02                              | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.02                                 | 0.02                                 | 0.02                                |
| AI (M1)                        | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.02                                 | 0.03                                 | 0.02                                | 0.02                                | 0.00                                 | 0.00                                 | 0.00                                |
| Fe3+ (T)                       | 0.00                              | 0.02                              | 0.00                              | 0.02                              | 0.00                              | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.03                                 | 0.02                                 | 0.01                                |
| Fe3+ (M1)                      | 0.75                              | 0.71                              | 0.69                              | 0.72                              | 0.72                              | 0.77                                 | 0.83                                 | 0.70                                | 0.64                                | 0.06                                 | 0.07                                 | 0.05                                |
| Fe3+ (T+M1)                    | 0.75                              | 0.73                              | 0.69                              | 0.74                              | 0.72                              | 0.77                                 | 0.83                                 | 0.70                                | 0.64                                | 0.09                                 | 0.09                                 | 0.06                                |
| Fe2+                           | 0.03                              | 0.08                              | 0.10                              | 0.07                              | 0.08                              | 0.14                                 | 0.03                                 | 0.19                                | 0.19                                | 0.42                                 | 0.36                                 | 0.36                                |
| Mn                             | 0.04                              | 0.03                              | 0.04                              | 0.03                              | 0.02                              | 0.02                                 | 0.02                                 | 0.02                                | 0.02                                | 0.02                                 | 0.02                                 | 0.03                                |
| Mg                             | 0.05                              | 0.14                              | 0.03                              | 0.12                              | 0.14                              | 0.04                                 | 0.02                                 | 0.04                                | 0.05                                | 0.57                                 | 0.61                                 | 0.63                                |
| Са                             | 0.08                              | 0.25                              | 0.09                              | 0.23                              | 0.25                              | 0.11                                 | 0.09                                 | 0.09                                | 0.07                                | 0.86                                 | 0.87                                 | 0.89                                |
| К                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                |
| Na                             | 0.95                              | 0.75                              | 0.93                              | 0.78                              | 0.76                              | 0.86                                 | 0.94                                 | 0.87                                | 0.89                                | 0.05                                 | 0.06                                 | 0.04                                |
| Li                             | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                |
| Zn                             | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                |
| Ni                             | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                |
| Cr                             | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                |
| Sc                             | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                |
| Total                          | 4.00                              | 4.00                              | 4.00                              | 4.00                              | 4.00                              | 4.00                                 | 4.00                                 | 4.00                                | 4.00                                | 4.00                                 | 4.00                                 | 4.00                                |
| group                          | Na                                | Ca-Na                             | Na                                | Ca-Na                             | Ca-Na                             | Na                                   | Na                                   | Na                                  | Na                                  | Quad                                 | Quad                                 | Quad                                |
| adjective                      | titanian                          | ferrian sodian                    | titanian                          | ferrian sodian                    | ferrian sodian                    |                                      |                                      |                                     |                                     |                                      |                                      |                                     |
| pyroxene                       | aegirine                          | aegirine-augite                   | aegirine                          | aegirine-augite                   | aegirine-augite                   | aegirine                             | aegirine                             | aegirine                            | aegirine                            | augite                               | diopside                             | diopside                            |
| enstatite                      |                                   |                                   |                                   |                                   |                                   |                                      |                                      |                                     |                                     | 29.2                                 | 31.2                                 | 32.0                                |
| ferrosillite                   |                                   |                                   |                                   |                                   |                                   |                                      |                                      |                                     |                                     | 27.1                                 | 23.9                                 | 22.9                                |
| wollastonite                   |                                   |                                   |                                   |                                   |                                   |                                      |                                      |                                     |                                     | 43.7                                 | 44.9                                 | 45.1                                |
| jadeite                        | 0                                 | 0                                 | 0.6                               | 0                                 | 0.2                               | 2.7                                  | 3.1                                  | 2.7                                 | 3.1                                 |                                      |                                      |                                     |
| aegirine                       | 92.6                              | 76.1                              | 89.1                              | 78.5                              | 75.9                              | 83.1                                 | 89.9                                 | 81.8                                | 82.1                                |                                      |                                      |                                     |
| Quad                           | 7.4                               | 23.9                              | 10.3                              | 21.5                              | 23.9                              | 14.2                                 | 6.9                                  | 15.5                                | 14.9                                |                                      |                                      |                                     |

| Type roche<br>sample | CaNaS<br>TC09-109 | CaNaS<br>TC09-109 | CaNaS<br>TC09-109 | CaNaS<br>TC09-109 | CaNaS<br>TC09-109 | CaNaS<br>TC09-131 | CaNaS<br>TC09-131 | CaNaS<br>TC09-45 | CaNaS<br>TC09-45 | CaNaS<br>TC09-45 | CaNaS<br>TC09-45 | CaNaS<br>TC09-45 |
|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|------------------|------------------|------------------|
| sample               | 1C09-109-C3-p1    | 1C04-104-C2-b1    | 1C09-109-C6-p1    | 1C09-109-C6-p2    | 1C04-104-C6-b3    | 1C09-131-2C-055   | 1C09-131-2G-084   | 1 C09-45-ZA-004  | 1C09-45-ZA-007   | 1C09-45-ZA-008a  | 1C09-45-ZA-008b  | 1C09-45-2A-011   |
| SiO2                 | 51.41             | 51.23             | 50.40             | 51.30             | 50.95             | 51.86             | 51.88             | 50.95            | 51.17            | 52.44            | 52.06            | 52.52            |
| TiO2                 | 0.44              | 0.41              | 0.21              | 0.39              | 0.42              | 0.31              | 0.58              | 0.20             | 0.23             | 0.21             | 0.19             | 0.29             |
| AI2O3                | 0.44              | 0.64              | 0.00              | 0.42              | 0.52              | 0.56              | 0.52              | 0.28             | 0.38             | 0.08             | 0.26             | 0.30             |
| FeO                  | 15.38             | 15.01             | 25.86             | 16.17             | 15.34             | 15.33             | 14.51             | 19.77            | 18.06            | 15.11            | 15.71            | 16.62            |
| MnO                  | 0.97              | 0.84              | 1.82              | 0.96              | 0.96              | 0.94              | 0.82              | 1.30             | 1.29             | 1.20             | 0.96             | 0.92             |
| MgO                  | 10.41             | 10.70             | 2.00              | 9.56              | 10.18             | 10.28             | 10.48             | 7.00             | 8.05             | 10.12            | 9.55             | 9.97             |
| CaO                  | 21.22             | 21.15             | 14.15             | 20.83             | 20.99             | 21.31             | 20.73             | 20.11            | 20.13            | 22.17            | 21.75            | 20.39            |
| K2O                  | 0.01              | 0.01              | 0.03              | 0.03              | 0.02              | 0.00              | 0.00              | 0.02             | 0.08             | 0.02             | 0.00             | 0.05             |
| Na2O                 | 0.44              | 0.52              | 4.48              | 0.58              | 0.46              | 0.47              | 0.62              | 1.22             | 0.96             | 0.61             | 0.71             | 1.04             |
| Li2O                 | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             |
| ZnO                  | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             |
| NiO                  | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             |
| Cr2O3                | 0.00              | 0.00              | 0.05              | 0.00              | 0.00              | 0.02              | 0.01              | 0.00             | 0.06             | 0.00             | 0.00             | 0.03             |
| Sc2O3                | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             |
| Total                | 100.72            | 100.51            | 99.00             | 100.24            | 99.84             | 101.08            | 100.14            | 100.84           | 100.40           | 101.95           | 101.20           | 102.14           |
| Fe3+ model           | Droop 1987        | Droop 1987       | Droop 1987       | Droop 1987       | Droop 1987       | Droop 1987       |
| Si                   | 1.96              | 1.95              | 2.00              | 1.97              | 1.96              | 1.97              | 1.98              | 1.97             | 1.98             | 1.97             | 1.98             | 1.97             |
| Ti                   | 0.01              | 0.01              | 0.01              | 0.01              | 0.01              | 0.01              | 0.02              | 0.01             | 0.01             | 0.01             | 0.01             | 0.01             |
| AI (T)               | 0.02              | 0.03              | 0.00              | 0.02              | 0.02              | 0.02              | 0.02              | 0.01             | 0.02             | 0.00             | 0.01             | 0.01             |
| AI (M1)              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             |
| Fe3+ (T)             | 0.02              | 0.02              | 0.00              | 0.01              | 0.02              | 0.01              | 0.00              | 0.02             | 0.01             | 0.02             | 0.01             | 0.02             |
| Fe3+ (M1)            | 0.05              | 0.07              | 0.33              | 0.05              | 0.05              | 0.05              | 0.03              | 0.11             | 0.08             | 0.06             | 0.06             | 0.09             |
| Fe3+ (T+M1)          | 0.07              | 0.09              | 0.33              | 0.06              | 0.07              | 0.06              | 0.03              | 0.13             | 0.09             | 0.09             | 0.08             | 0.11             |
| Fe2+                 | 0.42              | 0.39              | 0.53              | 0.46              | 0.42              | 0.43              | 0.43              | 0.51             | 0.49             | 0.39             | 0.42             | 0.42             |
| Mn                   | 0.03              | 0.03              | 0.06              | 0.03              | 0.03              | 0.03              | 0.03              | 0.04             | 0.04             | 0.04             | 0.03             | 0.03             |
| Mg                   | 0.59              | 0.61              | 0.12              | 0.55              | 0.58              | 0.58              | 0.60              | 0.40             | 0.46             | 0.57             | 0.54             | 0.56             |
| Са                   | 0.87              | 0.86              | 0.60              | 0.86              | 0.86              | 0.87              | 0.85              | 0.83             | 0.83             | 0.89             | 0.88             | 0.82             |
| К                    | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             |
| Na                   | 0.03              | 0.04              | 0.35              | 0.04              | 0.03              | 0.03              | 0.05              | 0.09             | 0.07             | 0.04             | 0.05             | 0.08             |
| Li                   | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             |
| Zn                   | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             |
| Ni                   | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             |
| Cr                   | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             |
| Sc                   | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             |
| Total                | 4.00              | 4.00              | 4.00              | 4.00              | 4.00              | 4.00              | 4.00              | 4.00             | 4.00             | 4.00             | 4.00             | 4.00             |
| group                | Quad              | Quad              | Ca-Na             | Quad              | Quad              | Quad              | Quad              | Quad             | Quad             | Quad             | Quad             | Quad             |
| adjective            |                   |                   |                   |                   |                   |                   |                   | ferrian          |                  |                  |                  | ferrian          |
| pyroxene             | augite            | augite            | aegirine-augite   | augite            | augite            | augite            | augite            | augite           | augite           | diopside         | diopside         | augite           |
| enstatite            | 29.9              | 30.7              |                   | 28.0              | 29.6              | 29.6              | 30.8              | 21.0             | 24.1             | 28.7             | 27.7             | 28.9             |
| ferrosillite         | 26.3              | 25.6              |                   | 28.2              | 26.6              | 26.3              | 25.3              | 35.5             | 32.5             | 26.0             | 27.1             | 28.6             |
| wollastonite         | 43.8              | 43.7              |                   | 43.8              | 43.8              | 44.1              | 43.8              | 43.4             | 43.3             | 45.3             | 45.2             | 42.5             |
| jadeite              |                   |                   | 0                 |                   |                   |                   |                   |                  |                  |                  |                  |                  |
| aegirine             |                   |                   | 35.5              |                   |                   |                   |                   |                  |                  |                  |                  |                  |
| Quad                 |                   |                   | 64.5              |                   |                   |                   |                   |                  |                  |                  |                  |                  |
|                      |                   |                   |                   |                   |                   |                   |                   |                  |                  |                  |                  |                  |

| Type roche<br>sample | CaNaS<br>TC09-45 | CaNaS<br>TC09-45<br>TC09-45-2D-030 | CaNaS<br>TC09-57<br>TC09-57-C6-p1 | CaNaS<br>TC09-57<br>TC09-57-C8-p1 | CaNaS<br>TC09-63<br>TC09-63-C1-p1 | CaNaS<br>TC09-63<br>TC09-63-C2-p1 | CaNaS<br>TC09-63<br>TC09-63-C2-p2 | CaNaS<br>TC09-63<br>TC09-63-C3-p1 | CaNaS<br>TC09-63<br>TC09-63-C4-p1 | CaNaS<br>TC09-63<br>TC09-63-C4-p2 | CaNaS<br>TC09-63<br>TC09-63-C4-p3 | CaNaS<br>TC09-63<br>TC09-63-C5-p1 |
|----------------------|------------------|------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| sample               | 1007-43-20-027   | 1007-43-20-030                     | 1003-37-00-p1                     | 1009-37-00-p1                     | 1009-03-01-p1                     | 1009-03-02-p1                     | 1009-03-02-pz                     | 1009-03-03-p1                     | 1009-03-04-p1                     | 1009-03-04-pz                     | 1009-03-04-p3                     | 1003-03-03-p1                     |
| SiO2                 | 51.37            | 51.72                              | 50.60                             | 50.26                             | 52.18                             | 52.60                             | 51.64                             | 51.99                             | 52.17                             | 53.26                             | 52.56                             | 53.29                             |
| TiO2                 | 0.27             | 0.34                               | 0.40                              | 0.37                              | 2.30                              | 2.69                              | 0.34                              | 1.02                              | 0.11                              | 0.19                              | 0.07                              | 0.29                              |
| AI2O3                | 0.30             | 0.30                               | 0.48                              | 0.42                              | 0.00                              | 0.00                              | 0.13                              | 0.33                              | 0.50                              | 0.63                              | 0.74                              | 0.09                              |
| FeO                  | 16.60            | 15.87                              | 15.29                             | 17.16                             | 26.81                             | 27.31                             | 30.96                             | 27.82                             | 28.18                             | 27.04                             | 28.27                             | 30.06                             |
| MnO                  | 1.07             | 1.10                               | 0.78                              | 0.97                              | 1.10                              | 0.66                              | 0.74                              | 0.41                              | 1.07                              | 0.99                              | 0.72                              | 0.15                              |
| MaO                  | 10.22            | 10.09                              | 10.22                             | 8.98                              | 0.95                              | 0.55                              | 0.03                              | 1.11                              | 1.03                              | 1.98                              | 1.11                              | 0.03                              |
| CaO                  | 20.23            | 20.50                              | 21.75                             | 21.25                             | 1.22                              | 1.55                              | 4.04                              | 1.98                              | 4.68                              | 5.50                              | 3.87                              | 0.46                              |
| K2O                  | 0.00             | 0.03                               | 0.00                              | 0.02                              | 0.01                              | 0.00                              | 0.01                              | 0.00                              | 0.01                              | 0.00                              | 0.00                              | 0.00                              |
| Na2O                 | 0.67             | 0.65                               | 0.61                              | 0.63                              | 13.29                             | 13.46                             | 11.50                             | 12.76                             | 11.59                             | 10.94                             | 12.07                             | 13.82                             |
| Li2O                 | 0.00             | 0.00                               | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              |
| ZnO                  | 0.00             | 0.00                               | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              |
| NIO                  | 0.00             | 0.00                               | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              |
| Cr2O3                | 0.00             | 0.02                               | 0.04                              | 0.01                              | 0.05                              | 0.00                              | 0.00                              | 0.05                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              |
| Sc2O3                | 0.00             | 0.00                               | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              |
| Total                | 100.73           | 100.62                             | 100.17                            | 100.07                            | 97.90                             | 98.82                             | 99.40                             | 97.47                             | 99.34                             | 100.54                            | 99.42                             | 98.19                             |
| Fe3+ model           | Droop 1987       | Droop 1987                         | Droop 1987                        | Droop 1987                        | Droop 1987                        | Droop 1987                        | Droop 1987                        | Droop 1987                        | Droop 1987                        | Droop 1987                        | Droop 1987                        | Droop 1987                        |
| Si                   | 1.96             | 1.97                               | 1.93                              | 1.94                              | 1.97                              | 1.97                              | 1.96                              | 1.97                              | 1.96                              | 1.98                              | 1.97                              | 2.01                              |
| Ti                   | 0.01             | 0.01                               | 0.01                              | 0.01                              | 0.07                              | 0.08                              | 0.01                              | 0.03                              | 0.00                              | 0.01                              | 0.00                              | 0.01                              |
| AI (T)               | 0.01             | 0.01                               | 0.02                              | 0.02                              | 0.00                              | 0.00                              | 0.01                              | 0.01                              | 0.02                              | 0.02                              | 0.03                              | 0.00                              |
| AI (M1)              | 0.00             | 0.00                               | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.01                              | 0.00                              | 0.00                              |
| Fe3+ (T)             | 0.03             | 0.01                               | 0.04                              | 0.04                              | 0.03                              | 0.03                              | 0.03                              | 0.01                              | 0.02                              | 0.00                              | 0.00                              | 0.00                              |
| Fe3+ (M1)            | 0.08             | 0.06                               | 0.09                              | 0.09                              | 0.87                              | 0.85                              | 0.87                              | 0.91                              | 0.88                              | 0.79                              | 0.91                              | 0.98                              |
| Fe3+ (T+M1)          | 0.10             | 0.07                               | 0.13                              | 0.13                              | 0.90                              | 0.88                              | 0.90                              | 0.92                              | 0.89                              | 0.79                              | 0.91                              | 0.98                              |
| Fe2+                 | 0.43             | 0.44                               | 0.36                              | 0.43                              | 0.00                              | 0.00                              | 0.09                              | 0.00                              | 0.00                              | 0.05                              | 0.00                              | 0.00                              |
| Mn                   | 0.03             | 0.04                               | 0.03                              | 0.03                              | 0.04                              | 0.02                              | 0.02                              | 0.01                              | 0.03                              | 0.03                              | 0.02                              | 0.00                              |
| Mg                   | 0.58             | 0.57                               | 0.58                              | 0.52                              | 0.05                              | 0.03                              | 0.00                              | 0.06                              | 0.06                              | 0.11                              | 0.06                              | 0.00                              |
| Са                   | 0.83             | 0.84                               | 0.89                              | 0.88                              | 0.05                              | 0.06                              | 0.16                              | 0.08                              | 0.19                              | 0.22                              | 0.16                              | 0.02                              |
| K                    | 0.00             | 0.00                               | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              |
| Na                   | 0.05             | 0.05                               | 0.05                              | 0.05                              | 0.97                              | 0.98                              | 0.85                              | 0.94                              | 0.85                              | 0.79                              | 0.88                              | 1.01                              |
| Li                   | 0.00             | 0.00                               | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              |
| Zn                   | 0.00             | 0.00                               | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              |
| Ni                   | 0.00             | 0.00                               | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              |
| Cr                   | 0.00             | 0.00                               | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              |
| Sc                   | 0.00             | 0.00                               | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              | 0.00                              |
| Total                | 4.00             | 4.00                               | 4.00                              | 4.00                              | 4.05                              | 4.02                              | 4.00                              | 4.03                              | 4.01                              | 4.00                              | 4.02                              | 4.03                              |
| group                | Quad             | Quad                               | Quad                              | Quad                              | Na                                |
| adjective            | ferrian          |                                    | ferrian                           | ferrian                           |                                   |                                   |                                   |                                   |                                   | magnesian                         |                                   |                                   |
| pyroxene             | augite           | augite                             | diopside                          | hedenbergite                      | aegirine                          |
| enstatite            | 29.5             | 29.4                               | 29.3                              | 26.1                              |                                   |                                   |                                   |                                   |                                   |                                   |                                   |                                   |
| terrosillite         | 28.6             | 27.7                               | 25.9                              | 29.6                              |                                   |                                   |                                   |                                   |                                   |                                   |                                   |                                   |
| wollastonite         | 41.9             | 42.9                               | 44.8                              | 44.4                              |                                   |                                   |                                   |                                   |                                   |                                   |                                   |                                   |
| jadeite              |                  |                                    |                                   |                                   | 0                                 | 0                                 | 0                                 | 0                                 | 0                                 | 0.6                               | 0                                 | 0.4                               |
| aegirine             |                  |                                    |                                   |                                   | 95.0                              | 95.5                              | 87.0                              | 92.9                              | 87.3                              | 80.1                              | 89.0                              | 98.6                              |
| Quad                 |                  |                                    |                                   |                                   | 5.0                               | 4.5                               | 13.0                              | 7.1                               | 12.7                              | 19.3                              | 11.0                              | 1.0                               |

| Type roche<br>sample<br>sample | CaNaS<br><b>TC09-63</b><br>TC09-63-C5-p2 | CaNaS<br><b>TC09-63</b><br>TC09-63-C5-p3 | CaNaS<br><b>TC09-63</b><br>TC09-63-C5-p4 | CaNaS<br><b>TC09-63</b><br>TC09-63-C6-p1 | CaNaS<br><b>TC09-63</b><br>TC09-63-C6-p2 | CaNaS<br><b>TC09-68</b><br>TC09-68-zA-008 | CaNaS<br><b>TC09-68</b><br>TC09-68-zA-015 | CaNaS<br><b>TC09-68</b><br>TC09-68-zA-017 | CaNaS<br><b>TC09-68</b><br>TC09-68-zA-018 | CaNaS<br><b>TC09-68</b><br>TC09-68-zA-020 | CaNaS<br><b>TC09-68</b><br>TC09-68-zB-021 | CaNaS<br><b>TC09-68</b><br>TC09-68-zB-022 |
|--------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| SiO2                           | 52.98                                    | 53.11                                    | 52.68                                    | 52.77                                    | 52.15                                    | 53.45                                     | 53.10                                     | 51.13                                     | 51.26                                     | 52.90                                     | 52.66                                     | 53.14                                     |
| TIO2                           | 0.53                                     | 0.71                                     | 0.33                                     | 0.42                                     | 0.39                                     | 0.61                                      | 0.21                                      | 0.09                                      | 0.34                                      | 1.00                                      | 0.33                                      | 0.45                                      |
| AI203                          | 0.06                                     | 0.00                                     | 0.06                                     | 0.08                                     | 0.03                                     | 0.07                                      | 0.18                                      | 0.05                                      | 0.07                                      | 0.14                                      | 0.52                                      | 0.46                                      |
| FeO                            | 29.31                                    | 29.62                                    | 31 44                                    | 29.23                                    | 28.40                                    | 30.13                                     | 28.17                                     | 25 54                                     | 21.96                                     | 27 33                                     | 13.62                                     | 13 51                                     |
| MnO                            | 0.46                                     | 0.46                                     | 0.09                                     | 0.74                                     | 0.79                                     | 0.25                                      | 0.17                                      | 0.67                                      | 1 13                                      | 0.35                                      | 0.64                                      | 0.76                                      |
| MaQ                            | 0.28                                     | 0.19                                     | 0.03                                     | 0.83                                     | 0.99                                     | 0.09                                      | 0.56                                      | 1.23                                      | 4.81                                      | 0.67                                      | 10.78                                     | 10.10                                     |
| CaO                            | 1.87                                     | 2.95                                     | 0.36                                     | 4.00                                     | 4 10                                     | 0.52                                      | 4 41                                      | 13.10                                     | 16.51                                     | 4 79                                      | 21.36                                     | 21.06                                     |
| K20                            | 0.01                                     | 0.00                                     | 0.02                                     | 0.00                                     | 0.03                                     | 0.01                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.01                                      |
| Na2O                           | 13.00                                    | 12 21                                    | 13.60                                    | 11 77                                    | 11.67                                    | 12.99                                     | 10.63                                     | 5.42                                      | 3.02                                      | 10.15                                     | 0.56                                      | 1.27                                      |
| 1120                           | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      |
| 7n0                            | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      |
| NIO                            | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      |
| Cr2O3                          | 0.00                                     | 0.02                                     | 0.00                                     | 0.01                                     | 0.04                                     | 0.02                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.08                                      | 0.10                                      | 0.05                                      |
| Sc203                          | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      |
| Total                          | 98.51                                    | 99.27                                    | 98.60                                    | 99.85                                    | 98 59                                    | 98.16                                     | 97.42                                     | 97.24                                     | 99.09                                     | 97.41                                     | 100 56                                    | 100.81                                    |
| Fe3+ model                     | Droop 1987                               | Droon 1987                               | Droop 1987                               | Droon 1987                               | Droop 1987                               | Droop 1987                                | Droop 1987                                | Droop 1987                                | Droop 1987                                | Droon 1987                                | Droon 1987                                | Droon 1987                                |
| Si                             | 2.00                                     | 2.01                                     | 1.98                                     | 1 98                                     | 1.98                                     | 2.03                                      | 2.06                                      | 2.05                                      | 2.02                                      | 2.06                                      | 2.00                                      | 2.00                                      |
| Ti                             | 0.02                                     | 0.02                                     | 0.01                                     | 0.01                                     | 0.01                                     | 0.02                                      | 0.01                                      | 0.00                                      | 0.01                                      | 0.03                                      | 0.01                                      | 0.01                                      |
| AL (T)                         | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      |
| AL (M1)                        | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                      | 0.01                                      | 0.00                                      | 0.00                                      | 0.01                                      | 0.02                                      | 0.02                                      |
| Fe3+ (T)                       | 0.00                                     | 0.00                                     | 0.01                                     | 0.02                                     | 0.02                                     | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      |
| Fe3+ (M1)                      | 0.92                                     | 0.84                                     | 0.99                                     | 0.85                                     | 0.86                                     | 0.86                                      | 0.67                                      | 0.31                                      | 0.17                                      | 0.58                                      | 0.01                                      | 0.04                                      |
| Fe3+ (T+M1)                    | 0.92                                     | 0.84                                     | 1.00                                     | 0.87                                     | 0.88                                     | 0.86                                      | 0.67                                      | 0.31                                      | 0.17                                      | 0.58                                      | 0.01                                      | 0.04                                      |
| Fe2+                           | 0.00                                     | 0.09                                     | 0.00                                     | 0.05                                     | 0.02                                     | 0.10                                      | 0.25                                      | 0.55                                      | 0.55                                      | 0.31                                      | 0.43                                      | 0.39                                      |
| Mn                             | 0.01                                     | 0.01                                     | 0.00                                     | 0.02                                     | 0.03                                     | 0.01                                      | 0.01                                      | 0.02                                      | 0.04                                      | 0.01                                      | 0.02                                      | 0.02                                      |
| Ma                             | 0.02                                     | 0.01                                     | 0.00                                     | 0.05                                     | 0.06                                     | 0.01                                      | 0.03                                      | 0.07                                      | 0.28                                      | 0.04                                      | 0.61                                      | 0.57                                      |
| Ca                             | 0.08                                     | 0.12                                     | 0.01                                     | 0.16                                     | 0.17                                     | 0.02                                      | 0.18                                      | 0.56                                      | 0.70                                      | 0.20                                      | 0.87                                      | 0.85                                      |
| ĸ                              | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      |
| Na                             | 0.95                                     | 0.89                                     | 0.99                                     | 0.86                                     | 0.86                                     | 0.96                                      | 0.80                                      | 0.42                                      | 0.23                                      | 0.77                                      | 0.04                                      | 0.09                                      |
| 11                             | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      |
| Zn                             | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      |
| Ni                             | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      |
| Cr                             | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      |
| Sc                             | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      | 0.00                                      |
| Total                          | 4.00                                     | 4.00                                     | 4.01                                     | 4.00                                     | 4.00                                     | 4.00                                      | 4.00                                      | 4.00                                      | 4.00                                      | 4.00                                      | 4.00                                      | 4.00                                      |
| group                          | Na                                       | Na                                       | Na                                       | Na                                       | Na                                       | Na                                        | Ca-Na                                     | Ca-Na                                     | Ca-Na                                     | Ca-Na                                     | Quad                                      | Quad                                      |
| adjective                      |                                          |                                          |                                          |                                          |                                          |                                           | ferrian sodian                            |                                           |                                           | ferrian sodian                            |                                           |                                           |
| pyroxene                       | aegirine                                 | aegirine                                 | aegirine                                 | aegirine                                 | aegirine                                 | aegirine                                  | aegirine-augite                           | aegirine-augite                           | aegirine-augite                           | aegirine-augite                           | augite                                    | diopside                                  |
| enstatite                      |                                          |                                          |                                          |                                          |                                          |                                           |                                           |                                           |                                           |                                           | 31.6                                      | 30.4                                      |
| ferrosillite                   |                                          |                                          |                                          |                                          |                                          |                                           |                                           |                                           |                                           |                                           | 23.4                                      | 24.1                                      |
| wollastonite                   |                                          |                                          |                                          |                                          |                                          |                                           |                                           |                                           |                                           |                                           | 45.0                                      | 45.5                                      |
| jadeite                        | 0.2                                      | 0                                        | 0                                        | 0                                        | 0                                        | 0.3                                       | 1.0                                       | 0.3                                       | 0.4                                       | 0.8                                       |                                           |                                           |
| aegirine                       | 95.0                                     | 88.9                                     | 99.2                                     | 87.0                                     | 87.5                                     | 93.5                                      | 76.6                                      | 41.2                                      | 22.8                                      | 72.9                                      |                                           |                                           |
| Quad                           | 4.8                                      | 11.1                                     | 0.8                                      | 13.0                                     | 12.5                                     | 6.1                                       | 22.4                                      | 58.5                                      | 76.8                                      | 26.2                                      |                                           |                                           |

| Type roche<br>sample | CaNaS          | CaNaS           | CaNaS           | CaNaS           | CaNaS           | CaNaS          | CaNaS           | CaNaS          | CaNaS          | CaNaS         | CaNaS         | CaNaS         |
|----------------------|----------------|-----------------|-----------------|-----------------|-----------------|----------------|-----------------|----------------|----------------|---------------|---------------|---------------|
| sample               | TC09-68-zB-023 | TC09-68-zB-030  | TC09-68-zB-032  | TC09-68-zC-036  | TC09-68-zC-039  | TC09-68-zC-040 | TC09-68-zC-041  | TC09-68-zD-047 | TC09-68-zD-050 | TC09-69-C1-p1 | TC09-69-C1-p2 | TC09-69-C2-p1 |
| SiO2                 | 52.27          | 52.16           | 50.97           | 51.66           | 51.83           | 51.85          | 51.46           | 51.95          | 52.94          | 52.08         | 52.47         | 52.15         |
| TiO2                 | 0.54           | 0.01            | 0.38            | 0.55            | 0.27            | 0.23           | 0.41            | 0.35           | 0.62           | 0.28          | 0.21          | 0.34          |
| AI2O3                | 0.37           | 0.05            | 0.12            | 0.16            | 0.17            | 0.43           | 0.27            | 0.53           | 0.76           | 0.52          | 0.29          | 0.44          |
| FeO                  | 15.21          | 24.66           | 21.28           | 22.07           | 21.48           | 17.64          | 22.26           | 14.05          | 14.60          | 15.19         | 15.28         | 15.46         |
| MnO                  | 0.66           | 0.51            | 1.12            | 1.12            | 1.00            | 0.87           | 0.99            | 0.77           | 1.01           | 0.91          | 0.90          | 0.79          |
| MgO                  | 9.99           | 2.44            | 5.34            | 4.84            | 5.01            | 7.37           | 4.03            | 9.90           | 9.50           | 9.44          | 9.81          | 10.01         |
| CaO                  | 20.86          | 12.92           | 16.82           | 16.55           | 16.37           | 19.32          | 15.66           | 20.53          | 19.89          | 21.41         | 21.20         | 21.38         |
| K2O                  | 0.00           | 0.00            | 0.01            | 0.00            | 0.00            | 0.01           | 0.03            | 0.00           | 0.06           | 0.01          | 0.00          | 0.00          |
| Na2O                 | 0.59           | 5.81            | 2.69            | 2.66            | 2.80            | 1.71           | 3.03            | 0.85           | 1.56           | 1.15          | 1.12          | 0.82          |
| Li2O                 | 0.00           | 0.00            | 0.00            | 0.00            | 0.00            | 0.00           | 0.00            | 0.00           | 0.00           | 0.00          | 0.00          | 0.00          |
| ZnO                  | 0.00           | 0.00            | 0.00            | 0.00            | 0.00            | 0.00           | 0.00            | 0.00           | 0.00           | 0.00          | 0.00          | 0.00          |
| NIO                  | 0.00           | 0.00            | 0.00            | 0.00            | 0.00            | 0.00           | 0.00            | 0.00           | 0.00           | 0.00          | 0.00          | 0.00          |
| Cr2O3                | 0.04           | 0.06            | 0.00            | 0.03            | 0.01            | 0.00           | 0.00            | 0.01           | 0.00           | 0.00          | 0.00          | 0.00          |
| Sc2O3                | 0.00           | 0.00            | 0.00            | 0.00            | 0.00            | 0.00           | 0.00            | 0.00           | 0.00           | 0.00          | 0.00          | 0.00          |
| Total                | 100.53         | 98.62           | 98.74           | 99.64           | 98.94           | 99.42          | 98.15           | 98.93          | 100.94         | 100.99        | 101.26        | 101.39        |
| Fe3+ model           | Droop 1987     | Droop 1987      | Droop 1987      | Droop 1987      | Droop 1987      | Droop 1987     | Droop 1987      | Droop 1987     | Droop 1987     | Droop 1987    | Droop 1987    | Droop 1987    |
| Si                   | 2.00           | 2.04            | 2.01            | 2.03            | 2.04            | 2.01           | 2.05            | 2.01           | 2.00           | 1.97          | 1.98          | 1.97          |
| Ti                   | 0.02           | 0.00            | 0.01            | 0.02            | 0.01            | 0.01           | 0.01            | 0.01           | 0.02           | 0.01          | 0.01          | 0.01          |
| AI (T)               | 0.00           | 0.00            | 0.00            | 0.00            | 0.00            | 0.00           | 0.00            | 0.00           | 0.00           | 0.02          | 0.01          | 0.02          |
| AI (M1)              | 0.01           | 0.00            | 0.01            | 0.01            | 0.01            | 0.02           | 0.01            | 0.02           | 0.03           | 0.00          | 0.00          | 0.00          |
| Fe3+ (T)             | 0.00           | 0.00            | 0.00            | 0.00            | 0.00            | 0.00           | 0.00            | 0.00           | 0.00           | 0.00          | 0.01          | 0.01          |
| Fe3+ (M1)            | 0.00           | 0.35            | 0.16            | 0.10            | 0.10            | 0.07           | 0.09            | 0.01           | 0.05           | 0.10          | 0.09          | 0.07          |
| Fe3+ (I+M1)          | 0.00           | 0.35            | 0.16            | 0.10            | 0.10            | 0.07           | 0.09            | 0.01           | 0.05           | 0.10          | 0.10          | 0.08          |
| Fe2+                 | 0.48           | 0.46            | 0.55            | 0.62            | 0.60            | 0.50           | 0.65            | 0.44           | 0.41           | 0.38          | 0.39          | 0.41          |
| Mn                   | 0.02           | 0.02            | 0.04            | 0.04            | 0.03            | 0.03           | 0.03            | 0.03           | 0.03           | 0.03          | 0.03          | 0.03          |
| Mg                   | 0.57           | 0.14            | 0.31            | 0.28            | 0.29            | 0.43           | 0.24            | 0.57           | 0.53           | 0.53          | 0.55          | 0.56          |
| Ca                   | 0.85           | 0.54            | 0.71            | 0.70            | 0.69            | 0.80           | 0.67            | 0.85           | 0.80           | 0.87          | 0.86          | 0.86          |
| ĸ                    | 0.00           | 0.00            | 0.00            | 0.00            | 0.00            | 0.00           | 0.00            | 0.00           | 0.00           | 0.00          | 0.00          | 0.00          |
| Na                   | 0.04           | 0.44            | 0.21            | 0.20            | 0.21            | 0.13           | 0.23            | 0.06           | 0.11           | 0.08          | 0.08          | 0.06          |
| LI<br>7              | 0.00           | 0.00            | 0.00            | 0.00            | 0.00            | 0.00           | 0.00            | 0.00           | 0.00           | 0.00          | 0.00          | 0.00          |
| Zn                   | 0.00           | 0.00            | 0.00            | 0.00            | 0.00            | 0.00           | 0.00            | 0.00           | 0.00           | 0.00          | 0.00          | 0.00          |
| INI<br>Cr            | 0.00           | 0.00            | 0.00            | 0.00            | 0.00            | 0.00           | 0.00            | 0.00           | 0.00           | 0.00          | 0.00          | 0.00          |
| CI<br>Co             | 0.00           | 0.00            | 0.00            | 0.00            | 0.00            | 0.00           | 0.00            | 0.00           | 0.00           | 0.00          | 0.00          | 0.00          |
| Ju                   | 4.00           | 4.00            | 4.00            | 4.00            | 4.00            | 4.00           | 4.00            | 4.00           | 4.00           | 4.00          | 4.00          | 4.00          |
| TOLAI                | 4.00           | 4.00            | 4.00            | 4.00            | 4.00            | 4.00           | 4.00            | 4.00           | 4.00           | 4.00          | 4.00          | 4.00          |
| aroup                | Ouad           | Ca-Na           | Ca-Na           | Ca-Na           | Ca-Na           | Quad           | Ca-Na           | Ouad           | Ouad           | Ouad          | Ouad          | Quad          |
| adjective            |                |                 |                 |                 |                 | sodian         |                 |                | sodian         | ferrian       |               |               |
| pyroxene             | augite         | aegirine-augite | aegirine-augite | aegirine-augite | aegirine-augite | augite         | aegirine-augite | augite         | augite         | diopside      | augite        | augite        |
| enstatite            | 29.5           |                 |                 |                 |                 | 23.3           |                 | 30.0           | 29.2           | 27.9          | 28.7          | 29.0          |
| ferrosillite         | 26.3           |                 |                 |                 |                 | 32.8           |                 | 25.2           | 26.9           | 26.7          | 26.6          | 26.5          |
| wollastonite         | 44.2           |                 |                 |                 |                 | 43.9           |                 | 44.7           | 43.9           | 45.4          | 44.6          | 44.5          |
| jadeite              |                | 0.3             | 0.7             | 1.4             | 1.5             |                | 2.8             |                |                |               |               |               |
| aegirine             |                | 43.3            | 20.0            | 18.8            | 19.7            |                | 20.3            |                |                |               |               |               |
| Quad                 |                | 56.5            | 79.2            | 79.8            | 78.8            |                | 76.9            |                |                |               |               |               |
|                      |                |                 |                 |                 |                 |                |                 |                |                |               |               |               |

| Type roche<br>sample<br>sample | CaNaS<br><b>TC09-69</b><br>TC09-69-C2-p2 | CaNaS<br><b>TC09-70</b><br>TC09-70-C3-p1 | CaNaS<br><b>TC09-70</b><br>TC09-70-C4-p1 | CaNaS<br><b>TC09-70</b><br>TC09-70-C4-p2 | CaNaS<br><b>TC09-70</b><br>TC09-70-C4-p3 | CaNaS<br><b>TC09-70</b><br>TC09-70-C5-p1 | CaNaS<br><b>TC09-70</b><br>TC09-70-C5-p2 | CaNaS<br><b>TC09-70</b><br>TC09-70-C7-p1 | CaNaS<br><b>TC09-70</b><br>TC09-70-C7-p2 | CaNaS<br><b>TC09-70</b><br>TC09-70-C8-p1 | CaNaS<br><b>TC09-70</b><br>TC09-70-C8-p2 | CaNaS<br><b>TC09-70</b><br>TC09-70-C9-p1 |
|--------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| \$102                          | 51.40                                    | 50.12                                    | 51.07                                    | 50.93                                    | 10 07                                    | 51.45                                    | 52.09                                    | 51 76                                    | 50.86                                    | 50.00                                    | 50.18                                    | 50.71                                    |
| TiO2                           | 0.25                                     | 0.32                                     | 0.32                                     | 0.42                                     | 0.42                                     | 0.29                                     | 0.38                                     | 0.27                                     | 0.54                                     | 0.37                                     | 0.36                                     | 0.30                                     |
| AI2O3                          | 0.30                                     | 0.27                                     | 0.22                                     | 0.12                                     | 0.16                                     | 0.41                                     | 0.35                                     | 0.42                                     | 0.61                                     | 0.24                                     | 0.23                                     | 0.16                                     |
| FeO                            | 18 16                                    | 22.16                                    | 21 77                                    | 21 51                                    | 22.59                                    | 19.53                                    | 17.50                                    | 18 17                                    | 17 31                                    | 23.63                                    | 22.50                                    | 22.70                                    |
| MnO                            | 1 04                                     | 1.26                                     | 1 14                                     | 1 40                                     | 1 36                                     | 1.00                                     | 0.90                                     | 1 17                                     | 0.88                                     | 1 25                                     | 1 18                                     | 1.42                                     |
| MaQ                            | 7.10                                     | 5.20                                     | 5.45                                     | 4.53                                     | 4.63                                     | 6.55                                     | 7.72                                     | 7.59                                     | 7.87                                     | 4.27                                     | 4.82                                     | 4.04                                     |
| CaO                            | 20.61                                    | 17.69                                    | 17.66                                    | 17.39                                    | 17.63                                    | 19.40                                    | 20.81                                    | 20.43                                    | 20.46                                    | 17.42                                    | 17.67                                    | 17.17                                    |
| K20                            | 0.01                                     | 0.00                                     | 0.02                                     | 0.06                                     | 0.03                                     | 0.03                                     | 0.00                                     | 0.00                                     | 0.03                                     | 0.00                                     | 0.00                                     | 0.01                                     |
| Na2O                           | 1.12                                     | 2.81                                     | 2.97                                     | 2.95                                     | 2.75                                     | 2.50                                     | 1.43                                     | 1.59                                     | 1.63                                     | 2.98                                     | 2.97                                     | 2.94                                     |
| Li2O                           | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     |
| ZnO                            | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     |
| NIO                            | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     |
| Cr2O3                          | 0.03                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.08                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.01                                     | 0.00                                     |
| Sc2O3                          | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     |
| Total                          | 100.02                                   | 99.82                                    | 100.63                                   | 99.36                                    | 99.53                                    | 101.23                                   | 101.18                                   | 101.39                                   | 100.20                                   | 100.16                                   | 99.93                                    | 99.45                                    |
| Fe3+ model                     | Droop 1987                               |
| Si                             | 2.00                                     | 1.96                                     | 1.97                                     | 2.00                                     | 1.97                                     | 1.96                                     | 1.99                                     | 1.97                                     | 1.95                                     | 1.96                                     | 1.96                                     | 2.00                                     |
| Ti                             | 0.01                                     | 0.01                                     | 0.01                                     | 0.01                                     | 0.01                                     | 0.01                                     | 0.01                                     | 0.01                                     | 0.02                                     | 0.01                                     | 0.01                                     | 0.01                                     |
| AI (T)                         | 0.00                                     | 0.01                                     | 0.01                                     | 0.00                                     | 0.01                                     | 0.02                                     | 0.01                                     | 0.02                                     | 0.03                                     | 0.01                                     | 0.01                                     | 0.00                                     |
| AI (M1)                        | 0.01                                     | 0.00                                     | 0.00                                     | 0.01                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.01                                     |
| Fe3+ (T)                       | 0.00                                     | 0.03                                     | 0.02                                     | 0.00                                     | 0.03                                     | 0.02                                     | 0.00                                     | 0.01                                     | 0.02                                     | 0.03                                     | 0.03                                     | 0.00                                     |
| Fe3+ (M1)                      | 0.06                                     | 0.24                                     | 0.23                                     | 0.19                                     | 0.22                                     | 0.20                                     | 0.09                                     | 0.13                                     | 0.14                                     | 0.25                                     | 0.24                                     | 0.20                                     |
| Fe3+ (T+M1)                    | 0.06                                     | 0.27                                     | 0.25                                     | 0.19                                     | 0.25                                     | 0.22                                     | 0.09                                     | 0.14                                     | 0.15                                     | 0.28                                     | 0.27                                     | 0.20                                     |
| Fe2+                           | 0.53                                     | 0.46                                     | 0.45                                     | 0.51                                     | 0.49                                     | 0.40                                     | 0.47                                     | 0.44                                     | 0.40                                     | 0.49                                     | 0.46                                     | 0.55                                     |
| Mn                             | 0.03                                     | 0.04                                     | 0.04                                     | 0.05                                     | 0.05                                     | 0.03                                     | 0.03                                     | 0.04                                     | 0.03                                     | 0.04                                     | 0.04                                     | 0.05                                     |
| Mg                             | 0.41                                     | 0.30                                     | 0.31                                     | 0.27                                     | 0.27                                     | 0.37                                     | 0.44                                     | 0.43                                     | 0.45                                     | 0.25                                     | 0.28                                     | 0.24                                     |
| Ca                             | 0.86                                     | 0.74                                     | 0.73                                     | 0.73                                     | 0.74                                     | 0.79                                     | 0.85                                     | 0.83                                     | 0.84                                     | 0.73                                     | 0.74                                     | 0.73                                     |
| К                              | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     |
| Na                             | 0.08                                     | 0.21                                     | 0.22                                     | 0.22                                     | 0.21                                     | 0.18                                     | 0.11                                     | 0.12                                     | 0.12                                     | 0.23                                     | 0.22                                     | 0.23                                     |
| Li                             | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     |
| Zn                             | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     |
| Ni                             | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     |
| Cr                             | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     |
| Sc                             | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     |
| Total                          | 4.00                                     | 4.00                                     | 4.00                                     | 4.00                                     | 4.00                                     | 4.00                                     | 4.00                                     | 4.00                                     | 4.00                                     | 4.00                                     | 4.00                                     | 4.00                                     |
| group                          | Quad                                     | Ca-Na                                    | Ca-Na                                    | Ca-Na                                    | Ca-Na                                    | Quad                                     | Quad                                     | Quad                                     | Quad                                     | Ca-Na                                    | Ca-Na                                    | Ca-Na                                    |
| adjective                      |                                          |                                          |                                          |                                          |                                          | ferrian sodian                           | sodian                                   | ferrian sodian                           | ferrian sodian                           |                                          |                                          |                                          |
| pyroxene                       | hedenbergite                             | aegirine-augite                          | aegirine-augite                          | aegirine-augite                          | aegirine-augite                          | augite                                   | hedenbergite                             | augite                                   | hedenbergite                             | aegirine-augite                          | aegirine-augite                          | aegirine-augite                          |
| enstatite                      | 21.7                                     |                                          |                                          |                                          |                                          | 20.5                                     | 23.4                                     | 22.9                                     | 24.0                                     |                                          |                                          |                                          |
| ferrosillite                   | 33.0                                     |                                          |                                          |                                          |                                          | 36.0                                     | 31.3                                     | 32.8                                     | 31.1                                     |                                          |                                          |                                          |
| wollastonite                   | 45.3                                     |                                          |                                          |                                          |                                          | 43.5                                     | 45.3                                     | 44.3                                     | 44.8                                     |                                          |                                          |                                          |
| jadeite                        |                                          | 0                                        | 0                                        | 0.9                                      | 0                                        |                                          |                                          |                                          |                                          | 0                                        | 0                                        | 0.7                                      |
| aegirine                       |                                          | 22.1                                     | 22.9                                     | 22.0                                     | 21.8                                     |                                          |                                          |                                          |                                          | 23.5                                     | 23.3                                     | 22.3                                     |
| Quad                           |                                          | 77.9                                     | 77.1                                     | 77.1                                     | 78.2                                     |                                          |                                          |                                          |                                          | 76.5                                     | 76.7                                     | 77.0                                     |

| Type roche   | CaNaS           | CaNaS           | CaNaS           | CaNaS        | CaNaS        | CaNaS           | CaNaS           | CaNaS           | CaNaS           | CaNaS           | CaNaS           | CaNaS           |
|--------------|-----------------|-----------------|-----------------|--------------|--------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| sample       | TC09-70         | TK101           | TK101           | TK101        | TK101        | TK109           |
| sample       | TC09-70-C9-p2   | TK101-C1-003    | TK101-C1-004    | TK101-C1-006 | TK101-C1-008 | TK-109-C1-1     | TK-109-C1-2     | TK-109-C1-3     | TK-109-C1-4     | TK-109-C1-5     | TK-109-C1-6     | TK-109-C1-8     |
| SiO2         | 50.98           | 51.95           | 52.12           | 52.30        | 51.86        | 51.65           | 51.18           | 51.87           | 51.73           | 51.76           | 51.22           | 51.81           |
| TiO2         | 0.43            | 0.98            | 0.11            | 0.33         | 0.38         | 0.31            | 0.29            | 0.11            | 0.15            | 0.30            | 0.32            | 0.08            |
| AI2O3        | 0.14            | 0.20            | 0.24            | 0.71         | 0.80         | 1.27            | 1.13            | 0.98            | 0.96            | 0.81            | 0.61            | 0.98            |
| FeO          | 23.09           | 27.54           | 28.49           | 14.75        | 14.19        | 19.13           | 19.10           | 19.45           | 19.85           | 18.57           | 18.20           | 19.09           |
| MnO          | 1.49            | 0.40            | 0.55            | 0.90         | 0.92         | 0.96            | 1.02            | 1.12            | 1.39            | 0.96            | 0.93            | 0.93            |
| MgO          | 4.44            | 0.93            | 0.58            | 9.78         | 10.03        | 5.64            | 5.62            | 5.23            | 4.92            | 5.84            | 6.07            | 5.22            |
| CaO          | 16.79           | 7.14            | 6.95            | 20.39        | 20.73        | 13.85           | 13.81           | 13.06           | 13.11           | 15.59           | 15.52           | 13.26           |
| K2O          | 0.01            | 0.00            | 0.00            | 0.03         | 0.01         | 0.01            | 0.00            | 0.03            | 0.02            | 0.04            | 0.03            | 0.01            |
| Na2O         | 3.22            | 8.89            | 9.29            | 0.98         | 0.97         | 5.41            | 5.35            | 5.81            | 5.68            | 4.70            | 4.67            | 5.80            |
| Li2O         | 0.00            | 0.00            | 0.00            | 0.00         | 0.00         | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            |
| ZnO          | 0.00            | 0.00            | 0.00            | 0.00         | 0.00         | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            |
| NIO          | 0.00            | 0.00            | 0.00            | 0.00         | 0.00         | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            |
| Cr2O3        | 0.00            | 0.00            | 0.00            | 0.00         | 0.00         | 0.01            | 0.00            | 0.00            | 0.09            | 0.01            | 0.05            | 0.00            |
| Sc2O3        | 0.00            | 0.00            | 0.00            | 0.00         | 0.00         | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            |
| Total        | 100.59          | 98.02           | 98.32           | 100.16       | 99.90        | 98.24           | 97.50           | 97.66           | 97.89           | 98.56           | 97.62           | 97.18           |
| Fe3+ model   | Droop 1987      | Droop 1987      | Droop 1987      | Droop 1987   | Droop 1987   | Droop 1987      | Droop 1987      | Droop 1987      | Droop 1987      | Droop 1987      | Droop 1987      | Droop 1987      |
| Si           | 1.98            | 2.03            | 2.02            | 2.00         | 1.98         | 1.99            | 1.99            | 2.01            | 2.00            | 1.99            | 1.99            | 2.01            |
| Ti           | 0.01            | 0.03            | 0.00            | 0.01         | 0.01         | 0.01            | 0.01            | 0.00            | 0.00            | 0.01            | 0.01            | 0.00            |
| AI (T)       | 0.01            | 0.00            | 0.00            | 0.00         | 0.02         | 0.01            | 0.01            | 0.00            | 0.00            | 0.01            | 0.01            | 0.00            |
| AI (M1)      | 0.00            | 0.01            | 0.01            | 0.03         | 0.02         | 0.04            | 0.04            | 0.04            | 0.04            | 0.03            | 0.02            | 0.04            |
| Fe3+ (T)     | 0.01            | 0.00            | 0.00            | 0.00         | 0.00         | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            |
| Fe3+ (M1)    | 0.24            | 0.55            | 0.64            | 0.03         | 0.05         | 0.35            | 0.36            | 0.37            | 0.36            | 0.31            | 0.33            | 0.36            |
| Fe3+ (T+M1)  | 0.25            | 0.55            | 0.64            | 0.03         | 0.05         | 0.35            | 0.36            | 0.37            | 0.36            | 0.31            | 0.33            | 0.36            |
| Fe2+         | 0.50            | 0.35            | 0.29            | 0.44         | 0.40         | 0.26            | 0.26            | 0.26            | 0.28            | 0.29            | 0.26            | 0.26            |
| Mn           | 0.05            | 0.01            | 0.02            | 0.03         | 0.03         | 0.03            | 0.03            | 0.04            | 0.05            | 0.03            | 0.03            | 0.03            |
| Mg           | 0.26            | 0.05            | 0.03            | 0.56         | 0.57         | 0.32            | 0.32            | 0.30            | 0.28            | 0.34            | 0.35            | 0.30            |
| Са           | 0.70            | 0.30            | 0.29            | 0.83         | 0.85         | 0.57            | 0.57            | 0.54            | 0.54            | 0.64            | 0.65            | 0.55            |
| К            | 0.00            | 0.00            | 0.00            | 0.00         | 0.00         | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            |
| Na           | 0.24            | 0.67            | 0.70            | 0.07         | 0.07         | 0.40            | 0.40            | 0.44            | 0.43            | 0.35            | 0.35            | 0.44            |
| Li           | 0.00            | 0.00            | 0.00            | 0.00         | 0.00         | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            |
| Zn           | 0.00            | 0.00            | 0.00            | 0.00         | 0.00         | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            |
| Ni           | 0.00            | 0.00            | 0.00            | 0.00         | 0.00         | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            |
| Cr           | 0.00            | 0.00            | 0.00            | 0.00         | 0.00         | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            |
| Sc           | 0.00            | 0.00            | 0.00            | 0.00         | 0.00         | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            | 0.00            |
| Total        | 4.00            | 4.00            | 4.00            | 4.00         | 4.00         | 4.00            | 4.00            | 4.00            | 4.00            | 4.00            | 4.00            | 4.00            |
| group        | Ca-Na           | Ca-Na           | Ca-Na           | Quad         | Quad         | Ca-Na           |
| adjective    |                 | ferrian sodian  | ferrian sodian  |              |              |                 |                 |                 |                 |                 |                 |                 |
| pyroxene     | aegirine-augite | aegirine-augite | aegirine-augite | augite       | augite       | aegirine-augite |
| enstatite    |                 |                 |                 | 29.4         | 30.0         |                 |                 |                 |                 |                 |                 |                 |
| ferrosillite |                 |                 |                 | 26.5         | 25.4         |                 |                 |                 |                 |                 |                 |                 |
| wollastonite |                 |                 |                 | 44.1         | 44.6         |                 |                 |                 |                 |                 |                 |                 |
| jadeite      | 0               | 1.1             | 1.2             |              |              | 4.6             | 3.8             | 4.7             | 4.7             | 3.2             | 1.8             | 4.8             |
| aegirine     | 25.0            | 64.7            | 68.4            |              |              | 36.5            | 37.2            | 39.5            | 38.9            | 32.5            | 34.0            | 39.2            |
| Quad         | 75.0            | 34.2            | 30.4            |              |              | 58.9            | 59.0            | 55.7            | 56.5            | 64.3            | 64.2            | 56.0            |

| Type roche<br>sample<br>sample | CaNaS<br><b>TK117A</b><br>TK117A-C1-001 | CaNaS<br><b>TK117A</b><br>TK117A-C1-002 | CaNaS<br><b>TK117A</b><br>TK117A-C1-006 | CaNaS<br><b>TK117A</b><br>TK117A-C1-009 | CaNaS<br><b>TK119B</b><br>TK119B-C1-001 | CaNaS<br><b>TK119B</b><br>TK119B-C1-0010 | CaNaS<br><b>TK119B</b><br>TK119B-C1-0015 | CaNaS<br><b>TK119B</b><br>TK119B-C1-0017 | CaNaS<br><b>TK119B</b><br>TK119B-C1-0018 | CaNaS<br><b>TK119B</b><br>TK119B-C1-002 | CaNaS<br><b>TK119B</b><br>TK119B-C1-0022 | CaNaS<br><b>TK119B</b><br>TK119B-C1-0023 |
|--------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|
| SIO2                           | 51 14                                   | 51 56                                   | 52 12                                   | 52 11                                   | 52.45                                   | 50.83                                    | 50.40                                    | 50.12                                    | 52.66                                    | 49.16                                   | 50.72                                    | 50.62                                    |
| TIO2                           | 0.30                                    | 0.44                                    | 0.55                                    | 0.60                                    | 3.06                                    | 0.34                                     | 0.41                                     | 0.80                                     | 4 18                                     | 0.37                                    | 0.47                                     | 0.24                                     |
| AI2O3                          | 0.50                                    | 0.82                                    | 0.25                                    | 0.25                                    | 0.16                                    | 0.17                                     | 0.48                                     | 0.93                                     | 0.20                                     | 0.28                                    | 0.52                                     | 0.18                                     |
| FeO                            | 17.96                                   | 14 72                                   | 28.33                                   | 27.32                                   | 26.69                                   | 26.27                                    | 21 37                                    | 20.10                                    | 24.38                                    | 25.21                                   | 20.41                                    | 28.37                                    |
| MnO                            | 1.17                                    | 1.01                                    | 0.80                                    | 0.84                                    | 0.51                                    | 1.12                                     | 1.04                                     | 1.03                                     | 0.75                                     | 1.20                                    | 1.13                                     | 0.99                                     |
| MaQ                            | 7.42                                    | 9.80                                    | 0.65                                    | 1.23                                    | 0.04                                    | 0.98                                     | 4.62                                     | 6.15                                     | 0.24                                     | 2.52                                    | 6.24                                     | 0.25                                     |
| CaO                            | 19.66                                   | 20.76                                   | 6.24                                    | 5.94                                    | 2.44                                    | 13.52                                    | 20.72                                    | 19.82                                    | 4.06                                     | 20.31                                   | 20.64                                    | 13.85                                    |
| K20                            | 0.09                                    | 0.02                                    | 0.00                                    | 0.02                                    | 0.01                                    | 0.00                                     | 0.02                                     | 0.00                                     | 0.02                                     | 0.00                                    | 0.00                                     | 0.00                                     |
| Na2O                           | 2.24                                    | 0.75                                    | 9.24                                    | 9.47                                    | 11.67                                   | 5.14                                     | 0.64                                     | 0.63                                     | 10.73                                    | 0.88                                    | 0.48                                     | 4.72                                     |
| 1120                           | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                    | 0.00                                     | 0.00                                     |
| 7nO                            | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                    | 0.00                                     | 0.00                                     |
| NIO                            | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                    | 0.00                                     | 0.00                                     |
| Cr2O3                          | 0.00                                    | 0.01                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.01                                     | 0.01                                     | 0.01                                     | 0.01                                     | 0.00                                    | 0.00                                     | 0.01                                     |
| Sc2O3                          | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                    | 0.00                                     | 0.00                                     |
| Total                          | 100.49                                  | 99.88                                   | 98.18                                   | 97.79                                   | 97.02                                   | 98.37                                    | 99.71                                    | 99.59                                    | 97.23                                    | 99.92                                   | 100.60                                   | 99.21                                    |
| Fe3+ model                     | Droop 1987                               | Droop 1987                               | Droop 1987                               | Droop 1987                               | Droop 1987                              | Droop 1987                               | Droop 1987                               |
| Si                             | 1.96                                    | 1.98                                    | 2.03                                    | 2.02                                    | 2.04                                    | 2.03                                     | 2.01                                     | 1.98                                     | 2.05                                     | 1.98                                    | 1.99                                     | 2.03                                     |
| Ti                             | 0.01                                    | 0.01                                    | 0.02                                    | 0.02                                    | 0.09                                    | 0.01                                     | 0.01                                     | 0.02                                     | 0.12                                     | 0.01                                    | 0.01                                     | 0.01                                     |
| AI (T)                         | 0.02                                    | 0.02                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                     | 0.00                                     | 0.02                                     | 0.00                                     | 0.01                                    | 0.01                                     | 0.00                                     |
| AI (M1)                        | 0.00                                    | 0.01                                    | 0.01                                    | 0.01                                    | 0.01                                    | 0.01                                     | 0.02                                     | 0.03                                     | 0.01                                     | 0.00                                    | 0.01                                     | 0.01                                     |
| Fe3+ (T)                       | 0.02                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                    | 0.00                                     | 0.00                                     |
| Fe3+ (M1)                      | 0.20                                    | 0.04                                    | 0.60                                    | 0.62                                    | 0.62                                    | 0.31                                     | 0.00                                     | 0.00                                     | 0.45                                     | 0.06                                    | 0.01                                     | 0.29                                     |
| Fe3+ (T+M1)                    | 0.22                                    | 0.04                                    | 0.60                                    | 0.62                                    | 0.62                                    | 0.31                                     | 0.00                                     | 0.00                                     | 0.45                                     | 0.06                                    | 0.01                                     | 0.29                                     |
| Fe2+                           | 0.36                                    | 0.43                                    | 0.33                                    | 0.27                                    | 0.25                                    | 0.57                                     | 0.71                                     | 0.67                                     | 0.34                                     | 0.79                                    | 0.66                                     | 0.66                                     |
| Mn                             | 0.04                                    | 0.03                                    | 0.03                                    | 0.03                                    | 0.02                                    | 0.04                                     | 0.03                                     | 0.03                                     | 0.02                                     | 0.04                                    | 0.04                                     | 0.03                                     |
| Mg                             | 0.42                                    | 0.56                                    | 0.04                                    | 0.07                                    | 0.00                                    | 0.06                                     | 0.27                                     | 0.36                                     | 0.01                                     | 0.15                                    | 0.36                                     | 0.01                                     |
| Са                             | 0.81                                    | 0.85                                    | 0.26                                    | 0.25                                    | 0.10                                    | 0.58                                     | 0.88                                     | 0.84                                     | 0.17                                     | 0.88                                    | 0.87                                     | 0.59                                     |
| К                              | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                    | 0.00                                     | 0.00                                     |
| Na                             | 0.17                                    | 0.06                                    | 0.70                                    | 0.71                                    | 0.88                                    | 0.40                                     | 0.05                                     | 0.05                                     | 0.81                                     | 0.07                                    | 0.04                                     | 0.37                                     |
| Li                             | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                    | 0.00                                     | 0.00                                     |
| Zn                             | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                    | 0.00                                     | 0.00                                     |
| Ni                             | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                    | 0.00                                     | 0.00                                     |
| Cr                             | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                    | 0.00                                     | 0.00                                     |
| Sc                             | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                    | 0.00                                     | 0.00                                     |
| Total                          | 4.00                                    | 4.00                                    | 4.00                                    | 4.00                                    | 4.00                                    | 4.00                                     | 4.00                                     | 4.00                                     | 4.00                                     | 4.00                                    | 4.00                                     | 4.00                                     |
| aroup                          | Quad                                    | Quad                                    | Ca-Na                                   | Ca-Na                                   | Na                                      | Ca-Na                                    | Quad                                     | Quad                                     | Ca-Na                                    | Quad                                    | Quad                                     | Ca-Na                                    |
| adjective                      | ferrian sodian                          |                                         | ferrian sodian                          | ferrian sodian                          |                                         |                                          |                                          |                                          | ferrian sodian t                         |                                         |                                          |                                          |
| pyroxene                       | augite                                  | augite                                  | aegirine-augite                         | aegirine-augite                         | aegirine                                | aegirine-augite                          | hedenbergite                             | augite                                   | aegirine-augite                          | hedenbergite                            | augite                                   | aegirine-augite                          |
| enstatite                      | 23.0                                    | 29.2                                    |                                         |                                         |                                         |                                          | 14.4                                     | 19.1                                     |                                          | 7.9                                     | 18.8                                     |                                          |
| ferrosillite                   | 33.3                                    | 26.3                                    |                                         |                                         |                                         |                                          | 39.2                                     | 36.8                                     |                                          | 46.4                                    | 36.5                                     |                                          |
| wollastonite                   | 43.7                                    | 44.5                                    |                                         |                                         |                                         |                                          | 46.4                                     | 44.2                                     |                                          | 45.7                                    | 44.7                                     |                                          |
| jadeite                        |                                         |                                         | 1.3                                     | 1.3                                     | 1.0                                     | 1.0                                      |                                          |                                          | 1.5                                      |                                         |                                          | 1.0                                      |
| aegirine                       |                                         |                                         | 67.8                                    | 69.6                                    | 82.3                                    | 38.8                                     |                                          |                                          | 74.0                                     |                                         |                                          | 35.6                                     |
| Quad                           |                                         |                                         | 30.9                                    | 29.1                                    | 16.7                                    | 60.3                                     |                                          |                                          | 24.5                                     |                                         |                                          | 63.4                                     |

| Type roche    | CaNaS               | CaNaS         | CaNaS               | CaNaS               | CaNaS         | CaNaS          | CaNaS          | CaNaS          | CaNaS               | CaNaS          | CaNaS         | CaNaS               |
|---------------|---------------------|---------------|---------------------|---------------------|---------------|----------------|----------------|----------------|---------------------|----------------|---------------|---------------------|
| sample        | TK119B              | TK119B        | TK119B              | TK119B              | TK120B        | TK120B         | TK120B         | TK120B         | TK120B              | TK120B         | TK120B        | TK120B              |
| sample        | TK119B-C1-0024      | 1K119B-C1-004 | TK119B-C1-007       | 1K119B-C1-009       | TK120B-C1-001 | TK120B-C1-0011 | TK120B-C1-0013 | TK120B-C1-0015 | TK120B-C1-0016      | TK120B-C1-0017 | TK120B-C1-004 | TK120B-C1-005       |
| SiO2          | 52.71               | 50.12         | 52.16               | 50.08               | 51.30         | 51.74          | 51.40          | 52.03          | 51.85               | 52.23          | 51.09         | 52.11               |
| TiO2          | 4.06                | 0.45          | 3.38                | 0.43                | 0.71          | 0.71           | 0.62           | 0.80           | 0.70                | 0.66           | 1.10          | 0.72                |
| AI203         | 0.20                | 0.51          | 0.13                | 0.45                | 1.08          | 1.08           | 0.94           | 1.09           | 0.93                | 1.05           | 1.49          | 1.37                |
| FeO           | 25.87               | 20.56         | 26.44               | 21.43               | 14.42         | 12.84          | 14.40          | 12.66          | 13.59               | 12.88          | 13.61         | 11.18               |
| MnO           | 0.53                | 1 12          | 0.58                | 1 18                | 0.63          | 0.70           | 0.73           | 0.74           | 0.70                | 0.65           | 0.62          | 0.51                |
| MaQ           | 0.01                | 5.62          | 0.09                | 4 90                | 9.98          | 11 39          | 10.31          | 11.45          | 10.68               | 11 34          | 10.81         | 12 73               |
| CaO           | 1.28                | 21.09         | 2.61                | 20.32               | 21.61         | 21.22          | 21.08          | 21.01          | 20.94               | 21.00          | 20.83         | 20.90               |
| K20           | 0.04                | 0.02          | 0.00                | 0.00                | 0.01          | 0.00           | 0.01           | 0.01           | 0.00                | 0.00           | 0.03          | 0.00                |
| Na2O          | 12.48               | 0.55          | 11.63               | 0.55                | 0.48          | 0.43           | 0.45           | 0.01           | 0.45                | 0.00           | 0.56          | 0.46                |
| 1120          | 0.00                | 0.00          | 0.00                | 0.00                | 0.00          | 0.00           | 0.00           | 0.00           | 0.45                | 0.45           | 0.00          | 0.40                |
| 7n0           | 0.00                | 0.00          | 0.00                | 0.00                | 0.00          | 0.00           | 0.00           | 0.00           | 0.00                | 0.00           | 0.00          | 0.00                |
| NIO           | 0.00                | 0.00          | 0.00                | 0.00                | 0.00          | 0.00           | 0.00           | 0.00           | 0.00                | 0.00           | 0.00          | 0.00                |
| Cr2O2         | 0.00                | 0.00          | 0.00                | 0.00                | 0.00          | 0.00           | 0.00           | 0.00           | 0.00                | 0.00           | 0.00          | 0.00                |
| \$203         | 0.01                | 0.00          | 0.02                | 0.01                | 0.01          | 0.00           | 0.01           | 0.00           | 0.00                | 0.00           | 0.00          | 0.00                |
| Jul 203       | 0.00                | 100.02        | 07.02               | 0.00                | 100.22        | 100 10         | 0.00           | 100.20         | 0.00                | 100.27         | 100.12        | 0.00                |
| Eo2, model    | 77.10<br>Droop 1097 | Droop 1097    | 77.03<br>Droop 1097 | 77.33<br>Droop 1097 | Droop 1097    | Droop 1097     | 77.7J          | Droop 1097     | 77.04<br>Droop 1097 | Droop 1097     | Droop 1097    | 77.77<br>Droop 1097 |
| ci            | 2.02                | 1 00          | 2.02                | 2.00                | 1.06          | 1.06           | 1 07           | 1.07           | 1 00                | 1 00           | 1.04          | 1.04                |
| JI<br>Ti      | 0.12                | 0.01          | 2.03                | 2.00                | 0.02          | 0.02           | 0.02           | 0.02           | 0.02                | 0.02           | 0.02          | 0.02                |
|               | 0.02                | 0.01          | 0.00                | 0.00                | 0.02          | 0.02           | 0.02           | 0.02           | 0.02                | 0.02           | 0.05          | 0.02                |
| AL (M1)       | 0.00                | 0.02          | 0.00                | 0.00                | 0.04          | 0.04           | 0.03           | 0.03           | 0.02                | 0.02           | 0.00          | 0.04                |
| Fa2. (T)      | 0.01                | 0.00          | 0.00                | 0.02                | 0.01          | 0.01           | 0.01           | 0.02           | 0.02                | 0.03           | 0.01          | 0.02                |
| Fe3+ (1)      | 0.00                | 0.00          | 0.00                | 0.00                | 0.00          | 0.00           | 0.00           | 0.00           | 0.00                | 0.00           | 0.00          | 0.00                |
| Fe3+ (IVII)   | 0.62                | 0.03          | 0.62                | 0.00                | 0.02          | 0.02           | 0.02           | 0.00           | 0.00                | 0.00           | 0.02          | 0.01                |
| Fe3+ (1+IVII) | 0.02                | 0.03          | 0.02                | 0.00                | 0.02          | 0.02           | 0.02           | 0.00           | 0.00                | 0.00           | 0.02          | 0.01                |
| rez+          | 0.21                | 0.05          | 0.24                | 0.72                | 0.44          | 0.39           | 0.44           | 0.40           | 0.43                | 0.41           | 0.41          | 0.34                |
| ivin<br>M-    | 0.02                | 0.04          | 0.02                | 0.04                | 0.02          | 0.02           | 0.02           | 0.02           | 0.02                | 0.02           | 0.02          | 0.02                |
| ivig          | 0.00                | 0.33          | 0.01                | 0.29                | 0.57          | 0.64           | 0.59           | 0.05           | 0.61                | 0.64           | 0.61          | 0.71                |
| Ca            | 0.05                | 0.89          | 0.11                | 0.87                | 0.89          | 0.86           | 0.86           | 0.85           | 0.86                | 0.85           | 0.85          | 0.84                |
| K.            | 0.00                | 0.00          | 0.00                | 0.00                | 0.00          | 0.00           | 0.00           | 0.00           | 0.00                | 0.00           | 0.00          | 0.00                |
| Na            | 0.93                | 0.04          | 0.88                | 0.04                | 0.04          | 0.03           | 0.03           | 0.03           | 0.03                | 0.03           | 0.04          | 0.03                |
| Li            | 0.00                | 0.00          | 0.00                | 0.00                | 0.00          | 0.00           | 0.00           | 0.00           | 0.00                | 0.00           | 0.00          | 0.00                |
| Zn            | 0.00                | 0.00          | 0.00                | 0.00                | 0.00          | 0.00           | 0.00           | 0.00           | 0.00                | 0.00           | 0.00          | 0.00                |
| NI            | 0.00                | 0.00          | 0.00                | 0.00                | 0.00          | 0.00           | 0.00           | 0.00           | 0.00                | 0.00           | 0.00          | 0.00                |
| Cr            | 0.00                | 0.00          | 0.00                | 0.00                | 0.00          | 0.00           | 0.00           | 0.00           | 0.00                | 0.00           | 0.00          | 0.00                |
| SC            | 0.00                | 0.00          | 0.00                | 0.00                | 0.00          | 0.00           | 0.00           | 0.00           | 0.00                | 0.00           | 0.00          | 0.00                |
| Total         | 4.00                | 4.00          | 4.00                | 4.00                | 4.00          | 4.00           | 4.00           | 4.00           | 4.00                | 4.00           | 4.00          | 4.00                |
| aroup         | Na                  | Ouad          | Na                  | Quad                | Quad          | Quad           | Quad           | Ouad           | Quad                | Ouad           | Quad          | Ouad                |
| adjective     | titanian            |               |                     |                     |               |                |                |                |                     |                |               |                     |
| pyroxene      | aegirine            | hedenbergite  | aegirine            | hedenbergite        | diopside      | augite         | augite         | augite         | augite              | augite         | augite        | augite              |
| enstatite     |                     | 17.1          |                     | 15.2                | 29.4          | 33.3           | 30.4           | 33.6           | 31.7                | 33.3           | 32.0          | 37.1                |
| ferrosillite  |                     | 36.9          |                     | 39.4                | 24.9          | 22.2           | 25.0           | 22.1           | 23.8                | 22.3           | 23.7          | 19.1                |
| wollastonite  |                     | 46.0          |                     | 45.4                | 45.7          | 44.5           | 44.6           | 44.3           | 44.6                | 44.4           | 44.3          | 43.8                |
| iadeite       | 13                  |               | 0.8                 |                     |               |                |                |                |                     |                |               |                     |
| aegirine      | 86.3                |               | 82.4                |                     |               |                |                |                |                     |                |               |                     |
| Quad          | 12.4                |               | 16.8                |                     |               |                |                |                |                     |                |               |                     |
|               |                     |               |                     |                     |               |                |                |                |                     |                |               |                     |

| Type roche<br>sample<br>sample | CaNaS<br><b>TK120B</b><br>TK120B-C1-006 | CaNaS<br><b>TK120B</b><br>TK120B-C1-009 | CaNaS<br><b>TK126B</b><br>TK126B-C1-001 | CaNaS<br><b>TK126B</b><br>TK126B-C1-0010 | CaNaS<br><b>TK126B</b><br>TK126B-C1-0011 | CaNaS<br><b>TK126B</b><br>TK126B-C1-0012 | CaNaS<br><b>TK126B</b><br>TK126B-C1-002 | CaNaS<br><b>TK126B</b><br>TK126B-C1-003 | CaNaS<br><b>TK126B</b><br>TK126B-C1-004 | CaNaS<br><b>TK126B</b><br>TK126B-C1-005 | CaNaS<br><b>TK126B</b><br>TK126B-C1-006 | CaNaS<br><b>TK126B</b><br>TK126B-C1-007 |
|--------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| SiO2                           | 51.66                                   | 52.25                                   | 52.08                                   | 51.79                                    | 52.38                                    | 52.49                                    | 52.42                                   | 52.45                                   | 51.83                                   | 52.21                                   | 52.27                                   | 51.89                                   |
| TiO2                           | 0.78                                    | 0.16                                    | 0.55                                    | 0.13                                     | 0.57                                     | 0.44                                     | 0.55                                    | 0.08                                    | 0.56                                    | 0.17                                    | 0.07                                    | 0.05                                    |
| AI2O3                          | 1.30                                    | 0.47                                    | 0.91                                    | 0.52                                     | 0.16                                     | 0.24                                     | 0.82                                    | 0.26                                    | 0.90                                    | 0.58                                    | 0.48                                    | 0.24                                    |
| FeO                            | 11.97                                   | 14.22                                   | 11.94                                   | 17.48                                    | 26.78                                    | 27.03                                    | 12.44                                   | 20.64                                   | 12.56                                   | 21.20                                   | 21.25                                   | 20.98                                   |
| MnO                            | 0.52                                    | 0.68                                    | 0.81                                    | 0.73                                     | 0.65                                     | 0.60                                     | 0.77                                    | 0.77                                    | 0.85                                    | 0.56                                    | 0.97                                    | 1.00                                    |
| MaQ                            | 12.06                                   | 9.91                                    | 11.46                                   | 7.04                                     | 1.62                                     | 1.52                                     | 11.97                                   | 5.16                                    | 11.67                                   | 4.97                                    | 4.74                                    | 4.87                                    |
| CaO                            | 20.98                                   | 22.43                                   | 21.32                                   | 17.84                                    | 4.78                                     | 4.89                                     | 21.11                                   | 14.37                                   | 20.89                                   | 12.88                                   | 14.97                                   | 14.85                                   |
| K2O                            | 0.01                                    | 0.01                                    | 0.02                                    | 0.03                                     | 0.00                                     | 0.00                                     | 0.00                                    | 0.01                                    | 0.01                                    | 0.00                                    | 0.02                                    | 0.04                                    |
| Na2O                           | 0.41                                    | 0.27                                    | 0.70                                    | 3.55                                     | 10.39                                    | 10.15                                    | 0.51                                    | 5.43                                    | 0.52                                    | 6.22                                    | 5.07                                    | 4.95                                    |
| Li2O                           | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    |
| ZnO                            | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    |
| NiO                            | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    |
| Cr2O3                          | 0.00                                    | 0.01                                    | 0.00                                    | 0.00                                     | 0.01                                     | 0.00                                     | 0.00                                    | 0.01                                    | 0.00                                    | 0.01                                    | 0.00                                    | 0.00                                    |
| Sc2O3                          | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    |
| Total                          | 99.69                                   | 100.42                                  | 99.78                                   | 99.10                                    | 97.35                                    | 97.36                                    | 100.58                                  | 99.18                                   | 99.79                                   | 98.80                                   | 99.85                                   | 98.87                                   |
| Fe3+ model                     | Droop 1987                              | Droop 1987                              | Droop 1987                              | Droop 1987                               | Droop 1987                               | Droop 1987                               | Droop 1987                              | Droop 1987                              | Droop 1987                              | Droop 1987                              | Droop 1987                              | Droop 1987                              |
| Si                             | 1.96                                    | 2.00                                    | 1.97                                    | 1.99                                     | 2.02                                     | 2.03                                     | 1.97                                    | 2.01                                    | 1.97                                    | 2.00                                    | 2.00                                    | 2.01                                    |
| Ti                             | 0.02                                    | 0.00                                    | 0.02                                    | 0.00                                     | 0.02                                     | 0.01                                     | 0.02                                    | 0.00                                    | 0.02                                    | 0.00                                    | 0.00                                    | 0.00                                    |
| AI (T)                         | 0.04                                    | 0.00                                    | 0.03                                    | 0.01                                     | 0.00                                     | 0.00                                     | 0.03                                    | 0.00                                    | 0.03                                    | 0.00                                    | 0.00                                    | 0.00                                    |
| AI (M1)                        | 0.02                                    | 0.02                                    | 0.01                                    | 0.01                                     | 0.01                                     | 0.01                                     | 0.01                                    | 0.01                                    | 0.01                                    | 0.02                                    | 0.02                                    | 0.01                                    |
| Fe3+ (T)                       | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    |
| Fe3+ (M1)                      | 0.01                                    | 0.00                                    | 0.03                                    | 0.26                                     | 0.69                                     | 0.66                                     | 0.03                                    | 0.37                                    | 0.03                                    | 0.43                                    | 0.35                                    | 0.34                                    |
| Fe3+ (T+M1)                    | 0.01                                    | 0.00                                    | 0.03                                    | 0.26                                     | 0.69                                     | 0.66                                     | 0.03                                    | 0.37                                    | 0.03                                    | 0.43                                    | 0.35                                    | 0.34                                    |
| Fe2+                           | 0.37                                    | 0.45                                    | 0.34                                    | 0.30                                     | 0.17                                     | 0.21                                     | 0.37                                    | 0.29                                    | 0.37                                    | 0.25                                    | 0.33                                    | 0.33                                    |
| Mn                             | 0.02                                    | 0.02                                    | 0.03                                    | 0.02                                     | 0.02                                     | 0.02                                     | 0.02                                    | 0.03                                    | 0.03                                    | 0.02                                    | 0.03                                    | 0.03                                    |
| Mg                             | 0.68                                    | 0.56                                    | 0.65                                    | 0.40                                     | 0.09                                     | 0.09                                     | 0.67                                    | 0.29                                    | 0.66                                    | 0.28                                    | 0.27                                    | 0.28                                    |
| Са                             | 0.85                                    | 0.92                                    | 0.87                                    | 0.73                                     | 0.20                                     | 0.20                                     | 0.85                                    | 0.59                                    | 0.85                                    | 0.53                                    | 0.61                                    | 0.62                                    |
| К                              | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    |
| Na                             | 0.03                                    | 0.02                                    | 0.05                                    | 0.26                                     | 0.78                                     | 0.76                                     | 0.04                                    | 0.40                                    | 0.04                                    | 0.46                                    | 0.38                                    | 0.37                                    |
| Li                             | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    |
| Zn                             | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    |
| Ni                             | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    |
| Cr                             | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    |
| Sc                             | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                     | 0.00                                     | 0.00                                     | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    | 0.00                                    |
| Total                          | 4.00                                    | 4.00                                    | 4.00                                    | 4.00                                     | 4.00                                     | 4.00                                     | 4.00                                    | 4.00                                    | 4.00                                    | 4.00                                    | 4.00                                    | 4.00                                    |
| group                          | Quad                                    | Quad                                    | Quad                                    | Ca-Na                                    | Ca-Na                                    | Ca-Na                                    | Quad                                    | Ca-Na                                   | Quad                                    | Ca-Na                                   | Ca-Na                                   | Ca-Na                                   |
| adjective                      |                                         |                                         |                                         |                                          | ferrian sodian                           | ferrian sodian                           |                                         |                                         |                                         |                                         |                                         |                                         |
| pyroxene                       | augite                                  | aiopside                                | aiopside                                | aegirine-augite                          | aegirine-augite                          | aegirine-augite                          | augite                                  | aegirine-augite                         | augite                                  | aegirine-augite                         | aegirine-augite                         | aegirine-augite                         |
| enstatite                      | 35.3                                    | 28.8                                    | 33.8                                    |                                          |                                          |                                          | 34.6                                    |                                         | 34.1                                    |                                         |                                         |                                         |
| rerrosilite                    | 20.0                                    | 24.3                                    | 21.1                                    |                                          |                                          |                                          | 21.0                                    |                                         | 22.0                                    |                                         |                                         |                                         |
| wollastonite                   | 44.1                                    | 40.9                                    | 40.2                                    | 1.0                                      |                                          | 1.0                                      | 43.7                                    | 1.0                                     | 43.7                                    | 2.5                                     |                                         | 1.0                                     |
| Jauente                        |                                         |                                         |                                         | 1.0                                      | U.0<br>74.0                              | 1.2                                      |                                         | 1.3                                     |                                         | 2.0                                     | 2.2                                     | 1.2                                     |
| aegirine                       |                                         |                                         |                                         | 20.0                                     | 10.3                                     | 74.0                                     |                                         | 39.4<br>E0.4                            |                                         | 43.7                                    | 30.0                                    | 30.0                                    |
| Qudu                           |                                         |                                         |                                         | 73.1                                     | 22.7                                     | 24.0                                     |                                         | J7.4                                    |                                         | JJ.J                                    | 01.0                                    | 02.4                                    |

| Type roche   | CaNaS         | CaNaS          | CaNaS        | CaNaS        | CaNaS        | CaNaS        | CaNaS        | CaNaS        | CaNaS       | CaNaS        | CaNaS       | CaNaS       |
|--------------|---------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|-------------|-------------|
| sample       | TK126B        | TK126B         | TK23         | TK23 C1 0010 | TK23 C1 0011 | TK23         | TK23         | TK23         | TK23        | TK23 C1 005  | TK23 C1 004 | TK23 C1 000 |
| sample       | TK120D-C1-006 | TK120D-01-009  | TK23-01-001  | TK23-01-0010 | TK23-CT-0011 | TK23-01-0015 | 1K23-01-0010 | TK23-01-0017 | TK23-01-003 | TK23-C1-005  | IN23-01-000 | TK23-CT-000 |
| SiO2         | 51.94         | 52.13          | 50.42        | 52.26        | 51.95        | 51.51        | 51.76        | 51.66        | 51.60       | 50.39        | 52.27       | 51.19       |
| TiO2         | 0.55          | 0.29           | 0.01         | 0.76         | 0.53         | 0.00         | 0.49         | 0.41         | 0.57        | 0.16         | 0.48        | 0.42        |
| AI2O3        | 0.75          | 0.54           | 0.56         | 1.61         | 1.07         | 0.16         | 1.14         | 1.00         | 1.28        | 1.69         | 1.04        | 0.95        |
| FeO          | 13.16         | 14.64          | 21.51        | 9.58         | 11.56        | 16.27        | 13.40        | 13.13        | 11.13       | 17.79        | 11.86       | 12.97       |
| MnO          | 0.83          | 0.74           | 0.76         | 0.39         | 0.55         | 0.99         | 0.79         | 0.63         | 0.48        | 0.69         | 0.62        | 0.60        |
| MaO          | 11.24         | 9.89           | 3.95         | 13.33        | 11.92        | 7.04         | 10.74        | 10.74        | 12.21       | 5.58         | 11.68       | 10.97       |
| CaO          | 21.04         | 20.38          | 23.09        | 21.51        | 21.98        | 23.73        | 21.43        | 21.48        | 21.93       | 23.24        | 21.88       | 21.71       |
| K2O          | 0.00          | 0.01           | 0.04         | 0.03         | 0.00         | 0.00         | 0.02         | 0.04         | 0.00        | 0.01         | 0.01        | 0.03        |
| Na2O         | 0.49          | 1.45           | 0.41         | 0.42         | 0.41         | 0.19         | 0.48         | 0.47         | 0.40        | 0.42         | 0.41        | 0.41        |
| Li2O         | 0.00          | 0.00           | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00        | 0.00        |
| ZnO          | 0.00          | 0.00           | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00        | 0.00        |
| NIO          | 0.00          | 0.00           | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00        | 0.00        |
| Cr2O3        | 0.00          | 0.00           | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.02         | 0.00        | 0.00         | 0.00        | 0.00        |
| Sc2O3        | 0.00          | 0.00           | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00        | 0.00        |
| Total        | 100.00        | 100.07         | 100.74       | 99.89        | 99.96        | 99.88        | 100.25       | 99.56        | 99.59       | 99.96        | 100.24      | 99.24       |
| Fe3+ model   | Droop 1987    | Droop 1987     | Droop 1987   | Droop 1987   | Droop 1987   | Droop 1987   | Droop 1987   | Droop 1987   | Droop 1987  | Droop 1987   | Droop 1987  | Droop 1987  |
| Si           | 1.97          | 1.98           | 1.99         | 1.96         | 1.96         | 2.01         | 1.97         | 1.97         | 1.95        | 1.98         | 1.97        | 1.96        |
| Ti           | 0.02          | 0.01           | 0.00         | 0.02         | 0.01         | 0.00         | 0.01         | 0.01         | 0.02        | 0.00         | 0.01        | 0.01        |
| AI (T)       | 0.03          | 0.02           | 0.01         | 0.04         | 0.04         | 0.00         | 0.03         | 0.03         | 0.05        | 0.02         | 0.03        | 0.04        |
| AI (M1)      | 0.01          | 0.01           | 0.02         | 0.03         | 0.01         | 0.01         | 0.02         | 0.02         | 0.01        | 0.05         | 0.02        | 0.00        |
| Fe3+ (T)     | 0.00          | 0.00           | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00        | 0.00        |
| Fe3+ (M1)    | 0.02          | 0.10           | 0.02         | 0.00         | 0.03         | 0.00         | 0.02         | 0.02         | 0.04        | 0.00         | 0.01        | 0.04        |
| Fe3+ (T+M1)  | 0.02          | 0.10           | 0.02         | 0.00         | 0.03         | 0.00         | 0.02         | 0.02         | 0.04        | 0.00         | 0.01        | 0.04        |
| Fe2+         | 0.40          | 0.36           | 0.69         | 0.29         | 0.34         | 0.53         | 0.40         | 0.40         | 0.32        | 0.58         | 0.36        | 0.37        |
| Mn           | 0.03          | 0.02           | 0.03         | 0.01         | 0.02         | 0.03         | 0.03         | 0.02         | 0.02        | 0.02         | 0.02        | 0.02        |
| Mg           | 0.64          | 0.56           | 0.23         | 0.74         | 0.67         | 0.41         | 0.61         | 0.61         | 0.69        | 0.33         | 0.66        | 0.63        |
| Са           | 0.86          | 0.83           | 0.98         | 0.86         | 0.89         | 0.99         | 0.87         | 0.88         | 0.89        | 0.98         | 0.89        | 0.89        |
| K            | 0.00          | 0.00           | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00        | 0.00        |
| Na           | 0.04          | 0.11           | 0.03         | 0.03         | 0.03         | 0.01         | 0.04         | 0.03         | 0.03        | 0.03         | 0.03        | 0.03        |
| Li           | 0.00          | 0.00           | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00        | 0.00        |
| Zn           | 0.00          | 0.00           | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00        | 0.00        |
| Ni           | 0.00          | 0.00           | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00        | 0.00        |
| Cr           | 0.00          | 0.00           | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00        | 0.00        |
| Sc           | 0.00          | 0.00           | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00         | 0.00        | 0.00         | 0.00        | 0.00        |
| Total        | 4.00          | 4.00           | 4.00         | 4.00         | 4.00         | 4.00         | 4.00         | 4.00         | 4.00        | 4.00         | 4.00        | 4.00        |
| aroun        | Quad          | Quad           | Quad         | Quad         | Quad         | Quad         | Quad         | Quad         | Quad        | Quad         | Quad        | Quad        |
| adjective    | audu          | ferrian sodian | 0000         | 4466         | 4444         | 0.000        | 4444         | 0000         | 0.000       | 4444         | 0.000       | 0000        |
| nyroxene     | aunite        | aunite         | wollastonite | aunite       | dionside     | wollastonite | dionside     | dionside     | dionside    | wollastonite | dionside    | dionside    |
| enstatite    | 32.9          | 29.8           | 12.0         | 38.8         | 34.5         | 20.8         | 31.5         | 31.7         | 35.4        | 17.1         | 33.9        | 32.1        |
| ferrosillite | 23.0          | 26.0           | 37.8         | 16.3         | 19.7         | 28.7         | 23.4         | 22.8         | 18.9        | 31.8         | 20.3        | 22.3        |
| wollastonite | 44.2          | 44.2           | 50.2         | 45.0         | 45.8         | 50.5         | 45.2         | 45.5         | 45.7        | 51.2         | 45.7        | 45.6        |
| iadeite      |               |                |              |              |              |              |              |              |             |              |             |             |
| aegirine     |               |                |              |              |              |              |              |              |             |              |             |             |
| Quad         |               |                |              |              |              |              |              |              |             |              |             |             |
|              | 1             |                |              |              |              |              |              |              |             |              |             |             |

| Type roche<br>sample<br>sample | CaNaS<br><b>TK61</b><br>TK-61-C1-01 | CaNaS<br>TK61<br>TK-61-C1-02 | CaNaS<br>TK61<br>TK-61-C1-03 | CaNaS<br><b>TK61</b><br>TK-61-C1-06 | CaNaS<br>TK61<br>TK-61-C1-09 | CaNaS<br><b>TK61</b><br>TK-61-C1-10 | CaNaS<br><b>TK67</b><br>TK-67-C1-002 | CaNaS<br><b>TK67</b><br>TK-67-C1-007 | CaNaS<br><b>TK69</b><br>TK69-C1-001 | CaNaS<br><b>TK69</b><br>TK69-C1-0010 | CaNaS<br>TK69<br>TK69-C1-002 | CaNaS<br>TK69<br>TK69-C1-003 |
|--------------------------------|-------------------------------------|------------------------------|------------------------------|-------------------------------------|------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|------------------------------|------------------------------|
|                                |                                     |                              |                              |                                     |                              |                                     |                                      |                                      |                                     |                                      |                              |                              |
| SiO2                           | 51.02                               | 51.71                        | 51.01                        | 50.81                               | 51.07                        | 51.02                               | 51.64                                | 52.36                                | 52.16                               | 50.67                                | 51.48                        | 51.98                        |
| TiO2                           | 0.43                                | 0.41                         | 0.27                         | 0.16                                | 0.12                         | 0.09                                | 0.41                                 | 0.59                                 | 0.09                                | 0.02                                 | 0.06                         | 0.11                         |
| AI2O3                          | 0.72                                | 0.57                         | 0.45                         | 0.27                                | 0.29                         | 0.25                                | 0.81                                 | 1.19                                 | 0.30                                | 0.35                                 | 0.13                         | 0.16                         |
| FeO                            | 15.92                               | 15.59                        | 17.27                        | 21.12                               | 26.58                        | 25.65                               | 13.71                                | 10.85                                | 16.64                               | 19.62                                | 16.74                        | 15.38                        |
| MnO                            | 0.83                                | 0.91                         | 1.06                         | 1.18                                | 0.92                         | 0.95                                | 0.84                                 | 0.77                                 | 1.16                                | 1.19                                 | 1.04                         | 1.00                         |
| MgO                            | 8.76                                | 8.84                         | 7.24                         | 4.39                                | 1.55                         | 2.02                                | 10.79                                | 13.25                                | 8.08                                | 5.40                                 | 7.38                         | 9.04                         |
| CaO                            | 20.37                               | 21.25                        | 20.26                        | 18.17                               | 13.12                        | 14.52                               | 20.81                                | 20.94                                | 21.78                               | 20.85                                | 22.38                        | 21.97                        |
| K2O                            | 0.07                                | 0.02                         | 0.00                         | 0.03                                | 0.02                         | 0.03                                | 0.00                                 | 0.01                                 | 0.00                                | 0.00                                 | 0.00                         | 0.02                         |
| Na2O                           | 1.25                                | 1.00                         | 1.53                         | 2.95                                | 5.43                         | 4.74                                | 0.49                                 | 0.47                                 | 0.53                                | 1.65                                 | 0.50                         | 0.45                         |
| Li2O                           | 0.00                                | 0.00                         | 0.00                         | 0.00                                | 0.00                         | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                 | 0.00                         | 0.00                         |
| ZnO                            | 0.00                                | 0.00                         | 0.00                         | 0.00                                | 0.00                         | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                 | 0.00                         | 0.00                         |
| NiO                            | 0.00                                | 0.00                         | 0.00                         | 0.00                                | 0.00                         | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                 | 0.00                         | 0.00                         |
| Cr2O3                          | 0.00                                | 0.00                         | 0.01                         | 0.00                                | 0.00                         | 0.00                                | 0.00                                 | 0.01                                 | 0.00                                | 0.01                                 | 0.00                         | 0.01                         |
| Sc2O3                          | 0.00                                | 0.00                         | 0.00                         | 0.00                                | 0.00                         | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                 | 0.00                         | 0.00                         |
| Total                          | 99.37                               | 100.29                       | 99.10                        | 99.08                               | 99.10                        | 99.26                               | 99.49                                | 100.44                               | 100.74                              | 99.75                                | 99.71                        | 100.12                       |
| Fe3+ model                     | Droop 1987                          | Droop 1987                   | Droop 1987                   | Droop 1987                          | Droop 1987                   | Droop 1987                          | Droop 1987                           | Droop 1987                           | Droop 1987                          | Droop 1987                           | Droop 1987                   | Droop 1987                   |
| Si                             | 1.97                                | 1.98                         | 1.99                         | 2.00                                | 2.01                         | 2.01                                | 1.98                                 | 1.96                                 | 2.01                                | 1.99                                 | 2.01                         | 2.00                         |
| Ti                             | 0.01                                | 0.01                         | 0.01                         | 0.00                                | 0.00                         | 0.00                                | 0.01                                 | 0.02                                 | 0.00                                | 0.00                                 | 0.00                         | 0.00                         |
| AL(T)                          | 0.03                                | 0.02                         | 0.01                         | 0.00                                | 0.00                         | 0.00                                | 0.02                                 | 0.04                                 | 0.00                                | 0.01                                 | 0.00                         | 0.00                         |
| AI (M1)                        | 0.00                                | 0.01                         | 0.01                         | 0.01                                | 0.01                         | 0.01                                | 0.01                                 | 0.01                                 | 0.01                                | 0.00                                 | 0.01                         | 0.01                         |
| Fe3+ (T)                       | 0.00                                | 0.00                         | 0.00                         | 0.00                                | 0.00                         | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                 | 0.00                         | 0.00                         |
| Fe3+ (M1)                      | 0.10                                | 0.06                         | 0.10                         | 0.21                                | 0.37                         | 0.32                                | 0.02                                 | 0.04                                 | 0.00                                | 0.14                                 | 0.01                         | 0.02                         |
| Fe3+ (T+M1)                    | 0.10                                | 0.06                         | 0.10                         | 0.21                                | 0.37                         | 0.32                                | 0.02                                 | 0.04                                 | 0.00                                | 0.14                                 | 0.01                         | 0.02                         |
| Fe2+                           | 0.41                                | 0.44                         | 0.46                         | 0.49                                | 0.51                         | 0.52                                | 0.42                                 | 0.30                                 | 0.53                                | 0.51                                 | 0.54                         | 0.48                         |
| Mn                             | 0.03                                | 0.03                         | 0.04                         | 0.04                                | 0.03                         | 0.03                                | 0.03                                 | 0.02                                 | 0.04                                | 0.04                                 | 0.03                         | 0.03                         |
| Ma                             | 0.50                                | 0.50                         | 0.42                         | 0.26                                | 0.09                         | 0.12                                | 0.62                                 | 0.74                                 | 0.46                                | 0.32                                 | 0.43                         | 0.52                         |
| Ca                             | 0.84                                | 0.87                         | 0.85                         | 0.77                                | 0.55                         | 0.61                                | 0.85                                 | 0.84                                 | 0.90                                | 0.88                                 | 0.94                         | 0.91                         |
| ĸ                              | 0.00                                | 0.00                         | 0.00                         | 0.00                                | 0.00                         | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                 | 0.00                         | 0.00                         |
| Na                             | 0.09                                | 0.07                         | 0.12                         | 0.23                                | 0.41                         | 0.36                                | 0.04                                 | 0.03                                 | 0.04                                | 0.13                                 | 0.04                         | 0.03                         |
| 11                             | 0.00                                | 0.00                         | 0.00                         | 0.00                                | 0.00                         | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                 | 0.00                         | 0.00                         |
| Zn                             | 0.00                                | 0.00                         | 0.00                         | 0.00                                | 0.00                         | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                 | 0.00                         | 0.00                         |
| Ni                             | 0.00                                | 0.00                         | 0.00                         | 0.00                                | 0.00                         | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                 | 0.00                         | 0.00                         |
| Cr                             | 0.00                                | 0.00                         | 0.00                         | 0.00                                | 0.00                         | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                 | 0.00                         | 0.00                         |
| Sc.                            | 0.00                                | 0.00                         | 0.00                         | 0.00                                | 0.00                         | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                 | 0.00                         | 0.00                         |
| Total                          | 4.00                                | 4.00                         | 4.00                         | 4.00                                | 4.00                         | 4.00                                | 4.00                                 | 4.00                                 | 4.00                                | 4.00                                 | 4.00                         | 4.00                         |
| rotai                          | 1.00                                | 1.00                         | 1.00                         | 1.00                                | 1.00                         | 1.00                                | 1.00                                 | 1.00                                 | 1.00                                | 1.00                                 | 1.00                         | 1.00                         |
| aroup                          | Quad                                | Quad                         | Quad                         | Ca-Na                               | Ca-Na                        | Ca-Na                               | Quad                                 | Quad                                 | Ouad                                | Quad                                 | Quad                         | Ouad                         |
| adjective                      | ferrian                             | 0000                         | sodian                       | 00 100                              | 00.110                       | 00110                               | 0000                                 | 0000                                 | 4444                                | ferrian sodian                       | 4444                         | 6666                         |
| nyroxene                       | aunite                              | hedenheraite                 | hedenheraite                 | aegirine-augite                     | aenirine-aunite              | aegirine-augite                     | aunite                               | aunite                               | hedenbergite                        | hedenhergite                         | hedenheraite                 | hedenheraite                 |
| onstatito                      | 26.7                                | 26.5                         | 22.6                         | acgirine-augree                     | acgirine-adgire              | acgirine-augree                     | 31.8                                 | 38.0                                 | 24.0                                | 16.8                                 | 22.1                         | 26.6                         |
| forrosillito                   | 28.7                                | 20.5                         | 32.0                         |                                     |                              |                                     | 24.1                                 | 18.7                                 | 29.6                                | 36.4                                 | 20.0                         | 27.0                         |
| wollastonito                   | 11.6                                | 45.8                         | 45 A                         |                                     |                              |                                     | 44.1                                 | 13.2                                 | 16.1                                | 16 T                                 | 48.1                         | 16 A                         |
| iadoito                        |                                     |                              |                              | 1.2                                 | 15                           | 1.2                                 |                                      | 73.2                                 | TU.T                                | TU.7                                 | TU. 1                        | T.UT                         |
| adente                         |                                     |                              |                              | 21.0                                | 1.0 2                        | 25.4                                |                                      |                                      |                                     |                                      |                              |                              |
| Quad                           |                                     |                              |                              | 77.0                                | F0.0                         | 40 A                                |                                      |                                      |                                     |                                      |                              |                              |
| Quadu                          |                                     |                              |                              | 11.0                                | 30.2                         | 03.4                                |                                      |                                      |                                     |                                      |                              |                              |

| Type roche<br>sample | CaNaS<br>TK69 | CaNaS<br>TK69  | CaNaS<br>TK69 | CaNaS<br>TK69   | CaNaS<br>TK7C   | CaNaS<br>TK7C   | CaNaS<br>TK7C | CaNaS<br>TK7C | CaNaS<br>TK7C  | CaNaS<br>TK7C   | CaNaS<br>TK7C   | CaNaS<br>TK7C   |
|----------------------|---------------|----------------|---------------|-----------------|-----------------|-----------------|---------------|---------------|----------------|-----------------|-----------------|-----------------|
| sample               | TK69-C1-005   | TK69-C1-007    | TK69-C1-008   | TK69-C1-009     | TK-7C-C1-01     | TK-7C-C1-010    | TK-7C-C1-012  | TK-7C-C1-013  | TK-7C-C1-014   | TK-7C-C1-015    | TK-7C-C1-02     | TK-7C-C1-03     |
| SiO2                 | 51.84         | 50.93          | 51.77         | 51.51           | 50.75           | 50.71           | 50.69         | 50.68         | 50.97          | 51.06           | 50.72           | 50.88           |
| TiO2                 | 0.06          | 0.00           | 0.22          | 0.06            | 0.25            | 0.27            | 0.33          | 0.35          | 0.22           | 0.29            | 0.24            | 0.26            |
| AI2O3                | 0.14          | 0.25           | 0.40          | 0.29            | 0.26            | 0.22            | 0.44          | 0.47          | 0.40           | 0.24            | 0.29            | 0.25            |
| FeO                  | 16.93         | 20.40          | 15.64         | 21.43           | 25.88           | 24.23           | 18.51         | 18.19         | 18.54          | 23.80           | 24.67           | 24.90           |
| MnO                  | 1.08          | 1.25           | 1.02          | 0.86            | 1.51            | 1.51            | 1.10          | 1.11          | 1.29           | 1.46            | 1.66            | 1.52            |
| MgO                  | 8.20          | 4.74           | 9.25          | 4.42            | 1.61            | 2.78            | 7.01          | 7.04          | 6.14           | 3.18            | 2.36            | 2.04            |
| CaO                  | 20.98         | 19.76          | 21.09         | 16.34           | 11.69           | 13.97           | 20.78         | 20.78         | 20.13          | 14.80           | 13.18           | 12.58           |
| K2O                  | 0.03          | 0.00           | 0.00          | 0.02            | 0.01            | 0.01            | 0.00          | 0.00          | 0.00           | 0.02            | 0.01            | 0.00            |
| Na2O                 | 0.71          | 2.16           | 0.75          | 3.90            | 5.98            | 4.70            | 0.78          | 1.08          | 1.75           | 4.28            | 4.95            | 5.59            |
| Li2O                 | 0.00          | 0.00           | 0.00          | 0.00            | 0.00            | 0.00            | 0.00          | 0.00          | 0.00           | 0.00            | 0.00            | 0.00            |
| ZnO                  | 0.00          | 0.00           | 0.00          | 0.00            | 0.00            | 0.00            | 0.00          | 0.00          | 0.00           | 0.00            | 0.00            | 0.00            |
| NIO                  | 0.00          | 0.00           | 0.00          | 0.00            | 0.00            | 0.00            | 0.00          | 0.00          | 0.00           | 0.00            | 0.00            | 0.00            |
| Cr2O3                | 0.03          | 0.00           | 0.00          | 0.00            | 0.00            | 0.00            | 0.00          | 0.00          | 0.00           | 0.01            | 0.01            | 0.00            |
| Sc2O3                | 0.00          | 0.00           | 0.00          | 0.00            | 0.00            | 0.00            | 0.00          | 0.00          | 0.00           | 0.00            | 0.00            | 0.00            |
| Total                | 99.98         | 99.49          | 100.14        | 98.84           | 97.92           | 98.40           | 99.63         | 99.70         | 99.43          | 99.14           | 98.10           | 98.01           |
| Fe3+ model           | Droop 1987    | Droop 1987     | Droop 1987    | Droop 1987      | Droop 1987      | Droop 1987      | Droop 1987    | Droop 1987    | Droop 1987     | Droop 1987      | Droop 1987      | Droop 1987      |
| Si                   | 2.01          | 2.00           | 1.99          | 2.02            | 2.02            | 2.01            | 1.99          | 1.98          | 1.99           | 2.01            | 2.02            | 2.02            |
| Ti                   | 0.00          | 0.00           | 0.01          | 0.00            | 0.01            | 0.01            | 0.01          | 0.01          | 0.01           | 0.01            | 0.01            | 0.01            |
| AL(T)                | 0.00          | 0.00           | 0.01          | 0.00            | 0.00            | 0.00            | 0.01          | 0.02          | 0.01           | 0.00            | 0.00            | 0.00            |
| AI (M1)              | 0.01          | 0.01           | 0.01          | 0.01            | 0.01            | 0.01            | 0.01          | 0.00          | 0.01           | 0.01            | 0.01            | 0.01            |
| Fe3+ (T)             | 0.00          | 0.00           | 0.00          | 0.00            | 0.00            | 0.00            | 0.00          | 0.00          | 0.00           | 0.00            | 0.00            | 0.00            |
| Fe3+ (M1)            | 0.03          | 0.15           | 0.05          | 0.25            | 0.40            | 0.32            | 0.05          | 0.08          | 0.12           | 0.28            | 0.32            | 0.37            |
| Fe3+ (T+M1)          | 0.03          | 0.15           | 0.05          | 0.25            | 0.40            | 0.32            | 0.05          | 0.08          | 0.12           | 0.28            | 0.32            | 0.37            |
| Fe2+                 | 0.52          | 0.52           | 0.45          | 0.45            | 0.46            | 0.49            | 0.56          | 0.51          | 0.49           | 0.50            | 0.50            | 0.46            |
| Mn                   | 0.04          | 0.04           | 0.03          | 0.03            | 0.05            | 0.05            | 0.04          | 0.04          | 0.04           | 0.05            | 0.06            | 0.05            |
| Ma                   | 0.47          | 0.28           | 0.53          | 0.26            | 0.10            | 0.16            | 0.41          | 0.41          | 0.36           | 0.19            | 0.14            | 0.12            |
| Ca                   | 0.87          | 0.83           | 0.87          | 0.69            | 0.50            | 0.59            | 0.87          | 0.87          | 0.84           | 0.62            | 0.56            | 0.53            |
| К                    | 0.00          | 0.00           | 0.00          | 0.00            | 0.00            | 0.00            | 0.00          | 0.00          | 0.00           | 0.00            | 0.00            | 0.00            |
| Na                   | 0.05          | 0.16           | 0.06          | 0.30            | 0.46            | 0.36            | 0.06          | 0.08          | 0.13           | 0.33            | 0.38            | 0.43            |
| li                   | 0.00          | 0.00           | 0.00          | 0.00            | 0.00            | 0.00            | 0.00          | 0.00          | 0.00           | 0.00            | 0.00            | 0.00            |
| 7n                   | 0.00          | 0.00           | 0.00          | 0.00            | 0.00            | 0.00            | 0.00          | 0.00          | 0.00           | 0.00            | 0.00            | 0.00            |
| Ni                   | 0.00          | 0.00           | 0.00          | 0.00            | 0.00            | 0.00            | 0.00          | 0.00          | 0.00           | 0.00            | 0.00            | 0.00            |
| Cr                   | 0.00          | 0.00           | 0.00          | 0.00            | 0.00            | 0.00            | 0.00          | 0.00          | 0.00           | 0.00            | 0.00            | 0.00            |
| Sc                   | 0.00          | 0.00           | 0.00          | 0.00            | 0.00            | 0.00            | 0.00          | 0.00          | 0.00           | 0.00            | 0.00            | 0.00            |
| Total                | 4.00          | 4.00           | 4.00          | 4.00            | 4.00            | 4.00            | 4.00          | 4.00          | 4.00           | 4.00            | 4.00            | 4.00            |
| aroup                | Quad          | Quad           | Quad          | Ca-Na           | Ca-Na           | Ca-Na           | Quad          | Quad          | Quad           | Ca-Na           | Ca-Na           | Ca-Na           |
| adjective            |               | ferrian sodian |               |                 |                 |                 |               |               | ferrian sodian |                 |                 |                 |
| pyroxene             | hedenbergite  | hedenbergite   | augite        | aegirine-augite | aegirine-augite | aegirine-augite | hedenbergite  | hedenbergite  | hedenbergite   | aegirine-augite | aegirine-augite | aegirine-augite |
| enstatite            | 24.6          | 15.2           | 27.4          |                 |                 |                 | 21.3          | 21.5          | 19.3           |                 |                 |                 |
| ferrosillite         | 30.3          | 39.1           | 27.7          |                 |                 |                 | 33.4          | 33.0          | 35.1           |                 |                 |                 |
| wollastonite         | 45.2          | 45.7           | 44.9          |                 |                 |                 | 45.3          | 45.5          | 45.6           |                 |                 |                 |
| iadeite              |               |                |               | 1.5             | 1.4             | 1.2             |               |               |                | 1.3             | 1.6             | 1.3             |
| aegirine             |               |                |               | 28.3            | 45.3            | 35.6            |               |               |                | 32.0            | 37.2            | 42.2            |
| Quad                 |               |                |               | 70.2            | 53.3            | 63.3            |               |               |                | 66.8            | 61.2            | 56.5            |
|                      | 1             |                |               |                 |                 |                 |               |               |                |                 |                 |                 |

| Type roche<br>sample<br>sample | CaNaS<br><b>TK7C</b><br>TK-7C-C1-04 | CaNaS<br><b>TK7C</b><br>TK-7C-C1-05 | CaNaS<br><b>TK7C</b><br>TK-7C-C1-06 | CaNaS<br><b>TK7C</b><br>TK-7C-C1-07 | CaNaS<br><b>TK7C</b><br>TK-7C-C1-09 | CaNaS<br><b>TK82</b><br>TK-82-C1-010 | CaNaS<br><b>TK82</b><br>TK-82-C1-012 | CaNaS<br><b>TK82</b><br>TK-82-C1-014 | CaNaS<br><b>TK82</b><br>TK-82-C1-015 | CaNaS<br><b>TK82</b><br>TK-82-C1-018 | CaNaS<br><b>TK82</b><br>TK-82-C1-019 | CaNaS<br><b>TK82</b><br>TK-82-C1-020 |
|--------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| 000                            | 50.07                               | 50.0/                               | 51.00                               | 50.7/                               | 50.05                               | 50.00                                | 50.50                                | 52.02                                | 50.14                                | F0.75                                | 51.40                                | 10.00                                |
| 5102                           | 50.97                               | 50.86                               | 51.03                               | 50.76                               | 50.95                               | 50.92                                | 50.52                                | 52.02                                | 50.14                                | 50.75                                | 51.40                                | 49.69                                |
| 1102                           | 0.15                                | 0.16                                | 0.27                                | 0.23                                | 0.22                                | 0.12                                 | 0.08                                 | 0.46                                 | 0.16                                 | 0.34                                 | 0.40                                 | 0.10                                 |
| AI2U3                          | 0.36                                | 0.28                                | 0.45                                | 0.21                                | 0.23                                | 0.29                                 | 0.16                                 | 0.74                                 | 0.22                                 | 0.31                                 | 0.62                                 | 0.21                                 |
| FeU                            | 19.82                               | 19.19                               | 18.62                               | 24.85                               | 24.95                               | 25.17                                | 26.81                                | 13.32                                | 25.79                                | 19.33                                | 14.25                                | 26.20                                |
| MINU NATO                      | 1.35                                | 1.31                                | 1.30                                | 1.47                                | 1.52                                | 1.10                                 | 1.32                                 | 0.76                                 | 0.82                                 | 0.87                                 | 0.89                                 | 0.81                                 |
| MgO                            | 5.32                                | 5.86                                | 6.26                                | 2.19                                | 2.28                                | 2.55                                 | 1.80                                 | 10.46                                | 2.07                                 | 6.85                                 | 10.12                                | 1.99                                 |
| CaO                            | 18.29                               | 19.72                               | 19.66                               | 13.05                               | 13.40                               | 14.23                                | 13.72                                | 21.05                                | 12.84                                | 19.34                                | 20.92                                | 12.81                                |
| K20                            | 0.01                                | 0.01                                | 0.04                                | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.01                                 | 0.00                                 | 0.00                                 | 0.04                                 | 0.01                                 |
| Na2O                           | 2.59                                | 2.04                                | 2.02                                | 5.18                                | 5.03                                | 4.70                                 | 4.60                                 | 1.04                                 | 5.11                                 | 1.23                                 | 0.68                                 | 5.18                                 |
| LI20<br>7=0                    | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 |
| ZhU                            | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 |
| NIO                            | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 |
| Cr203                          | 0.01                                | 0.00                                | 0.00                                | 0.01                                | 0.00                                | 0.01                                 | 0.00                                 | 0.00                                 | 0.01                                 | 0.01                                 | 0.01                                 | 0.01                                 |
| Sc203                          | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 |
| Total                          | 98.86                               | 99.42                               | 99.71                               | 97.95                               | 98.58                               | 99.08                                | 99.01                                | 99.85                                | 97.15                                | 99.01                                | 99.31                                | 97.00                                |
| Fe3+ model                     | DLOOD 1481                          | DLOOD 1481                          | Droop 1987                          | Dtoob 1881                          | Droop 1987                          | Droop 1987                           | Droop 1987                           | DLOOD 1481                           | DLOOD 1481                           | Droop 1987                           | DLOOD 1481                           | DLOOD 1481                           |
| 51                             | 2.00                                | 1.99                                | 1.98                                | 2.02                                | 2.02                                | 2.01                                 | 2.01                                 | 1.98                                 | 2.02                                 | 2.00                                 | 1.98                                 | 2.00                                 |
|                                | 0.00                                | 0.00                                | 0.01                                | 0.01                                | 0.01                                | 0.00                                 | 0.00                                 | 0.01                                 | 0.00                                 | 0.01                                 | 0.01                                 | 0.00                                 |
| AI (1)                         | 0.00                                | 0.01                                | 0.02                                | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.02                                 | 0.00                                 | 0.00                                 | 0.02                                 | 0.00                                 |
| AI (IVII)                      | 0.02                                | 0.00                                | 0.01                                | 0.01                                | 0.01                                | 0.01                                 | 0.01                                 | 0.01                                 | 0.01                                 | 0.01                                 | 0.01                                 | 0.01                                 |
| Fe3+ (1)                       | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 |
| Fe3+ (IVII)                    | 0.17                                | 0.16                                | 0.15                                | 0.34                                | 0.33                                | 0.32                                 | 0.33                                 | 0.06                                 | 0.35                                 | 0.06                                 | 0.05                                 | 0.39                                 |
| Fe3+ (1+IVI1)                  | 0.17                                | 0.16                                | 0.15                                | 0.34                                | 0.33                                | 0.32                                 | 0.33                                 | 0.06                                 | 0.35                                 | 0.06                                 | 0.05                                 | 0.39                                 |
| FeZ+                           | 0.49                                | 0.47                                | 0.46                                | 0.49                                | 0.50                                | 0.51                                 | 0.57                                 | 0.36                                 | 0.52                                 | 0.57                                 | 0.41                                 | 0.49                                 |
| Min                            | 0.04                                | 0.04                                | 0.04                                | 0.05                                | 0.05                                | 0.04                                 | 0.04                                 | 0.02                                 | 0.03                                 | 0.03                                 | 0.03                                 | 0.03                                 |
| ivig                           | 0.31                                | 0.34                                | 0.36                                | 0.13                                | 0.13                                | 0.15                                 | 0.11                                 | 0.59                                 | 0.12                                 | 0.40                                 | 0.58                                 | 0.12                                 |
| Ca                             | 0.77                                | 0.83                                | 0.82                                | 0.56                                | 0.57                                | 0.60                                 | 0.58                                 | 0.86                                 | 0.55                                 | 0.82                                 | 0.86                                 | 0.55                                 |
| K.                             | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 |
| Na                             | 0.20                                | 0.15                                | 0.15                                | 0.40                                | 0.39                                | 0.36                                 | 0.35                                 | 0.08                                 | 0.40                                 | 0.09                                 | 0.05                                 | 0.40                                 |
| LI<br>7                        | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 |
| Zn                             | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 |
| NI<br>Or                       | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 |
| Ur<br>Cr                       | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 |
| SC                             | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 |
| Total                          | 4.00                                | 4.00                                | 4.00                                | 4.00                                | 4.00                                | 4.00                                 | 4.00                                 | 4.00                                 | 4.00                                 | 4.00                                 | 4.00                                 | 4.00                                 |
|                                | 0- N-                               | Quart                               | 0                                   | 0- N-                               | 0. 11.                              | 0- N-                                | 0- N-                                | Quard                                | 0- 11-                               | 0                                    | Quard                                | 0- 11-                               |
| group                          | ca-ina                              | Quad                                | Quad                                | ca-na                               | Ca-Na                               | ca-na                                | Ca-INA                               | Quad                                 | Ca-Na                                | Quad                                 | Quad                                 | Ca-INa                               |
| adjective                      | e e el el en el en el tra           | rerrian sodian                      | rerrian sodian                      | a sector a secold a                 |                                     |                                      | a state a surely a                   | dia and die                          | a contrator a constata               |                                      |                                      | a a state a surelt a                 |
| pyroxene                       | aegirine-augite                     | augite                              | augite                              | aegirine-augite                     | aegirine-augite                     | aegirine-augite                      | aegirine-augite                      | alopside                             | aegirine-augite                      | augite                               | augite                               | aegirine-augite                      |
| enstatite                      |                                     | 18.6                                | 19.8                                |                                     |                                     |                                      |                                      | 31.2                                 |                                      | 21.3                                 | 30.1                                 |                                      |
| rerrosilite                    |                                     | 30.5                                | 35.5                                |                                     |                                     |                                      |                                      | 23.0                                 |                                      | 35.3                                 | 25.2                                 |                                      |
| wollastonite                   | 1.0                                 | 44.7                                | 44.7                                | 1.0                                 | 1.0                                 | 1.4                                  | 0.0                                  | 40.Z                                 | 1.0                                  | 43.3                                 | 44.7                                 | 1.0                                  |
| Jauente                        | 1.0                                 |                                     |                                     | 1.2                                 | 1.2                                 | 1.4                                  | 0.0                                  |                                      | 1.2                                  |                                      |                                      | 1.0                                  |
| aegirine                       | 10.3                                |                                     |                                     | 37.3                                | 31.7                                | 34.7                                 | 30.3                                 |                                      | 30.0                                 |                                      |                                      | 37.7                                 |
| Qudu                           | 17.7                                |                                     |                                     | J7.U                                | 00.0                                | 03.0                                 | 03.7                                 |                                      | 00.0                                 |                                      |                                      | 37.1                                 |

| Type roche<br>sample<br>sample | CaNaS<br><b>TK82</b><br>TK-82-C1-022 | CaNaS<br><b>TK82</b><br>TK-82-C1-023 | CaNaS<br><b>TK82</b><br>TK-82-C1-024 | CaNaS<br><b>TK82</b><br>TK-82-C1-026 | CaNaS<br><b>TK82</b><br>TK-82-C1-08 | CaNaS<br><b>TK86</b><br>TK86-C1-001 | CaNaS<br><b>TK86</b><br>TK86-C1-0011 | CaNaS<br><b>TK86</b><br>TK86-C1-002 | CaNaS<br><b>TK86</b><br>TK86-C1-006 | CaNaS<br><b>TK86</b><br>TK86-C1-009 |
|--------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| SiO2                           | 50.10                                | 50.90                                | 50.03                                | 49.17                                | 51.56                               | 50.49                               | 50.93                                | 50.76                               | 51.08                               | 51.20                               |
| TiO2                           | 0.38                                 | 0.33                                 | 0.13                                 | 0.14                                 | 0.41                                | 0.58                                | 0.69                                 | 0.74                                | 0.61                                | 0.46                                |
| AI2O3                          | 0.53                                 | 0.36                                 | 0.23                                 | 0.24                                 | 0.53                                | 0.28                                | 0.26                                 | 0.23                                | 0.35                                | 0.31                                |
| FeO                            | 14.89                                | 18.88                                | 25.45                                | 23.90                                | 15.65                               | 24.14                               | 25.54                                | 26.47                               | 23.48                               | 22.21                               |
| MnO                            | 0.79                                 | 0.90                                 | 0.87                                 | 1.01                                 | 0.86                                | 1.30                                | 1.19                                 | 0.97                                | 1.21                                | 1.33                                |
| MgO                            | 9.92                                 | 7.32                                 | 2.26                                 | 3.16                                 | 9.56                                | 2.98                                | 1.73                                 | 1.25                                | 3.04                                | 4.28                                |
| CaO                            | 20.93                                | 20.04                                | 14.88                                | 15.80                                | 21.05                               | 14.72                               | 12.85                                | 10.90                               | 14.74                               | 16.52                               |
| K2O                            | 0.01                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                | 0.02                                | 0.01                                 | 0.03                                | 0.00                                | 0.00                                |
| Na2O                           | 0.50                                 | 1.06                                 | 4.13                                 | 3.73                                 | 0.64                                | 4.22                                | 5.54                                 | 6.75                                | 4.75                                | 3.26                                |
| Li2O                           | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                 | 0.00                                | 0.00                                | 0.00                                |
| ZnO                            | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                 | 0.00                                | 0.00                                | 0.00                                |
| NiO                            | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                 | 0.00                                | 0.00                                | 0.00                                |
| Cr2O3                          | 0.00                                 | 0.00                                 | 0.01                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                 | 0.02                                | 0.00                                | 0.01                                |
| Sc2O3                          | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                 | 0.00                                | 0.00                                | 0.00                                |
| Total                          | 98.05                                | 99.79                                | 98.00                                | 97.14                                | 100.26                              | 98.73                               | 98.73                                | 98.12                               | 99.26                               | 99.56                               |
| Fe3+ model                     | Droop 1987                           | Droop 1987                           | Droop 1987                           | Droop 1987                           | Droop 1987                          | Droop 1987                          | Droop 1987                           | Droop 1987                          | Droop 1987                          | Droop 1987                          |
| Si                             | 1.96                                 | 1.99                                 | 2.01                                 | 1.98                                 | 1.98                                | 2.00                                | 2.01                                 | 2.01                                | 2.00                                | 2.01                                |
| Ti                             | 0.01                                 | 0.01                                 | 0.00                                 | 0.00                                 | 0.01                                | 0.02                                | 0.02                                 | 0.02                                | 0.02                                | 0.01                                |
| AI (T)                         | 0.02                                 | 0.01                                 | 0.00                                 | 0.01                                 | 0.02                                | 0.00                                | 0.00                                 | 0.00                                | 0.00                                | 0.00                                |
| AI (M1)                        | 0.00                                 | 0.00                                 | 0.01                                 | 0.00                                 | 0.00                                | 0.01                                | 0.01                                 | 0.01                                | 0.02                                | 0.01                                |
| Fe3+ (T)                       | 0.02                                 | 0.00                                 | 0.00                                 | 0.01                                 | 0.00                                | 0.00                                | 0.00                                 | 0.00                                | 0.00                                | 0.00                                |
| Fe3+ (M1)                      | 0.06                                 | 0.07                                 | 0.29                                 | 0.30                                 | 0.05                                | 0.28                                | 0.35                                 | 0.45                                | 0.31                                | 0.19                                |
| Fe3+ (T+M1)                    | 0.08                                 | 0.07                                 | 0.29                                 | 0.31                                 | 0.05                                | 0.28                                | 0.35                                 | 0.45                                | 0.31                                | 0.19                                |
| Fe2+                           | 0.41                                 | 0.54                                 | 0.56                                 | 0.50                                 | 0.45                                | 0.52                                | 0.50                                 | 0.42                                | 0.46                                | 0.54                                |
| Mn                             | 0.03                                 | 0.03                                 | 0.03                                 | 0.03                                 | 0.03                                | 0.04                                | 0.04                                 | 0.03                                | 0.04                                | 0.04                                |
| Mg                             | 0.58                                 | 0.43                                 | 0.14                                 | 0.19                                 | 0.55                                | 0.18                                | 0.10                                 | 0.07                                | 0.18                                | 0.25                                |
| Ca                             | 0.88                                 | 0.84                                 | 0.64                                 | 0.68                                 | 0.86                                | 0.62                                | 0.54                                 | 0.46                                | 0.62                                | 0.69                                |
| К                              | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                 | 0.00                                | 0.00                                | 0.00                                |
| Na                             | 0.04                                 | 0.08                                 | 0.32                                 | 0.29                                 | 0.05                                | 0.32                                | 0.42                                 | 0.52                                | 0.36                                | 0.25                                |
| Li                             | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                 | 0.00                                | 0.00                                | 0.00                                |
| Zn                             | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                 | 0.00                                | 0.00                                | 0.00                                |
| Ni                             | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                 | 0.00                                | 0.00                                | 0.00                                |
| Cr                             | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                 | 0.00                                | 0.00                                | 0.00                                |
| Sc                             | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                 | 0.00                                | 0.00                                | 0.00                                 | 0.00                                | 0.00                                | 0.00                                |
| Total                          | 4.00                                 | 4.00                                 | 4.00                                 | 4.00                                 | 4.00                                | 4.00                                | 4.00                                 | 4.00                                | 4.00                                | 4.00                                |
| aroup                          | Quad                                 | Quad                                 | Ca-Na                                | Ca-Na                                | Quad                                | Ca-Na                               | Ca-Na                                | Ca-Na                               | Ca-Na                               | Ca-Na                               |
| group                          | Qual                                 | Qudu                                 | Garina                               | odina                                | Quau                                | Ganna                               | Garina                               | odina                               | odina                               | Garina                              |
| aujective                      | augito                               | augito                               | pogiripo pugito                      | pogirino pugito                      | augito                              | acairino augito                     | acairino augito                      | pogiripo pugito                     | angirino augito                     |                                     |
| opstatito                      | 20 A                                 | augite                               | aegirme-augite                       | aeyii ine-auyite                     | 20 1                                | aegii me-augite                     | aeyn me-auynte                       | aegii me-augite                     | acymmerauyite                       | acyn me-augne                       |
| forrosillito                   | 27.4                                 | 22.3                                 |                                      |                                      | 20.1                                |                                     |                                      |                                     |                                     |                                     |
| wolloctopito                   | 20.1<br>44 E                         | 42.0                                 |                                      |                                      | 21.3<br>AA 6                        |                                     |                                      |                                     |                                     |                                     |
| indoito                        | 44.0                                 | 43.7                                 | 1.2                                  | 0.0                                  | 44.0                                | 1.6                                 | 1.6                                  | 1.2                                 | 1.0                                 | 1 7                                 |
| Jauente                        |                                      |                                      | 1.4                                  | 20.0                                 |                                     | 21.4                                | 41.0                                 | 1.Z<br>50.7                         | 24.6                                | 1.7                                 |
| Quad                           |                                      |                                      | 51.5<br>47.4                         | 27.7                                 |                                     | 51.4<br>47 1                        | 41.Z                                 | JU.7<br>40 1                        | 34.0<br>42 E                        | 23.3                                |
| Ubus                           |                                      |                                      | u/.0                                 | 70.1                                 |                                     | 07.1                                | J7.4                                 | 40.1                                | 03.3                                | 10.0                                |

| Type roche<br>sample<br>sample | NaS<br>TC09-126A<br>TC09-126A-ZoneA-83 | NaS<br>TC09-126A<br>TC09-126A-ZoneA-93 | NaS<br><b>TC09-126A</b><br>TC09-126A-zA-122 | NaS<br><b>TC09-126A</b><br>TC09-126A-zA-123 | NaS<br><b>TC09-126A</b><br>TC09-126A-zA-126 | NaS<br><b>TC09-126A</b><br>TC09-126A-zA-129 | NaS<br><b>TC09-126A</b><br>TC09-126A-zA-132 | NaS<br><b>TC09-126A</b><br>TC09-126A-zA-136 | NaS<br><b>TC09-126A</b><br>TC09-126A-zA-139 | NaS<br><b>TC09-126A</b><br>TC09-126A-zA-141 | NaS<br>TC09-126A<br>TC09-126A-ZoneB-13 | NaS<br>TC09-126A<br>TC09-126A-ZoneB-16 |
|--------------------------------|----------------------------------------|----------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------|----------------------------------------|
| SiO2                           | 51.71                                  | 51.62                                  | 51.85                                       | 52.27                                       | 52.12                                       | 51.84                                       | 52.33                                       | 52.53                                       | 51.63                                       | 51.73                                       | 52.55                                  | 52.92                                  |
| TiO2                           | 1.01                                   | 0.89                                   | 0.74                                        | 0.67                                        | 0.84                                        | 0.79                                        | 1.50                                        | 0.33                                        | 0.36                                        | 0.58                                        | 0.09                                   | 0.53                                   |
| AI203                          | 0.13                                   | 0.18                                   | 0.05                                        | 0.14                                        | 0.08                                        | 0.09                                        | 0.07                                        | 0.10                                        | 0.22                                        | 0.18                                        | 0.18                                   | 0.23                                   |
| FeO                            | 28.34                                  | 29.39                                  | 29.22                                       | 28.37                                       | 29.19                                       | 28.60                                       | 28.85                                       | 30.23                                       | 28.30                                       | 27.19                                       | 30.56                                  | 30.04                                  |
| MnO                            | 0.46                                   | 0.65                                   | 0.43                                        | 0.59                                        | 0.41                                        | 0.69                                        | 0.52                                        | 0.33                                        | 0.96                                        | 0.95                                        | 0.11                                   | 0.11                                   |
| MaQ                            | 0.28                                   | 0.23                                   | 0.02                                        | 0.20                                        | 0.00                                        | 0.21                                        | 0.07                                        | 0.01                                        | 0.90                                        | 0.70                                        | 0.01                                   | 0.05                                   |
| CaO                            | 4.81                                   | 5.43                                   | 4.39                                        | 4.98                                        | 3.55                                        | 4.86                                        | 4.32                                        | 3.84                                        | 8.92                                        | 7.13                                        | 0.23                                   | 0.49                                   |
| K20                            | 0.00                                   | 0.03                                   | 0.00                                        | 0.01                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.01                                        | 0.00                                   | 0.00                                   |
| Na2O                           | 10.52                                  | 9.71                                   | 10.34                                       | 10.25                                       | 11.26                                       | 10.10                                       | 10.82                                       | 11.25                                       | 8.47                                        | 8.66                                        | 13.24                                  | 13 38                                  |
| 1120                           | 0.00                                   | 0.00                                   | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                   | 0.00                                   |
| 7n0                            | 0.00                                   | 0.00                                   | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                   | 0.00                                   |
| NIO                            | 0.00                                   | 0.00                                   | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                   | 0.00                                   |
| Cr2O3                          | 0.00                                   | 0.02                                   | 0.00                                        | 0.07                                        | 0.07                                        | 0.00                                        | 0.03                                        | 0.00                                        | 0.02                                        | 0.00                                        | 0.04                                   | 0.04                                   |
| Sc2O3                          | 0.00                                   | 0.02                                   | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                   | 0.00                                   |
| Total                          | 97.26                                  | 98.14                                  | 97.04                                       | 97 54                                       | 97.53                                       | 97 17                                       | 98.51                                       | 98.62                                       | 99.77                                       | 97.13                                       | 97.02                                  | 97 79                                  |
| Fe3+ model                     | Droop 1987                             | Droon 1987                             | Droop 1987                                  | Droop 1987                                  | Droop 1987                                  | Droop 1987                                  | Droop 1987                                  | Droop 1987                                  | Droop 1987                                  | Droop 1987                                  | Droop 1987                             | Droop 1987                             |
| si                             | 2.01                                   | 2.01                                   | 2.03                                        | 2 04                                        | 2.02                                        | 2.03                                        | 2.02                                        | 2 01                                        | 1.99                                        | 2.04                                        | 2 01                                   | 2 01                                   |
| Ti                             | 0.03                                   | 0.03                                   | 0.02                                        | 0.02                                        | 0.02                                        | 0.02                                        | 0.04                                        | 0.01                                        | 0.01                                        | 0.02                                        | 0.00                                   | 0.02                                   |
| AL (T)                         | 0.00                                   | 0.00                                   | 0.00                                        | 0.02                                        | 0.02                                        | 0.02                                        | 0.00                                        | 0.00                                        | 0.01                                        | 0.00                                        | 0.00                                   | 0.00                                   |
| AL (M1)                        | 0.01                                   | 0.01                                   | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.01                                        | 0.00                                   | 0.01                                   |
| Fo3+ (T)                       | 0.00                                   | 0.00                                   | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                   | 0.00                                   |
| Fo3+ (M1)                      | 0.70                                   | 0.65                                   | 0.68                                        | 0.66                                        | 0.75                                        | 0.66                                        | 0.60                                        | 0.70                                        | 0.62                                        | 0.54                                        | 0.00                                   | 0.03                                   |
| Fo3+ (T+M1)                    | 0.70                                   | 0.65                                   | 0.68                                        | 0.66                                        | 0.75                                        | 0.66                                        | 0.69                                        | 0.79                                        | 0.63                                        | 0.54                                        | 0.94                                   | 0.03                                   |
| Fo2+                           | 0.22                                   | 0.31                                   | 0.28                                        | 0.00                                        | 0.19                                        | 0.00                                        | 0.24                                        | 0.18                                        | 0.28                                        | 0.34                                        | 0.03                                   | 0.03                                   |
| Mn                             | 0.02                                   | 0.02                                   | 0.01                                        | 0.02                                        | 0.01                                        | 0.02                                        | 0.02                                        | 0.01                                        | 0.03                                        | 0.03                                        | 0.00                                   | 0.00                                   |
| Ma                             | 0.02                                   | 0.01                                   | 0.00                                        | 0.02                                        | 0.00                                        | 0.02                                        | 0.02                                        | 0.00                                        | 0.05                                        | 0.04                                        | 0.00                                   | 0.00                                   |
| Ca                             | 0.02                                   | 0.23                                   | 0.18                                        | 0.21                                        | 0.15                                        | 0.20                                        | 0.18                                        | 0.16                                        | 0.37                                        | 0.30                                        | 0.00                                   | 0.02                                   |
| K                              | 0.00                                   | 0.00                                   | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                   | 0.00                                   |
| No                             | 0.00                                   | 0.00                                   | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                   | 0.00                                   |
| 11                             | 0.00                                   | 0.00                                   | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                   | 0.00                                   |
| 70                             | 0.00                                   | 0.00                                   | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                   | 0.00                                   |
| Ni                             | 0.00                                   | 0.00                                   | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                   | 0.00                                   |
| Cr                             | 0.00                                   | 0.00                                   | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                   | 0.00                                   |
| Sc.                            | 0.00                                   | 0.00                                   | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                        | 0.00                                   | 0.00                                   |
| Total                          | 4.00                                   | 4.00                                   | 4.00                                        | 4.00                                        | 4.00                                        | 4.00                                        | 4.00                                        | 4.00                                        | 4.00                                        | 4.00                                        | 4.00                                   | 4.00                                   |
| TOTAL                          | 4.00                                   | 4.00                                   | 4.00                                        | 4.00                                        | 4.00                                        | 4.00                                        | 4.00                                        | 4.00                                        | 4.00                                        | 4.00                                        | 4.00                                   | 4.00                                   |
| aroup                          | Co No                                  | Co No                                  | Co No                                       | Co No                                       | No                                          | Co No                                       | Co No                                       | No                                          | Co No                                       | Co No                                       | No                                     | No                                     |
| group                          | forrian codian                         | forrian codian                         | forrian codian                              | forrian codian                              | INd                                         | forrian codian                              | forrian codian                              | INd                                         | forrian codian                              | forrian codian                              | INd                                    | ING                                    |
| aujective                      | acairino quaito                        |                                        | aogirino augito                             | acairino augito                             | aogirino                                    |                                             | aogirino augito                             | aogirino                                    |                                             | acairino quaito                             | aogirino                               | aggiring                               |
| opstatito                      | aeyiiiie-auyite                        | aeyii ille-auyite                      | acyline-aughe                               | acyline-augite                              | aeyii ii e                                  | acylinic-augite                             | acylille-augite                             | aeyii iile                                  | acylime-aughe                               | aeyirine-auyite                             | aeyiine                                | acyline                                |
| forrocillito                   |                                        |                                        |                                             |                                             |                                             |                                             |                                             |                                             |                                             |                                             |                                        |                                        |
| wolloctopito                   |                                        |                                        |                                             |                                             |                                             |                                             |                                             |                                             |                                             |                                             |                                        |                                        |
| iadoito                        | 0.7                                    | 0.9                                    | 0.3                                         | 0.7                                         | 0.4                                         | 0.5                                         | 0.4                                         | 0.5                                         | 0.0                                         | 10                                          | 0.8                                    | 11                                     |
| addite                         | 77.6                                   | 72.0                                   | 76.8                                        | 75.3                                        | 82.0                                        | 75.1                                        | 78.8                                        | 82.6                                        | 6/13                                        | 64.4                                        | 0.0                                    | 96.5                                   |
| Quad                           | 21.7                                   | 27.1                                   | 22.0                                        | 24.0                                        | 16.7                                        | 24.5                                        | 20.0                                        | 16.0                                        | 35.7                                        | 34.6                                        | 2.2                                    | 2.5                                    |
| Quuu                           | L                                      | 21.1                                   | 22.1                                        | 27.0                                        | 10.7                                        | 24.5                                        | 20.7                                        | 10.7                                        | 33.7                                        | 54.0                                        | 2.2                                    | 2.5                                    |

| Type roche    | NaS                 |
|---------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| sample        | TC09-126A           | TK103               | TK103               | TK103               | TK103               |
| sample        | 1C09-126A-ZoneB-17  | 1C09-126A-ZoneB-18  | 1C09-126A-ZoneB-24  | 1C09-126A-ZoneB-25  | 1C09-126A-ZoneB-43  | 1C09-126A-ZoneB-59  | 1C09-126A-ZoneB-62  | 1C09-126A-ZoneB-68  | TK-103B-01          | TK-103B-C1-03       | TK-103B-C1-05       | TK-103B-C1-06       |
| SiO2          | 53.27               | 53.13               | 54.22               | 51.73               | 52.35               | 51.68               | 51.85               | 52.59               | 52.44               | 49.80               | 51.21               | 50.91               |
| TiO2          | 0.48                | 0.56                | 0.70                | 1.06                | 0.39                | 1.01                | 0.92                | 1.09                | 0.71                | 0.43                | 0.64                | 0.55                |
| AI2O3         | 0.24                | 0.11                | 0.51                | 0.03                | 0.54                | 0.04                | 0.10                | 0.59                | 0.24                | 0.24                | 0.32                | 0.21                |
| FeO           | 30.28               | 30.51               | 28.30               | 29.67               | 30.46               | 28.83               | 28.62               | 28.98               | 27.84               | 27.57               | 27.24               | 28.05               |
| MnO           | 0.08                | 0.09                | 0.22                | 0.50                | 0.00                | 0.54                | 0.64                | 0.34                | 0.80                | 1.18                | 1.14                | 1.01                |
| MaQ           | 0.10                | 0.05                | 0.11                | 0.26                | 0.05                | 0.27                | 0.30                | 0.09                | 0.42                | 0.86                | 0.58                | 0.46                |
| CaO           | 0.95                | 0.48                | 1.04                | 4.49                | 0.14                | 5.22                | 4.80                | 0.86                | 6.94                | 10.83               | 7.92                | 8.24                |
| K20           | 0.00                | 0.00                | 0.01                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.02                | 0.02                | 0.00                |
| Na2O          | 12.90               | 13.13               | 11.99               | 10.91               | 13.15               | 10.30               | 10.55               | 12.67               | 8.66                | 6.43                | 8.19                | 7.79                |
| 1120          | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                |
| ZnO           | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                |
| NIO           | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                |
| Cr203         | 0.02                | 0.02                | 0.09                | 0.00                | 0.00                | 0.00                | 0.02                | 0.00                | 0.02                | 0.00                | 0.00                | 0.02                |
| Sc203         | 0.00                | 0.02                | 0.00                | 0.00                | 0.00                | 0.00                | 0.02                | 0.00                | 0.02                | 0.00                | 0.00                | 0.00                |
| Total         | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 07.80               | 97.80               | 97.20               | 40.80               | 07 35               | 07.00               | 07.24               |
| Eo2, model    | 70.33<br>Droop 1097 | 70.07<br>Droop 1097 | 77.20<br>Droop 1097 | 70.00<br>Droop 1097 | 77.07<br>Droop 1097 | 77.07<br>Droop 1007 | 77.00<br>Droop 1097 | 77.20<br>Droop 1097 | 70.00<br>Droon 1097 | 77.33<br>Droop 1097 | 77.27<br>Droon 1097 | 77.24<br>Droop 1097 |
| ci            | 2.02                | 2.02                | 2.00                | 1 00                | 2.00                | 2 01                | 2 01                | 2.02                | 2.05                | 2.00                | 2.02                | 2.02                |
| 3i<br>Ti      | 0.01                | 2.02                | 2.07                | 0.02                | 2.00                | 2.01                | 2.01                | 2.02                | 2.03                | 2.00                | 2.03                | 2.03                |
| AL (T)        | 0.01                | 0.02                | 0.02                | 0.00                | 0.01                | 0.03                | 0.03                | 0.00                | 0.02                | 0.00                | 0.02                | 0.02                |
| AI (1)        | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                |
| AL (IVII)     | 0.01                | 0.00                | 0.02                | 0.00                | 0.02                | 0.00                | 0.00                | 0.03                | 0.01                | 0.00                | 0.02                | 0.01                |
| Fe3+ (I)      | 0.00                | 0.00                | 0.00                | 0.01                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                |
| Fe3+ (IVII)   | 0.07                | 0.09                | 0.05                | 0.70                | 0.92                | 0.70                | 0.71                | 0.02                | 0.49                | 0.47                | 0.52                | 0.51                |
| Fe3+ (1+IVII) | 0.07                | 0.09                | 0.00                | 0.76                | 0.92                | 0.70                | 0.71                | 0.02                | 0.49                | 0.47                | 0.52                | 0.42                |
| Fe2+          | 0.09                | 0.08                | 0.26                | 0.18                | 0.06                | 0.24                | 0.21                | 0.11                | 0.42                | 0.45                | 0.38                | 0.43                |
| IVIN          | 0.00                | 0.00                | 0.01                | 0.02                | 0.00                | 0.02                | 0.02                | 0.01                | 0.03                | 0.04                | 0.04                | 0.03                |
| ivig          | 0.01                | 0.00                | 0.01                | 0.02                | 0.00                | 0.02                | 0.02                | 0.01                | 0.02                | 0.05                | 0.03                | 0.03                |
| Ca            | 0.04                | 0.02                | 0.04                | 0.18                | 0.01                | 0.22                | 0.20                | 0.04                | 0.29                | 0.46                | 0.34                | 0.35                |
| ĸ             | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                |
| Na            | 0.95                | 0.97                | 0.90                | 0.81                | 0.98                | 0.78                | 0.79                | 0.94                | 0.66                | 0.50                | 0.63                | 0.60                |
| Li            | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                |
| Zn            | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                |
| Ni            | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                |
| Cr            | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                |
| Sc            | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                | 0.00                |
| Total         | 4.00                | 4.00                | 4.00                | 4.00                | 4.00                | 4.00                | 4.00                | 4.00                | 4.00                | 4.00                | 4.00                | 4.00                |
| group         | Na                  | Na                  | Na                  | Na                  | Na                  | Ca-Na               | Ca-Na               | Na                  | Ca-Na               | Ca-Na               | Ca-Na               | Ca-Na               |
| adjective     |                     |                     |                     |                     |                     | ferrian sodian      | ferrian sodian      |                     |                     |                     |                     |                     |
| pyroxene      | aegirine            | aegirine            | aegirine            | aegirine            | aegirine            | aegirine-augite     | aegirine-augite     | aegirine            | aegirine-augite     | aegirine-augite     | aegirine-augite     | aegirine-augite     |
| enstatite     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |
| ferrosillite  |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |
| wollastonite  |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |
| jadeite       | 1.1                 | 0.5                 | 2.9                 | 0.0                 | 2.5                 | 0.2                 | 0.5                 | 2.9                 | 1.4                 | 0.7                 | 1.8                 | 1.1                 |
| aegirine      | 92.2                | 94.7                | 82.4                | 81.2                | 94.3                | 76.6                | 78.1                | 89.6                | 62.8                | 50.0                | 60.9                | 58.8                |
| Quad          | 6.6                 | 4.8                 | 14.7                | 18.8                | 3.2                 | 23.2                | 21.4                | 7.5                 | 35.8                | 49.2                | 37.3                | 40.1                |
|               |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |

|                                                    |                                          | FORMULE                        | STRUCTURAL                               | LE                   |                      |                    |                      |               |                     |                      | AI             | NALYSE                                        |                      |                            |                                         |                |
|----------------------------------------------------|------------------------------------------|--------------------------------|------------------------------------------|----------------------|----------------------|--------------------|----------------------|---------------|---------------------|----------------------|----------------|-----------------------------------------------|----------------------|----------------------------|-----------------------------------------|----------------|
| O (NOT PY)<br>P<br>CI<br>W subtotal<br>Sum T,C,B,A | Ca<br>Na<br>K<br>A subtotal<br>O (non-W) | Fe2+<br>Ca<br>Na<br>B subtotal | Mnz+<br>Fe2+<br>Mg<br>C subtotal<br>Mn2+ | Fe3+<br>Ni<br>Zn     | SP AI                | Fe3+<br>T subtotal | A I                  | Initial Total | CI<br>O=F CI (ralc) | Nazo<br>K2O<br>F     | MgO<br>CaO     | A1203<br>Cr203<br>Fe0<br>Ni0<br>Zn0<br>Be0    | SiO2<br>TiO2<br>ZrO2 | Species                    | Sample<br>Analysis (wt%)                | GROUP Petro    |
| 2.00<br>2.00<br>15.68                              | 0.00<br>0.51<br>0.68<br>22.00            | 0.01<br>1.75<br>0.22<br>2.00   | 1.49<br>2.84<br>5.00<br>0.02             | 0.05                 | 0.44<br>0.19<br>0.00 | 0.00<br>8.00       | 6.42<br>1.58         | 97.51         | 0 00                | 2.54<br>0.91         | 12.86<br>11.06 | 10.13<br>0.01<br>0.14<br>12.52                | 43.39<br>3.97        | Ti-rich<br>pargasite       | <b>13TK002A</b><br>TK002A_C1_00 T<br>13 | Monzo-gabbro 1 |
| 2.00<br>2.00<br>15.69                              | 0.00<br>0.53<br>0.69<br>22.00            | 0.02<br>1.74<br>0.21<br>2.00   | 1.45<br>2.88<br>5.00<br>0.02             | 0.08                 | 0.43<br>0.16<br>0.00 | 0.00<br>8.00       | 6.42<br>1.58         | 97.74         | 0.00                | 2.59<br>0.86         | 13.09<br>11.02 | 10.01<br>0.01<br>0.20<br>12.58                | 43.49<br>3.89        | Ti-rich<br>pargasite       | <b>13TK002A</b><br>K002A_C1_00 Tk<br>15 | Monzo-gabbro M |
| 2.00<br>2.00<br>2.00<br>15.74                      | 0.00<br>0.57<br>0.18<br>0.74<br>22.00    | 0.01<br>1.79<br>0.19<br>2.00   | 1.46<br>2.94<br>5.00                     | 0.05                 | 0.09<br>0.00         | 0.00<br>8.00       | 6.39<br>1.61         | 97.61         | 0 00                | 2.61<br>0.95         | 13.34<br>11.28 | 9.73<br>0.03<br>0.10<br>12.32                 | 43.17<br>4.09        | Ti-rich<br>pargasite       | 13TK002A<br>.002A_C1_00 Tk<br>7         | lonzo-gabbro N |
| 2.00<br>2.00<br>15.71                              | 0.00<br>0.53<br>0.71<br>22.00            | 0.00<br>1.77<br>0.21<br>2.00   | 0.01<br>1.47<br>5.00<br>0.02             | 0.03                 | 0.45<br>0.01         | 0.00<br>8.00       | 6.41<br>1.59         | 97.35         | 0 00                | 2.60<br>0.92         | 13.04<br>11.14 | 9.95<br>0.05<br>0.20<br>12.13                 | 43.25<br>4.07        | Ti-rich<br>pargasite       | <b>13TK002A</b><br>(002A_C2_00<br>30    | lonzo-gabbro   |
| 1.81<br>0.19<br>2.00<br>15.11                      | 0.00<br>0.07<br>0.11<br>22.00            | 0.00<br>2.00<br>2.00           | 0.09<br>2.60<br>5.00                     | 0.13                 | 0.08                 | 0.00<br>8.00       | 7.68<br>0.32         | 97.58         | -0.01               | 0.25<br>0.21<br>0.39 | 9.26<br>12.32  | 2.25<br>0.02<br>0.68<br>21.54<br>0.13<br>0.00 | 50.70<br>0.00        | rro-actinolite             | TC09-116<br>TC-09-116-<br>ZoneA-18      | Monzonite      |
| 1.28<br>0.65<br>2.00<br>15.61                      | 0.00<br>0.44<br>0.17<br>22.00            | 0.07<br>1.70<br>0.16<br>2.00   | 2.39<br>2.11<br>5.00                     | 0.24<br>0.00<br>0.03 | 0.05                 | 0.00<br>8.00       | 6.89<br>1.11         | 100.32        | 0.29<br>-0.64       | 2.06<br>0.90<br>1.36 | 9.43<br>10.57  | 6.53<br>0.00<br>21.49<br>0.23<br>0.24         | 45.90<br>1.62        | hastingsite                | TC09-116<br>TC-09-116-<br>ZoneA-19      | Monzonite      |
| 1.48<br>0.46<br>2.00<br>15.50                      | 0.00<br>0.36<br>0.50<br>22.00            | 0.09<br>1.71<br>0.13<br>2.00   | 2.42<br>2.12<br>5.00<br>0.07             | 0.28                 | 0.00                 | 0.00<br>8.00       | 6.99<br>0.99<br>0.02 | 99.98         | -0.24               | 0.74<br>0.96         | 9.49<br>10.61  | 5.59<br>0.08<br>0.58<br>22.18<br>0.01<br>0.00 | 46.57<br>1.71        | ferro-ferri-<br>hornblende | TC09-116<br>TC-09-116-<br>ZoneA-2       | Monzonite      |
| 1.30<br>0.64<br>2.00<br>15.47                      | 0.00<br>0.34<br>0.47<br>22.00            | 0.10<br>1.75<br>0.10<br>2.00   | 2.33<br>2.18<br>5.00<br>0.06             | 0.28<br>0.03         | 0.02<br>0.00         | 0.00<br>8.00       | 7.01<br>0.99         | 98.84         | -0.24               | 1.49<br>0.64<br>1.34 | 9.63<br>10.74  | 5.63<br>0.01<br>21.34<br>0.00<br>0.28         | 46.21<br>1.43        | ferro-ferri-<br>hornblende | TC-09-116<br>TC-09-116-<br>ZoneA-25     | Monzonite      |
| 1.52<br>0.41<br>2.00<br>15.59                      | 0.00<br>0.45<br>0.59<br>22.00            | 0.07<br>1.72<br>0.14<br>2.00   | 2.36<br>2.16<br>5.00<br>0.07             | 0.25<br>0.01<br>0.00 | 0.07                 | 0.00<br>8.00       | 6.93<br>1.07         | 99.03         | _0.31               | 2.00<br>0.72<br>0.85 | 9.59<br>10.60  | 6.37<br>0.00<br>21.15<br>0.08<br>0.02         | 45.84<br>1.37        | hastingsite f              | TC09-116<br>TC-09-116-<br>ZoneB-22      | Monzonite      |
| 1.72<br>0.26<br>2.00<br>15.21                      | 0.00<br>0.13<br>0.21<br>22.00            | 0.00<br>1.97<br>0.01<br>2.00   | 0.06<br>2.39<br>5.00<br>0.01             | 0.21                 | 0.04<br>0.12<br>0.01 | 0.00<br>8.00       | 7.40<br>0.60         | 95.56         | -0.08               | 0.49<br>0.36<br>0.54 | 9.51<br>11.93  | 3.94<br>0.04<br>0.52<br>20.12<br>0.00<br>0.00 | 47.95<br>0.32        | erro-actinolite            | TC-09-116<br>TC-09-116-<br>ZoneB-23     | Monzonite      |
| 1.56<br>0.40<br>2.00<br>15.69                      | 0.00<br>0.50<br>0.69<br>22.00            | 0.03<br>1.80<br>0.10<br>2.00   | 2.61<br>1.98<br>5.00<br>0.08             | 0.18<br>0.01<br>0.01 | 0.01                 | 0.00<br>8.00       | 6.81<br>1.19         | 98.85         |                     | 2.01<br>0.97<br>0.82 | 8.66<br>10.95  | 6.66<br>0.00<br>0.58<br>22.02<br>0.05<br>0.10 | 44.47<br>1.77        | hastingsite                | TC-09-116<br>TC-09-116-<br>ZoneB-34     | Monzonite      |
| 1.53<br>0.39<br>2.00<br>15.66                      | 0.00<br>0.49<br>0.66<br>22.00            | 0.05<br>1.75<br>0.13<br>2.00   | 2.55<br>2.02<br>5.00<br>0.08             | 0.21                 | 0.01                 | 0.00<br>8.00       | 6.84<br>1.16         | 99.86         | -0.30               | 2.11<br>0.89<br>0.82 | 8.96<br>10.79  | 6.61<br>0.03<br>0.22<br>22.22<br>0.00<br>0.00 | 45.20<br>1.75        | hastingsite                | TC-09-116<br>TC-09-116-<br>ZoneB-5      | Monzonite      |
| 1.08<br>0.85<br>2.00<br>15.52                      | 0.00<br>0.36<br>0.52<br>22.00            | 0.08<br>1.70<br>0.16<br>2.00   | 2.40<br>2.10<br>5.00<br>0.06             | 0.24                 | 0.08                 | 0.00<br>8.00       | 6.96<br>1.04         | 98.30         | -0.25               | 1.76<br>0.81<br>1.76 | 9.18<br>10.37  | 6.25<br>0.00<br>0.48<br>21.24<br>0.00<br>0.00 | 45.44<br>1.55        | hastingsite                | TC09-116<br>TC-09-116-<br>ZoneC-2       | Monzonite      |
| 2.00<br>2.00<br>15.44                              | 0.00<br>0.32<br>0.12<br>0.44             | 0.06<br>1.76<br>0.14<br>2.00   | 1.67<br>3.01<br>5.00<br>0.04             | 0.18                 | 0.04                 | 0.00<br>8.00       | 7.27<br>0.73         | 96.40         | 0 00                | 1.58<br>0.62         | 13.53<br>11.03 | 4.38<br>0.04<br>15.28                         | 48.75<br>0.91        | actinolite                 | <b>13TK47B</b><br>TK-47B-C1-03          | Monzonite      |
| 2.00<br>2.00<br>15.47                              | 0.00<br>0.35<br>0.12<br>0.47<br>22.00    | 0.05<br>1.81<br>0.09<br>2.00   | 1.72<br>2.96<br>5.00<br>0.04             | 0.16                 | 0.04<br>0.01         | 0.00<br>8.00       | 7.20<br>0.80         | 96.34         | 0 00                | 0.61                 | 13.28<br>11.29 | 4.73<br>0.05<br>0.34<br>15.47                 | 48.09<br>0.95        | actinolite                 | <b>13TK47B</b><br>TK-47B-C1-04          | Monzonite      |
| 2.00<br>2.00<br>15.08                              | 0.00<br>0.03<br>0.08<br>22.00            | 0.00<br>1.98<br>0.01<br>2.00   | 0.02<br>1.80<br>5.00<br>0.01             | 0.05                 | 0.18                 | 0.00<br>8.00       | 7.70<br>0.30         | 97.20         | 0.00                | 0.23                 | 13.54<br>12.63 | 2.75<br>0.00<br>0.22<br>15.11                 | 52.59<br>0.00        | actinolite                 | <b>13TK47B</b><br>TK-47B-C1-05          | Monzonite      |
| 1.43<br>0.57<br>2.00<br>15.71                      | 0.00<br>0.49<br>0.71<br>22.00            | 0.09<br>1.45<br>0.32<br>2.00   | 3.80<br>1.04<br>5.00<br>0.14             | 0.00                 | 0.01                 | 0.00<br>8.00       | 7.29<br>0.71         | 99.90         | -0.01               | 2.07<br>1.12<br>1.14 | 4.43<br>8.63   | 3.90<br>0.00<br>1.01<br>29.67<br>0.00         | 46.45<br>1.34        | ferro-edenite              | TC09-006<br>TC-09-06-C2-<br>a1          | CaS            |
| 22.00<br>1.18<br>0.02<br>2.00<br>15.88             | 0.00<br>0.69<br>0.19<br>0.89             | 0.00<br>1.56<br>0.37<br>2.00   | 0.05<br>3.49<br>5.00<br>0.07             | 0.13                 | 0.00                 | 0.00<br>8.00       | 7.14<br>0.79<br>0.07 | 99.78         | -1 0.09             | 3.48<br>0.96<br>2.38 | 5.32<br>9.24   | 4.26<br>0.00<br>0.94<br>27.50<br>0.04         | 45.37<br>1.23        | ferro-fluoro-<br>edenite   | <b>TC09-006</b><br>TC-09-06-C2-<br>a2   | CaS            |
| 1.49<br>0.51<br>2.00<br>15.63                      | 0.00<br>0.40<br>0.22<br>0.63<br>22.00    | 0.00<br>1.41<br>0.48<br>2.00   | 0.03<br>3.46<br>1.13<br>5.00<br>0.12     | 0.20                 | 0.05                 | 0.00<br>8.00       | 7.33<br>0.67         | 99.43         | -0.02               | 2.91<br>1.12<br>1.03 | 4.87           | 3.91<br>0.00<br>1.08<br>28.16<br>0.00         | 47.14<br>1.18        | hastingsite                | <b>TC09-006</b><br>TC-09-06-C3-<br>a1   | CaS            |

| Cl<br>W subtotal<br>Sum T,C,B,A | Na<br>A subtotal<br>O (non-W)<br>OH<br>F      | Ca<br>B subtotal<br>Ca       | Mn2+<br>Fe2+<br>Mg<br>C subtotal<br>Mn2+<br>Fe2+ | Fe3+<br>Zn   | A            | II<br>Fe3+<br>T subtotal | A            | O=F,Cl (calc)<br>Initial Total |              | K20          | Mg0<br>CaO    | AI2O3<br>Cr2O3<br>FeO<br>NIO<br>ZnO<br>BeO | SiO2<br>TiO2<br>ZrO2 | Species                  | Analysis (wt%)  | Sample   | GROUP Petro |
|---------------------------------|-----------------------------------------------|------------------------------|--------------------------------------------------|--------------|--------------|--------------------------|--------------|--------------------------------|--------------|--------------|---------------|--------------------------------------------|----------------------|--------------------------|-----------------|----------|-------------|
| 0.01<br>2.00<br>15.59           | 0.39<br>0.21<br>22.00<br>1.27<br>1.27<br>0.72 | 1.45<br>0.43<br>0.00         | 0.01<br>3.50<br>5.00<br>0.12                     | 0.21         | 0.15         | 8 00.00                  | 7.31<br>0.69 | -0.62<br>98.68                 | 1.45<br>0.04 | 1.03         | 4.69<br>8.58  | 3.84<br>1.02<br>28.25<br>0.00              | 46.45<br>1.24        | hastingsite              | TC-09-06-C3-a2  | TC09-006 | CaS         |
| 0.01<br>2.00<br>15.67           | 0.47<br>0.20<br>0.67<br>22.00<br>0.87<br>1.12 | 0.00<br>1.41<br>2.00<br>0.00 | 0.00<br>3.48<br>5.00<br>0.11                     | 0.20         | 0.12<br>0.00 | 8 0.00                   | 0.63         | -0.96<br>99.07                 | 0.05         | 1.01         | 5.12<br>8.37  | 3.40<br>0.00<br>27.96<br>0.00              | 46.75<br>1.17        | ferro-fluoro-<br>edenite | TC-09-06-C5-a1  | TC09-006 | CaS         |
| 2.00<br>15.06                   | 0.02<br>0.04<br>22.00<br>2.00                 | 1.73<br>0.27<br>0.00         | 0.17<br>4.21<br>5.00                             | 0.05         | 0.01<br>0.14 | 0.00                     | 0.00         | 0.00<br>98.31                  | 5            | 0.94<br>0.19 | 1.79<br>10.24 | 0.75<br>1.26<br>32.29                      | 50.76<br>0.09        | erro-actinolite          | TC-09-06-C5-a2  | TC09-006 | CaS         |
| 0.00<br>2.00<br>15.57           | 0.37<br>0.20<br>22.00<br>1.28<br>0.71         | 1.44<br>0.43<br>0.00         | 0.02<br>3.56<br>5.00<br>0.13                     | 0.23         | 0.13<br>0.04 | 0.00                     | 7.34<br>0.66 | -0.61<br>99.94                 | 0.01         | 1.01         | 4.45          | 3.81<br>0.00<br>1.13<br>29.08<br>0.00      | 47.21<br>1.09        | hastingsite              | TC-09-06-C7-a1  | TC09-006 | CaS         |
| 2.00<br>15.66                   | 0.46<br>0.20<br>22.00<br>1.32<br>0.68         | 0.44<br>0.44                 | 3.48<br>1.15<br>0.13                             | 0.26         | 0.11<br>0.00 | 8 00.00                  | 7.25<br>0.70 | -0.58<br>98.91                 | 0.00         | 2.93         | 4.91<br>8.39  | 3.77<br>0.00<br>0.95<br>28.69<br>0.00      | 46.14<br>1.32        | ferro-edenite fe         | TC-09-06-C7-a2  | TC09-006 | CaS         |
| 0.02<br>2.00<br>15.15           | 0.07<br>0.15<br>22.00<br>1.86<br>0.12         | 1.64<br>0.26<br>0.00         | 0.10<br>4.25<br>5.00<br>0.10                     | 0.22         | 0.01         | 0.00                     | 7.86<br>0.15 | -0.12<br>98.16                 | 0.09         | 0.36         | 1.68<br>9.59  | 0.85<br>1.50<br>0.00                       | 49.27<br>0.11        | rro-actinolite           | TC-09-06-C7-a3  | TC09-006 | CaS         |
| 0.05<br>2.00<br>15.71           | 0.53<br>0.18<br>22.00<br>1.28<br>0.67         | 0.00<br>0.21<br>0.00         | 2.89<br>1.72<br>5.00                             | 0.02         | 0.00         | 0.00<br>8.00             | 6.92<br>1.04 | -0.63<br>100.33                | 1.38<br>0.21 | 2.51<br>0.93 | 7.54          | 5.79<br>0.15<br>24.64<br>0.00              | 45.31<br>1.64        | hastingsite f            | TC09_10-C10     | TC09-010 | CaS         |
| 0.06<br>2.00<br>15.69           | 0.53<br>0.16<br>22.00<br>1.30<br>0.64         | 0.20<br>0.200                | 2.84<br>1.85<br>0.10                             | 0.27<br>0.00 | 0.05         | 0.00<br>8.00             | 7.12<br>0.76 | -0.61<br>100.22                | 0.25         | 2./3<br>0.82 | 8.12<br>9.58  | 4.24<br>0.00<br>0.77<br>24.82<br>0.01      | 46.69<br>1.47        | erro-edenite             | T009_10-C3      | TC09-010 | CaS         |
| 0.06<br>2.00<br>15.84           | 0.65<br>0.19<br>22.00<br>1.43<br>0.51         | 1.69<br>0.24<br>0.00         | 3.06<br>1.62<br>0.06                             | 0.01         | 0.19         | 8 00<br>0.00             | 6.85<br>1.12 | -0.49<br>99.47                 | 0.24         | 2.96<br>0.98 | 7.03          | 6.15<br>0.05<br>0.45<br>24.69<br>0.00      | 44.31<br>1.87        | hastingsite f            | T009_10-C4      | TC09-010 | CaS         |
| 0.05<br>2.00<br>15.68           | 0.50<br>0.17<br>22.00<br>1.49<br>0.47         | 0.00<br>0.27<br>0.00         | 2.83<br>5.00<br>0.07                             | 0.23<br>0.00 | 0.10<br>0.00 | 8 00.00                  | 7.08<br>0.84 | -0.44<br>98.76                 | 0.17         | 0.88         | 7.99          | 4.65<br>0.00<br>24.23<br>0.01              | 45.99<br>1.50        | erro-edenite fer         | T009_10-C7      | TC09-010 | CaS         |
| 0.03<br>2.00<br>15.23           | 0.14<br>0.23<br>22.00<br>1.39<br>0.59         | 0.00<br>0.27<br>0.00         | 0.00<br>3.33<br>5.00<br>0.09                     | 0.32         | 0.03<br>0.02 | 0.00                     | 7.63<br>0.37 | -0.53<br>99.48                 | 0.10         | 0.48         | 5.66<br>9.95  | 2.17<br>0.00<br>0.71<br>28.38<br>0.00      | 49.68<br>0.29        | ro-actinolite fe         | rco9-10A-C1-a1  | TC09-010 | CaS         |
| 0.03<br>2.00<br>15.11           | 0.02<br>0.11<br>22.00<br>1.94<br>0.03         | 0.00<br>0.11<br>0.00         | 0.05<br>4.38<br>5.00<br>0.08                     | 0.07         | 0.08         | 0.00                     | 7.85<br>0.15 | -0.05<br>99.30                 | 0.11         | 0.44         | 1.79<br>10.70 | 1.27<br>0.00<br>0.97<br>33.78<br>0.00      | 49.81<br>0.00        | rro-actinolite fe        | TC09-10A-C1-a2  | TC09-010 | CaS         |
| 0.01<br>2.00<br>15.20           | 0.12<br>0.08<br>0.20<br>22.00<br>1.70<br>0.29 | 0.02<br>0.23<br>0.00         | 3.56<br>1.08<br>0.10                             | 0.36         | 0.00         | 0.01<br>8.00             | 7.64<br>0.33 | -0.26<br>99.52                 | 0.04         | 0.40         | 4.70<br>9.97  | 1.79<br>0.00<br>0.76<br>30.62<br>0.00      | 49.52<br>0.22        | rro-actinolite fe        | TC09-10A-C1-a3  | TC09-010 | CaS         |
| 0.02<br>2.00<br>15.14           | 0.10<br>0.05<br>0.14<br>1.76<br>0.22          | 1.89<br>0.08<br>0.00         | 0.10<br>3.96<br>5.00<br>0.04                     | 0.11         | 0.00         | 0.03                     | 7.82<br>0.15 | -0.21<br>99.54                 | 0.45         | 0.24         | 3.56<br>11.29 | 0.83<br>0.03<br>1.02<br>31.47<br>0.00      | 50.20<br>0.00        | rro-actinolite fe        | T009-10A-C1-a4  | TC09-010 | CaS         |
| 0.01<br>2.00<br>15.27           | 0.13<br>0.14<br>0.27<br>22.00<br>1.99         | 1.85<br>0.09<br>0.00         | 0.03<br>3.79<br>5.00<br>0.06                     | 0.20<br>0.01 | 0.02<br>0.08 | 8 00                     | 7.50<br>0.50 | -0.01<br>96.98                 | 0.02         | 0.67         | 3.62<br>10.86 | 3.11<br>0.00<br>0.68<br>29.98<br>0.11      | 47.07<br>0.16        | rro-actinolite fe        | TC09-10A-C1-a5  | TC09-010 | CaS         |
| 0.01<br>2.00<br>15.18           | 0.10<br>0.08<br>22.00<br>2.00                 | 1.80<br>0.15<br>0.00         | 0.09<br>3.78<br>5.00<br>0.05                     | 0.17         | 0.07         | 0.00                     | 7.71<br>0.29 | 0.00<br>98.77                  | 0.02         | 0.41         | 3.81<br>10.79 | 1.92<br>0.01<br>1.05<br>30.34<br>0.00      | 49.54<br>0.07        | rro-actinolite           | TC09-10A-C1-a6  | TC09-010 | CaS         |
| 2.00<br>15.78                   | 0.60<br>0.19<br>22.00<br>1.55<br>0.45         | 0.00<br>0.22<br>0.00         | 3.12<br>1.55<br>0.09                             | 0.26<br>0.02 | 0.05         | 8 00<br>8 00             | 6.99<br>0.93 | -0.38<br>98.50                 | 0.91         | 2.68<br>0.94 | 6.65<br>9.74  | 5.02<br>0.00<br>26.28<br>0.13              | 44.67<br>1.16        | ferro-edenite            | TC-09-10A-C2-a1 | TC09-010 | CaS         |
| 2.00<br>15.60                   | 0.43<br>0.17<br>02.00<br>1.26<br>0.74         | 0.00<br>1.56<br>2.00<br>0.00 | 2.90<br>1.66<br>0.12<br>0.05                     | 0.30         | 0.15<br>0.00 | 8 0.00                   | 0.92         | -0.65<br>100.40                | 1.54         | 0.87         | 7.30<br>9.57  | 5.11<br>0.00<br>0.92<br>25.56<br>0.00      | 46.55<br>1.27        | hastingsite fr           | TC-09-10A-C2-a2 | TC09-010 | CaS         |
| 2.00<br>15.49                   | 0.35<br>0.14<br>22.00<br>1.55<br>0.45         | 0.33<br>0.00                 | 2.67<br>1.89<br>0.08<br>0.16                     | 0.01         | 0.02         | 9 00                     | 7.29         | -0.40<br>99.93                 | 0.94         | 0.74         | 8.39          | 3.48<br>0.06<br>25.66<br>0.04              | 48.24<br>1.00        | erro-actinolite          | TC09-10A-C6-a1  | TC09-010 | CaS         |

| CI<br>W subtotal<br>Sum T,C,B,A | O (non-w)<br>OH<br>F  | A subtotal | Na   | B SUDIOTAL<br>Ca | Na   | Ca   | IVIn2+<br>Fe2+ | C subtotal | Mg           | Mn2+          | Zn   | Fe3+ | Cr 2   | Ti   | T subtotal | Fe3+ | A            | Si   | O=F,CI (calc)<br>Initial Total | CI .   | F KZU        | Na2O | CaO   | MgO  | ZnO  | NiO  | FeO           | Cr203 | AI2O3 | TiO2          | sing         | Species                     | Analysis (wt%)  | Sample   | GROUP Petro | 222 |
|---------------------------------|-----------------------|------------|------|------------------|------|------|----------------|------------|--------------|---------------|------|------|--------|------|------------|------|--------------|------|--------------------------------|--------|--------------|------|-------|------|------|------|---------------|-------|-------|---------------|--------------|-----------------------------|-----------------|----------|-------------|-----|
| 2.00<br>14.86                   | 22.00<br>1.53<br>0.47 | 0.09       | 0.00 | 0.00             | 0.54 | 1.24 | 0.00           | 4.80       | 1.61         | 0.06<br>2.68  |      | 0.00 | 0.02   | 0.08 | 8.19       | 0.00 | 0.00         | 8.19 | -0.42<br>98.02                 |        | 1 00         | 1.86 | 7.79  | 7.25 |      | 0.00 | 0.47<br>21.58 | 0.00  | 2.14  | 0.70          | AF 17        | ferro-winchite              | TC09-10A-C6-a2  | TC09-010 | Cas         | 2   |
| 2.00<br>15.65                   | 22.00<br>1.62<br>0.38 | 0.65       | 0.44 | 0.00             | 0.52 | 1.30 | 0.03           | 5.00       | 0.77         | 2 22          |      | 0.31 | 0.00   | 0.10 | 8.00       | 0.00 | 0.65         | 7.32 | -0.32<br>100.54                |        | 0 77         | 3.16 | 7.81  | 3.32 |      | 0.00 | 31.88         | 0.02  | 3.53  | 40.97<br>1.19 | <i>16</i> 07 | ferro-ferri-<br>katophorite | TC09-13-C2      | TC09-013 | CaS         | >   |
| 2.00<br>15.73                   | 22.00<br>1.69<br>0.31 | 0.73       | 0.50 | 0.00             | 0.46 | 1.37 | 0.03           | 5.00       | 0.78         | 2 2/          | 0.01 | 0.29 | 0.00   | 0.08 | 8.00       | 0.00 | 0.71         | 7.20 | -0.26<br>98.70                 | 0      | 0.61         | 4    | 8.04  | 3.30 |      | 0.05 | 1.04<br>31.22 | 0.01  | 3.77  | 45.23<br>1.45 | AF 22        | erro-edenite                | TC09-13-C5      | TC09-013 | Cas         | >   |
| 2.00<br>15.86                   | 22.00<br>1.33<br>0.67 | 0.86       | 0.64 | 0.00             | 0.31 | 1.58 | 0.00           | 5.00       | 0.81         | 0.03<br>2.63  |      | 0.52 | 0.01   | 0.00 | 8.00       | 0.00 | 1.08<br>0.18 | 6.74 | -0.56<br>99.45                 |        | 1.08         | 3.06 | 9.24  | 3.43 |      | 0.00 | 31.12         | 0.05  | 5.74  | 42.31<br>1.55 | AD 21        | hastingsite fern            | T009-13-05      | TC09-013 | CaS         | >   |
| 2.00<br>15.16                   | 22.00<br>1.90<br>0.10 | 0.16       | 0.09 | 2.00             | 0.38 | 1.54 | 0.00           | 5.00       | 0.54         | 0.12          | 0.0  | 0.26 | 0.01   | 0.01 | 8.00       | 0.00 | 0.17         | 7.84 | -0.08<br>97.20                 | o in o | 0.34         | 1.49 | 9.04  | 2.27 |      | 0.04 | 31.67         | 0.04  | 1.37  | 49.10<br>0.12 | 10 19        | o-actinolite                | TC09-13-C6      | TC09-013 | Cas         | 2   |
| 2.00<br>15.83                   | 1.41<br>0.59          | 0.83       | 0.55 | 2.00             | 0.50 | 1.35 | 0.02           | 5.00       | 0.67         | 2 00          |      | 0.26 | 0.0    | 0.16 | 8.00       | 0.00 | 0.92         | 7.08 | -0.50<br>99.84                 |        | 1.38         | 3.42 | 7.94  | 2.83 |      | 0.00 | 0.99<br>31.55 | 0.00  | 4.97  | 1.36          | 07 NA        | ferro-ferri-<br>atophorite  | TC09-13-C7 T(   | TC09-013 | CaS         | 5   |
| 0.05<br>2.00<br>15.75           | 1.06<br>0.89          | 0.75       | 0.53 | 2.00             | 0.11 | 1.79 | 0.00           | 5.00       | 1.76         | 0.02<br>2.84  | 0.02 | 0.18 | 0.00   | 0.15 | 8.00       | 0.00 | 1.16         | 6.84 | -0.80<br>98.08                 | 0.18   | 1.12         | 2.10 | 10.67 | 7.54 | 0.15 | 0.00 | 0.89<br>23.02 | 0.02  | 6.48  | 43.00<br>1.26 | 43 6V        | hastingsite                 | 009.20-zA-038 1 | TC09-020 | CaS         | 5   |
| 0.05<br>2.00<br>15.63           | 1.11<br>0.84          | 0.63       | 0.42 | 0.00             | 0.16 | 1.73 | 0.00           | 5.00       | 1.86         | 0.03<br>2.60  | 0.05 | 0.19 | 0.00   | 0.17 | 8.00       | 0.00 | 1.01         | 6.99 | -0.76<br>97.80                 | 0.19   | 1.04         | 1.92 | 10.35 | 7.99 | 0.40 | 0.00 | 1.04<br>22.07 | 0.02  | 5.57  | 44.70<br>1.48 | 11 78        | hastingsite fer             | C09.20-zA-043   | TC09-020 | Cas         | >   |
| 0.04<br>2.00<br>15.78           | 1.05<br>0.91          | 0.78       | 0.54 | 2.00             | 0.14 | 1.81 | 0.00           | 5.00       | 2.00<br>1.63 | 0.06<br>2.88  | 0.00 | 0.08 | 0.10   | 0.23 | 8.00       | 0.00 | 1.28         | 6.72 | -0.82<br>100.08                | 0.16   | 1.19         | 2.30 | 10.99 | 7.10 | 0.04 | 0.20 | 0.78<br>23.00 | 0.00  | 7.57  | 43.71<br>2.00 | A2 71        | ro-pargasite                | rc09.20-zC-058  | TC09-020 | Cas         | 5   |
| 0.06<br>2.00<br>15.70           | 22.00<br>1.12<br>0.83 | 0.70       | 0.49 | 0.00             | 0.14 | 1.76 | 0.00           | 5.00       | 1.77         | 0.03<br>2.8.2 | 0.01 | 0.18 | 0.01   | 0.17 | 8.00       | 0.00 | 1.10         | 6.90 | -0.76<br>99.43                 | 0.23   | 1 69         | 2.12 | 10.64 | 7.71 | 0.11 | 0.02 | 0.96<br>23.28 | 0.00  | 6.10  | 44.77<br>1.49 | AA 77        | hastingsite                 | TC09.20-zC-059  | TC09-020 | CaS         | 2   |
| 0.05<br>2.00<br>15.71           | 22.00<br>1.16<br>0.79 | 0.71       | 0.47 | 0.00             | 0.21 | 1.74 | 0.00           | 5.00       | 1.71         | 0.07          | 0.01 | 0.08 | 0.00   | 0.24 | 8.00       | 0.00 | 1.10         | 6.91 | -0.73<br>99.08                 | 0.20   | 1.24         | 2.26 | 10.52 | 7.41 | 0.11 | 0.17 | 0.92<br>22.54 | 0.00  | 6.14  | 44.02<br>2.07 | C3 W         | hastingsite                 | TC09.20-zC-067  | TC09-020 | CaS         | 2   |
| 0.07<br>2.00<br>15.66           | 1.39<br>0.55          | 0.66       | 0.45 | 0.00             | 0.08 | 1.78 | 0.02           | 5.00       | 2.00<br>1.79 | 08 6          | 0.00 | 0.24 | 0.07   | 0.10 | 8.00       | 0.00 | 1.09         | 6.91 | -0.53<br>98.49                 | 0.25   | 1.03         | 1.79 | 10.72 | 7.74 | 0.00 | 0.01 | 0.92<br>23.61 | 0.00  | 6.33  | 0.88          | C9 W         | hastingsite                 | TC09.20-zD-074  | TC09-020 | CaS         | 2   |
| 0.07<br>2.00<br>15.69           | 22.00<br>1.16<br>0.77 | 0.69       | 0.46 | 0.00             | 0.13 | 1.79 | 0.00           | 5.00       | 1.63         | 0.03          | 0.01 | 0.14 | ç<br>- | 0.13 | 8.00       | 0.00 | 1.07         | 6.93 | -0.72<br>99.57                 | 0.27   | 1.17         | 1.99 | 10.82 | 7.08 | 0.12 | 0.00 | 0.81<br>23.88 | 0.00  | 6.53  | 44.09<br>1.14 | 08 M         | hastingsite                 | TC09.20-zD-079  | TC09-020 | Cas         | 2   |
| 0.05<br>2.00<br>15.67           | 0.99                  | 0.68       | 0.47 | 2.00             | 0.13 | 1.76 | 0.01           | 5.00       | 2.04<br>1.78 | 7 8 /         | 0.00 | 0.20 | 0.01   | 0.17 | 8.00       | 0.00 | 1.09         | 6.91 | -0.87<br>99.91                 | 0.20   | 1.05         | 2.00 | 10.68 | 7.79 | 0.01 | 0.00 | 0.81<br>23.76 | 0.00  | 6.04  | 43.01<br>1.46 | 45.01        | hastingsite                 | TC09.20-zE-086  | TC09-020 | CaS         | 2   |
| 0.02<br>2.00<br>15.55           | 22.00<br>1.26<br>0.72 | 0.16       | 0.40 | 2.00             | 0.73 | 1.01 | 0.09           | 5.00       | 0.73         | 2 75          |      | 0.44 | 0.00   | 0.08 | 8.00       | 0.00 | 0.42         | 7.54 | -0.63<br>99.10                 | 0.07   | 0.78<br>1.45 | 3.69 | 5.99  | 3.11 |      | 0.00 | 1.21<br>32.41 | 0.00  | 2.24  | 47.72<br>1.07 | 67 TN        | ferro-ferri-<br>katophorite | TC09_37-C2-a1   | TC09-037 | CaS         | 2   |
| 0.01<br>2.00<br>15.64           | 22.00<br>1.23<br>0.77 | 0.64       | 0.47 | 2.00             | 0.68 | 1.08 | 0.06           | 5.00       | 0.82         | 2 7/          |      | 0.41 | 0.01   | 0.02 | 8.00       | 0.00 | 0.43         | 7.45 | -0.65<br>98.89                 | 0.03   | 1.85         | 3.74 | 6.36  | 3.46 |      | 0.00 | 1.31<br>31.72 | 0.09  | 2.29  | 40.91<br>1.26 | 16 01        | rro-richterite              | TC09_37-C2-a2   | TC09-037 | Cas         | 5   |
| 0.02<br>2.00<br>15.53           | 22.00<br>1.83<br>0.15 | 0.53       | 0.39 | 0.00             | 0.73 | 1.07 | 0.05           | 5.00       | 0.79         | 2 7/          |      | 0.35 | 0.00   | 0.12 | 8.00       | 0.00 | 0.39         | 7.61 | -0.14<br>97.47                 | 0.06   | 0.72         | 3.64 | 6.27  | 3.35 |      | 0.00 | 31.13         | 0.00  | 2.10  | 47.93<br>1.00 | A7 02        | ferro-ferri-<br>katophorite | TC09_37-C4      | TC09-037 | Cas         | 5   |
| 0.01<br>2.00<br>15.60           | 22.00<br>1.61<br>0.38 | 0.60       | 0.42 | 0.00             | 0.68 | 1.11 | 0.06           | 5.00       | 0.86         | 2 65          |      | 0.36 | 0.00   | 0.12 | 8.00       | 0.00 | 0.53         | 7.47 | -0.33<br>98.37                 | 0.05   | 0.90         | 3.61 | 6.56  | 3.65 |      | 0.00 | 1.14<br>30.80 | 0.01  | 2.88  | 47.33<br>1.00 | A7 22        | ferro-ferri-<br>katophorite | TC09_37-C9      | TC09-037 | Cas         | 5   |
| 0.07<br>2.00<br>15.84           | 1.54<br>0.39          | 0.84       | 0.62 | 0.00             | 0.18 | 1.67 | 0.03           | 5.00       | 1.66         | 08 0          | 0.0  | 0.26 | 0.00   | 0.18 | 8.00       | 0.00 | 1.28<br>0.08 | 6.64 | -0.40<br>99.78                 | 0.27   | 0.81         | 2.67 | 10.09 | 7.21 | 0.00 | 0.10 | 0.89<br>24.66 | 0.00  | 7.04  | 43.04<br>2.28 | VU 5V        | hastingsite                 | TC09-38-zA-102  | TC09-038 | Cas         | 2   |

| W subtotal<br>Sum T,C,B,A | ⊆ <del>,</del> | O (non-W)     | K<br>A subtotal | Na   | B subtotal | Na<br>Na     | Fe2+ | Mn2+ | Mg Mg        | Fe2+ | Zn<br>Mn2+ | Z    | Cr<br>Fe3+ | AI   | T subtotal   | - Fe3+ | = 2  | Si            | Initial Total | O=F,CI (calc) | 2 -          | K20  | Na2O | CaO           | BeO | NIO  | FeO   | MnO  | AI203 | TiO2<br>ZrO2 | SiO2   | Species           | Analysis (wt%)     | Sample   | <b>GROUP</b> Petro |
|---------------------------|----------------|---------------|-----------------|------|------------|--------------|------|------|--------------|------|------------|------|------------|------|--------------|--------|------|---------------|---------------|---------------|--------------|------|------|---------------|-----|------|-------|------|-------|--------------|--------|-------------------|--------------------|----------|--------------------|
| 2.00<br>15.63             | 0.28           | 22.00<br>1.59 | 0.21<br>0.63    | 0.43 | 2.00       | 0 12         | 0.10 | 0.09 | 5.00         | 3.38 | 0.02       | 0.01 | 0.33       | 0.04 | 0.14         | 0.00   |      | 6.85<br>1 15  | 98.22         | -0.35         | 0.56         | 1.02 | 1.77 | 4.63<br>9.91  |     | 0.04 | 28.67 | 0.70 | 6.32  | 1.13         | 43 15  | hastingsite       | <br>TC09-38-zA-103 | TC09-038 | CaS                |
| 2.00<br>15.82             | 0.07           | 1.34          | 0.22<br>0.82    | 0.60 | 2.00       | 0.18         | 0.03 | 0.09 | 1.72<br>5.00 | 2.83 | 0.00       | 2    | 0.21       | 0.00 | 8.00<br>0.25 | 0.00   | 0.01 | 6.65<br>1 3.4 | 99.46         | -0.57         | 1.21         | 1.11 | 2.61 | 7.48<br>10.29 |     | 0.00 | 23.68 | 0.71 | 7.35  | 2.20         | 43 11  | hastingsite       | TC09-38-zA-99      | TC09-038 | CaS                |
| 2.00<br>15.68             | 0.07           | 22.00<br>1.20 | 0.20<br>0.68    | 0.48 | 2.00       | 0.24         | 0.07 | 0.10 | 7.40         | 3.15 |            |      | 0.00       | 0.00 | 8.00<br>0.17 | 0.00   | 0.01 | 6.92<br>1.06  | 99.33         | -0.68         | 1.48<br>0.36 | 1.02 | 2.38 | 6.02<br>9.54  |     | 0.00 | 26.83 | 0.76 | 5.77  | 1.55         | 44 40  | hastingsite       | TC09-38-zB-104     | TC09-038 | CaS                |
| 2.00<br>15.75             | 0.10           | 1.13          | 0.24<br>0.75    | 0.51 | 2.00       | 0.20         | 0.05 | 0.09 | 1.44<br>5.00 | 3.12 |            | 0.01 | 0.24       | 0.00 | 0.20         | 0.00   | 0.02 | 6.79<br>1 1 9 | 99.73         | -0.74         | 1.55<br>0.20 | 1.21 | 2.34 | 6.19<br>9.96  |     | 0.06 | 26.12 | 0.70 | 6.49  | 1.88         | 43 57  | hastingsite       | TC09-38-zB-105     | TC09-038 | CaS                |
| 2.00<br>15.71             | 0.09           | 22.00<br>1.26 | 0.20<br>0.71    | 0.51 | 2.00       | 0.23         | 0.03 | 0.12 | 1.36<br>5.00 | 3.24 |            |      | 0.27       | 0.00 | 0.13         | 0.00   | 0.06 | 6.93<br>1 02  | 100.56        | -0.64         | 1.35         | 1.01 | 2.48 | 5.92<br>9.77  |     | 0.00 | 27.39 | 0.92 | 5.57  | 1.65         | 44 83  | hastingsite       | TC09-38-zB-106     | TC09-038 | CaS                |
| 2.00<br>15.63             | 0.03           | 22.00<br>1.62 | 0.21<br>0.63    | 0.00 | 2.00       | 0.13         | 0.02 | 0.06 | 1.66         | 2.93 | 0.02       | 0    | 0.00       | 0.10 | 0.14         | 0.00   | 1.01 | 6.96<br>1 n4  | 99.49         | -0.33         | 0.72         | 1.05 | 1.88 | /.28          |     | 0.00 | 24.22 | 0.46 | 6.32  | 1.25         | 45.46  | hastingsite fe    | TC09-38-zC-109     | TC09-038 | CaS                |
| 2.00<br>15.49             | 0.05           | 22.00<br>1.42 | 0.18<br>0.49    | 0.00 | 2.00       | 0.13         | 0.01 | 0.10 | 7.54         | 2.93 | 0.03       | 0.02 | 0.01       | 0.00 | 0.00         | 0.00   | 0.00 | 7.14          | 100.30        | -0.51         | 1.10         | 0.90 | 1.50 | 6./5<br>10.79 |     | 0.15 | 26.72 | 0.80 | 4.81  | 0.04         | 46 77  | rro-actinolite    | TC09-38-zC-110     | TC09-038 | CaS                |
| 2.00<br>15.64             | 0.08           | 1.35          | 0.22<br>0.64    | 0.42 | 2.00       | 0.11         | 0.02 | 0.08 | 1.45         | 2.94 | 0.04       | 0.02 | 0.45       | 0.03 | 0.08         | 0.00   |      | 6.83<br>1 1 7 | 100.97        | -0.57         | 1.18<br>0.30 | 1.13 | 1.79 | 6.35<br>10.92 |     | 0.14 | 26.71 | 0.59 | 6.71  | 0.70         | 44 70  | hastingsite       | TC09-38-zC-111     | TC09-038 | CaS                |
| 2.00<br>15.56             | 0.03           | 22.00<br>1.24 | 0.14<br>0.56    | 0.41 | 2.00       | 0.21         | 0.08 | 0.13 | 5.00         | 2.86 | 0.01       | 2    | 0.36       | 0.01 | 0.06         | 0.00   | 0.01 | 7.16<br>0.84  | 99.58         | -0.66         | 1.49<br>0.13 | 0.74 | 2.11 | 7.43<br>9.59  |     | 0.00 | 25.76 | 0.98 | 4.69  | 0.55         | 46 68  | ferro-edenite     | TC09-38-zC-112     | TC09-038 | CaS                |
| 2.00<br>15.84             | 0.34           | 22.00<br>1.59 | 0.22<br>0.84    | 0.63 | 2.00       | 0.10         | 0.00 | 0.05 | 1.29<br>5.00 | 3.28 | 0.06       | 0.00 | 0.09       | 0.05 | 8.00<br>0.23 | 0.00   | 1.40 | 6.74<br>1.26  | 100.25        | -0.35         | 0.69         | 1.09 | 2.71 | 5.58<br>10.62 |     | 0.02 | 26.03 | 0.85 | 7.19  | 1.97         | 43 F.7 | hastingsite       | TC09-38-zD-115     | TC09-038 | CaS                |
| 2.00<br>15.77             | 0.06           | 22.00<br>1.41 | 0.23<br>0.77    | 0.54 | 2.00       | 0.15         | 0.05 | 0.07 | 5.00         | 2.81 | 0.01       | 2    | 0.00       | 0.02 | 8.00<br>0.26 | 0.00   | 1.30 | 6.64<br>1 36  | 99.71         | -0.51         | 1.10         | 1.19 | 2.30 | 7.45<br>10.56 |     | 0.00 | 23.74 | 0.51 | 7.57  | 2.27         | 43 93  | hastingsite f     | TC09-38-zD-116     | TC09-038 | CaS                |
| 2.00<br>15.86             | 0.05           | 22.00<br>1.31 | 0.25<br>0.86    | 0.61 | 2.00       | 0.06         | 0.00 | 0.03 | 1.75<br>5.00 | 2.88 | 0.03       | 0    | 0.06       | 0.08 | 8.00<br>0.19 | 0.00   | 1.30 | 6.70<br>1 30  | 99.61         | -0.59         | 1.30         | 1.26 | 2.26 | 7.60<br>11.54 |     | 0.00 | 22.74 | 0.00 | 7.57  | 1.59         | 43 44  | erro-pargasite f  | TC09-38-zE-059     | TC09-038 | CaS                |
| 2.00<br>15.27             | 0.03           | 22.00<br>1.79 | 0.09<br>0.27    | 0.18 | 2.00       | 0.03         | 0.00 | 0.02 | 1.39         | 3.19 | 0.01       | 2    | 0.01       | 0.15 | 0.03         | 0.00   | 0.00 | 7.35          | 96.06         | -0.18         | 0.37         | 0.43 | 0.68 | 5.89<br>11.54 |     | 0.00 | 25.53 | 0.09 | 4.30  | 0.28         | 46 5 2 | erro-actinolite   | TC09-38-zF-070     | TC09-038 | CaS                |
| 2.00<br>15.53             | 0.07           | 22.00<br>1.44 | 0.14<br>0.53    | 0.39 | 2.00       | 0.13         | 0.04 | 0.10 | 1.64<br>5.00 | 3.05 |            |      | 0.24       | 0.00 | 0.07         | 0.00   | 0.01 | 7.20<br>0.79  | 99.58         | -0.48         | 1.02         | 0.74 | 1.72 | /.14          |     | 0.00 | 25.97 | 0.73 | 4.37  | 0.70         | 46 80  | ferro-edenite f   | TC09-38-zF-071     | TC09-038 | CaS                |
| 2.00<br>15.42             | 0.06           | 22.00<br>1.64 | 0.14<br>0.42    | 0.00 | 2.00       | 1.88<br>0.07 | 0.00 | 0.05 | 1.47<br>5.00 | 3.23 | 5 N N      | 0.02 | 0.01       | 0.03 | 0.04         | 0.00   | 0.00 | 7.35          | 99.94         | -0.32         | 0.63         | 0.70 | 1.17 | 6.43<br>11.49 |     | 0.16 | 26.58 | 0.00 | 3.79  | 0.39         | 48.00  | erro-actinolite f | TC09-38-zF-117     | TC09-038 | CaS                |
| 2.00<br>15.30             | 0.03           | 22.00<br>1.66 | 0.10<br>0.30    | 0.20 | 2.00       | 1.66<br>0.22 | 0.02 | 0.10 | 1.76         | 2.78 | 0.03       | 0.00 | 0.41       | 0.00 | 0.02         | 0.00   | 0.03 | 7.45          | 100.23        | -0.30         | 0.66         | 0.50 | 1.44 | /.85          |     | 0.03 | 25.64 | 0.75 | 2.97  | 0.40         | 40 62  | erro-actinolite   | TC09-38-zF-118     | TC09-038 | CaS                |
| 2.00<br>15.79             | 0.37           | 22.00<br>1.63 | 0.30<br>0.79    | 0.49 | 2.00       | 0.08         | 0.02 | 0.06 | 5.00         | 4.21 |            | 0.01 | 0.00       | 0.11 | 0.09         | 0.00   | 1.20 | 6.74<br>1.26  | 97.83         | -0.30         | 0.71         | 1.42 | 1.80 | 1.29<br>10.54 |     | 0.10 | 32.82 | 0.40 | 7.08  | 0.73         | 41 21  | hastingsite       | TC09-41-C2-a1      | TC09-041 | CaS                |
| 2.00<br>15.50             | 0.64           | 22.00<br>1.36 | 0.17<br>0.50    | 0.00 | 2.00       | 0.08         | 0.03 | 0.05 | 1.12<br>5.00 | 3.60 |            |      | 0.13       | 0.11 | 0.04         | 0.00   | 0.74 | 7.26<br>0.74  | 99.48         | -0.54         | 1.29         | 0.85 | 1.38 | 4.81<br>11.02 |     | 0.00 | 28.81 | 0.00 | 4.63  | 0.33         | 46 лл  | ferro-edenite     | TC09-41-C2-a2      | TC09-041 | CaS                |
| 2.00<br>15.57             | 0.89           | 22.00<br>1.12 | 0.17<br>0.57    | 0.40 | 2.00       | 0.23         | 0.04 | 0.12 | 1.32<br>5.00 | 3.33 |            | 0.00 | 0.28       | 0.00 | 0.07         | 0.00   | 0.02 | 7.21          | 99.34         | -0.75         | 1.79         | 0.83 | 2.06 | 5.66<br>9.65  | 1   | 0.02 | 27.97 | 0.91 | 4.16  | 0.83         | 46 21  | ferro-edenite     | TC09-41-C4-a1      | TC09-041 | CaS                |

| W subtotal<br>Sum T,C,B,A | Na<br>A subtotal<br>O (non-W)<br>F<br>F       | Ca<br>Na<br>B subtotal<br>Ca | Mn2+<br>Fe2+<br>C subtotal<br>Mn2+<br>Fe2+   | Fe3+<br>Ni           |              | Fe3+<br>T subtotal |                      | Initial Total  | D=F CI (calc)<br>F        | K20          | CaO            | AI203<br>Cr203<br>Fe0<br>Ni0<br>Zn0<br>Be0    | SiO2<br>TiO2<br>ZrO2 | Species                    | Analysis (wt%) | Sample    | GROUP Petro |
|---------------------------|-----------------------------------------------|------------------------------|----------------------------------------------|----------------------|--------------|--------------------|----------------------|----------------|---------------------------|--------------|----------------|-----------------------------------------------|----------------------|----------------------------|----------------|-----------|-------------|
| 2.00<br>15.67             | 0.46<br>0.21<br>22.00<br>1.47<br>0.53         | 1.66<br>0.17<br>2.00<br>0.00 | 3.73<br>0.80<br>5.00<br>0.12<br>0.06         | 0.30                 | 0.15<br>0.02 | 0.00               | 0.89<br>1.12         | 99.16          | -0 44                     | 2.04<br>1.02 | 3.36<br>9.74   | 6.07<br>0.00<br>0.89<br>30.83<br>0.01         | 43.37<br>1.22        | hastingsite                | TC09-41-C4-a2  | TC09-041  | Cas         |
| 2.00<br>15.76             | 0.55<br>0.21<br>0.76<br>22.00<br>1.33<br>0.67 | 1.64<br>0.19<br>2.00<br>0.00 | 3.80<br>0.83<br>5.00<br>0.14<br>0.02         | 0.01                 | 0.08         | 0.00<br>8.00       | 0.93<br>1.01<br>0.06 | 98.64          | -0 56                     | 1.02         | 3.49<br>9.57   | 5.33<br>1.04<br>30.63<br>0.00                 | 43.24<br>1.11        | ferro-edenite              | TC09-41-C4-a3  | TC09-041  | CaS         |
| 2.00<br>15.65             | 0.46<br>0.19<br>0.65<br>22.00<br>1.22<br>0.78 | 1.56<br>0.28<br>2.00<br>0.00 | 3.80<br>0.73<br>5.00<br>0.13<br>0.03         | 0.28<br>0.02         | 0.13<br>0.05 | 0.00<br>8.00       | 0.94                 | 98.91          | -0.65                     | 2.41<br>0.91 | 3.06<br>9.10   | 5.27<br>0.00<br>0.98<br>30.83<br>0.15         | 44.26<br>1.05        | hastingsite                | TC09-41-C4-a4  | TC09-041  | Cas         |
| 2.00<br>15.45             | 0.27<br>0.18<br>0.45<br>22.00<br>1.17<br>0.84 | 1.42<br>0.34<br>2.00<br>0.00 | 3.49<br>1.06<br>5.00<br>0.15<br>0.09         | 0.40                 | 0.05<br>0.00 | 0.00<br>8.00       | 0.62<br>0.08         | 99.27          | .0 71                     | 0.91         | 4.51<br>8.45   | 3.33<br>0.00<br>1.13<br>30.30<br>0.00         | 46.51<br>1.16        | ferro-ferri-<br>hornblende | TC09-41-C6-a1  | TC09-041  | CaS         |
| 2.00<br>15.49             | 0.33<br>0.17<br>0.49<br>22.00<br>1.37<br>0.63 | 1.42<br>0.30<br>2.00<br>0.00 | 3.49<br>1.03<br>5.00<br>0.15<br>0.13         | 0.45<br>0.02         | 0.00         | 0.02<br>8.00       | 0.62<br>0.15         | 99.51          | -0 F3                     | 0.83         | 4.42<br>8.46   | 3.35<br>0.00<br>1.10<br>31.14<br>0.18         | 46.00<br>1.23        | rro-actinolite 1           | TC09-41-C6-a2  | TC09-041  | CaS         |
| 2.00<br>15.65             | 0.48<br>0.17<br>22.00<br>1.21<br>0.79         | 1.56<br>0.24<br>2.00<br>0.00 | 3.80<br>0.80<br>0.16<br>0.04                 | 0.01<br>0.00         | 0.05         | 0.00<br>8.00       | 0.86<br>0.08         | -0.00<br>99.37 | -0 66                     | 2.34<br>0.82 | 3.36<br>9.15   | 4.58<br>0.04<br>1.21<br>31.46<br>0.01         | 44.44<br>1.05        | ferro-edenite              | TC09-41-C7-a1  | TC09-041  | CaS         |
| 2.00<br>15.74             | 0.51<br>0.23<br>0.74<br>22.00<br>1.89<br>0.11 | 1.75<br>0.11<br>2.00<br>0.00 | 3.86<br>0.81<br>5.00<br>0.13<br>0.02         | 0.26                 | 0.08<br>0.00 | 0.00<br>8.00       | 0.95<br>1.04<br>0.02 | 98.29          | -0.02<br>22:0             | 1.12         | 3.38<br>10.18  | 5.51<br>0.00<br>30.89<br>0.00                 | 43.40<br>0.77        | ferro-edenite              | TC09-41-C7-a2  | TC09-041  | CaS         |
| 2.00<br>15.72             | 0.51<br>0.21<br>0.71<br>22.00<br>1.14<br>0.87 | 1.54<br>0.24<br>2.00<br>0.00 | 3.30<br>1.31<br>5.00<br>0.11                 | 0.38<br>0.00         | 0.01<br>0.00 | 0.00<br>8.00       | 0.93<br>0.88<br>0.18 | 99.89          | -0.74                     | 2.45<br>1.04 | 5.63<br>9.19   | 4.74<br>0.00<br>0.85<br>28.98<br>0.01         | 44.40<br>1.59        | ferro-edenite              | TC09-41-C8-a1  | TC09-041  | CaS         |
| 2.00<br>15.78             | 0.58<br>0.20<br>0.78<br>22.00<br>0.98<br>1.02 | 1.55<br>0.27<br>2.00<br>0.00 | 3.38<br>1.23<br>5.00<br>0.14                 | 0.31                 | 0.07<br>0.00 | 0.00<br>8.00       | 0.94<br>0.97<br>0.09 | 100.99         | 88.U <sup>-</sup><br>80'Z | 2.83         | 9.34<br>9.34   | 5.32<br>0.00<br>1.03<br>28.84<br>0.00         | 44.74<br>1.36        | ferro-fluoro-<br>edenite   | TC09-41-C8-a2  | TC09-041  | CaS         |
| 2.00<br>15.66             | 0.46<br>0.21<br>0.66<br>1.40<br>0.56          | 1.75<br>0.14<br>2.00<br>0.00 | 0.02<br>3.58<br>1.11<br>5.00<br>0.11<br>0.00 | 0.20                 | 0.08         | 0.00<br>8.00       | 90.0<br>90.0         | 98.64          | -0.18                     | 1.94         | 4.71<br>10.27  | 4.76<br>0.05<br>0.97<br>28.51<br>0.00         | 44.47<br>1.17        | ferro-edenite              | TC09_73-C10    | TC09-073  | CaS         |
| 2.00<br>15.67             | 0.46<br>0.21<br>0.67<br>22.00<br>1.24<br>0.71 | 1.68<br>0.20<br>2.00<br>0.00 | 0.02<br>3.51<br>1.12<br>5.00<br>0.12<br>0.00 | 0.21<br>0.00         | 0.14<br>0.00 | 0.00<br>8.00       | 0.95<br>0.04         | 100.17         | 1.44<br>0.19              | 1.06         | 4.83<br>10.02  | 5.16<br>0.00<br>1.05<br>28.47<br>0.01         | 44.90<br>1.49        | ferro-edenite              | TC09_73-C1-a1  | TC09-073  | CaS         |
| 2.00<br>15.71             | 0.50<br>0.21<br>0.71<br>22.00<br>1.18<br>0.76 | 1.67<br>0.21<br>2.00<br>0.00 | 0.00<br>3.46<br>1.23<br>5.00<br>0.12<br>0.00 | 0.20<br>0.01         | 0.10         | 0.00<br>8.00       | 0.91<br>0.08         | 100.04         | -0.21                     | 2.34<br>1.07 | 5.29<br>9.99   | 4.93<br>0.02<br>0.90<br>27.97<br>0.04         | 44.87<br>1.57        | ferro-edenite              | TC09_73-C1-a2  | TC09-073  | CaS         |
| 2.00<br>15.74             | 0.57<br>0.17<br>22.00<br>1.29<br>0.65         | 1.76<br>0.10<br>2.00<br>0.00 | 0.00<br>3.65<br>1.08<br>5.00<br>0.15<br>0.00 | 0.25<br>0.01         | 0.01<br>0.00 | 0.00<br>8.00       | 0.97<br>0.90<br>0.13 | -0:00<br>99.70 | -0.23                     | 2.17<br>0.86 | 4.60<br>10.37  | 4.85<br>0.00<br>1.12<br>29.52<br>0.05         | 44.12<br>1.12        | ferro-edenite              | TC09_73-C2     | TC09-073  | CaS         |
| 2.00<br>15.70             | 0.48<br>0.22<br>0.70<br>22.00<br>1.15<br>0.06 | 1.67<br>0.22<br>2.00<br>0.00 | 3.41<br>1.25<br>5.00<br>0.11<br>0.00         | 0.20                 | 0.13         | 0.00<br>8.00       | 0.96<br>0.02         | 99.50          | -0.73                     | 2.28<br>1.11 | 5.37<br>9.96   | 5.18<br>0.06<br>0.84<br>27.51<br>0.00         | 44.82<br>1.29        | ferro-edenite              | TC09_73-C3     | TC09-073  | CaS         |
| 2.00<br>15.62             | 0.42<br>0.19<br>22.00<br>1.22<br>0.72<br>0.06 | 1.69<br>0.14<br>2.00<br>0.00 | 3.38<br>1.26<br>5.00<br>0.12<br>0.05         | 0.29                 | 0.07<br>0.00 | 0.00<br>8.00       | 0.90<br>0.03         | 99.40          | -0.66                     | 0.97         | 5.40<br>10.05  | 4.86<br>0.91<br>28.39<br>0.00                 | 45.13<br>0.81        | ferro-edenite              | TC09_73-C7-a1  | TC09-073  | CaS         |
| 2.00<br>15.61             | 0.40<br>0.20<br>22.00<br>1.26<br>0.68         | 1.68<br>0.16<br>2.00<br>0.00 | 3.40<br>1.18<br>5.00<br>0.13<br>0.03         | 0.01<br>0.28<br>0.01 | 0.13         | 0.00<br>8.00       | 0.99<br>0.03         | 98.34          | -0.23                     | 1.83         | 4.97<br>9.87   | 5.27<br>0.04<br>0.95<br>28.01<br>0.10         | 44.06<br>1.27        | hastingsite                | TC09_73-C7-a2  | TC09-073  | CaS         |
| 2.00<br>15.69             | 0.50<br>0.19<br>22.00<br>1.06<br>0.90         | 1.66<br>0.17<br>2.00<br>0.00 | 3.30<br>1.37<br>5.00<br>0.12<br>0.05         | 0.29                 | 0.04<br>0.00 | 0.00<br>8.00       | 0.03<br>0.089        | 100.27         | -0.80                     | 0.94         | 5.92<br>9.99   | 4.88<br>0.00<br>0.93<br>27.96                 | 45.21<br>1.04        | ferro-edenite              | TC09_73-C8     | TC09-073  | CaS         |
| 2.00<br>15.61             | 0.42<br>0.19<br>22.00<br>1.46<br>0.53         | 1.72<br>0.12<br>2.00<br>0.00 | 2.61<br>2.10<br>5.00<br>0.10<br>0.07         | 0.00                 | 0.01         | 0.00<br>8.00       | 0.80<br>0.04         | 99.22          | -0.07                     | 1.82         | 9.24<br>10.54  | 4.47<br>0.02<br>0.76<br>23.21<br>0.00<br>0.00 | 47.04<br>0.43        | ferro-edenite              | TC09-75-zA-95  | TC09-075  | CaS         |
| 2.00<br>15.52             | 0.36<br>0.16<br>22.00<br>1.33<br>0.65         | 1.78<br>0.13<br>2.00<br>0.00 | 2.59<br>2.24<br>5.00<br>0.09                 | 0.01<br>0.16<br>0.00 | 0.00         | 0.01<br>8.00       | 7.4z<br>0.56<br>0.02 | 99.72          | -0.07                     | 0.82         | 10.00<br>11.04 | 3.13<br>0.06<br>0.73<br>21.90<br>0.02<br>0.02 | 49.29<br>0.21        | ferro-edenite              | TC09-75-zA-96  | T C09-075 | CaS         |

| CI<br>W subtotal<br>Sum T,C,B,A | K<br>A subtotal<br>O (non-W)<br>OH | B subtotal<br>Ca | Ca                   | Mn2+ | Mg<br>C subtotal | Mn2+<br>Fe2+ | Ni<br>Zn | Fe3+ | ₽ A  | T subtotal<br>Ti | Fe3+ | AI           | Initial Total<br>Si | O=F,CI (calc) | ۹<br>۲       | K20  | Na2O | CaO<br>CaO     | ZnO<br>BeO | NiO  | FeO           | Cr203 | ZrO2<br>Al2O3 | SIO2  | Species                     | Analysis (wt%) | Sample   | GROUP Petro |
|---------------------------------|------------------------------------|------------------|----------------------|------|------------------|--------------|----------|------|------|------------------|------|--------------|---------------------|---------------|--------------|------|------|----------------|------------|------|---------------|-------|---------------|-------|-----------------------------|----------------|----------|-------------|
| 0.02<br>2.00<br>15.63           | 0.19<br>0.63<br>22.00<br>1.02      | 0.00             | 0.14                 | 0.09 | 5.00             | 2.53         | 0.00     | 0.01 | 0.00 | 0.03             | 0.00 | 0.78         | 100.38<br>7.14      | -0.87         | 2.02<br>0.08 | 0.99 | 1.97 | 9.78<br>10.72  | 0.03       | 0.00 | 0.72<br>22.16 | 0.08  | 4.41          | 47.38 | ferro-edenite               | TC09-75-zA-97  | TC09-075 | CaS         |
| 0.08<br>2.00<br>15.79           | 0.23<br>0.79<br>1.08<br>0.84       | 0.00             | 1.66<br>0.18         | 0.12 | 1.33<br>5.00     | 3.26         | 0.00     | 0.29 | 0.00 | 8.00<br>0.12     | 0.00 | 1.14<br>0.02 | 99.37<br>6.85       | -0.78         | 0.31         | 1.12 | 2.44 | 5.66<br>9.84   | 0.04       | 0.00 | 0.92<br>27.34 | 0.00  | 6.13          | 43.54 | hastingsite fe              | TC09-75-zC-81  | TC09-075 | CaS         |
| 0.03<br>2.00<br>15.81           | 0.27<br>0.21<br>22.00<br>1.20      | 0.00             | 0.00<br>1.73<br>0.14 | 0.14 | 1.66<br>5.00     | 3.08         | 0.00     | 0.24 | 0.00 | 8.00<br>0.02     | 0.00 | 0.95         | 100.99<br>6.97      | -0.69         | 0.12         | 1.09 | 2.46 | 7.27           | 0.00       | 0.03 | 1.05<br>25.87 | 0.00  | 5.23          | 45.49 | erro-edenite                | TC09-75-zC-82  | TC09-075 | CaS         |
| 0.08<br>2.00<br>15.78           | 0.22<br>0.78<br>1.32<br>0.60       | 0.00<br>0.00     | 0.00<br>1.71<br>0.16 | 0.13 | 1.28<br>5.00     | 0.01<br>3.34 |          | 0.23 | 0.02 | 8.00<br>0.13     | 0.00 | 1.12         | 6.88                | -0.58         | 0.31         | 1.11 | 2.38 | 5.45<br>10.14  | 0.00       | 0.00 | 1.U3<br>27.18 | 0.06  | 6.14          | 43.82 | hastingsite f               | TC09-75-zC-84  | TC09-075 | CaS         |
| 0.08<br>2.00<br>15.75           | 0.35<br>0.72<br>1.56<br>0.36       | 0.00             | 1.72<br>0.15         | 0.13 | 1.35<br>5.00     | 0.01         | 0.00     | 0.22 | 0.03 | 8.00<br>0.12     | 0.00 | 1.09         | 99.51<br>6.91       | -0.38         | 0./4<br>0.29 | 1.10 | 2.24 | 5.80<br>10.33  | 0.03       | 0.00 | 1.00<br>26.78 | 0.05  | 6.12          | 44.39 | erro-edenite                | TC09-75-zD-86  | TC09-075 | CaS         |
| 0.08<br>2.00<br>15.80           | 0.22<br>0.80<br>1.22<br>1.22       | 2.00<br>0.00     | 0.16                 | 0.12 | 1.27<br>5.00     | 3.34         | 0.00     | 0.24 | 0.00 | 8.00<br>0.14     | 0.02 | 1.18         | 100.45<br>6.81      | -0.67         | 0.28         | 1.09 | 2.45 | 5.45           | 0.00       | 0.01 | 0.94<br>27.62 | 0.10  | 6.41          | 43.75 | hastingsite                 | TC09-75-zD-91  | TC09-075 | CaS         |
| 0.06<br>2.00<br>15.72           | 0.21<br>0.72<br>22.00<br>1.54      | 0.00<br>0.71     | 1.66<br>0.18         | 0.12 | 1.24<br>5.00     | 3.34         | 0.01     | 0.27 | 0.02 | 8.00<br>0.12     | 0.00 | 1.08         | 100.10<br>6.92      | -0.39         | 0.23         | 1.05 | 2.30 | 5.36<br>9.99   | 0.00       | 0.04 | 0.88<br>28.14 | 0.00  | 6.02          | 44.62 | hastingsite                 | TC09-75-zD-92  | TC09-075 | CaS         |
| 0.06<br>2.00<br>15.75           | 0.72<br>0.75<br>22.00<br>1.36      | 0.00             | 1.68<br>0.19         | 0.13 | 1.31<br>5.00     | 3.26         | 0.02     | 0.24 | 0.00 | 8.00<br>0.17     | 0.00 | 1.13         | 98.54<br>6.84       | -0.54         | 0.22         | 1.13 | 2.31 | 5.57<br>9.91   | 0.18       | 0.00 | 0.94<br>26.54 | 0.06  | 6.10          | 43.37 | hastingsite fe              | TC09-75-zD-94  | TC09-075 | CaS         |
| 0.03<br>2.00<br>15.14           | 0.07<br>0.14<br>22.00<br>1.97      | 2.00<br>0.00     | 1.96<br>0.02         | 0.02 | 1.46<br>5.00     | 0.09<br>3.29 | 0.01     | 0.15 | 0.00 | 8.00             | 0.08 | 0.19         | 97.56<br>7.71       | -0.03         | 0.12         | 0.33 | 0.31 | 6.31<br>11.76  |            | 0.04 | 0.82<br>27.09 | 0.03  | 1.03          | 49.59 | rro-actinolite fe           | TC09-82-C1-a1  | TC09-082 | CaS         |
| 0.02<br>2.00<br>15.08           | 0.04<br>0.08<br>1.76<br>0.22       | 0.00             | 0.05<br>0.05         | 0.06 | 1.49<br>5.00     | 0.05<br>3.31 |          | 0.12 | 0.01 | 0.01             | 0.00 | 0.18         | 98.07<br>7.82       | -0.21         | 0.45         | 0.21 | 0.31 | 6.49<br>11.43  |            | 0.00 | 0.86<br>26.60 | 0.01  | 1.02          | 50.69 | erro-actinolite fe          | TC09-82-C1-a2  | TC09-082 | CaS         |
| 0.01<br>2.00<br>15.12           | 0.05<br>0.12<br>22.00<br>1.88      | 2.00<br>0.00     | 0.02<br>0.02         | 0.01 | 1.83<br>5.00     | 0.06<br>3.03 | 0.01     | 0.02 | 0.01 | 8.00<br>0.03     | 0.00 | 0.20         | 98.56<br>7.80       | -0.11         | 0.05         | 0.28 | 0.31 | 8.11<br>12.14  |            | 0.05 | 0.55<br>24.05 | 0.06  | 1.17          | 51.43 | erro-actinolite             | TC09-82-C1-a3  | TC09-082 | CaS         |
| 2.00<br>15.47                   | 0.14<br>0.47<br>22.00<br>2.00      | 2.00<br>0.00     | 1.64<br>0.20         | 0.12 | 1.73<br>5.00     | 2.80         |          | 0.28 | 0.06 | 8.00<br>0.14     | 0.00 | 0.88         | 97.52<br>7.12       | 0.00          |              | 0.69 | 1.78 | 7.52<br>9.90   |            |      | 0.91<br>24.15 | 0.01  | 5.14          | 46.18 | ferro-ferri-<br>hornblende  | TK-001A-C1-4   | 13TK001A | CaS         |
| 2.00<br>15.60                   | 0.19<br>0.60<br>22.00<br>2.00      | 2.00<br>0.00     | 1.20<br>0.61         | 0.13 | 1.53<br>5.00     | 3.03         |          | 0.33 | 0.02 | 8.00<br>0.08     | 0.00 | 0.52         | 97.36<br>7.48       | 0.00          |              | 0.95 | 3.36 | 6.60<br>7.23   |            |      | 26.35         | 0.01  | 0.7z          | 48.18 | ferro-ferri-<br>katophorite | TK31_C1_0010   | 13TK31   | CaS         |
| 2.00<br>15.58                   | 0.19<br>0.19<br>22.00<br>2.00      | 2.00<br>0.00     | 1.37<br>0.51         | 0.12 | 1.26<br>5.00     | 3.40         |          | 0.21 | 0.00 | 8.00<br>0.13     | 0.00 | 0.54         | 97.16<br>7.44       | 0.00          |              | 0.94 | 2.95 | 5.35<br>8.13   |            |      | 0.89<br>27.50 | 0.00  | 2.93          | 47.24 | erro-richterite             | TK31_C1_002    | 13TK31   | CaS         |
| 2.00<br>15.62                   | 0.22<br>0.62<br>22.00<br>2.00      | 2.00<br>0.00     | 1.69<br>0.21         | 0.09 | 1.58<br>5.00     | 3.00         |          | 0.18 | 0.08 | 8.00<br>0.16     | 0.00 | 0.98         | 97.19<br>7.02       | 0.00          |              | 1.12 | 1.99 | 6.80<br>10.08  |            |      | 0.71<br>24.46 | 0.01  | 5.74          | 44.96 | hastingsite                 | TK42_C1_001    | 13TK42   | CaS         |
| 2.00<br>15.62                   | 0.15<br>0.62<br>22.00<br>2.00      | 2.00             | 1.74<br>0.19         | 0.07 | 2.43<br>5.00     | 0.00<br>2.34 |          | 0.11 | 0.02 | 8.00<br>0.10     | 0.00 | 0.75         | 97.93<br>7.25       | 0.00          |              | 0.78 | 2.25 | 10.82<br>10.80 |            |      | 0.53<br>19.45 | 0.01  | 4.32          | 48.12 | edenite                     | TK42_C1_002    | 13TK42   | CaS         |
| 2.00<br>15.53                   | 0.20<br>0.53<br>22.00<br>2.00      | 2.00<br>0.00     | 1.58<br>0.29         | 0.11 | 1.50<br>5.00     | 3.04         |          | 0.23 | 0.09 | 8.00<br>0.15     | 0.00 | 0.86         | 97.52<br>7.14       | 0.00          |              | 0.99 | 2.09 | 6.45<br>9.49   |            |      | 0.83<br>25.27 | 0.00  | 5.20          | 45.93 | hastingsite                 | TK42_C1_003    | 13TK42   | CaS         |
| 2.00<br>15.56                   | 0.20<br>0.56<br>22.00<br>2.00      | 2.00<br>0.00     | 1.59<br>0.27         | 0.10 | 1.46<br>5.00     | 3.07         |          | 0.24 | 0.06 | 8.00<br>0.17     | 0.00 | 0.93         | 97.09<br>7.07       | 0.00          |              | 0.99 | 2.11 | 6.25<br>9.48   |            |      | 0.77<br>25.52 | 0.00  | 5.36          | 45.18 | hastingsite                 | TK42_C1_004    | 13TK42   | CaS         |
| 2.00<br>15.59                   | 0.21<br>0.59<br>22.00<br>2.00      | 0.00<br>0.28     | 0.00<br>1.67<br>0.26 | 0.07 | 1.68<br>5.00     | 0.01<br>2.96 |          | 0.13 | 0.06 | 8.00<br>0.17     | 0.00 | 0.85         | 97.28<br>7.15       | 0.00          |              | 1.07 | 2.11 | 7.25           |            |      | 0.59<br>23.79 | 0.00  | 4.99          | 46.03 | hastingsite                 | TK42_C2_006    | 13TK42   | CaS         |

| r<br>Cl<br>W subtotal<br>Sum T,C,B,A | Na<br>A subtotal<br>O (non-W)         | Ca<br>Ca             | C subtotal<br>Mn2+<br>Fe-2+ | Zn<br>Mn2+<br>Fe2+<br>Ma     | Fe3+<br>Ni           | AI           | rı<br>Fe3+<br>T subtotal | T. AI        | CI<br>O=F,CI (calc)<br>Initial Total | MgO<br>CaO<br>Na2O<br>K2O<br>F       | Al2O3<br>Cr2O3<br>FeO<br>NiO<br>ZnO<br>BeO    | SiO2<br>TiO2<br>ZrO2 | Species                                   | Sample<br>Analysis (wt%)       | GROUP Petro |  |
|--------------------------------------|---------------------------------------|----------------------|-----------------------------|------------------------------|----------------------|--------------|--------------------------|--------------|--------------------------------------|--------------------------------------|-----------------------------------------------|----------------------|-------------------------------------------|--------------------------------|-------------|--|
| 2.00<br>15.57                        | 0.38<br>0.19<br>0.57<br>22.00<br>2.00 | 1.66<br>2.00         | 0.10<br>0.00                | 2.97                         | 0.00<br>0.17         | 0.12         | 0.00<br>8.00             | 7.21<br>0.79 | 0.00<br>97.33                        | 7.30<br>9.97<br>2.08<br>0.94         | 4.59<br>0.01<br>24.23<br>25                   | 46.47<br>1.02        | ferro-edenite                             | <b>13TK42</b><br>TK42_C2_007   | CaS         |  |
| 2.00<br>15.65                        | 0.42<br>0.65<br>22.00<br>2.00         | 1.69<br>2.00         | 0.09                        | 0.01<br>3.12<br>1.47         | 0.15                 | 0.17<br>0.07 | 0.00<br>8.00             | 7.00<br>1.00 | 0.00<br>96.44                        | 6.25<br>9.99<br>2.10<br>1.13         | 5.74<br>0.00<br>0.72<br>24.77                 | 44.30<br>1.44        | hastingsite fer                           | <b>13TK42</b><br>TK42_C2_009   | CaS         |  |
| 2.00<br>15.12                        | 0.07<br>0.12<br>22.00<br>2.00         | 0.30<br>0.00         | 5.00<br>0.17<br>0.12        | 3.50                         | 0.21                 | 0.01<br>0.09 | 0.00<br>8.00             | 7.88<br>0.12 | 0.00<br>97.04                        | 5.17<br>8.47<br>1.21<br>0.24         | 1.13<br>0.00<br>1.26<br>29.17                 | 50.34<br>0.05        | ro-actinolite                             | <b>13TK63</b><br>TK-63B-C1-011 | CaS         |  |
| 2.00<br>15.55                        | 0.35<br>0.19<br>0.55<br>22.00         | 0.31<br>0.00         | 5.00<br>0.07                | 0.01<br>2.90<br>1.73         | 0.00                 | 0.17         | 0.00<br>8.00             | 7.25<br>0.76 | 0.00<br>96.95                        | 7.48<br>9.72<br>2.21<br>0.98         | 4.47<br>0.01<br>23.30                         | 46.69<br>1.45        | hastingsite ferr                          | <b>13TK63</b><br>TK-63B-C1-03  | CaS         |  |
| 2.00<br>15.12                        | 0.08<br>0.04<br>22.00<br>2.00         | 0.05<br>0.05         | 0.01<br>0.01                | 0.12<br>3.75<br>1.09         | 0.00                 | 0.02         | 0.00<br>8.00             | 7.86<br>0.13 | 0.00<br>96.14                        | 4.61<br>11.40<br>0.42<br>0.20        | 0.69<br>0.02<br>28.28                         | 49.39<br>0.22        | o-actinolite                              | <b>13TK63</b><br>TK-63B-C1-05  | CaS         |  |
|                                      |                                       |                      |                             |                              |                      |              |                          |              |                                      |                                      |                                               |                      | ал                                        |                                |             |  |
| 1.28<br>0.01<br>2.00<br>16.00        | 0.88<br>0.28<br>1.16<br>22.00<br>0.72 | 0.15<br>2.00         | 4.70                        | 0.29<br>2.25<br>1.63         | 0.01<br>0.22<br>0.00 | 0.18         | 0.00<br>8.15             | 8.15<br>0.00 | 0.02<br>-1.12<br>97.67               | 7.17<br>0.94<br>9.22<br>1.42<br>2.65 | 0.71<br>0.08<br>2.26<br>19.30<br>0.01         | 53.46<br>1.54        | fluoro-<br>vedsonite á                    | TC09-59<br>TC09_59-C7 TC       | CaNaS       |  |
| 0.42<br>0.00<br>2.00<br>15.54        | 0.22<br>0.54<br>1.58                  | 0.47<br>1.53<br>2.00 | 5.00                        | 0.01<br>0.13<br>0.37         | 0.51                 | 0.13<br>0.28 | 0.00<br>8.00             | 7.95<br>0.05 | 0.01<br>-0.36<br>97.93               | 1.58<br>2.79<br>1.64<br>0.84         | 1.82<br>0.00<br>0.96<br>31.13<br>0.00<br>0.07 | 50.64<br>1.06        | potassic-<br>arfvedsonite                 | TC09-102                       | CaNaS       |  |
| 1.34<br>0.02<br>2.00<br>16.06        | 0.87<br>0.25<br>1.12<br>22.00<br>0.64 | 0.87<br>1.14<br>2.00 | 4.94                        | 0.02<br>0.15<br>4.13<br>0.39 | 0.00                 | 0.15<br>0.10 | 0.00                     | 7.74<br>0.26 | 0.08<br>-1.09<br>96.36               | 1.58<br>4.88<br>1.17<br>2.56         | 1.87<br>0.00<br>1.06<br>29.84<br>0.00<br>0.13 | 46.80<br>1.21        | ferro-fluoro-<br>richterite               | TC09-102<br>TC09-102-zE-106    | CaNaS       |  |
| 0.49<br>0.02<br>2.00<br>15.78        | 0.54<br>0.24<br>0.78<br>1.49          | 0.54<br>1.40<br>2.00 | 0.06                        | 0.03<br>4.13<br>0.23         | 0.11                 | 0.16<br>0.25 | 0.00<br>8.00             | 7.95<br>0.05 | 0.06<br>-0.42<br>97.77               | 0.98<br>3.16<br>1.17<br>0.97         | 1.59<br>0.00<br>1.13<br>31.68<br>0.00<br>0.21 | 49.69<br>1.30        | ferro-<br>katophorite                     | TC09-102<br>TC09-102-zE-114    | CaNaS       |  |
| 0.80<br>0.02<br>2.00<br>15.81        | 0.55<br>0.26<br>0.81<br>22.00<br>1.17 | 0.65<br>1.22<br>2.00 | 5.00<br>0.14                | 0.02<br>4.10<br>0.34         | 0.00                 | 0.16         | 0.00<br>8.00             | 7.72<br>0.28 | 0.08<br>-0.68<br>97.20               | 1.39<br>3.74<br>1.26<br>1.57         | 2.16<br>0.03<br>1.16<br>31.89<br>0.00<br>0.13 | 47.55<br>1.30        | ferro-ferri-<br>katophorite               | TC09-102<br>TC09-102-zF-119    | CaNaS       |  |
| 0.68<br>2.00<br>15.72                | 0.47<br>0.25<br>0.72<br>1.32          | 0.56<br>1.30<br>2.00 | 5.00<br>0.14                | 0.05<br>4.10<br>0.29         | 0.00                 | 0.16         | 0.00<br>8.00             | 7.86<br>0.14 | 0.00<br>-0.56<br>97.38               | 1.21<br>3.24<br>1.19<br>1.33         | 1.59<br>0.03<br>1.04<br>32.23<br>0.01<br>0.38 | 48.74<br>1.29        | ferro-ferri- <sub>fe</sub><br>katophorite | TC09-102<br>TC09-102-zF-123    | CaNaS       |  |
| 0.36<br>0.03<br>2.00<br>15.70        | 0.50<br>0.20<br>0.70<br>1.61          | 0.96<br>0.89<br>2.00 | 0.15                        | 0.04<br>3.99<br>0.59         | 0.01<br>0.26<br>0.01 | 0.10         | 0.00<br>8.00             | 7.71<br>0.28 | 0.12<br>-0.33<br>97.43               | 2.48<br>5.58<br>0.96<br>0.71         | 1.49<br>0.07<br>1.36<br>31.60<br>0.06         | 47.96<br>0.91        | rro-richterite fe                         | TC09-109<br>TC09-109-C11       | CaNaS       |  |
| 0.00<br>2.00<br>15.78                | 0.54<br>0.24<br>1.37                  | 0.88<br>2.00         | 0.07                        | 0.08<br>3.95<br>0.68         | 0.12                 | 0.17<br>0.00 | 0.00<br>8.00             | 0.19         | 0.12<br>-0.53<br>98.40               | 2.85<br>5.18<br>1.18<br>1.20         | 1.01<br>0.00<br>1.14<br>30.60<br>0.00         | 48.81<br>1.71        | rro-richterite fe                         | TC09-109<br>TC09-109-C2        | CaNaS       |  |
| 0.90<br>2.00<br>15.89                | 0.67<br>0.89<br>1.08                  | 0.77<br>1.09<br>2.00 | 0.14                        | 0.04<br>3.84<br>0.78         | 0.00<br>0.25         | 0.09         | 0.00<br>8.00             | 7.70<br>0.24 | 0.07<br>-0.77<br>99.36               | 3.30<br>4.55<br>1.08<br>1.80         | 1.27<br>0.02<br>1.40<br>30.90<br>0.00         | 48.68<br>1.32        | rro-richterite fe                         | TC09-109<br>FC09-109-C4-a1     | CaNaS       |  |
| 0.47<br>0.02<br>2.00<br>15.87        | 0.64<br>0.23<br>22.00<br>1.50         | 0.83<br>2.00         | 0.11                        | 0.06<br>3.85<br>0.77         | 0.19<br>0.01         | 0.14<br>0.00 | 0.00<br>8.00             | 7.70<br>0.26 | 0.09<br>-0.42<br>98.55               | 3.24<br>4.88<br>1.14<br>0.95         | 1.39<br>0.00<br>1.21<br>30.43<br>0.07         | 48.57<br>1.48        | rro-richterite                            | TC09-109<br>TC09-109-C4-a2     | CaNaS       |  |
| 0.75<br>2.00<br>15.73                | 0.55<br>0.19<br>22.00                 | 0.47<br>1.28<br>2.00 | 5.00<br>0.12<br>0.14        | 2.54                         | 0.01                 | 0.11         | 0.00<br>8.00             | 7.88<br>0.12 | -0.66<br>98.88                       | 8.45<br>2.92<br>0.97<br>1.56         | 0.69<br>0.10<br>0.91<br>24.61<br>0.00         | 52.18<br>0.93        | ferro-ferri-<br>katophorite               | TC09-129<br>TC09-129-C1-a1     | CaNaS       |  |
| 2.00<br>15.48                        | 0.38<br>0.48<br>22.00<br>2.00         | 1.08<br>0.73<br>2.00 | 5.00<br>0.17                | 4.15                         | 0.33                 | 0.00         | 0.00<br>8.00             | 7.89<br>0.08 | 0.00<br>97.03                        | 2.15<br>6.27<br>0.46                 | 0.42<br>0.00<br>1.24<br>33.56<br>0.00         | 49.14<br>0.23        | ferro-ferri-<br>winchite                  | TC09-129<br>TC09-129-C1-a2     | CaNaS       |  |
| 2.00<br>15.83                        | 0.66<br>0.17<br>0.83<br>22.00<br>2.00 | 0.29<br>1.48<br>2.00 | 5.00<br>0.13<br>0.10        | 3.97                         | 0.39                 | 0.18<br>0.00 | 0.00<br>8.00             | 7.85<br>0.11 | 0.00<br>96.60                        | 1.91<br>1.70<br>6.86<br>0.83         | 0.59<br>0.94<br>33.14<br>0.00                 | 48.77<br>1.85        | ferro-ferri-<br>katophorite               | TC09-129<br>TC09-129-C1-a3     | CaNaS       |  |

| W subtotal<br>Sum T,C,B,A | A subtotal<br>O (non-W)<br>F          | Ca<br>Na     | Ca<br>Na     | Mn2+<br>Fe2+ | C subtotal   | Mn2+<br>Fe2+ | Ni<br>Zn     | Cr<br>Fe3+   | A    | T subtotal   | Fe3+ | AI   | Si   | CI<br>O=F,CI (calc)<br>Initial Total | F            | Na2O         | MgO<br>CaO    | ZnO<br>BeO | Nio  | Mno           | Al2O3<br>Cr2O3 | TiO2<br>ZrO2 | SiO2  | Species                                                                                                             | Analysis (wt%)    | Sample   | GROUP Petro |   |
|---------------------------|---------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------|--------------|------|------|------|--------------------------------------|--------------|--------------|---------------|------------|------|---------------|----------------|--------------|-------|---------------------------------------------------------------------------------------------------------------------|-------------------|----------|-------------|---|
| 2.00<br>15.52             | 0.23<br>0.52<br>22.00<br>2.00         | 0.00         | 0.94         | 0.11         | 5.00         | 0.01<br>3.99 | 0.01         | 0.20         | 0.03 | 0 21         | 0.00 | 0.23 | 7.77 | 0.00<br>98.09                        | 0.00         | 4.02         | 2.35<br>5.57  |            | 0.04 | 0.94          | 1.38<br>0.00   | 1.78         | 49.17 | ferro-ferri-<br>katophorite                                                                                         | TC09-129-C2-a1    | TC09-129 | CaNaS       |   |
| 2.00<br>15.66             | 0.24<br>0.66<br>22.00<br>1.67<br>0.33 | 0.00         | 1.05         | 0.09         | 5.00         | 0.07<br>4.16 | 0            | 0.15         | 0.00 | 0.00         | 0.00 | 0.25 | 7.71 | -0.27<br>99.51                       | 0.65         | 4.80         | 1.57<br>5.08  |            | 0.00 | 1.17          | 1.32<br>0.00   | 2.41         | 48.88 | ferro-ferri-<br>katophorite                                                                                         | TC09-129-C2-a2    | TC09-129 | CaNaS       |   |
| 2.00<br>15.24             | 0.07<br>0.24<br>22.00<br>1.75<br>0.25 | 0.00         | 1.67<br>0.24 | 0.09         | 5.00         | 4.09         | 0            | 0.00         | 0.00 | 8.00         | 0.05 | 0.20 | 7.74 | -0.21<br>98.91                       | 0.50         | 1.36<br>0.34 | 2.48<br>9.87  |            | 0.00 | 1.22          | 1.07<br>0.02   | 0.14         | 48.94 | ro-actinolite ferr                                                                                                  | TC09-129-C3       | TC09-129 | CaNaS       |   |
| 2.00<br>15.94             | 0.24<br>0.94<br>22.00<br>2.00         | 0.00<br>0.70 | 0.60         | 0.07         | 5.00         | 0.04<br>3.11 |              | 0.00<br>0.12 | 0.00 | 0.00         | 0.00 | 0.65 | 7.21 | 0.00<br>98.26                        | 1.20         | 4.30         | 7.05<br>8.01  |            | 0.00 | 0.83          | 3.53<br>0.03   | 2.04         | 46.40 | o-richterite ferr                                                                                                   | TC09-129-C4       | TC09-129 | CaNaS       |   |
| 2.00<br>15.78             | 0.23<br>0.78<br>1.56<br>0.44          | 0.00         | 0.74         | 0.13         | 5.00         | 4.10         |              | 0.23         | 0.00 | 8.00         | 0.00 | 0.26 | 7.50 | -0.35<br>95.55                       | 0.84         | 4.02         | 2.71<br>6.36  |            | 0.00 | 0.91          | 1.35<br>0.00   | 1.86         | 45.36 | o-richterite                                                                                                        | TC09-129-C5 TC    | TC09-129 | CaNaS       |   |
| 2.00<br>15.10             | 0.10<br>22.00<br>1.92<br>0.09         | 0.00         | 0.58<br>0.58 | 0.00         | 5.00         | 0.16<br>3.77 | 2            | 0.00         | 0.00 | 0.00         | 0.00 | 0.06 | 7.94 | -0.07<br>95.66                       | 0.17         | 1.92<br>0.35 | 2.29<br>8.27  |            | 0.00 | 1.21          | 0.33<br>0.01   | 0.17         | 49.35 | ferro-ferri-<br>winchite                                                                                            | 09-129-C6-a1 TC   | TC09-129 | CaNaS       |   |
| 2.00<br>15.12             | 0.12<br>22.00<br>1.82<br>0.18         | 0.00         | 0.70         | 0.00         | 5.00         | 0.18<br>3.62 | 0            | 0.60         | 0.00 | 0.00         | 0.00 | 0.10 | 7.90 | -0.15<br>98.79                       | 0.36         | 2.49         | 2.43<br>7.80  |            | 0.00 | 1.36          | 0.52<br>0.00   | 0.34         | 50.80 | ferro-ferri-<br>winchite                                                                                            | 09-129-C6-a2 TC   | TC09-129 | CaNaS       |   |
| 2.00<br>15.24             | 0.08<br>0.24<br>1.71<br>0.29          | 0.00<br>0.17 | 1.50<br>0.46 | 0.04         | 5.00         | 4.19         | 0.01         | 0.00         | 0.06 | 0.04<br>0.04 | 0.00 | 0.04 | 7.96 | -0.25<br>99.55                       | 0.58         | 2.07         | 1.86<br>8.94  |            | 0.06 | 1.37          | 0.57<br>0.01   | 0.31         | 50.75 | o-actinolite ferr                                                                                                   | 09-129-C6-a3 TC   | TC09-129 | CaNaS       |   |
| 2.00<br>15.35             | 0.06<br>0.35<br>1.73<br>0.28          | 0.00         | 0.45         | 0.08         | 5.00         | 3.45<br>3.75 | 9            | 0.01         | 0.00 | 8.00         | 0.06 | 0.07 | 7.86 | -0.24<br>99.06                       | 0.56         | 2.46         | 5.52<br>8.90  |            | 0.00 | 0.99<br>28 00 | 0.39<br>0.05   | 0.06         | 51.05 | o-actinolite                                                                                                        | 09-129-C6-a4 TC   | TC09-129 | CaNaS       |   |
| 2.00<br>15.73             | 0.26<br>0.73<br>1.69<br>0.31          | 0.00         | 0.86<br>1.03 | 0.12         | 5.00         | 0.03<br>3.98 | 0.01         | 0.21         | 0.00 | 0.15         | 0.00 | 0.21 | 7.75 | -0.26<br>99.02                       | 0.63         | 4.91<br>1.27 | 2.70<br>5.06  |            | 0.04 | 1.10          | 1.13<br>0.00   | 1.63         | 49.10 | ferro-ferri-<br>katophorite                                                                                         | 09-129-C6-a5 TC   | TC09-129 | CaNaS       | : |
| 2.00<br>15.85             | 0.21<br>0.85<br>0.80<br>1.19          | 0.00         | 0.68         | 0.06         | 5.00         | 2.00         | 0.01<br>0.00 | 0.22         | 0.00 | 0.01         | 0.00 | 0.40 | 7.55 | 0.04<br>-1.09<br>100.44              | 2.56         | 4.57         | 12.56<br>7.57 | 0.02       | 0.10 | 10.51         | 2.32<br>0.00   | 0.46         | 51.18 | fluoro-<br>richterite                                                                                               | 09-131-zB-050 TCC | TC09-131 | CaNaS       |   |
| 2.00<br>15.88             | 0.22<br>0.87<br>0.66<br>1.34          | 0.00<br>0.66 | 1.28<br>0.60 | 0.06         | 5.00         | 2.25         | 0.00<br>0.00 | 0.21         | 0.00 | 0 0 0        | 0.00 | 0.51 | 7.48 | 0.02<br>-1.20<br>100.48              | 2.83         | 4.35         | 11.36<br>8.03 | 0.02       | 0.02 | 0.49          | 2.91<br>0.00   | 0.21         | 50.18 | fluoro- ferru<br>richterite                                                                                         | 99-131-zC-060 TC0 | TC09-131 | CaNaS       |   |
| 0.00<br>2.00<br>15.11     | 0.106<br>22.00<br>1.92<br>0.08        | 0.00         | 1.74<br>0.18 | 0.08         | 0.94<br>5.00 | 3.87         | 0.01         | 0.00         | 0.00 | 8.00         | 0.01 | 0.06 | 7.91 | 0.01<br>-0.07<br>99.65               | 0.17         | 0.77         | 4.09<br>10.50 | 0.10       | 0.00 | 0.90          | 0.33<br>0.01   | 0.17         | 51.23 | o-actinolite                                                                                                        | 9-131-zD-065 TC0  | TC09-131 | CaNaS       |   |
| 2.00<br>15.10             | 0.10<br>22.00<br>1.92<br>0.07         | 0.00         | 0.65         | 0.04         | 5.00         | 0.09<br>3.76 | 0.01         | 0.01         | 0.00 | 8.00         | 0.00 | 0.06 | 7.90 | 0.07<br>-0.07<br>99.59               | 0.14         | 2.18<br>0.49 | 2.26<br>7.88  | 0.12       | 0.00 | 0.95          | 0.31<br>0.04   | 0.31         | 51.08 | ferro-ferri-<br>winchite                                                                                            | 9-131-zD-066 TC0  | TC09-131 | CaNaS       |   |
| 0.02<br>2.00<br>15.82     | 0.23<br>0.82<br>1.25<br>0.73          | 0.00         | 0.75<br>1.13 | 0.09         | 5.00         | 4.02         | 0.01         | 0.00         | 0.00 | 0 1 4        | 0.00 | 0.19 | 7.70 | 0.06<br>-0.63<br>100.10              | 1.47         | 5.62         | 2.63<br>4.46  | 0.00       | 0.04 | 0.71          | 1.01<br>0.02   | 2.09         | 49.00 | o-richterite                                                                                                        | 9-131-zD-067 TC0  | TC09-131 | CaNaS       |   |
| 0.03<br>2.00<br>15.98     | 0.29<br>0.98<br>22.00<br>1.06         | 0.00         | 1.82<br>0.16 | 0.02         | 5.00         | 2.80         | 0.01         | 0.00         | 0.08 | n 93         | 0.00 | 1.57 | 6.43 | 0.12<br>-0.93<br>99.59               | 2.14         | 2.81         | 6.94<br>10.91 | 0.00       | 0.06 | 0.61          | 9.00<br>0.03   | 2.00         | 41.34 | fluoro-<br>hastingsite k                                                                                            | 9-131-zG-087 TC0  | TC09-131 | CaNaS       |   |
| 2.00<br>15.70             | 0.24<br>0.70<br>1.38<br>0.62          | 0.00         | 0.62<br>1.21 | 0.16         | 5.00         | 4.15         | 0.02         | 0.01         | 0.00 | 0.18         | 0.00 | 0.16 | 7.84 | 0.03<br>-0.52<br>99.37               | 1.23         | 5.42         | 1.49<br>3.66  | 0.15       | 0.00 | 1.20          | 0.85<br>0.04   | 1.53         | 49.47 | ferro-ferri-<br>katophorite                                                                                         | 9-131-zH-080 TC   | TC09-131 | CaNaS       |   |
| 2.00<br>15.75             | 0.22<br>0.75<br>22.00<br>1.32<br>0.67 | 0.00         | 0.49<br>1.25 | 0.12         | 5.00         | 3.62         | 0.03         | 0.45         | 0.00 | 8.00<br>0.07 | 0.00 | 0.09 | 7.90 | 0.02<br>-0.57<br>98.81               | 1.35         | 5.84         | 3.52<br>2.91  | 0.29       | 0.00 | 0.87          | 0.47           | 0.71         | 50.24 | ferro-ferri-<br><atophorite< td=""><td>009-131-zI-089 T(</td><td>TC09-131</td><td>CaNaS</td><td></td></atophorite<> | 009-131-zI-089 T( | TC09-131 | CaNaS       |   |
| 0.02<br>2.00<br>15.65     | 0.19<br>22.00<br>1.05<br>0.92         | 0.00         | 0.99<br>0.99 | 0.15         | 5.00         | 3.71         | 0.02         | 0.01         | 0.04 | 0.00         | 0.00 | 0.06 | 7.94 | 0.09<br>-0.81<br>99.79               | 0.74<br>1.87 | 4.82         | 3.89<br>5.03  | 0.14       | 0.00 | 20 20         | 0.57<br>0.05   | 0.27         | 50.94 | ro-richterite                                                                                                       | 209-131-zl-091    | TC09-131 | CaNaS       |   |

| F<br>CI<br>W subtotal<br>Sum T,C,B,A | O (non-W)     | A subtotal | Ca   | Na<br>B subtotal | Ca   | Mn2+<br>Fe2+ | C subtotal | Fe2+         | Zn<br>Mn2+ | Fe3+<br>Ni   | - Cr | AI   | T subtotal | Ti<br>Fe3+ | <u>A</u> | Si    | O=F,CI (calc) | ci - | K2O          | Na2O | CaO           | BeO | NiO<br>ZnO | FeO   | Cr2O3        | AI2O3 | SiO2<br>TiO2  | Species                                 | Analysis (wt%)  | Sample   | GROUP Petro |
|--------------------------------------|---------------|------------|------|------------------|------|--------------|------------|--------------|------------|--------------|------|------|------------|------------|----------|-------|---------------|------|--------------|------|---------------|-----|------------|-------|--------------|-------|---------------|-----------------------------------------|-----------------|----------|-------------|
| 0.68<br>0.01<br>2.00<br>15.78        | 22.00         | 0.24       | 0.00 | 2.00             | 0.55 | 0.13         | 5.00       | 3.39         |            | 0.39<br>0.00 | 0.01 | 0.05 | 8.00       | 0.00       | 0.06     | 7.94  | -0.60         | 0.05 | 1.24         | 5.88 | 4.99          |     | 0.02       | 30.02 | 0.05         | 0.43  | 51.41<br>0.42 | ferro-ferri-<br>katophorite             | TC09-131-zI-095 | TC09-131 | CaNaS       |
| 2.00<br>15.59                        | 22.00<br>2.00 | 0.19       | 0.00 | 0.23<br>2.00     | 1.62 | 0.13         | 5.00       | 3.01         |            | 0.26<br>0.00 |      | 0.08 | 8.00       | 0.06       | 0.78     | 7.16  | 0.00          |      | 0.94         | 2.14 | 7.20<br>9.81  | 1   | 0.02       | 25.52 | 1.02         | 4.30  | 46.50<br>1.20 | ferro-edenite t                         | TC09-45-zA-003  | TC09-45  | CaNaS       |
| 0.87<br>0.03<br>2.00<br>15.68        | 1.10          | 0.47       | 0.00 | 0.42<br>2.00     | 1.45 | 0.00         | 5.00       | 2.49         | 0.02       | 0.23<br>0.01 |      | 0.09 | 8.00       | 0.04       | 0.68     | 7.28  | -0.79         | 0.12 | 1.00         | 3.06 | 9.52<br>8.88  |     | 0.06       | 21.32 | 0.00         | 3.79  | 47.68<br>1.16 | ferro-edenite t                         | TC09-45-zA-006  | TC09-45  | CaNaS       |
| 0.53<br>2.00<br>15.65                | 1.44          | 0.16       | 0.00 | 0.38<br>2.00     | 1.48 | 0.00         | 5.00       | 2.45         | 0.02       | 0.22         | 0.01 | 0.00 | 8.00       | 0.10       | 0.48     | 7.41  | -0.50         | 0.11 | 0.84         | 2.99 | 10.26<br>9.21 |     | 0.00       | 21.28 | 0.10         | 2.73  | 49.24<br>0.87 | ferro-edenite                           | TC09-45-zA-009  | TC09-45  | CaNaS       |
| 0.84<br>0.02<br>2.00<br>15.81        | 1.14          | 0.20       | 0.00 | 2.00             | 1.54 | 0.08         | 5.00       | 2.39         | 0.00       | 0.20<br>0.03 | 0.01 | 0.10 | 8.00       | 0.02       | 0.88     | 7.00  | -0.76         | 0.08 | 1.05         | 3.27 | 10.08<br>9.52 | 2   | 0.20       | 20.75 | 0.11         | 4.96  | 46.36<br>1.93 | ferro-edenite                           | TC09-45-zA-010  | TC09-45  | CaNaS       |
| 0.81<br>0.03<br>2.00<br>15.54        | 22.00<br>1.16 | 0.16       | 0.00 | 0.43<br>2.00     | 1.42 | 0.12         | 5.00       | 2.40         |            | 0.26<br>0.01 |      | 0.07 | 8.00       | 0.00       | 0.51     | 7.42  | -0.75         | 0.13 | 1 72         | 2.78 | 10.21<br>8.93 | 2   | 0.11       | 21.74 | 0.00         | 2.89  | 50.03<br>1.30 | ferro-edenite                           | TC09-45-zA-012  | TC09-45  | CaNaS       |
| 0.61<br>0.02<br>2.00<br>15.19        | 22.00<br>1.38 | 0.10       | 0.00 | 2.00             | 1.07 | 0.21         | 5.00       | 2.21<br>2.49 | 0.00       | 0.29<br>0.00 | 0.00 | 0.00 | 8.00       | 0.04       | 0.20     | 77.74 | -0.56         | 0.06 | 1 20         | 1.34 | 11.23<br>6.72 | 2   | 0.02       | 23.58 | 0.02         | 1.14  | 52.14<br>0.38 | actinolite                              | TC09-45-zB-017  | TC09-45  | CaNaS       |
| 1.08<br>0.02<br>2.00<br>15.43        | 0.90          | 0.43       | 0.00 | 0.46<br>2.00     | 1.11 | 0.18         | 5.00       | 2.13         | 0.02       | 0.41<br>0.01 | 0.00 | 0.00 | 8.00       | 0.10       | 0.36     | 7.53  | -0.98         | 0.09 | 0.74         | 2.59 | 10.92<br>6.91 |     | 0.05       | 22.47 | 0.02         | 2.04  | 50.40<br>0.87 | fluoro-<br>actinolite                   | TC09-45-zB-019  | TC09-45  | CaNaS       |
| 0.98<br>0.04<br>2.00<br>15.69        | 0.99          | 0.22       | 0.00 | 0.38<br>2.00     | 1.50 | 0.00         | 5.00       | 2.51<br>2.18 | 0.03       | 0.21         | 0.00 | 0.07 | 8.00       | 0.12       | 0.67     | 70.01 | -0.88         | 0.14 | 1.12<br>2.01 | 2.89 | 9.57<br>9.12  |     | 0.00       | 21.22 | 0.01         | 3.69  | 47.14<br>1.65 | ferro-edenite f                         | TC09-45-zC-020  | TC09-45  | CaNaS       |
| 0.84<br>0.02<br>2.00<br>15.58        | 1.14          | 0.18       | 0.00 | 2.00             | 1.30 | 0.08         | 5.00       | 2.58         | 0.00       | 0.31<br>0.01 |      | 0.05 | 8.00       | 0.06       | 0.47     | 7.40  | -0.75         | 0.08 | 1 74         | 3.15 | 9.02<br>7.98  |     | 0.10       | 23.44 | 0.00         | 2.64  | 49.22<br>1.03 | erro-richterite                         | TC09-45-zC-022  | TC09-45  | CaNaS       |
| 0.73<br>0.00<br>2.00<br>15.98        | 22.00<br>1.26 | 0.27       | 0.00 | 2.00             | 0.89 | 0.02         | 5.00       | 0.93         | 0.13       | 0.29<br>0.00 | 0.00 | 0.13 | 8.00       | 0.21       | 0.43     | 7.36  | -0.62         | 0.01 | 1.33         | 5.86 | 3.93<br>5.25  | 2   | 0.02       | 28.87 | 0.02<br>1.09 | 2.32  | 46.54<br>2.84 | Ti-rich ferro-<br>ferri-<br>katophorite | TC09-57-C1      | TC09-57  | CaNaS       |
| 0.97<br>0.00<br>2.00<br>15.89        | 1.03          | 0.27       | 0.00 | 0.99<br>2.00     | 0.93 | 0.09         | 5.00       | 2.75         | 0.23       | 0.61<br>0.02 |      | 0.00 | 8.00       | 0.03       | 0.52     | 7.46  | -0.84         | 0.01 | 1.3/         | 5.42 | 6.12<br>5.63  |     | 0.13       | 26.15 | 0.00         | 2.86  | 48.58<br>0.26 | ferro-ferri-<br>katophorite             | TC09-57-C4-a1   | TC09-57  | CaNaS       |
| 0.93<br>0.01<br>2.00<br>15.93        | 22.00<br>1.06 | 0.27       | 0.00 | 2.00             | 0.94 | 0.00         | 5.00       | 2.57         | 0.26       | 0.66         | 0.00 | 0.00 | 8.00       | 0.02       | 0.47     | 7.39  | -0.81         | 0.05 | 1.3/         | 5.50 | 6.50<br>5.68  | 1   | 0.00       | 25.89 | 0.02         | 2.57  | 47.67<br>0.18 | ferro-ferri-<br>katophorite             | TC09-57-C4-a2   | TC09-57  | CaNaS       |
| 0.88<br>0.02<br>2.00<br>15.88        | 22.00<br>1.10 | 0.26       | 0.00 | 2.00             | 0.90 | 0.00         | 5.00       | 2.84         | 0.18       | 0.56         | 0.01 | 0.00 | 8.00       | 0.01       | 0.44     | 7.54  | -0.77         | 0.08 | 1.30         | 5.39 | 6.09<br>5.40  |     | 0.00       | 26.32 | 0.09         | 2.42  | 48.73<br>0.06 | ferro-ferri-<br>katophorite             | TC09-57-C4-a3   | TC09-57  | CaNaS       |
| 0.77<br>0.01<br>2.00<br>15.97        | 22.00<br>1.22 | 0.72       | 0.00 | 2.00             | 1.28 | 0.02         | 5.00       | 3.07         | 0.09       | 0.09<br>0.01 |      | 0.16 | 8.00       | 0.16       | 0.68     | 7.16  | -0.66         | 0.02 | 1.29         | 4.70 | 6.83<br>7.69  |     | 0.08       | 24.26 | 0.00         | 3.71  | 46.03<br>2.68 | Ti-rich ferro-<br>richterite            | TC09-57-C7      | TC09-57  | CaNaS       |
| 7.09<br>2.00<br>16.00                | 0.91          | 0.24       | 0.00 | 2.00             | 0.85 | 0.00         | 4.98       | 2.98<br>1.54 | 0.16       | 0.23         | 0.00 | 0.07 | 8.00       | 0.00       | 0.21     | 7.68  | -0.95         | 2.21 | 7.23         | 6.53 | 6.76<br>5.23  |     | 0.00       | 25.17 | 0.02         | 1.17  | 50.40<br>1.64 | ferro-fluoro-<br>richterite             | TC09-63-C8      | TC09-63  | CaNaS       |
| 0.50<br>0.00<br>2.00<br>15.73        | 1.50          | 0.25       | 0.00 | 2.00             | 0.91 | 0.00         | 5.00       | 3.30         | 0.08       | 0.00         | 0.00 | 0.19 | 8.00       | 0.00       | 0.14     | 70.77 | -0.42         | 0.01 | 1.22         | 5.09 | 5.70          | 1   | 0.00       | 25.11 | 0.03         | 1.26  | 49.98<br>1.59 | ∍rro-richterite                         | TC09-68-zA-01&  | TC09-68  | CaNaS       |
| 0.17<br>0.01<br>2.00<br>15.44        | 22.00<br>1.81 | 0.26       | 0.00 | 2.00             | 0.62 | 0.00         | 5.00       | 0.65         | 0.02       | 0.64<br>0.00 |      | 0.17 | 8.00       | 0.00       | 0.10     | 7.90  | -0.16         | 0.05 | 0.35         | 5.12 | 2.78<br>3.66  | 1   | 0.03       | 30.47 | 0.00         | 0.87  | 50.40<br>1.48 | ferro-ferri-<br>winchite                | TC09-68-zA-010  | TC09-68  | CaNaS       |
| 0.43<br>0.02<br>2.00<br>15.73        | 22.00<br>1.55 | 0.40       | 0.00 | 2.00             | 0.84 | 0.00         | 5.00       | 3.50         | 0.02       | 0.04         | 0.01 | 0.27 | 8.00       | 0.00       | 0.21     | 7.79  | -0.38         | 0.09 | 1.24<br>0.95 | 5.26 | 4.32<br>4.96  |     | 0.19       | 26.76 | 0.05         | 1.28  | 49.25<br>2.30 | ferro-ferri-<br>katophorite             | TC09-68-zA-012  | TC09-68  | CaNaS       |

| W subtotal<br>Sum T,C,B,A | C F  | O (non-W)             | K an at the state of the state | Ca   | B subtotal | Na<br>Na     | Fe2+  | Mn2+ | C subtotal | Fe2+          | <br>Mn2+ | 7n<br>Zn | Fe3+ | A    | i subtotai<br>Ti | Fe3+ | T    | SI<br>Al       | Initial Total | O=F_CI (calc) | 2 न  | K20  | Cau           | MgO  | ZnO  | NiO  | Mno             | AIZU3<br>Cr2O3  | ZrO2    | SiO2          | Species               |                | Analysis (wt%)  | Sample  | GROUP Petro |
|---------------------------|------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|--------------|-------|------|------------|---------------|----------|----------|------|------|------------------|------|------|----------------|---------------|---------------|------|------|---------------|------|------|------|-----------------|-----------------|---------|---------------|-----------------------|----------------|-----------------|---------|-------------|
| 2.00<br>15.73             | 0.78 | 22.00                 | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 | 2.00       | 1 09         | 0.00  | 0.02 | 5.00       | 3.38          | 0.09     | 0 02     | 0.03 | 0.03 | 0.25             | 0.00 |      | 0.21           | 97.42         | -0.66         | 1.57 | 1.20 | 5.2/<br>5.19  | 5.13 | 0.13 | 0.00 | 0.79<br>25 93   | 0.00            | 4       | 49.48         | katophorite           | form form      | TC09-68-zA-013  | TC09-68 | CaNaS       |
| 2.00<br>15.79             | 0.49 | 1 50                  | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 | 2.00       | 1 15         | 0.00  | 0    | 4.99       | 0.94          | 0.00     | 0.01     | 0.00 | 0.01 | 0.30             | 0.00 |      | 0.23           | 98.58         | -0.43         | 0.99 | 1.19 | 5.06          | 4.03 | 0.03 | 0.10 | 1.17<br>27 26   | 1.34<br>0.01    | 4 0 4   | 49.63<br>2 52 | katophorite           | form T-        | TC09-68-zA-019  | TC09-68 | CaNaS       |
| 2.00<br>15.56             | 0.72 | 22.00                 | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 | 2.00       | 1 14         | 0.00  | 2    | 4.99       | 3.12          | 0.11     |          | 0.00 | 0.12 | 8.00<br>0.32     | 0.00 |      | 7.82<br>0.18   | 97.65         | -0.62         | 1.47 | 1.48 | 5.19          | 5.69 | 0.00 | 0.00 | 0.86<br>24.01   | 0.04            | 4 14    | 50.44         | ferro-<br>katophorite | rich potassic- | FC09-68-zB-025  | TC09-68 | CaNaS       |
| 2.00<br>15.51             | 0.39 | 22.00                 | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 | 2.00       | 1 36         | 0.00  | 5    | 5.00       | 0 57          | 0.15     | 0.06     | 0.01 | 0.07 | 8.00<br>0.17     | 0.00 |      | 7.95           | 97.12         | -0.35         | 0.78 | 1.26 | 5.78          | 2.41 | 0.54 | 0.00 | 70 93           | 0.05            |         | 50.15         | katophorite           | forma form     | TC09-68-zC-033  | TC09-68 | CaNaS       |
| 2.00<br>15.72             | 0.31 | 0.72<br>22.00<br>1.66 | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 | 2.00       | 1 23         | 0.00  | 0.03 | 5.00       | 3.93<br>Л 5.8 | 0.11     |          | 0.04 | 0.03 | 0.30             | 0.00 |      | 7.82<br>0.18   | 97.83         | -0.20         | 0.63 | 1.26 | 4.39<br>5.40  | 2.43 | 0.00 | 0.00 | 1.01<br>29 89   | 0.09            | <br>    | 49.24         | katophorite           | 60000 6000     | TC09-68-zC-034  | TC09-68 | CaNaS       |
| 2.00<br>15.70             | 0.53 | 22.00                 | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 | 2.00       | U./9         | 0.00  | 0.02 | 5.00       | 3.76<br>0.73  | 0.08     | 0.02     | 0.04 | 0.02 | 8.00<br>0.33     | 0.00 |      | 0.23           | 98.16         | -0.47         | 1.06 | 1.24 | 4.65<br>5.24  | 3.12 | 0.10 | 0.16 | 0.78<br>28.77   | 0.00            | 4 1 1 1 | 49.18<br>2.75 | ferri-<br>katophorite | Ti-rich ferro- | TC09-68-zC-035  | TC09-68 | CaNaS       |
| 2.00<br>15.77             | 0.45 | 22.00                 | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 | 2.00       | 1 03         | 0.00  | 0.02 | 5.00       | 3.03          | 0.10     | 0.01     | 0.04 | 0.00 | 8.00<br>0.28     | 0.00 | 0.00 | 7.67           | 99.06         | -0.40         | 0.93 | 1.27 | 5.76          | 6.76 | 0.12 | 0.00 | 0.93<br>24.02   | 0.00            | 4 CO    | 50.13         | katophorite f         | form form      | TC09-68-zC-043  | TC09-68 | CaNaS       |
| 2.00<br>15.84             | 0.73 | 22.00<br>1 25         | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 | 2.00       | 0.67         | 1 3 2 | 0.02 | 5.00       | 2.76          | 0.11     | 0.02     | 0.03 | 0.10 | 0.11             | 0.00 |      | 7.48           | 97.57         | -0.64         | 1.48 | 1.31 | /.92          | 8.09 | 0.18 | 0.00 | 0.98<br>21 53   | 3.35<br>0.00    | 2 C     | 48.23         | erro-richterite f     |                | TC09-68-zD-045  | TC09-68 | CaNaS       |
| 2.00<br>15.79             | 0.47 | 22.00                 | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 | 2.00       | 0.61         | 1 37  | 0.03 | 5.00       | 2.71          | 0.02     | 0.01     | 0.05 | 0.08 | 8.00<br>0.17     | 0.00 |      | 7.36           | 98.94         | -0.42         | 0.98 | 1.25 | 2 00          | 8.18 | 0.19 | 0.10 | 1.01<br>21.61   | 4.03<br>0.00    |         | 48.26         | erro-richterite f     |                | TC09-68-zD-049  | TC09-68 | CaNaS       |
| 2.00<br>15.82             | 0.84 | 0.82<br>22.00<br>1.16 | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 | 2.00       | 0.52         | 1.00  | 0.04 | 5.00       | 2.72          | 0.06     | 0.01     | 0.07 | 0.04 | 0.14             | 0.00 |      | 7.33           | 98.24         | -0.73         | 1.72 | 1.36 | 8./2<br>3.F.6 | 8.54 | 0.08 | 0.04 | 0.75            | 3.92<br>0.02    |         | 47.47         | erro-richterite       |                | TC09-68-zD-053  | TC09-68 | CaNaS       |
| 2.00<br>16.10             | 1.61 | 1.40<br>22.00         | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 | 2.00       | 0.02         | 1.00  |      | 4.70       | 2.56          | 0.10     | 0.00     | 0.00 | 0.00 | 1.92             | 0.00 | 0.17 | 7.21           | 99.41         | -1 38         | 3.29 | 1.08 | 06 LL         | 8.83 |      | 0.01 | 0.76            | 2.96<br>0.00    | 2       | 46.50         | edenite               | form fluoro    | TC09-69-C2      | TC09-69 | CaNaS       |
| 2.00<br>15.95             | 1.07 | 22.00                 | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 | 2.00       | 0.66         | 1 20  | 0.04 | 5.00       | 2.46          | 0.07     |          | 0.01 | 0.00 | 8.00             | 0.04 | 0.20 | 7.16           | 98.47         | C6 U-         | 2.19 | 1.22 | л.83<br>Л.59  | 9.22 |      | 0.00 | 0.83<br>22 NN   | 3.28<br>0.08    |         | 46.41         | richterite            | form flippo    | TC09-69-C3-a1   | TC09-69 | CaNaS       |
| 2.00<br>16.00             | 1.03 | 22.00                 | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 | 2.00       | 1.34<br>0.66 | 0.00  |      | 4.97       | 2.41          | 0.13     |          | 0.01 | 0.00 | 8.00             | 0.00 | 0.21 | 7.18           | 97.40         | 88 U-         | 2.10 | 1.23 | 8.03          | 9.25 |      | 0.00 | 0.96<br>20.68   | 3.29<br>0.06    |         | 46.11         | richterite            | formo filiono  | TC09-69-C3-a2   | TC09-69 | CaNaS       |
| 2.00<br>15.91             | 1.00 | 22.00                 | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 | 2.00       | 0.66         | 0.00  | 0.03 | 5.00       | 2.80          | 0.12     | 0.01     | 0.06 | 0.00 | 8.00<br>0.18     | 0.00 | 0.05 | 7.27           | 98.27         | 0.00          |      | 1.25 | 1.96          | 7.99 |      | 0.09 | 1.16<br>22.25   | 3.75<br>0.02    |         | 47.32         | ferro-richterite      |                | TC09-69-C4-a1   | TC09-69 | CaNaS       |
| 2.00<br>15.94             | 2.00 | 22.00                 | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 | 2.00       | 0.74         | 0.00  |      | 4.98       | 2.91          | 0.13     | 0.01     | 0.00 | 0.00 | 8.00<br>0.20     | 0.00 | 0.04 | 7.37           | 97.86         | 0 00          |      | 1.28 | /.60          | 7.52 |      | 0.05 | 72 F3           | 3.23<br>0.00    | 2 C     | 47.73         | ferro-richterite      |                | TC09-69-C4-a2   | TC09-69 | CaNaS       |
| 2.00<br>15.96             | 0.86 | 22.00<br>1 14         | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 | 2.00       | 0.68         | 0.00  | 0.04 | 5.00       | 3.04          | 0.11     |          | 0.01 | 0.00 | 8.00<br>0.15     | 0.00 | 0.06 | 7.29           | 99.08         | -0 74         | 1.76 | 1.15 | 1.67          | 7.02 |      | 0.00 | 1.13<br>24.02   | 3.57<br>0.04    |         | 46.99         | ferro-richterite      |                | TC09-69-C5-a1   | TC09-69 | CaNaS       |
| 2.00<br>15.96             | 0.95 | 22.00<br>1 05         | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 | 2.00       | 0.64         | 0.00  | 0.06 | 5.00       | 2.86          | 0.07     |          | 0.10 | 0.00 | 0.11             | 0.00 | 0.11 | 7.24           | 100.30        | -0.83         | 1.96 | 1.28 | 7.98          | 8.14 |      | 0.00 | 0.98            | 3.59<br>0.04    |         | 47.46         | ferro-richterite      |                | TC09-69-C5-a2   | TC09-69 | CaNaS       |
| 2.00<br>15.98             | 1.08 | 1 22.00               | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0C | 2.00       | 0 60 U       | 1 20  | 0.02 | 5.00       | 3.0C          | 0.10     |          | 0.08 | 0.00 | 0.15             | 0.00 | 0.06 | 1 7.2¢<br>0.68 | 100.70        | -0 94         | 2.23 | 1.21 | /.82          | 7.30 |      | 0.00 | 3 0.92<br>24.10 | , 3. /4<br>0.06 |         | 47.51         | richterite            | forma fluora   | ) TC09-69-C5-a5 | TC09-69 | CaNaS       |
| 2.00<br>15.96             | 1.15 | 0.70<br>22.00         | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 | 2.00       | 0.69         | 0.00  | 0.03 | 5.00       | 2.77          | 0.11     |          | 0.06 | 0.00 | 8.00<br>0.17     | 0.00 | 0.07 | 7.26           | 100.60        | -1 01         | 2.40 | 1.21 | 1.85          | 8.32 |      | 0.00 | 1.14<br>22.25   | 3. /5<br>0.04   | 100     | 47.80         | richterite            | forma fluora   | TC09-69-C6-a1   | TC09-69 | CaNaS       |

| W subtotal    | Na<br>K<br>O (non-W)<br>F                     | ca<br>Na<br>B subtotal<br>Ca | Mn2+<br>Fe2+ | Fe2+<br>Mg<br>C subtotal | Fe3+<br>Ni<br>Zn<br>Mn2+ | A TI         | Fe3+<br>T subtotal | T AI                 | O=F,Cl (calc)<br>Initial Total | CaO<br>Na2O<br>F<br>Cl       | FeO<br>NIO<br>ZnO<br>BeO<br>MgO | AI203<br>Cr203<br>Mn0 | SiO2<br>TiO2<br>7r02 | Species                        | Analysis (wt%)   | Sample   | GROUP Petro | Annexe n°11 (su   |
|---------------|-----------------------------------------------|------------------------------|--------------|--------------------------|--------------------------|--------------|--------------------|----------------------|--------------------------------|------------------------------|---------------------------------|-----------------------|----------------------|--------------------------------|------------------|----------|-------------|-------------------|
| 2.00          | 0.73<br>0.23<br>0.96<br>22.00<br>0.81<br>1.19 | 1.31<br>0.65<br>2.00<br>0.00 | 0.04         | 2.66<br>5.00             | 0.07<br>0.01             | 0.14<br>0.00 | 0.00<br>8.00       | 7.26<br>0.66<br>0.09 | -1.03<br>98.97                 | 7.93<br>4.63<br>1.18<br>2.44 | 21.19<br>0.04<br>8.87           | 3.62<br>0.00<br>1.04  | 47.15<br>1.92        | ferro-fluoro-<br>richterite    | TC09-69-C8       | TC09-69  | CaNaS       | ite) : Analyses r |
| 2.00<br>15.97 | 0.74<br>0.23<br>0.97<br>22.00<br>0.87<br>1.14 | 0.81<br>2.00<br>0.00         | 0.02         | 2.28<br>2.13<br>5.00     | 0.00<br>0.01<br>0.10     | 0.00         | 0.07<br>8.00       | 7.28<br>0.58<br>0.08 | -0.98<br>98.28                 | 7.08<br>5.18<br>1.19<br>2.33 | 22.01<br>0.04<br>9.27           | 3.19<br>0.01<br>0.96  | 47.30<br>0.67        | ferro-fluoro-<br>richterite    | T009-70-C2-a1    | TC09-70  | CaNaS       | nicrosondes et f  |
| 2.00<br>15.91 | 0.66<br>0.24<br>0.91<br>22.00<br>0.82<br>1.18 | 1.17<br>0.76<br>2.00<br>0.00 | 0.08         | 2.85<br>1.65<br>5.00     | 0.00<br>0.41<br>0.00     | 0.00         | 0.00<br>8.00       | 7.37<br>0.56<br>0.07 | -0.99<br>97.30                 | 6.90<br>4.63<br>1.21<br>2.35 | 24.72<br>0.03<br>7.02           | 3.00<br>0.01<br>1.18  | 46.65<br>0.58        | ferro-fluoro-<br>richterite    | TC09-70-C2-a2    | TC09-70  | CaNaS       | ormules structu   |
| 2.00<br>15.98 | 0.72<br>0.27<br>0.98<br>22.00<br>0.65<br>1.35 | 0.70<br>2.00<br>0.00         | 0.03         | 2.72<br>1.98<br>5.00     | 0.06                     | 0.17<br>0.00 | 0.00<br>8.00       | 7.31<br>0.69         | -1.17<br>99.57                 | 7.72<br>4.77<br>1.37<br>2.78 | 21.65<br>0.00<br>8.68           | 3.80<br>0.00<br>0.75  | 47.71<br>1.50        | ferro-fluoro-<br>richterite    | TC09-70-C6-a1    | TC09-70  | CaNaS       | Irales des amph   |
| 2.00<br>15.97 | 0.71<br>0.26<br>0.97<br>22.00<br>0.71<br>1.30 | 1.26<br>0.72<br>2.00<br>0.00 | 0.02         | 2.72<br>1.92<br>5.00     | 0.12<br>0.00             | 0.14<br>0.00 | 0.00<br>8.00       | 7.30<br>0.66<br>0.04 | -1.14<br>100.70                | 7.74<br>4.85<br>1.36<br>2.70 | 22.38<br>0.02<br>8.48           | 3.67<br>0.00<br>0.94  | 48.12<br>1.58        | ferro-fluoro-<br>richterite    | TC09-70-C6-a2    | TC09-70  | CaNaS       | niboles (d'après  |
| 2.00<br>15.96 | 0.71<br>0.25<br>0.96<br>22.00<br>1.05<br>0.95 | 0.88<br>0.00<br>0.00         | 0.06         | 3.26<br>1.47<br>5.00     | 0.11                     | 0.10<br>0.00 | 0.00<br>8.00       | 7.46<br>0.39<br>0.15 | -0.81<br>99.20                 | 6.37<br>5.24<br>1.28<br>1.93 | 25.81<br>0.00<br>6.30           | 2.115<br>0.00<br>0.96 | 47.84<br>2.15        | rro-richterite                 | TC09-70-C8-a1    | TC09-70  | CaNaS       | la feuille de ca  |
| 2.00<br>15.98 | 0.73<br>0.26<br>22.00<br>0.69<br>1.32         | 1.05<br>0.94<br>2.00<br>0.00 | 0.01         | 3.16<br>1.50<br>5.00     | 0.00                     | 0.07         | 0.00<br>8.00       | 7.52<br>0.34<br>0.15 | -1.13<br>100.13                | 6.31<br>5.55<br>2.69         | 25.48<br>0.03<br>6.48           | 1.84<br>0.06<br>1.05  | 48.57<br>1.89        | ferro-fluoro- fe<br>richterite | TC09-70-C8-a2    | TC09-70  | CaNaS       | cul de Locock, 2  |
| 2.00<br>15.72 | 0.49<br>0.23<br>0.72<br>22.00<br>2.00         | 0.99<br>0.74<br>2.00<br>0.00 | 0.12         | 4.07<br>0.63<br>5.00     | 0.00                     | 0.07<br>0.22 | 0.00<br>8.00       | 7.66<br>0.35         | 0.00<br>96.62                  | 5.74<br>3.95<br>1.11         | 31.24<br>2.64                   | 3.00<br>0.00          | 47.46<br>0.59        | rro-richterite fer             | TK101_C1_001     | 13TK101  | CaNaS       | 2014) majeurs e   |
| 2.00<br>15.75 | 0.55<br>0.21<br>22.00<br>2.00                 | 1.40<br>0.57<br>0.00         | 0.02         | 3.23<br>1.44<br>5.00     | 0.04                     | 0.16<br>0.05 | 0.00<br>8.00       | 7.42<br>0.58         | 0.00<br>97.23                  | 8.37<br>3.70<br>1.03         | 24.96<br>6.16                   | 3.40<br>0.00<br>0.85  | 47.44<br>1.32        | ro-richterite f                | TK101_C1_002     | 13TK101  | CaNaS       | en % et Traces e  |
| 2.00<br>15.87 | 0.64<br>0.24<br>0.87<br>22.00<br>2.00         | 1.61<br>0.39<br>2.00<br>0.00 | 0.00         | 2.99<br>1.77<br>5.00     | 0.01                     | 0.13<br>0.03 | 0.00<br>8.00       | 7.22<br>0.78         | 0.00<br>97.56                  | 9.64<br>3.41<br>1.20         | 23.06<br>7.62                   | 4.38<br>0.00<br>0.65  | 46.48<br>1.12        | erro-edenite                   | TK101_C1_005     | 13TK101  | CaNaS       | in ppm            |
| 2.00<br>15.77 | 0.54<br>0.24<br>22.00<br>2.00                 | 1.65<br>0.34<br>2.00<br>0.00 | 0.02         | 2.28<br>2.48<br>5.00     | 0.03                     | 0.05<br>0.11 | 0.00<br>8.00       | 7.34<br>0.66         | 0.00<br>97.32                  | 10.17<br>2.96<br>1.22        | 18.22<br>10.97                  | 4.29<br>0.00<br>0.61  | 48.47<br>0.42        | edenite fer                    | TK101_C1_007     | 13TK101  | CaNaS       |                   |
| 2.00<br>15.85 | 0.66<br>0.21<br>0.87<br>22.00<br>2.00         | 1.43<br>0.57<br>2.00<br>0.00 | 0.00         | 3.31<br>1.40<br>4.98     | 0.00                     | 0.16<br>0.03 | 0.00<br>8.00       | 7.39<br>0.61         | 0.00<br>97.50                  | 8.54<br>4.03<br>1.06         | 25.27<br>5.97                   | 3.46<br>0.00<br>0.69  | 47.16<br>1.32        | ro-richterite fer              | TK101_C1_009 T   | 13TK101  | CaNaS       |                   |
| 2.00<br>15.91 | 0.66<br>0.24<br>22.00<br>2.00                 | 1.31<br>0.68<br>2.00<br>0.00 | 0.02         | 3.34<br>1.32<br>5.00     | 0.04                     | 0.19<br>0.00 | 0.00<br>8.00       | 7.34<br>0.64<br>0.02 | 0.00<br>97.42                  | 7.74<br>4.39<br>1.20         | 25.62<br>5.61                   | 3.46<br>0.00<br>1.05  | 46.61<br>1.75        | ro-richterite fer              | K117A_C1_007 TK  | 13TK117A | CaNaS       |                   |
| 2.00<br>15.97 | 0.70<br>0.31<br>1.01<br>22.00<br>2.00         | 0.79<br>1.21<br>2.00<br>0.00 | 0.00         | 4.39<br>0.18<br>4.96     | 0.00                     | 0.17<br>0.07 | 0.00<br>8.00       | 7.87<br>0.14         | 0.00<br>97.81                  | 4.56<br>6.10<br>1.52         | 32.52<br>0.74                   | 1.06<br>0.00<br>1.15  | 48.74<br>1.43        | rro-richterite                 | (119B_C1_0011 TI | 13TK119B | CaNaS       |                   |
| 2.00<br>15.97 | 0.66<br>0.31<br>22.00<br>2.00                 | 0.47<br>1.53<br>2.00<br>0.00 | 0.00         | 4.40<br>0.03<br>4.98     | 0.16                     | 0.15<br>0.07 | 0.00<br>8.02       | 8.02<br>0.00         | 0.00<br>97.88                  | 2.73<br>7.02<br>1.49         | 33.89<br>0.13                   | 0.37<br>0.00<br>1.26  | 49.80<br>1.20        | arfvedsonite                   | <119B_C1_0013 TI | 13TK119B | CaNaS       |                   |
| 2.00<br>15.83 | 0.56<br>0.27<br>22.00<br>2.00                 | 0.81<br>1.14<br>2.00<br>0.00 | 0.05         | 4.37<br>5.00             | 0.09                     | 0.23<br>0.00 | 0.00<br>8.00       | 7.75<br>0.24<br>0.01 | 0.00<br>98.05                  | 4.68<br>5.46<br>1.31         | 33.13<br>0.84                   | 1.26<br>0.00<br>1.18  | 48.17<br>2.03        | ferro-ferri-<br>katophorite e  | <119B_C1_0016 T  | 13TK119B | CaNaS       |                   |
| 2.00<br>15.99 | 0.62<br>0.41<br>1.03<br>22.00<br>2.00         | 0.07<br>1.93<br>2.00<br>0.00 | 0.00         | 4.17<br>4.78             | 0.00                     | 0.02         | 0.00<br>8.18       | 8.18<br>0.00         | 0.00<br>97.04                  | 0.40<br>8.19<br>1.99         | 31.00<br>0.13                   | 0.11<br>0.01<br>1.84  | 50.85<br>2.52        | Ti-rich ferro-<br>ckermannite  | K119B_C1_0019 T. | 13TK119B | CaNaS       |                   |
| 2.00<br>15.91 | 0.61<br>0.33<br>22.00<br>2.00                 | 0.71<br>1.29<br>2.00<br>0.00 | 0.00         | 4.42<br>0.12<br>4.98     | 0.00                     | 0.16         | 0.00<br>8.00       | 7.97<br>0.03         | 0.00<br>97.48                  | 4.09<br>6.05<br>1.58         | 32.69<br>0.51                   | 0.73<br>0.01<br>1.21  | 49.28<br>1.32        | rro-richterite                 | K119B_C1_0021    | 13TK119B | CaNaS       |                   |
| 2.00<br>15.84 | 0.63<br>0.29<br>22.00<br>2.00                 | 0.98<br>1.02<br>2.00<br>0.00 | 0.00         | 4.25<br>4.91             | 0.00                     | 0.31<br>0.00 | 0.00<br>8.00       | 7.54<br>0.35<br>0.11 | 0.00<br>97.73                  | 5.67<br>5.27<br>1.43         | 31.50<br>0.90                   | 1.83<br>0.00<br>0.93  | 46.70<br>3.50        | Ti-rich ferro-<br>katophorite  | TK119B_C1_005    | 13TK119B | CaNaS       |                   |

| Cl<br>W subtotal<br>Sum T,C,B,A | Na<br>K<br>A subtotal<br>O (non-W)<br>OH | Ca<br>Na<br>B subtotal<br>Ca | C subtotal<br>Mn2+<br>Fe2+ | Zn<br>Mn2+<br>Fe2+<br>Mg | Fe3+ |              | Fe3+<br>T subtot al | I A I        | CI<br>O=F,CI (calc)<br>Initial Total | BeO<br>CaO<br>Na2O<br>K2O<br>F | AI203<br>Cr203<br>Fe0<br>Ni0  | SiO2<br>TiO2  | Species                      | Sample<br>Analysis (wt%)             | GROUP Petro |
|---------------------------------|------------------------------------------|------------------------------|----------------------------|--------------------------|------|--------------|---------------------|--------------|--------------------------------------|--------------------------------|-------------------------------|---------------|------------------------------|--------------------------------------|-------------|
| 2.00<br>15.93                   | 0.69<br>0.29<br>0.98<br>22.00<br>2.00    | 0.95<br>2.00<br>0.00         | 0.00                       | 0.15<br>4.18<br>0.40     | 0.00 | 0.23<br>0.00 | 8.00                | 1.62<br>0.29 | 0.00<br>97.81                        | 1.65<br>5.50<br>1.42           | 1.51<br>0.00<br>1.10<br>31.07 | 47.35<br>2.63 | Ti-rich ferro-<br>richterite | <b>13TK119B</b><br>TK119B_C1_006 1   | CaNaS       |
| 2.00<br>15.87                   | 0.60<br>0.28<br>0.87<br>22.00<br>2.00    | 1. <i>17</i><br>0.18<br>2.00 | 0.05                       | 0.04<br>3.53             | 0.09 | 0.26<br>0.00 | 0.00<br>8.00        | 6.6/<br>1.32 | 0.00<br>97.16                        | 4.49<br>10.31<br>1.36          | 6.98<br>0.00<br>0.65<br>27.03 | 41.57<br>2.29 | hastingsite                  | <b>13TK120B</b><br>[K120B_C1_0010 TK | CaNaS       |
| 2.00<br>15.89                   | 0.59<br>0.89<br>22.00<br>2.00            | 1.83<br>0.14<br>2.00         | 0.04                       | 0.04<br>3.67             | 0.06 | 0.24<br>0.06 | 0.00<br>8.00        | 6.64<br>1.36 | 0.00<br>97.37                        | 3.87<br>10.61<br>2.33<br>1.46  | 7.47<br>0.00<br>0.59<br>27.73 | 41.33<br>1.98 | hastingsite                  | <b>13TK120B</b><br>(120B_C1_0012 1   | CaNaS       |
| 2.00<br>15.85                   | 0.57<br>0.28<br>0.85<br>22.00<br>2.00    | 1./7<br>0.18<br>2.00         | 0.05                       | 0.03<br>3.59             | 0.10 | 0.23         | 0.00<br>8.00        | 6.69<br>1.31 | 0.00<br>97.69                        | 4.04<br>10.35<br>2.41<br>1.37  | 7.48<br>0.01<br>0.63<br>27.61 | 41.91<br>1.89 | hastingsite                  | <b>13TK120B</b><br>IK120B_C1_002 T   | CaNaS       |
| 2.00<br>15.87                   | 0.62<br>0.25<br>0.87<br>22.00<br>2.00    | 1.78<br>0.16<br>2.00         | 0.06                       | 0.02<br>3.66             | 0.10 | 0.26<br>0.04 | 0.00<br>8.00        | 6.63<br>1.37 | 0.00<br>97.58                        | 3.88<br>10.39<br>2.49<br>1.24  | 7.46<br>0.00<br>0.57<br>28.03 | 41.35<br>2.18 | hastingsite                  | 13TK120B<br>1K120B_C1_008 TH         | CaNaS       |
| 2.00<br>15.91                   | 0.64<br>0.27<br>0.91<br>22.00<br>2.00    | 0.50<br>1.42<br>2.00         | 0.08                       | 0.03<br>2.32<br>2.13     | 0.31 | 0.11<br>0.11 | 0.00<br>8.00        | 7.89<br>0.11 | 0.00<br>96.90                        | 9.44<br>3.08<br>7.04<br>1.38   | 1.23<br>0.00<br>0.83<br>20.80 | 52.19<br>0.92 | ferro-ferri-<br>katophorite  | 13TK126B<br>(126B_C1_0013            | CaNaS       |
| 2.00<br>15.86                   | 0.59<br>0.27<br>0.86<br>22.00<br>2.00    | 1.56<br>0.44<br>2.00         | 0.01                       | 0.08<br>2.81<br>1.91     | 0.01 | 0.17<br>0.03 | 0.00<br>8.00        | 0.80         | 0.00<br>96.78                        | 8.23<br>9.32<br>1.38           | 4.51<br>0.00<br>0.61<br>21.64 | 46.28<br>1.42 | ferro-edenite fe             | 13TK23<br>TK23_C1_0014               | CaNaS       |
| 2.00<br>15.82                   | 0.55<br>0.27<br>0.82<br>22.00<br>2.00    | 0.86<br>1.10<br>2.00         | 0.04<br>0.00               | 0.09<br>3.77<br>0.86     | 0.07 | 0.19         | 0.00<br>8.00        | 7.82<br>0.18 | 0.00<br>96.81                        | 3.63<br>5.03<br>1.32           | 1.03<br>0.01<br>0.98<br>28.82 | 49.08<br>1.56 | rro-richterite fe            | 13TK23<br>TK23_C1_002                | CaNaS       |
| 2.00<br>15.77                   | 0.53<br>0.24<br>0.77<br>22.00<br>2.00    | 1.22<br>0.71<br>2.00         | 0.07<br>0.00               | 0.06<br>3.12<br>1.59     | 0.13 | 0.11         | 0.00<br>8.00        | 0.39         | 0.00<br>97.24                        | 6.84<br>7.28<br>4.11<br>1.18   | 2.13<br>0.01<br>0.96<br>24.89 | 48.29<br>1.54 | rro-richterite               | <b>13TK23</b><br>TK23_C1_007         | CaNaS       |
| 0.00<br>15.64                   | 0.39<br>0.24<br>22.00<br>1.51            | 1.23<br>0.69<br>2.00         | 0.09                       | 0.06<br>3.10             | 0.15 | 0.16         | 0.00<br>8.00        | 7.51<br>0.49 | 0.02<br>-0.42<br>96.82               | 6.18<br>7.29<br>1.21<br>0.98   | 3.06<br>0.03<br>1.13<br>24.74 | 47.74<br>1.33 | ferro-ferri-<br>katophorite  | <b>13TK61</b><br>TK-61-C1-04         | CaNaS       |
| 2.00<br>15.90                   | 0.62<br>0.27<br>0.90<br>22.00<br>2.00    | 1.22<br>0.72<br>2.00         | 0.05                       | 0.10<br>3.00             | 0.09 | 0.19         | 0.00<br>8.00        | 7.35<br>0.65 | 0.00<br>97.02                        | 6.94<br>7.31<br>4.45<br>1.36   | 3.55<br>0.02<br>1.13<br>23.62 | 47.02<br>1.61 | rro-richterite               | <b>13TK61</b><br>TK-61-C1-05         | CaNaS       |
| 2.00<br>15.81                   | 0.50<br>0.31<br>22.00<br>2.00            | 0.81<br>1.08<br>2.00<br>0.00 | 0.11<br>0.00               | 0.05                     | 0.20 | 0.15<br>0.08 | 0.00<br>8.00        | 0.30         | 0.00<br>96.22                        | 3.56<br>4.70<br>1.53           | 2.04<br>0.00<br>1.19<br>28.91 | 48.01<br>1.20 | ferro-ferri-<br>katophorite  | <b>13TK61</b><br>TK-61-C1-07         | CaNaS       |
| 2.00<br>15.90                   | 0.58<br>0.32<br>22.00<br>2.00            | 0.86<br>1.04<br>2.00         | 0.10<br>0.00               | 0.05<br>3.71<br>0.87     | 0.00 | 0.18         | 0.00<br>8.00        | 7.59<br>0.41 | 0.00<br>97.53                        | 3.66<br>5.07<br>1.58           | 2.34<br>0.01<br>1.09<br>29.21 | 47.83<br>1.47 | ferro-ferri-<br>katophorite  | <b>13TK61</b><br>TK-61-C1-08         | CaNaS       |
| 2.00<br>15.72                   | 0.53<br>0.20<br>0.72<br>22.00<br>2.00    | 1.43<br>0.48<br>2.00         | 0.00                       | 0.01<br>3.02             | 0.15 | 0.14         | 0.00<br>8.00        | 0.66         | 0.00<br>96.28                        | 7.21<br>8.51<br>3.30<br>0.99   | 3.58<br>0.01<br>0.70<br>24.06 | 46.42<br>1.49 | ferro-edenite                | <b>13TK67</b><br>TK-67-C1-003        | CaNaS       |
| 2.00<br>15.36                   | 0.19<br>0.17<br>0.36<br>22.00<br>2.00    | 1.03<br>0.81<br>2.00         | 0.13<br>0.03               | 3.17                     | 0.56 | 0.07<br>0.00 | 0.00<br>8.00        | 0.25         | 0.00<br>97.59                        | 5.20<br>6.20<br>0.88           | 1.36<br>0.00<br>1.00<br>28.98 | 49.61<br>1.05 | ferro-ferri-<br>winchite     | <b>13TK67</b><br>TK-67-C1-004        | CaNaS       |
| 2.00<br>15.75                   | 0.52<br>0.22<br>0.75<br>22.00<br>2.00    | 1.41<br>0.48<br>2.00         | 0.11<br>0.01               | 3.00                     | 0.20 | 0.10         | 0.00<br>8.00        | 0.67         | 0.00<br>96.31                        | 7.24<br>8.34<br>3.29           | 3.60<br>0.01<br>0.79<br>24.36 | 46.17<br>1.42 | ferro-edenite fe             | <b>13TK67</b><br>TK-67-C1-005        | CaNaS       |
| 2.00<br>15.15                   | 0.10<br>0.06<br>0.15<br>22.00<br>2.00    | 1.53<br>0.32<br>2.00         | 0.15<br>0.00               | 0.05<br>4.35<br>0.26     | 0.29 | 0.01<br>0.05 | 0.00<br>8.00        | 7.81<br>0.19 | 0.00<br>96.91                        | 1.07<br>8.85<br>1.33<br>0.27   | 1.24<br>0.00<br>1.42<br>34.33 | 48.34<br>0.07 | rro-actinolite fe            | <b>13TK67</b><br>TK-67-C1-006        | CaNaS       |
| 2.00<br>15.54                   | 0.35<br>0.18<br>0.54<br>22.00<br>2.00    | 1.42<br>0.52<br>2.00         | 0.06<br>0.00               | 0.07<br>2.75<br>1.88     | 0.10 | 0.14<br>0.06 | 0.00<br>8.00        | 7.55<br>0.45 | 0.00<br>96.39                        | 8.15<br>8.56<br>0.93           | 2.80<br>0.00<br>1.00<br>22.03 | 48.82<br>1.18 | rro-richterite f             | <b>13TK69</b><br>TK69_C1_0011        | CaNaS       |
| 2.00<br>15.53                   | 0.35<br>0.18<br>0.53<br>22.00<br>2.00    | 1.48<br>0.46<br>0.00         | 0.06<br>0.06               | 0.07<br>2.93<br>1.73     | 0.10 | 0.12<br>0.06 | 0.00<br>8.00        | 7.54<br>0.46 | 0.00<br>97.33                        | 7.52<br>8.96<br>2.71<br>0.92   | 2.85<br>0.00<br>23.48         | 48.93<br>1.01 | <sup>;</sup> erro-edenite    | <b>13TK69</b><br>TK69_C1_004         | CaNaS       |

| F<br>CI<br>W subtotal<br>Sum T,C,B,A | Ca<br>Na<br>K<br>A subtotal<br>O (non-W)<br>OH | Mn2+<br>Fe2+<br>Ca<br>Na<br>B subtota | Ni<br>Zn<br>Mn2+<br>Fe2+<br>Mg<br>C subtotal | AI<br>Cr<br>Fe3+     | Ti<br>Fe3+<br>T subtotal | Si<br>Al     | F<br>Cl<br>O=F,Cl (calc)<br>Initial Total | MgO<br>CaO<br>Na2O<br>K2O     | AI203<br>Gr203<br>Fe0<br>Zn0<br>Zn0           | SiO2<br>TiO2  | Species                       | Sample<br>Analysis (wt%)       | GROUP Petro |
|--------------------------------------|------------------------------------------------|---------------------------------------|----------------------------------------------|----------------------|--------------------------|--------------|-------------------------------------------|-------------------------------|-----------------------------------------------|---------------|-------------------------------|--------------------------------|-------------|
| 2.00<br>15.49                        | 0.01<br>0.66<br>0.14<br>0.81<br>22.00<br>2.00  | 0.00<br>2.00<br>2.00                  | 0.13<br>2.58<br>1.89<br>4.68                 | 0.00                 | 0.01<br>8.00             | 7.68<br>0.31 | 0.00<br>97.97                             | 8.35<br>12.34<br>2.24<br>0.71 | 1.75<br>0.00<br>1.04<br>20.34                 | 50.53<br>0.67 | ferro-edenite                 | <b>13TK69</b><br>TK69_C1_006   | CaNaS       |
| 2.00<br>15.53                        | 1.23<br>0.64<br>1.87<br>22.00<br>2.00          | 0.00<br>2.00<br>2.00                  | 0.16<br>2.60<br>1.08<br>3.84                 | 0.00                 | 0.00<br>7.82             | 7.77<br>0.05 | 0.00<br>99.49                             | 4.74<br>19.76<br>2.16<br>0.00 | 0.25<br>0.00<br>1.25<br>20.40                 | 50.93<br>0.00 | ferro-edenite                 | <b>13TK69</b><br>TK69_C1_007   | CaNaS       |
| 2.00<br>15.66                        | 0.68<br>1.16<br>1.85<br>22.00<br>2.00          | 0.00<br>2.00<br>2.00                  | 0.11<br>2.75<br>1.01<br>3.87                 | 0.00                 | 0.01<br>0.00<br>7.95     | 7.89<br>0.05 | 0.00<br>98.84                             | 4.42<br>16.34<br>3.90<br>0.02 | 0.29<br>0.00<br>0.86<br>21.43                 | 51.51<br>0.06 | ferro-edenite fe              | <b>13TK69</b><br>TK69_C1_009   | CaNaS       |
| 2.00<br>15.82                        | 0.00<br>0.25<br>0.83<br>22.00<br>2.00          | 0.12<br>0.00<br>1.07<br>2.00          | 0.13<br>3.20<br>1.33<br>5.00                 | 0.03<br>0.21         | 0.00<br>8.00             | 7.78<br>0.22 | 0.00<br>97.17                             | 5.70<br>4.82<br>5.43<br>1.26  | 1.33<br>0.01<br>1.84<br>26.03                 | 49.76<br>0.99 | srro-richterite fe            | 13TK007C<br>TK-7C-C1-011       | CaNaS       |
| 2.00<br>15.76                        | 0.00<br>0.51<br>0.76<br>22.00<br>2.00          | 0.10<br>0.00<br>1.03<br>2.00          | 0.15<br>2.86<br>1.66<br>5.00                 | 0.05                 | 0.00<br>8.00             | 7.82<br>0.18 | 0.00<br>96.85                             | 7.18<br>5.30<br>5.12<br>1.23  | 1.23<br>0.00<br>1.86<br>23.41                 | 50.51<br>1.01 | rro-richterite fe             | <b>13TK007C</b><br>TK-7C-C1-08 | CaNaS       |
| 2.00<br>15.81                        | 0.00<br>0.57<br>0.24<br>0.81<br>22.00<br>2.00  | 0.11<br>0.00<br>1.02<br>2.00          | 0.03<br>3.33<br>1.27<br>5.00                 | 0.04<br>0.19         | 0.00<br>8.00             | 7.71<br>0.29 | 0.00<br>97.50                             | 5.46<br>5.22<br>1.22          | 1.80<br>0.01<br>1.06<br>27.01                 | 49.40<br>1.08 | rro-richterite                | <b>13TK82</b><br>TK-82-C1-013  | CaNaS       |
| 2.00<br>15.68                        | 0.00<br>0.41<br>0.26<br>0.68<br>22.00<br>2.00  | 0.07<br>0.84<br>1.09<br>2.00          | 0.04<br>3.17<br>1.43<br>5.00                 | 0.04<br>0.12         | 0.00<br>8.00             | 7.87<br>0.13 | 0.00<br>95.84                             | 6.11<br>4.99<br>1.31          | 0.91<br>0.01<br>25.05                         | 50.08<br>1.62 | ferro-ferri-<br>katophorite   | <b>13TK82</b><br>TK-82-C1-016  | CaNaS       |
| 2.00<br>15.86                        | 0.00<br>0.62<br>0.85<br>22.00<br>2.00          | 0.09<br>1.03<br>0.83<br>2.00          | 2.25<br>2.43<br>5.00                         | 0.06                 | 0.00<br>8.00             | 7.63<br>0.38 | 0.00<br>96.76                             | 10.72<br>6.30<br>4.93<br>1.20 | 2.40<br>0.00<br>0.67<br>20.14                 | 50.22<br>0.17 | richterite fer                | <b>13TK82</b><br>TK-82-C1-02   | CaNaS       |
| 2.00<br>15.87                        | 0.00<br>0.61<br>0.27<br>22.00<br>2.00          | 0.05<br>0.00<br>1.12<br>0.83<br>2.00  | 0.05<br>3.37<br>1.33<br>5.00                 | 0.00                 | 0.09<br>8.00             | 7.47<br>0.44 | 0.00<br>96.81                             | 5.65<br>6.63<br>4.68<br>1.33  | 2.38<br>0.01<br>0.72<br>26.12                 | 47.20<br>2.09 | rro-richterite                | <b>13TK82</b><br>TK-82-C1-021  | CaNaS       |
| 2.00<br>15.30                        | 0.00<br>0.20<br>0.30<br>22.00<br>2.00          | 0.00<br>0.18<br>1.83<br>2.00          | 0.15<br>1.10<br>2.02<br>5.00                 | 0.00<br>1.73         | 0.04<br>0.12<br>8.00     | 7.75<br>0.08 | 0.00<br>95.75                             | 9.12<br>1.10<br>7.02<br>0.55  | 0.47<br>0.00<br>1.23<br>23.72                 | 52.17<br>0.38 | magnesio-<br>riebeckite       | <b>13TK82</b><br>TK-82-C1-027  | CaNaS       |
| 2.00<br>15.30                        | 0.00<br>0.14<br>0.30<br>22.00<br>2.00          | 0.00<br>0.28<br>1.72<br>2.00          | 0.16<br>1.25<br>2.01<br>5.00                 | 0.00<br>1.58         | 0.04<br>0.04<br>8.00     | 7.80<br>0.12 | 0.00<br>96.17                             | 9.08<br>1.75<br>6.46<br>0.86  | 0.67<br>0.00<br>1.29<br>23.09                 | 52.59<br>0.39 | magnesio-<br>riebeckite       | 13TK82<br>TK-82-C1-028         | CaNaS       |
| 2.00<br>15.88                        | 0.00<br>0.64<br>0.24<br>22.00<br>2.00          | 0.09<br>0.93<br>2.00                  | 2.26<br>2.40<br>5.00                         | 0.05<br>0.00<br>0.27 | 0.00<br>8.00             | 7.67<br>0.33 | 0.00<br>97.22                             | 10.63<br>5.75<br>5.32<br>1.25 | 2.14<br>0.02<br>0.67<br>20.53                 | 50.70<br>0.23 | richterite                    | 13TK82<br>TK-82-C1-05          | CaNaS       |
| 2.00<br>15.81                        | 0.00<br>0.55<br>0.81<br>22.00<br>2.00          | 0.03<br>0.00<br>1.16<br>2.00          | 0.15<br>3.20<br>1.33<br>5.00                 | 0.00                 | 0.00<br>8.00             | 7.78<br>0.22 | 0.00<br>98.02                             | 5.78<br>4.85<br>5.71<br>1.32  | 1.21<br>0.00<br>1.38<br>25.23                 | 50.33<br>2.21 | ferro-ferri-<br>katophorite   | <b>13TK86</b><br>TK86_C1_0010  | CaNaS       |
| 2.00<br>15.92                        | 0.00<br>0.68<br>0.26<br>0.94<br>22.00<br>2.00  | 0.00<br>0.79<br>1.22<br>2.00          | 0.18<br>3.36<br>1.17<br>4.98                 | 0.00                 | 0.02<br>8.00             | 7.75<br>0.23 | 0.00<br>98.24                             | 5.07<br>4.72<br>6.28<br>1.32  | 1.26<br>0.00<br>1.38<br>25.83                 | 49.86<br>2.52 | ferro-<br>katophorite         | <b>13TK86</b><br>TK86_C1_007   | CaNaS       |
| 2.00<br>15.49                        | 0.00<br>0.15<br>0.64<br>22.00<br>2.00          | 0.00<br>0.06<br>1.94<br>2.00          | 0.31<br>2.05<br>1.02<br>4.76                 | 0.03<br>1.32         | 0.00<br>8.09             | 8.09<br>0.00 | 0.00<br>95.61                             | 4.42<br>0.36<br>2.50          | 0.18<br>0.00<br>2.37<br>26.11                 | 52.42<br>0.27 | potassic-<br>arfvedsonite     | <b>13TK86</b><br>TK86_C1_008   | CaNaS       |
| 1.47<br>0.01<br>2.00<br>16.18        | 0.00<br>0.90<br>1.29<br>22.00<br>0.53          | 0.00<br>1.98<br>2.00                  | 0.00<br>0.01<br>0.20<br>4.21<br>0.00<br>4.67 | 0.03<br>0.01<br>0.00 | 0.00                     | 8.23<br>0.00 | 2.88<br>0.02<br>-1.22<br>98.71            | 0.00<br>0.14<br>9.21<br>1.87  | 0.15<br>0.06<br>1.49<br>3124<br>0.01<br>0.12  | 51.08<br>1.64 | ferro-fluoro-<br>eckermannite | TC09-108<br>TC09-108-zB-016    | NaS         |
| 1.30<br>0.01<br>2.00<br>16.00        | 0.00<br>0.88<br>1.12<br>22.00<br>0.69          | 0.00<br>0.10<br>1.90<br>2.00          | 0.00<br>0.02<br>0.14<br>3.93<br>0.00<br>4.79 | 0.11<br>0.46         | 0.00<br>8.09             | 8.09<br>0.00 | 2.59<br>0.04<br>-1.10<br>99.34            | 0.00<br>0.57<br>9.06          | 0.61<br>0.01<br>1.03<br>33.05<br>0.01<br>0.14 | 51.03<br>1.13 | fluoro-<br>arfvedsonite       | TC09-108<br>TC09-108-zB-017    | NaS         |
| 0.01<br>2.00<br>16.44                | 0.00<br>2.12<br>2.12<br>2.12<br>22.00<br>1.99  | 0.00<br>2.00<br>2.00                  | 0.00<br>0.00<br>3.66<br>0.00<br>3.93         | 0.00                 | 0.00<br>8.39             | 8.39<br>0.00 | 0.00<br>0.02<br>0.00<br>96.73             | 0.00<br>0.03<br>13.50<br>0.00 | 0.35<br>0.00<br>0.03<br>27.81<br>0.01<br>0.00 | 53.30<br>1.68 | ferro-<br>eckermannite        | TC09-108<br>TC09-108-zB-018    | NaS         |

| CII<br>W subtotal<br>Sum T,C,B,A | va<br>Na<br>A subtotal<br>O (non-W)<br>OH    | Mn2+<br>Fe2+<br>Ca<br>Na<br>B subtotal | nn<br>Zn<br>Mn2+<br>Fe2+<br>Mg<br>C subtotal | Al<br>Cr<br>Fe3+     | Ti<br>Fe3+<br>T subtotal<br>Ti | Si           | F<br>Cl<br>O=F,Cl (calc)<br>Initial Total | MgO<br>CaO<br>Na2O<br>K2O     | Al203<br>Gr203<br>Fe0<br>NiO<br>Zn0           | SiO2<br>TiO2  | Species                             | Sample<br>Analysis (wt%)               | GROUP Petro |
|----------------------------------|----------------------------------------------|----------------------------------------|----------------------------------------------|----------------------|--------------------------------|--------------|-------------------------------------------|-------------------------------|-----------------------------------------------|---------------|-------------------------------------|----------------------------------------|-------------|
| 2.00<br>16.59                    | 2.15<br>2.15<br>2.15<br>2.20<br>1.84         | 0.00<br>1.99<br>2.00                   | 0.02<br>3.91<br>4.11                         | 0.04<br>0.00<br>0.00 | 0.00<br>8.33<br>0.14           | 8.33<br>0.00 | 0.33<br>-0.14<br>97.80                    | 0.00<br>13.54<br>0.02         | 0.19<br>0.01<br>0.18<br>29.62<br>0.00<br>0.00 | 52.81<br>1.20 | ferro-<br>eckermannite              | TC09-108<br>TC09-108-zB-019            | Nas         |
| 0.00<br>2.00<br>16.47            | 2.22<br>2.22<br>2.22<br>2.22<br>2.00<br>2.00 | 0.00<br>2.00<br>2.00                   | 0.00<br>3.58<br>3.99                         | 0.05                 | 0.00<br>8.26<br>0.36           | 8.26<br>0.00 | 0.00<br>98.63                             | 0.00<br>0.02<br>0.00          | 0.27<br>0.05<br>0.02<br>27.68<br>0.01<br>0.00 | 53.44<br>3.09 | Ti-rich ferro-<br>eckermannite      | TC09-108<br>TC09-108-zC-021            | NaS         |
| 2.00<br>16.59                    | 2.19<br>2.19<br>2.19<br>22.00<br>2.00        | 0.00<br>2.00<br>2.00                   | 0.02<br>0.02<br>0.02<br>3.79<br>0.02<br>4.11 | 0.00                 | 0.00<br>8.29<br>0.20           | 8.29<br>0.00 | 0.00<br>98.93                             | 0.09<br>0.03<br>13.90<br>0.00 | 0.23<br>0.00<br>0.17<br>29.17<br>0.12<br>0.18 | 53.33<br>1.71 | ferro-<br>eckermannite              | TC09-108<br>TC09-108-zC-024 1          | NaS         |
| 0.01<br>2.00<br>16.00            | 0.76<br>0.76<br>1.00<br>22.00<br>0.79        | 0.00<br>0.10<br>1.90<br>2.00           | 0.03<br>0.16<br>4.04<br>0.00<br>4.97         | 0.10<br>0.01<br>0.55 | 0.00<br>8.03<br>0.09           | 8.03<br>0.00 | 2.37<br>0.02<br>98.78                     | 0.00<br>0.57<br>1.14          | 0.50<br>0.04<br>1.15<br>34.24<br>0.00<br>0.27 | 50.13<br>0.77 | fluoro-<br>arfvedsonite             | TC09-108                               | Nas         |
| 1.42<br>0.01<br>2.00<br>16.00    | 0.82<br>0.82<br>1.13<br>22.00<br>0.57        | 0.00<br>0.02<br>1.98<br>2.00           | 0.04<br>0.15<br>3.84<br>4.77                 | 0.05<br>0.51         | 0.00<br>8.10<br>0.17           | 8.10<br>0.00 | 2.81<br>0.04<br>-1.19<br>98.96            | 0.00<br>9.04<br>1.54          | 0.25<br>0.02<br>1.11<br>32.56<br>0.11<br>0.31 | 50.80<br>1.44 | fluoro-<br>arfvedsonite ec          | TC09-108<br>209-108-zD-037 TC          | NaS         |
| 2.00<br>16.66                    | 2.16<br>2.16<br>2.16<br>22.00<br>1.98        | 0.00<br>2.00<br>2.00                   | 0.00<br>4.02<br>0.00<br>4.17                 | 0.11                 | 0.00<br>8.33<br>0.04           | 8.33<br>0.00 | 0.05<br>-0.02<br>97.83                    | 0.00<br>0.03<br>13.57<br>0.01 | 0.61<br>0.00<br>0.00<br>30.47<br>0.00<br>0.01 | 52.78<br>0.31 | ferro-<br>kermannite                | TC09-108<br>09-108-zD-038 TC0          | NaS         |
| 0.00<br>2.00<br>15.85            | 0.43<br>0.42<br>0.85<br>1.37                 | 0.00<br>2.00<br>2.00                   | 0.01<br>3.66<br>4.96                         | 0.96                 | 0.00<br>8.04<br>0.02           | 8.04<br>0.00 | 1.27<br>0.01<br>-0.54<br>99.13            | 0.45<br>0.00<br>7.98<br>2.07  | 0.42<br>0.00<br>0.96<br>35.14<br>0.09<br>0.00 | 51.11<br>0.17 | rfvedsonite a                       | TC09-108<br>39-108-zD-040 TCC          | NaS         |
| 0.01<br>2.00<br>16.00            | 0.90<br>0.90<br>1.07<br>1.03<br>1.03         | 0.00<br>0.43<br>1.57<br>2.00           | 0.02<br>0.19<br>4.05<br>4.93                 | 0.45                 | 0.00<br>8.00<br>0.13           | 7.86<br>0.14 | 1.88<br>0.04<br>-0.80<br>98.42            | 0.09<br>2.52<br>7.90<br>0.84  | 1.08<br>0.00<br>1.38<br>33.42<br>0.01<br>0.17 | 48.83<br>1.07 | rfvedsonite a                       | TC09-108<br>99-108-zD-042 TCC          | NaS         |
| 0.01<br>2.00<br>16.00            | 0.00<br>0.77<br>1.07<br>22.00<br>0.84        | 0.00<br>0.02<br>1.98<br>2.00           | 0.02<br>0.14<br>3.95<br>0.02<br>4.83         | 0.44                 | 0.00<br>8.10<br>0.18           | 8.10<br>0.00 | 2.30<br>-0.98<br>99.51                    | 0.07<br>0.14<br>1.50          | 0.27<br>0.00<br>1.04<br>33.14<br>0.13<br>0.27 | 51.11<br>1.54 | fluoro-<br>rfvedsonite eck          | TC09-108<br>19-108-zD-043 TC0          | NaS         |
| 0.01<br>2.00<br>16.59            | 2.23<br>2.23<br>2.23<br>2.23<br>1.99         | 0.00<br>2.00<br>2.00                   | 0.00<br>0.04<br>3.78<br>0.01<br>4.10         | 0.02                 | 0.00<br>8.26<br>0.25           | 8.26<br>0.00 | 0.00<br>-0.01<br>98.22                    | 0.03<br>0.00<br>13.94<br>0.00 | 0.13<br>0.00<br>0.30<br>28.86<br>0.00<br>0.03 | 52.78<br>2.14 | ferro-<br>«ermannite au             | TC09-108<br>99-108-zD-044 TC09         | NaS         |
| 0.00<br>2.00<br>16.00            | 0.70<br>0.30<br>1.00<br>22.00<br>1.30        | 0.00<br>0.32<br>1.68<br>2.00           | 0.01<br>0.04<br>0.20<br>3.92<br>0.39<br>4.97 | 0.16                 | 0.00<br>8.04<br>0.21           | 8.04<br>0.00 | 2:59<br>0.01<br>99:33                     | 1.64<br>1.86<br>7.74<br>1.48  | 0.26<br>0.00<br>1.49<br>30.66<br>0.10<br>0.30 | 50.58<br>1.71 | fluoro-<br>fvedsonite ar            | <b>TC09-126A</b><br>0.126A.zA.101 TC09 | NaS         |
| 0.87<br>0.01<br>2.00<br>15.94    | 0.65<br>0.29<br>0.94<br>1.09                 | 0.05<br>0.34<br>1.61                   | 0.04<br>0.25<br>5.00                         | 0.54                 | 0.00<br>8.00<br>0.15           | 7.79<br>0.21 | 1.79<br>0.05<br>99.78                     | 1.04<br>2.01<br>7.39<br>1.42  | 1.30<br>0.00<br>1.06<br>33.57<br>0.01<br>0.30 | 49.31<br>1.29 | fvedsonite ar                       | <b>TC09-126A</b><br>.126A.zA.138 TC09  | NaS         |
| 0.91<br>0.01<br>2.00<br>16.00    | 0.00<br>0.80<br>1.07<br>1.09                 | 0.00<br>0.33<br>1.67<br>2.00           | 0.01<br>0.19<br>3.62<br>0.42<br>4.93         | 0.00<br>0.53         | 0.06<br>0.00<br>0.16           | 7.83<br>0.11 | 1.82<br>0.02<br>-0.77<br>99.24            | 1.78<br>1.98<br>1.33          | 0.60<br>0.00<br>1.44<br>31.44<br>0.00<br>0.08 | 49.61<br>1.85 | fvedsonite ar                       | <b>TC09-126A</b><br>2.126AzA.149 TCC   | NaS         |
| 0.01<br>2.00<br>16.01            | 0.00<br>0.71<br>1.01<br>22.00<br>1.13        | 0.00<br>0.29<br>1.72<br>2.00           | 0.04<br>0.21<br>3.81<br>0.45<br>4.94         | 0.06<br>0.21         | 0.00<br>8.06<br>0.17           | 8.06<br>0.00 | 1.72<br>0.02<br>-0.73<br>98.11            | 1.89<br>1.67<br>7.84<br>1.46  | 0.30<br>0.00<br>1.57<br>30.15<br>0.00<br>0.29 | 50.51<br>1.41 | fvedsonite eck                      | TC09-126A<br>19.126AzA.94 TC-05        | NaS         |
| 2.00<br>15.66                    | 0.46<br>0.28<br>0.73<br>22.00<br>1.43        | 0.00<br>0.31<br>1.69<br>2.00           | 0.00<br>0.02<br>0.21<br>3.73<br>0.36<br>4.68 | 0.10                 | 0.00<br>8.25<br>0.26           | 8.25<br>0.00 | 1.16<br>0.00<br>-0.49<br>98.78            | 1.54<br>1.84<br>7.12<br>1.39  | 0.52<br>0.00<br>1.62<br>28.64<br>0.01<br>0.20 | 53.02<br>2.21 | ferro-<br>ermannite ar              | TC09-126A<br>3-126A-ZoneB TC-09<br>2   | NaS         |
| 0.01<br>2.00<br>16.00            | 0.00<br>0.71<br>1.00<br>22.00<br>0.92        | 0.00<br>0.31<br>1.69<br>2.00           | 0.00<br>0.20<br>3.76<br>0.42<br>5.00         | 0.43                 | 0.03<br>0.00<br>0.17           | 7.89<br>0.08 | 2.16<br>0.04<br>-0.92<br>100.06           | 1.78<br>1.85<br>7.85          | 0.45<br>0.00<br>1.49<br>31.84<br>0.01<br>0.18 | 50.13<br>1.72 | fluoro-<br>fvedsonite ar            | TC09-126A<br>3-126A-ZoneB TC-09<br>23  | NaS         |
| 0.00<br>2.00<br>16.00            | 0.00<br>0.73<br>1.02<br>22.00<br>0.97        | 0.00<br>0.33<br>1.67<br>2.00           | 0.00<br>0.03<br>3.61<br>0.48<br>4.98         | 0.00                 | 0.07<br>0.00<br>0.16           | 7.85<br>0.08 | 2.07<br>0.00<br>99.77                     | 2.03<br>1.93<br>7.89          | 0.44<br>0.00<br>1.72<br>31.02<br>0.02<br>0.29 | 49.87<br>1.91 | fluoro-<br>fvedsonite ar            | TC09-126A<br>)-126A-ZoneB TC-09<br>32  | NaS         |
| 0.01<br>2.00<br>15.97            | 0.90<br>0.66<br>0.97<br>22.00<br>0.95        | 0.03<br>0.30<br>1.67<br>2.00           | 0.00<br>0.22<br>0.40<br>5.00                 | 0.01                 | 0.00<br>8.00<br>0.24           | 7.95<br>0.05 | 2.06<br>0.03<br>98.59                     | 1.66<br>1.75<br>7.54<br>1.49  | 0.31<br>0.00<br>1.82<br>30.80<br>0.01<br>0.22 | 49.77<br>2.00 | fluoro-<br>fvedsonite <sup>ar</sup> | TC09-126A<br>}-126A-ZoneB TC-05<br>56  | NaS         |
| 0.04<br>2.00<br>15.94            | 0.00<br>0.30<br>0.94<br>1.36                 | 0.05<br>0.30<br>1.66<br>2.00           | 0.15<br>3.79<br>5.00                         | 0.00                 | 0.05<br>8.00<br>0.17           | 7.89<br>0.07 | 1.27<br>-0.54<br>99.05                    | 1.83<br>1.74<br>7.48          | 0.36<br>0.03<br>1.45<br>32.10<br>0.11<br>0.00 | 49.90<br>1.79 | fvedsonite                          | TC09-126A<br>}-126A-ZoneB<br>64        | NaS         |
| W subtotal<br>Sum T,C,B,A | CI.  | F<br>HU      | O (non-W) | A subtotal | K    | Ca   | B subtotal | Na   | Ca   | Fe2+ | C subtotal |      | Fe2+ | Mn2+ | Zn   | Ni<br>Ni | Cr Cr | AI   | ī    | T subtot al | Fe3+ | 1 2  |      | Initial Total | O=F,CI (calc) | CI   | F    | K20  | Na20 | CaO  | MaO  | Znu  | Nio  | FeO   | MnO  | Cr2O3 | AI2O3 | ZrO2  | SIO2          |   |                 | Species         | Analysis (WT%) | aldilipe            | Sample    | <b>GROUP</b> Petro | Annexe n°11 (si |
|---------------------------|------|--------------|-----------|------------|------|------|------------|------|------|------|------------|------|------|------|------|----------|-------|------|------|-------------|------|------|------|---------------|---------------|------|------|------|------|------|------|------|------|-------|------|-------|-------|-------|---------------|---|-----------------|-----------------|----------------|---------------------|-----------|--------------------|-----------------|
| 2.00<br>16.01             |      | 0.91<br>1.10 | 22.00     | 1.02       | 0.72 | 0.00 | 2.00       | 1.73 | 0.27 | 0.00 | 4.77       | 4 00 | 3.77 | 0.22 | 0.01 | 0.47     | 0 A7  | 0.00 | 0.15 | 8.00        | 0.00 | 0.03 | 0.05 | 98.46         | -0.91         | 0.00 | 2.16 | 1.42 | 7.90 | 1.57 | 1.56 | 0.10 | 0.00 | 31.67 | 1.60 | 0.00  | 0.25  | 2.07  | 49.04<br>2.00 |   | arfvedsonite    | fluoro-         | 65             | TC-09-126A-ZoneB- 1 | TC00-1264 | NaS                | uite)           |
| 2.00<br>16.00             | 0.00 | 0.91         | 22.00     | 1.00       | 0.28 | 0.00 | 2.00       | 1.68 | 0.32 | 0.00 | 0.00       | C.40 | 3.84 | 0.24 | 0.00 | 0.01     | 0.00  | 0.08 | 0.18 | 8.00        | 0.00 | 0.00 | 0.00 | 98.45         | -0.76         | 0.01 | 1.80 | 1.37 | 7.75 | 1.89 | 1.69 | 0.01 | 0.06 | 30.76 | 1.78 | 0.01  | 0.44  | 1.40  | 50.19         |   | 0.110.000011100 | arfvedsonite    | 72             | ГС-09-126А-ZoneB-T  | TC00-1940 | NaS                |                 |
| 2.00<br>15.79             | 0.00 | 0.83         | 22.00     | 0.79       | 0.27 | 0.00 | 2.00       | 1.69 | 0.31 | 0.00 | 4.07       | 0.38 | 3.82 | 0.19 | 0.03 | 0.01     | 0.00  | 0.07 | 0.23 | 8.11        | 0.00 | 0.00 | 0.00 | 98.67         | -0.99         | 0.01 | 2.34 | 1.35 | 7.20 | 1.81 | 1.63 | 0.27 | 0.07 | 30.07 | 1.38 | 0.02  | 0.38  | 1.72  | 51.20         | 1 | arfvedsonite    | fluoro-         | 73             | C-09-126A-ZoneB     | TCN0_1260 | NaS                |                 |
| 2.00<br>15.86             |      | 2.00         | 22.00     | 0.86       | 0.27 | 0.00 | 2.00       | 1.13 | 0.79 | 0.00 | 0.09       |      | 3.66 | 0.13 |      | 0.10     | 7 D   | 0.03 | 0.21 | 8.00        | 0.00 | 0.34 | 1.66 | 95.88         | 0.00          |      |      | 1.32 | 5.49 | 4.55 | 3.37 |      |      | 28.30 | 1.61 | 0.00  | 1.95  | 1.7.4 | 47.56         | 1 | katophorite     | ferro-ferri-    | IK-1038-C1-02  | 1317103             | 13TK103   | NaS                |                 |
| 2.00<br>15.62             |      | 1.46<br>0.54 | 22.00     | 0.62       | 0.40 | 0.00 | 2.00       | 1.60 | 0.40 | 0.00 | 0.00       | E 00 | 3.72 | 0.21 |      | 0.00     | 0.00  | 0.09 | 0.19 | 8.00        | 0.00 | 0.07 | 0.07 | 95.39         | -0.44         | 0.00 | 1.05 | 1.93 | 5.75 | 2.29 | 88.0 |      |      | 31.49 | 1.49 | 0.01  | 0.86  | 1.00  | 48.55         | 1 | arfvedsonite    | potassic-       | IK-108-C1-01   |                     | 1314108   | NaS                |                 |
| 2.00<br>15.80             | 0.01 | 0.63         | 22.00     | 0.80       | 0.31 | 0.00 | 2.00       | 1.18 | 0.76 | 0.00 | 0.06       | E 00 | 4.26 | 0.10 |      |          | 0 11  | 0.11 | 0.15 | 8.00        | 0.00 | 0.15 | 0.12 | 95.90         | -0.51         | 0.02 | 1.21 | 1.46 | 5.23 | 4.33 | 1.10 |      |      | 31.67 | 1.18 | 0.00  | 1.33  | 27.1  | 47.68         | 1 | katophorite     | ferro- fe       | TK-108-C1-04   |                     | 1311/108  | NaS                |                 |
| 2.00<br>15.87             | 0.00 | 0.90         | 22.00     | 0.87       | 0.32 | 0.00 | 2.00       | 1.28 | 0.58 | 0.00 | 0.14       | U./9 | 3.74 | 0.06 |      | 0.24     | 10.04 | 0.11 | 0.06 | 8.00        | 0.00 | 0.00 | 0.06 | 96.50         | -0.75         | 0.02 | 1.77 | 1.55 | 5.83 | 3.37 | 3.29 |      |      | 29.45 | 1.41 | 0.00  | 0.85  | 0.32  | 49.18         |   |                 | erro-richterite | TK-108-C1-05   |                     | 1318108   | NaS                |                 |

### Annexe n°12: Analyses géochimiques sur roche totale

Les analyses sur roches totales ont été réalisées au SARM (CRPG, Nancy) et par le perstataire ALS à Seville Ceci explique certaines variantes de notations ou l'absence de mesures en fonction des échantillons

| Zn    | Sc   | B       | Z a        | 5              | 5      | 8        | C Ag | Total  | <u>Б</u> | Ч ę   | SP<br>SP            | Нg    | ₿ 3                     | P<br>P         | Чb    | ≺ :                  | ξ <        | C     | 3 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 7   | 9     | 2 v            | Sn    | Sm    | 공 무            | Nd    | ŝ                         | . b   | 유     | ∓ g            | Ga    | Ē     | ц 2   | 2 8            | ç     | Ce<br>Ce       | s     | C BaO | SrO   | MnO<br>P2O5  | TiO2 | Cr203 | Na2O          | MgO  | CaO  | Fe2O3 | SiO2           |                             |       |
|-------|------|---------|------------|----------------|--------|----------|------|--------|----------|-------|---------------------|-------|-------------------------|----------------|-------|----------------------|------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|----------------|-------|-------|----------------|-------|---------------------------|-------|-------|----------------|-------|-------|-------|----------------|-------|----------------|-------|-------|-------|--------------|------|-------|---------------|------|------|-------|----------------|-----------------------------|-------|
| ppm   | ppm  | ppm     | mad        | ppm            | ppm    | ppm      | ppm  | %      | %        | nndd  | ppm                 | ppm   | ppm                     | ppm            | ppm   | ppm                  | ppm        | ppm   | maa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ppm   | ppm   | n ppm          | ppm   | ppm   | maa            | ppm   | ppm                       | ppm   | ppm   | ndd<br>bbw     | ppm   | ppm   | maa   | ppm            | ppm   | ppm            | %     | % %   | %     | % %          | %    | % 3   | % %           | %    | %    | % >   | % %            | Nature<br>SAMPLI            | Petro |
| 89    | σı   | 18      | <u>v</u> - | 10             | 26     | 22       | <0.5 | 98.01  | 0.73     | 0.01  | 0.35                | 0.127 | 0.19                    | 223            | 1.37  | 16.9                 | 4 5        | 0.8   | <u.5<br>0.21</u.5<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.9   | 0.64  | 34.5           | 2     | 5.95  | 8.88<br>78     | 34.5  | 37.5                      | 40.5  | 0.62  | 4.8            | 23.6  | 1.08  | 1.72  | 0.79           | 10    | 118<br>78.7    | 0.02  | 0.01  | 0.01  | 0.15         | 0.76 | <0.01 | 5.72<br>6.48  | 0.49 | 1.64 | 4.47  | 16.9           | Syenite<br>TC09-10B         | CaS   |
| 85    | 6    | 11      | <u> </u>   | 7 1            | 25     | 15       | <0.5 | 100.51 | 0.82     | 0.01  | 0.24                | 0.133 | 0.16                    | 273            | 1.66  | 19<br>19             | eo<br>20   | 0.8   | <u.5<br>0.23</u.5<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.39  | 0.75  | 103.5<br>2     | ω     | 7.33  | 11.05<br>76.7  | 43.2  | 0.∠<br>39.8               | 49.7  | 0.73  | 5.3            | 22.5  | 2.44  | 1.99  | 0.36           | 10    | 496<br>95.5    | 0.02  | 0.06  | 0.01  | 0.11<br>0.25 | 0.94 | <0.01 | 5.88<br>6 37  | 0.7  | 1.82 | 4.65  | 61.9<br>17     | Syenite<br>TC09-26          | CaS   |
| 00    | 5.87 | 7.446   | < L.D.     | 2 081          | 7.791  | 0.862    |      | 100.59 | 0.94     |       | < L.D.              |       | 0.383                   | 131.9<br>~ I D | 1.356 | 16.44                | < L.D.     | 0.808 | 0.208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.38  | 0.637 | 9.323          | 2.136 | 5.982 | 9.037<br>82.53 | 33.43 | 29.27                     | 40.4  | 0.655 | 4.537          | 24.43 | 1.503 | 1.561 | 0.606          | 12.53 | 23.71<br>78.91 |       |       |       | 0.12         | 0.64 |       | 5.92<br>6 7 6 | 0.49 | 1.40 | 4.56  | 62.27          | Syenite<br>13TK063          | CaS   |
| 88    | 8    | 14      | 5 2        | 13             | 16     | -        | <0.5 | 101.62 | 1.13     | 0.0   | 0.08                | 0.014 | 0.05                    | 233            | 1.22  | 14.4                 | ° 6        | 0.88  | <u.5<br>0.18</u.5<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.36  | 0.54  | 19             | 4     | 5.47  | 7.17<br>76.9   | 30.6  | 25.4                      | 32.3  | 0.56  | 5.22           | 20.5  | 1.46  | 1.31  | 0.93           | 20    | 27.9<br>62.6   | 0.02  | <0.01 | <0.01 | 0.12<br>0.24 | 0.96 | <0.01 | 5.42          | 0.71 | 1.68 | 4.54  | 62.3<br>17 65  | Syenite<br>TC09-99          | CaS   |
| 74.7  | 3.69 | 9.8285  | < L.D.     | 2 857          | 6.268  | 2.093    |      | 99.32  | 1.03     |       | < L.D.              |       | Ê                       | 524.8          | 2.982 | ≥.911<br>31.51       | 5.693      | 2.173 | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.34 | 1.005 | 122.6          | 5.197 | 8.143 | 12.75<br>131.5 | 44.64 | 0.443<br>51               | 58.98 | 1.193 | 6.374<br>10.84 | 28.85 | 1.948 | 3.131 | 0.509          | 20.48 | 513.6<br>117.8 |       |       |       | 0.08         | 0.56 |       | 5.80          | 0.45 | 1.30 | 3.54  | 62.73<br>17 39 | Syenite<br>13TK042          | CaS   |
| 124.1 | 8.07 | 11.0367 | < L.D.     | л 3 <u>6</u> 1 | 11.41  | 1.296    |      | 100.20 | 1.07     |       | < L.D.              |       | Ê                       | 478.4          | 2.785 | 30.49                | 0.863      | 3.07  | 0.424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.33 | 1.046 | 4.292          | 4.363 | 8.97  | 12.99<br>103.8 | 48.02 | 0.4 <i>2</i><br>62.24     | 51.42 | 1.164 | 6.91<br>9.935  | 27.74 | 0.309 | 3.006 | 0.947          | 18.32 | 5.709<br>111.6 |       |       |       | 0.17         | 0.65 | 0     | б.45<br>5 70  | 0.45 | 1.23 | 5.12  | 62.95<br>16.31 | Syenite<br>13TK031          | CaS   |
| 68.27 | 2.79 | 14.4604 | < L.D.     | 4 93           | < L.D. | 4.877    |      | 99.51  | 0.64     |       | < L.D.              |       | Ê                       | 671.4<br>< I D | 3.096 | 31.51                | 16.81      | 7.281 | 0.453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56.08 | 1.074 | 160.8<br>9.342 | 6.372 | 10.72 | 24.16<br>164.1 | 73.56 | 0.400<br>93.78            | 156.8 | 1.171 | 19.29          | 29.16 | 1.326 | 3.091 | 1.094<br>6 11  | 54.73 | 150.1<br>258.7 |       |       |       | 0.08         | 0.62 | -     | 5.63<br>6 1 4 | 0.66 | 1.37 | 4.19  | 62.96          | Syenite<br>13TK001A         | CaS   |
| 106   | 4    | 13      |            | 1 <10          | 16     | 22       | <0.5 | 100.04 | 0.83     | 0.01  | 0.1                 | 0.123 | 0.04                    | 4 656          | 2.28  | 23.6                 | 105        | 2.1   | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.4  | 0.83  | 3 1            | 2     | 7.04  | 10.9<br>99.8   | 39.8  | 50.3                      | 55.2  | 0.88  | 5.43<br>12.5   | 25.9  | 1.32  | 2.51  | 0.67           | 10    | 238<br>103     | 0.01  | 0.03  | 0.01  | 0.14         | 0.65 | <0.01 | 5.58<br>6.46  | 0.51 | 1.32 | 3.81  | 63.4<br>17 2   | Syenite<br>TC09-113         | CaS   |
| 80    | 2    | 21      | ω -        | 10             | 9      | 20       | <0.5 | 101.24 | 0.89     | <0.0  | 0.17                | 0.098 | 0.05                    | <sup>4</sup> 3 | 2.71  | 79<br>26.9           | 70<br>70   | 7.26  | <u.5< td=""><td>49.3</td><td>0.85</td><td>237</td><td>8</td><td>9.17</td><td>18.3</td><td>58.2</td><td>159</td><td>115</td><td>0.94</td><td>5.92<br/>21.6</td><td>27.6</td><td>1.46</td><td>2.71</td><td>2.01<br/>5 05</td><td>10</td><td>201<br/>193.5</td><td>0.01</td><td>0.02</td><td>0.03</td><td>0.16</td><td>0.67</td><td>&lt;0.01</td><td>б.25<br/>л оо</td><td>0.78</td><td>1.49</td><td>4.11</td><td>63.7<br/>17.05</td><td>Syenite<br/>TC09-82</td><td>CaS</td></u.5<>                    | 49.3  | 0.85  | 237            | 8     | 9.17  | 18.3           | 58.2  | 159                       | 115   | 0.94  | 5.92<br>21.6   | 27.6  | 1.46  | 2.71  | 2.01<br>5 05   | 10    | 201<br>193.5   | 0.01  | 0.02  | 0.03  | 0.16         | 0.67 | <0.01 | б.25<br>л оо  | 0.78 | 1.49 | 4.11  | 63.7<br>17.05  | Syenite<br>TC09-82          | CaS   |
| 89.95 | 5.6  | 6.5613  | < L.D.     | 2 804          | 5.826  | 0.51     |      | 100.25 | 0.68     |       | < L.D.              |       |                         | 526<br>< 1 D   | 2.561 | 29.58                | < L.D.     | 2.494 | 0.398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.67 | 1.041 | 2.57           | 3.573 | 9.229 | 15.76<br>119.1 | 54.6  | 92.33                     | 71.41 | 1.146 | 11.24          | 29.04 | 0.662 | 2.888 | 0.416<br>5 076 | 13.61 | 5.638<br>152.3 |       |       |       | 0.08         | 0.78 | 0     | 6.30<br>6.16  | 0.25 | 0.65 | 3.73  | 64.44<br>17 06 | Syenite<br>13TK118A         | CaS   |
| 80    | ω    | 14      |            | 1 ^10          | 24     | 7        | <0.5 | 101.25 | 0.72     | 0.01  | 0.17<br>0. <i>6</i> | 0.014 | 0.05                    | 935            | 2.47  | ء<br>24              | ° ∿        | 1.91  | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.3   | 0.78  | 91.7<br>3      | 4     | 6.87  | 10.85<br>125   | 39.2  | 0.3 <del>4</del><br>61.1  | 51.9  | 0.86  | 5.34<br>17.9   | 26.9  | 1.3   | 2.47  | 0.6            | 10    | 350<br>99.9    | 0.01  | 0.04  | 0.01  | 0.07         | 0.54 | <0.01 | 6.12<br>6.6   | 0.4  | 1.2  | 3.35  | 64.6<br>17 5   | Syenite<br>TC09-38          | CaS   |
| 129   | 5    | 17      | <u>^</u> - | 4 10           | 78     | 4        | <0.5 | 101.08 | 0.84     | 0.11  | 0.17                | 0.019 | 0.26                    | 1270           | 3.83  | ×<br>34.5            | ა <u>ა</u> | 3.03  | <u.5< td=""><td>16.05</td><td>1.11</td><td>27</td><td>6</td><td>9.56</td><td>16<br/>108.5</td><td>57.2</td><td>0.00<br/>82.4</td><td>74</td><td>1.32</td><td>7.78<br/>23.6</td><td>28.1</td><td>0.54</td><td>3.93</td><td>0.43<br/>6 77</td><td>20</td><td>54.9<br/>146.5</td><td>0.01</td><td>0.01</td><td>&lt;0.01</td><td>0.1</td><td>0.6</td><td>&lt;0.01</td><td>6 33<br/>6</td><td>0.34</td><td>1.05</td><td>4.87</td><td>65<br/>16 35</td><td>Syenite<br/>TC09-41</td><td>CaS</td></u.5<>     | 16.05 | 1.11  | 27             | 6     | 9.56  | 16<br>108.5    | 57.2  | 0.00<br>82.4              | 74    | 1.32  | 7.78<br>23.6   | 28.1  | 0.54  | 3.93  | 0.43<br>6 77   | 20    | 54.9<br>146.5  | 0.01  | 0.01  | <0.01 | 0.1          | 0.6  | <0.01 | 6 33<br>6     | 0.34 | 1.05 | 4.87  | 65<br>16 35    | Syenite<br>TC09-41          | CaS   |
| 96    | 4    | 17      | → 1        | ° 10           | 18     | 23       | <0.5 | 101.22 | 0.54     | 0.7   | 0.15                | 0.138 | 0.07                    | 1180           | 2.94  | 29.1                 | 105        | 1.75  | <u.5<br>0.43</u.5<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.4  | 1.03  | 18.5<br>4 1    | 7     | 10.05 | 17.65<br>132.5 | 64.5  | 0.5<br>75.1               | 88.9  | 1.12  | 20.5           | 29.7  | 0.55  | 3.14  | ⊑ 00           | 10    | 59<br>171      | <0.01 | 0.01  | <0.01 | 0.12         | 0.5  | <0.01 | 6.24          | 0.31 | 0.88 | 4.63  | 65.2<br>16.7   | Syenite<br>TC09-76B         | CaS   |
| 116   | 2    | 43      | N 1        | 2 <10          | 160    | 7        | <0.5 | 99.39  | 0.77     | 0.9   | 1.08                | 0.076 | 9.9<br>0.81             | 576<br>9 5     | 3.53  | ≤<br>33.2            | ° ∿        | 2.6   | <u.5< td=""><td>16.5</td><td>1.19</td><td>4 9<br/>4 9</td><td>6</td><td>10.7</td><td>19.65<br/>146.5</td><td>67.5</td><td>85.2</td><td>100</td><td>1.29</td><td>13.2</td><td>33.8</td><td>0.37</td><td>3.48</td><td>0.66</td><td>20</td><td>39.2<br/>196.5</td><td>0.06</td><td>&lt;0.01</td><td>&lt;0.01</td><td>0.08</td><td>0.38</td><td>&lt;0.01</td><td>5.74<br/>6 14</td><td>0.2</td><td>0.55</td><td>3.54</td><td>15 85</td><td>Syenite<br/>TC09-06</td><td>CaS</td></u.5<>                   | 16.5  | 1.19  | 4 9<br>4 9     | 6     | 10.7  | 19.65<br>146.5 | 67.5  | 85.2                      | 100   | 1.29  | 13.2           | 33.8  | 0.37  | 3.48  | 0.66           | 20    | 39.2<br>196.5  | 0.06  | <0.01 | <0.01 | 0.08         | 0.38 | <0.01 | 5.74<br>6 14  | 0.2  | 0.55 | 3.54  | 15 85          | Syenite<br>TC09-06          | CaS   |
| 61    | ω    | 1       | 2          | A 10           | , o    | 22       | <0.5 | 100.34 | 0.78     | 0.41  | 0.08                | 0.124 | 0. <del>4</del><br>1.76 | 957            | 5.02  | 47.4                 | 400        | 5.09  | <u.5< td=""><td>26.1</td><td>1.66</td><td>33.5<br/>7.9</td><td>9</td><td>14.65</td><td>26.5<br/>186.5</td><td>90.1</td><td>0.7<br/>138</td><td>134.5</td><td>1.8</td><td>21.9</td><td>32.2</td><td>0.64</td><td>5.26</td><td>0.63</td><td>&lt;10</td><td>102<br/>239</td><td>0.02</td><td>0.01</td><td>&lt;0.01</td><td>0.06</td><td>0.39</td><td>&lt;0.01</td><td>6.19<br/>6.19</td><td>0.27</td><td>0.54</td><td>3.02</td><td>16<br/>16<br/>4</td><td>Syenite<br/>TC09-110</td><td>CaS</td></u.5<> | 26.1  | 1.66  | 33.5<br>7.9    | 9     | 14.65 | 26.5<br>186.5  | 90.1  | 0.7<br>138                | 134.5 | 1.8   | 21.9           | 32.2  | 0.64  | 5.26  | 0.63           | <10   | 102<br>239     | 0.02  | 0.01  | <0.01 | 0.06         | 0.39 | <0.01 | 6.19<br>6.19  | 0.27 | 0.54 | 3.02  | 16<br>16<br>4  | Syenite<br>TC09-110         | CaS   |
| 115.9 | 2.55 | 9.8477  | < L.D.     | 4 631          | 21.7   | 0.78     |      | 100.50 | 0.95     |       | < L.D.              |       | Ê                       | 818.7<br>21 D  | 6.174 | 4.013<br>64.16       | 2.185      | 9.175 | 0.909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44.77 | 1.979 | 10.92          | 13.19 | 16.31 | 30.62<br>239.7 | 98.14 | 0.099<br>172.6            | 164.7 | 2.35  | 12.39          | 36.23 | 0.306 | 6.236 | 1.725          | 70.16 | 17.07<br>297.4 |       |       |       | 0.09         | 0.31 | 0.00  | 5.09<br>5.60  | 0.19 | 0.71 | 3.49  | 67.08<br>15 90 | Syenite<br>13TK045          | CaS   |
| 113   | 2    | 13      | N 0        | 3 10           | 34     | <u>^</u> | <0.5 | 99.62  | 0.81     | <0.01 | 0.29                | 0.018 | 0.16                    | 930<br>930     | 5.7   | 53                   | × ∿        | 9.12  | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41.5  | 1.68  | 11.3<br>10.6   | 11    | 14.4  | 27.4<br>208    | 90.1  | 172                       | 144.5 | 2.03  | 11.05<br>23.2  | 34.1  | 0.3   | 5.54  | 10.05          | 40    | 30.2<br>284    | 0.01  | <0.01 | <0.01 | 0.08         | 0.31 | 0.01  | л б<br>л      | 0.15 | 0.38 | 3.51  | 67.3<br>15.45  | Syenite<br>TC09-18          | CaS   |
| 104   | -    | 30      | <u>^</u> - | 1 10           | 76     | 30       | <0.5 | 98.53  | 0.71     | 0.01  | 0.73                | 0.217 | 0.52                    | 642<br>6 A     | 6.48  | 62.2                 | 1 A<br>50  | 9.65  | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37.5  | 1.94  | 10.4           | 7     | 14.9  | 27.4<br>183.5  | 94    | 150                       | 144.5 | 2.36  | 11.95<br>19.4  | 36.9  | 0.32  | 6.67  | 0.78           | 10    | 49.8<br>263    | 0.04  | <0.01 | <0.01 | 0.08         | 0.24 | <0.01 | 5.92<br>л.4   | 0.11 | 0.46 | 3.19  | 67.4<br>15     | Qz-monzon<br>TC09-13        | CaS   |
| 81    | ω    | 10      | <u>^</u> - | 1 <10          | 1      | 45       | <0.5 | 101.52 | 0.27     | 0.0   | 0.12                | 0.3   | 0.08                    | 756<br>0 8     | 4.63  | 45.7                 | >>c<br><5  | 5.23  | <0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28.8  | 1.45  | 73.9<br>6 2    | 7     | 12.85 | 20.7           | 72.7  | 101                       | 109.5 | 1.7   | 9.89           | 29.3  | 1.64  | 4.77  | 0.31           | 10    | 548<br>202     | 0.01  | 0.06  | 0.01  | 0.08         | 0.35 | <0.01 | 5.85<br>5.87  | 0.26 | 0.95 | 3.93  | 67.8<br>16.05  | ite Qz-monzoni<br>TC09-73   | CaS   |
| 88    | ω    | 19      | ω.         | 1 <10          | 15     | 33       | <0.5 | 101.96 | 0.61     | 0 01  | 0.12                | 0.188 | 0.07                    | 1070           | 6.01  | 53 10                | 1 J        | 6.11  | <0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32.7  | 1.76  | 16.7<br>7 7    | 7     | 18.55 | 38.4<br>157.5  | 131   | 0.or<br>119.5             | 207   | 2.01  | 13<br>24.4     | 35    | 0.39  | 5.74  | 10.65          | 10    | 39.3<br>402    | 0.01  | <0.01 | <0.01 | 0.09         | 0.36 | <0.01 | л 06<br>Л     | 0.22 | 0.5  | 4.18  | 68.2<br>15 95  | ite Qz-monzon.<br>TC09-76A  | CaS   |
| 90    | 2    | 12      | 2 0        | 3 °10          | 24     | <u> </u> | <0.5 | 101.66 | 0.8      | <0.01 | 4 0.11              | 0.017 | 0.05                    | 102            | 3.75  | <del>4</del><br>36.3 | 2 ~1       | 3.85  | <u.5<br>0.57</u.5<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24.6  | 1.07  | 6 g            | 7     | 10    | 18.45<br>174   | 63.6  | 0.9 <del>4</del><br>109.5 | 100.5 | 1.29  | 7.16<br>17.1   | 30.6  | 0.74  | 3.78  | 0.62           | 40    | 261<br>185     | 0.01  | 0.03  | 0.01  | 0.06         | 0.38 | <0.01 | 5.63          | 0.24 | 0.7  | 3.43  | 68.7<br>15.65  | ite Qz-monzonite<br>TC09-75 | CaS   |

# Annexe n°12: Analyses géochimiques sur roche totale (suite)

| Zn Sc Ni                                              | ⊑ 5 8 8 §                                                       | Te<br>LOI<br>Total     | S S H                            | A <sub>s</sub>  | Z 76 -                  | < < ·             | < c            | ∄⊐           | 73             | Ta ⊈  | ត់ ស        | Sm             | Į Į   | Ng Ng          | Ε     | 집 유            | ₹     | ନୁନ୍ଦୁ            | Ē     | μÂ             | Cs    | ត ខ្ល          | Ba         | s        | n Bao      | SrO    | MINU<br>P2O5 | TiO2 | Cr203 | Na2O | CaO<br>MgO   | Fe2O3 | Si02<br>Al203  |                                |
|-------------------------------------------------------|-----------------------------------------------------------------|------------------------|----------------------------------|-----------------|-------------------------|-------------------|----------------|--------------|----------------|-------|-------------|----------------|-------|----------------|-------|----------------|-------|-------------------|-------|----------------|-------|----------------|------------|----------|------------|--------|--------------|------|-------|------|--------------|-------|----------------|--------------------------------|
| 2 1<br>97                                             | <ol> <li>&lt;0.5</li> <li>37</li> <li>43</li> <li>20</li> </ol> | 0.01<br>0.71<br>101.3  | 0.239<br>0.21<br>1.3             | 2<br>0.2        | +o.+<br>5.84<br>733     | 176               | 8.27<br>18     | <0.5<br>0.87 | 1.33<br>48.5   | 12    | 18          | 252<br>9.43    | 16.65 | 207<br>56.2    | 0.75  | 1.8<br>83.9    | 20.8  | 33.4<br>8 14      | 0.34  | 5.33           | 1.2   | 194.5<br>10    | 90.2       | 0.01     | 0.01       | <0.01  | 0.07         | 0.46 | <0.01 | 5.6  | 0.54<br>0.4  | 3.56  | 69.5<br>14.95  | CaS<br>Qz-monzc<br>TC09-31     |
| 8 2 1 2 1 5<br>9 5 5 1 5                              | 10 4 1 0 0 0                                                    | 0.01<br>0.54<br>101.91 | 0.278<br>0.09<br>1.6             | 0.9<br>0.03     | 7.5<br>828              | 211               | 14.65<br><5    | <0.5         | 2.22<br>57.4   | 18.3  | 14<br>15 7  | 288<br>15.55   | 27    | 256<br>87.1    | 0.98  | 2.52<br>144    | 25    | 124               | 0.27  | 13<br>7.27     | -     | 282<br>10      | 30.5       | 0.01     | <0.01      | <0.01  | 0.08         | 0.23 | <0.01 | 5.41 | 0.54<br>0.14 | 3.2   | 71.6<br>14.75  | CaS<br>pnite Granite<br>TC09-3 |
| 1 2 5<br>50                                           | <10 < 10 < 10 < 10 < 10 < 10 < 10 < 10                          | 0.01<br>0.53<br>100.88 | 0.039<br>0.57<br>1.4             | 4.1<br>0.34     | 4.88<br>299             | 3 00 j            | 11.25<br><5    | <0.5<br>0.74 | 1.32<br>52.4   | 14.6  | 7<br>0<br>7 | 149<br>8.52    | 14.6  | 169.5<br>47.2  | 0.7   | 1.64<br>80.8   | 11.5  | 30.8<br>7 58      | 0.29  | 5 8.28         | 0.43  | 149.5<br>120   | 110        | 0.03     | 0.01       | 0.01   | 0.02         | 0.14 | 4.00  | 4.55 | 0.3<br>0.07  | 2.05  | 75.9<br>12.6   | CaS<br>Granite<br>7 TC09-20    |
| 705511                                                | 10 5 13 5 70 5                                                  | 0.01<br>0.82<br>98.76  | 0.089<br>0.05                    | 0.4<br>0.02     | 19:4<br>1.59<br>269     | 4 55 -<br>5 6 -   | 1.44           | <0.5         | 0.67<br>6.82   | 2.6   | 110         | 98.2<br>6.74   | 10.6  | 45.2<br>41.3   | 0.22  | 0.72<br>49.6   | 6.2   | л 16<br>л         | 2.75  | 4.13           | 0.75  | 92.7<br><10    | 535        | 0.01     | 0.06       | 0.01   | 0.1          | 0.95 | <0.01 | 5.17 | 1.44<br>0.8  | 4.43  | 60.2<br>17.1   | CaNaS<br>Syenite<br>TC09-8     |
| 2.752<br>< L.D.<br>9.1558<br>6.95<br>106.5            | 5.353<br>10.88                                                  | 0.95<br>100.66         | < L.D.                           | < L.D.          | 33.73<br>2.956<br>528.1 | 1.815             | 2.833          | 0.447        | 1.227<br>13.44 | 5.384 | 4.32        | 124.9<br>10.99 | 17.44 | 71.73<br>62.14 | 0.424 | 1.313<br>84.52 | 11.72 | 27.47<br>8 401    | 2.485 | 6.948<br>3.361 | 0.672 | 160.9<br>18.87 | 906        |          |            |        | 0.12         | 1.13 | 0.33  | 5.70 | 2.19<br>1.12 | 5.49  | 60.25<br>17.07 | CaNaS<br>Syenite<br>5 13TK02   |
| 2.38<br>< L.D.<br>5.7576<br>6.24<br>80.31             | 2.199<br>5.364                                                  | 0.86<br>99.76          | < L.D.                           | ^ L.D.          | 13.30<br>1.55<br>232.6  | 2.629             | 1.168<br>9.254 | 0.24         | 0.773<br>5.307 | 2.825 | 1.884       | 7.209          | 10.8  | 38.87<br>40.45 | 0.228 | 0.769<br>47.53 | 5.091 | 25<br>5 544       | 2.978 | 4.185          | 0.724 | 94.67<br>28.17 | 524.5      |          |            |        | 0.09         | 0.96 | 7.U9  | 5.35 | 1.73<br>0.85 | 4.49  | 60.55<br>17.53 | CaNaS<br>Syenite<br>23 13TK0   |
| 1.358<br>< L.D.<br>5.3596<br>7.17<br>113.3            | 0.781<br>< L.D.                                                 | 1.27<br>99.89          | < L.D.                           | < L.D.          | 24.31<br>1.979<br>281.5 | 1.183             | 1.346          | 0.31         | 0.941<br>5.686 | 3.344 | 1.862       | 81.96<br>8.888 | 13.28 | 45.66<br>49.76 | 0.286 | 0.972<br>55.5  | 6.338 | 27.06             | 1.891 | 5.152<br>2.381 | 0.286 | 115.1<br>6.534 | 39.61      |          |            |        | 0.15         | 0.94 | 0.00  | 5.74 | 1.04<br>0.63 | 5.31  | 61.28<br>16.77 | e Syenit<br>14 13TK            |
| 5<br>9<br>117                                         | <0.5<br>5<br>40                                                 | 0.01<br>1.08<br>100.8  | 0.09 <sup>,</sup><br>0.09<br>1.1 | 0.9<br>0.03     | 3#<br>2.69<br>419       | 2 22 6            | 2.56           | <0.5<br>0.4  | 1.24<br>12.3   | 4.7   | 0 4<br>2    | 89<br>11.58    | 19    | 85.7<br>70.8   | 0.34  | 1.27<br>91.1   | 10.4  | 27.7              | 0.71  | 6.44<br>3.08   | 0.44  | 160.5          | 10.3       | <0.0     | <0.0       | <0.0   | 0.14         | 0.87 | <0.0  | 6.29 | 0.86         | 5.27  | 62.4<br>16.9   | e Syen<br>120A TC09            |
| 1001-1                                                | 10 9 19 6                                                       | \$2<br>99.6            | +<br>0.1<br>0.9                  | 1.1             | 2.7<br>489              | 2 88 6            | 2.3            | 0.4          | 11.1           | 4.8   | 4 4         | 5<br>12        | 21    | 83.<br>78.     | 0.4   | 1.2            | 11    | 28.               | 0.6   | 3 1<br>3 1     | 0.4   | 5 19.<br>10    | ; =        | 0.0      | 0.0        | 6      | 0.1          | 0.8  | <0.   | 6.5  | 1.2          | . 51  | 62.<br>16.     | ite Sy<br>-69 TC               |
| 4                                                     |                                                                 | n 17 51 51             | ω 1                              | 5               | w <sub>60</sub> w       | 5                 |                | Ň б          | 25             |       |             | -→ k:          | o No  | 4 0            | -     | N 23           | ω     | ω -               | ŭ     | ₩<br>₩         | 12    | 4.5            | iση<br>I   | <u> </u> | <u>- 0</u> | .01    | 7 5          |      | 01 @  |      | 8 8          | ច     | 1,4            | NaS<br>enite                   |
| 125                                                   | 4 <sup>66</sup> 4 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6         | 0.01<br>0.57<br>99.89  | 0.011<br>0.08<br>1               | 0.8<br>0.03     | 2.8<br>472              |                   | 2.96           | <0.5<br>0.44 | 1.28<br>13.55  | 4.9   | » or        | 97.2<br>11.75  | 18.4  | 39.2<br>29.2   | 0.38  | 1.35<br>32.8   | 1     | 27.8<br>2.79      | 0.73  | 7.46<br>3.41   | 0.55  | 163.5<br>10    | 13.1       | <0.01    | <0.01      | <0.01  | 0.15         | 0.76 | <0.01 | 5.39 | 1.04<br>0.48 | 5.35  | 32.5<br>16 45  | CaNaS<br>Syenite<br>FC09-68    |
| <pre>&lt;1 2 6 7 107</pre>                            | 5 13 5<br>10                                                    | <0.01<br>0.71<br>99.28 | 0.084<br><0.05<br>0.5            | 0.3<br>0.01     | 20<br>2.42<br>406       | , 6 (             | 1.86<br><5     | <0.5<br>0.42 | 1.04<br>8.79   | 4.5   | 4 ω         | 113.5<br>10.45 | 17.45 | 79<br>64.9     | 0.33  | 1.03<br>81.7   | 9.4   | 30.8              | 0.52  | 5.64<br>2.53   | 0.43  | 164<br>10      | 15         | 0.01     | <0.01      | <0.01  | 0.16         | 0.69 | <0.01 | 6.21 | 1.16<br>0.46 | 5.01  | 62.6<br>16.3   | CaNaS<br>Syenite<br>TC09-109   |
| 5.258<br>< L.D.<br>5.8737<br>11.2<br>88.52            | < LD.                                                           | 0.57<br>100.70         | < L.D.                           | < L.D.<br>0.335 | 20.4<br>2.343<br>336.3  | 1.952             | 1.67<br>0.82   | 0.363        | 1.132<br>7.941 | 4.264 | 3.121       | 95.08<br>11.09 | 17.13 | 53.47<br>64.32 | 0.352 | 1.156<br>74.04 | 7.777 | 29.55<br>8 083    | 0.507 | 6.22<br>2.815  | 0.447 | 146.9<br>21.55 | 2.786      |          |            |        | 0.18         | 0.90 | 0.01  | 6.65 | 1.45<br>0.58 | 5.39  | 62.75<br>16.21 | CaNaS<br>Syenite<br>13TK081A   |
| 2.3<br>< L.D.<br>7.4431<br>5.8<br>112.7               | 1.147<br>29.65                                                  | 0.66<br>100.56         | < L.D.                           | ^               | 27.70<br>2.492<br>232   | 1.583             | 1.609          | 0.373        | 1.048<br>9.073 | 4.51  | 3.003       | 106.5<br>9.924 | 16.67 | 56.58<br>58.93 | 0.375 | 1.111<br>77.75 | 5.895 | 29.83             | 0.743 | 5.838<br>2.806 | 0.375 | 151.3<br>10.52 | 7.167      |          |            |        | 0.13         | 0.74 | 60.09 | 6.12 | 1.26<br>0.52 | 4.44  | 62.99<br>16.98 | CaNaS<br>Syenite<br>13TK069    |
| 3.043<br>< L.D.<br>10.956<br>5.04<br>104.7            | 1.394<br>7.427                                                  | 1.26<br>100.19         | <pre>^ LD.</pre>                 | < L.D.<br>0.105 | 37.90<br>3.691<br>1285  | 2.311             | 2.683          | 0.542        | 1.187<br>9.403 | 4.833 | 6.989       | 151.5<br>10.22 | 16.55 | 64.55<br>58.7  | 0.576 | 1.408<br>75.41 | 27.62 | 29.16<br>7 736    | 0.771 | 6.934<br>3.765 | 0.922 | 139.1<br>15.86 | 33.86      |          |            |        | 0.10         | 0.70 | 0.30  | 6.11 | 0.97<br>0.47 | 4.09  | 63.11<br>16.74 | CaNaS<br>Syenite<br>13TK101    |
| 1 6 3 <u>4 4</u><br>3                                 | 10 <sup>1</sup> <sup>0</sup> <sup>0</sup> <sup>0</sup>          | 0.01<br>0.65<br>100.26 | <0.005<br>0.7                    | 0.2<br>0.02     | 2.62<br>457             | 2 <sup>-1</sup> ( | 2.23           | <0.5         | 1.03<br>8.85   | 4.3   | ω<br>α      | 99.1<br>8.75   | 12.5  | 76<br>46.5     | 0.37  | 0.99<br>53.1   | 10.1  | 26.4<br>6 75      | 0.54  | 5.18<br>2.73   | 0.27  | 108            | 8.7        | 0.01     | <0.01      | <0.01  | 0.16         | 0.75 | <0.01 | 6.12 | 0.95<br>0.43 | 5.02  | 63.3<br>16.65  | CaNaS<br>Syenite<br>TC09-129   |
| -1 6 8 -1 0 ;<br>34                                   | 10 <sup>3</sup> 5 6                                             | <0.01<br>0.7<br>100.53 | 0.078<br>0.07<br>1.2             | 1<br>0.02       | 4.04<br>728             | 72                | 6.07           | <0.5         | 1.75<br>25.5   | 8.6   | 9 9<br>7    | 117.5<br>13.85 | 18.85 | 120<br>71.2    | 0.49  | 1.87<br>84     | 18.7  | 29.1              | 1.04  | 9.96<br>5.25   | 0.33  | 166.5<br><10   | 17.5       | 0.02     | <0.01      | <0.01  | 0.14         | 0.83 | <0.01 | 6.34 | 0.96<br>0.46 | 5     | 63.6<br>16.3   | CaNaS<br>Syenite<br>3 TC09-12  |
| 1.798<br><l.d.<br>8.4246<br/>5.44<br/>114.7</l.d.<br> | 0.557<br>5.922                                                  | 0.61<br>100.18         | < L.D.                           | < L.D.<br>0.221 | 41.09<br>3.769<br>635.5 | 1.843             | 3.304<br>0 748 | 0.576        | 1.475<br>14.1  | 7.027 | 6.462       | 123.9<br>13.26 | 22.6  | 97.48<br>77.99 | 0.549 | 1.62<br>108.2  | 16.66 | 33.59<br>9 818    | 0.479 | 8.44<br>4.162  | 0.432 | 213.6<br>16.31 | 5.176      |          |            |        | 0.14         | 0.53 | 0.90  | 6.76 | 0.92<br>0.33 | 4.38  | 63.74<br>16.75 | CaNaS<br>Syenite<br>0 13TK09   |
| -1 3 9 2 <u>4</u><br>5                                | 10 × 0.5                                                        | 0.01<br>0.85<br>100.81 | 0.111<br>0.09<br>0.8             | 0.7<br>0.05     | 4.09<br>701             | 79                | 3.66           | <0.5         | 1.57<br>16.55  | 6.3   | 30          | 159.5<br>14.85 | 25.3  | 108<br>91.8    | 0.62  | 1.6<br>116.5   | 15.7  | 40.7              | 0.12  | 8.42<br>4.23   | 0.6   | 234<br>10      | 3.9        | 0.01     | <0.01      | <0.01  | 0.06         | 0.3  | <0.01 | 6.77 | 0.46<br>0.2  | 6.75  | 64.1<br>15.9   | CaNaS<br>Syenite<br>2 TC09-1   |
| 10<br>10<br>103                                       | 20 18 4 0.5<br>20                                               | 0.01<br>0.8<br>101.19  | 0.012<br>0.15<br>0.6             | 1.7<br>0.13     | 23.5<br>2.27<br>366     | у 4<br>о          | 1.87           | <0.5         | 0.87<br>8.7    | 3.4   | а 4<br>л    | 115<br>8.92    | 13.2  | 57.7<br>49.3   | 0.3   | 0.89<br>56.4   | 8.6   | 6 4 2             | 0.17  | 5.09<br>2.43   | 0.92  | 20             | 7.9        | 0.01     | <0.01      | <0.01  | 0.06         | 0.31 | <0.01 | 7.44 | 0.78<br>0.37 | 5.86  | 64.1<br>15.8   | CaNaS<br>Syenite<br>25 TC09-5  |
| 8 5 4 7 8<br>2 2 3                                    | <10                                                             | 0.01<br>1.11<br>100.1  | <0.00(<br>0.3                    | 0.3<br><0.01    | 13.0<br>1.3<br>228      | , _, (            | 1.31           | <0.5<br>0.21 | 0.55<br>5.69   | 2.1   | 0 12        | /3.4<br>5.47   | 8.3   | 34.6<br>31.2   | 0.18  | 0.6<br>40.4    | 5.6   | 25.2              | 0.92  | 3.26<br>1.56   | 0.4   | 76.6<br>10     | 15.4       | 0.02     | <0.01      | <0.01  | 0.08         | 0.62 | <0.01 | 5.71 | 0.68<br>0.27 | 3.32  | 64.3<br>17.45  | CaNa<br>Syenit                 |
| 95 <sup>5</sup> <sup>1</sup> <sup>1</sup>             | <0.5 <                                                          | <0.0<br>0.56<br>101.1  | 5 0.01 <u>′</u><br>0.14<br>0.8   | 1.1<br>0.11     | 20.2<br>2.43<br>313     | 220               | л.7            | <0.5<br>0.4  | 0.96<br>8.73   | 4.2   | 4 4         | 95.6<br>9.64   | 15.8  | 74<br>58.4     | 0.33  | 1.01<br>73     | 7.3   | 27.6<br>7 14      | 0.79  | 5.39<br>2.75   | 0.65  | 142.t          | 11.4       | 0.01     | <0.0       | < 0.01 | 0.12         | 0.8  | <0.01 | 6.17 | 0.98<br>0.51 | 4.43  | 64.4<br>16.6   | S CaNa<br>9 Syen<br>131 TC09   |
| -1 6 8 2 - 1<br>                                      | 10 10 10 0                                                      | 5 0.0<br>5 101         | - <u>0.</u> 6                    | 1.1             | 3.3<br>566              | g → (             | 3.1            | <0.5         | 1.4            | o (   | ით          | 13.            | 21.   | 10t            | 0.4   | 1.4<br>99.     | 13    | 10                | 0.5   | 3.8            | 0.5   | 10             | 13         | 0.0      |            |        | 0.1          | 0.7  | <0.   | 6.9  | 0.6          | 5.3   | 64.<br>16.     | 145 TQ                         |
| 0                                                     | ίσι έ                                                           | n 1.34                 | .005                             | Ō               | o° Ñ -                  | 2                 | 7              | ώ'n          | 7              |       |             | 3              | 0     | ω <sup>σ</sup> | ö     | ω öö           | ώ     | л <sup>.</sup> со | 1     | 4 ä            | 12    |                | · <u>`</u> |          | - <u>0</u> | 01     | 2 0          | , -  | 01    | 0 6  | 5            | ō     | 0,4            | NaS<br>enite<br>209-63         |

# Annexe n°12: Analyses géochimiques sur roche totale (suite)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | SiO2      | AI2O3 | Fe2O3 | CaO  | MgO  | Na2O         | K20  | Tin? | Mno  | P205 | Sro   | BaO   | C IC  | ŝ    | Ba    | Ce    | ç     | Cs    | Ş     | יתי   | υ <sup>3</sup> Ε | 6<br>6       | Ŧ     | R     | La    | 5              | N           | Ŗ     | Rb    | Sm    | έđ                    | Ta 9  | ТЪ    | Τh    | 1    |       | < 0            | < ۲        | ≺ :       | Чb              | Zr    | R:<br>Ri | 占      | Sb     | 1 %    |      | Total  | Ag     | 6    | 2 8      | ⊑ g        | Mo       | <u>Z</u> .                                          | ;       | 2 3            |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|-------|-------|------|------|--------------|------|------|------|------|-------|-------|-------|------|-------|-------|-------|-------|-------|-------|------------------|--------------|-------|-------|-------|----------------|-------------|-------|-------|-------|-----------------------|-------|-------|-------|------|-------|----------------|------------|-----------|-----------------|-------|----------|--------|--------|--------|------|--------|--------|------|----------|------------|----------|-----------------------------------------------------|---------|----------------|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <mark>CaNaS</mark><br>Syenite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13TK086          | 64.41     | 15.73 | 5.09  | 0.75 | 0.31 | 7.36         | 5.41 | 0 50 | 0.16 | 0.08 |       |       |       |      |       | 257.8 | 24.37 | 0.479 | 10.11 | 4.891 | 38.46            | 11.86        | 18.17 | 1.946 | 131.6 | 0.659          | 96.36       | 27.48 | 150.8 | 16.2  | -ло<br>ло<br>ло<br>ло | 8.775 | 1.76  | 18.41 |      | 0.667 | 4.344<br>0 704 | 2.318      | 48.73     | 4.389           | 688.3 | < L.D.   |        | < L.D. |        | 0.62 | 100.41 |        | -    |          | ŗ          | 2.787    | < L.D.                                              |         | 10.8244        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CaNaS<br>Syenite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13TK077          | 64.44     | 17.09 | 3.65  | 0.89 | 0.38 | 6.14         | 6.58 | 0 63 | 0.11 | 0.11 |       |       |       |      | 27.44 | 215.5 | 10.01 | 0.825 | 7.038 | 3.472 | 317              | 8.894        | 21.18 | 1.329 | 115.1 | 0.522          | 80.87       | 23.63 | 137.2 | 12.6  | 12 18                 | 5.274 | 1.26  | 10.99 |      | 0.482 | 1.948          | 3 614      | 33.99     | 3.304           | 1011  | ^        | ŗ      | < L.D. |        | 0.72 | 100.72 |        | 8    | 0.90     | 0.010      | 4.238    | < L.D.                                              |         | 13.2966        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CaNaS<br>Syenite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TC09-57          | 64.5      | 16.15 | 5.36  | 0.91 | 0.42 | 6.72         | 5.73 | 0.72 | 0.16 | 0.09 | <0.01 | <0.01 | 0.02  | 0.01 | 8.6   | 171.5 | 10    | 0.44  | 6.5   | 3.23  | 32 7             | 9.23         | 11.8  | 1.19  | 87    | 0.45           | 74.5        | 19.7  | 116.5 | 12.7  | 4 4<br>2              | σι,   | 1.21  | 10.75 | <0.5 | 0.45  | 2.29           | 63         | 32.1      | 3.16            | 499   | 0.9      | 0.06   | 0.1    | 0.8    | 0.76 | 101.52 | <0.5   | 6 A  | 7 13     | 10         | → ;      | 0                                                   | 1       | 1 1 1          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CaNaS<br>Syenite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TC09-59          | 64.8      | 15.9  | 4.91  | 0.73 | 0.34 | 8.92         | 3.78 | 0.53 | 0.16 | 0.05 | <0.01 | <0.01 | 0.02  | 0.01 | 7.7   | 202   | 10    | 0.37  | 8.6   | 4.45  | 36<br>36         | 10.3         | 15.7  | 1.59  | 96.5  | 121 5          | 80.7        | 21.2  | 84.9  | 13.05 | 30                    | 6.8   | 1.42  | 17.25 | <0.5 | 0.54  | 3.21           | 104        | 41.7      | 3.55            | 710   | 0.7      | 0.099  | 0.08   | 0.8    | 0.42 | 100.54 | <0.5   | <0.5 | η Γ      | 20         | 4        | 7                                                   | -       | ° 10 <u>/</u>  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CaNaS<br>Syenite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TC09-102         | 65.2      | 15.1  | 5.22  | 0.82 | 0.17 | 6.54         | 4.94 | 0.01 | 0.18 | 0.01 | <0.01 | <0.01 | 0.12  | 0.02 | 13.1  | 687   | 60    | 0.67  | 16.95 | 9.22  | 0.38<br>47 4     | 20.2         | 33.8  | 3.31  | 389   | 333            | 196         | 61.7  | 210   | 30.5  | л —<br>о              | 18.5  | 3.1   | 57.1  | <0.5 | 1.43  | ~л<br>Ч        | 4          | -<br>87.1 | 9.6             | 1500  | 0.7      | 0.013  | 0.07   | 1.9    | 1.07 | 99.5   | <0.5   | <0.5 | 0 /      | 20         | 17       | <del>در</del>                                       | ¢       | × (0 (         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CaNaS<br>Syenite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TC09-101         | 65.3      | 15.95 | 4.43  | 0.1  | 0.07 | 6.09<br>= 00 | 5.22 | 0.23 | 0.1  |      | <0.01 | <0.01 | 0.17  | 0.01 | 36.8  | 486   | 10    | 0.25  | 15.45 | 8.14  | 0.15<br>50 6     | 17.55        | 49.4  | 2.86  | 254   | 1.05           | 147         | 45.2  | 183   | 24.3  | 7 3                   | 25.4  | 2.74  | 53.6  | <0.5 | 1.14  | ~7 7           | ن<br>ن     | 94.5      | 7.85            | 1460  | 0.5      | 0.016  | <0.05  | 1.7    | 1.29 | 98.78  | <0.5   | <0.5 | D /      | <10        | <u> </u> | 2                                                   |         | 23             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CaNaS<br>Syenite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13TK117B         | 65.75     | 15.72 | 4.17  | 0.44 | 0.14 | 6.70         | 5.33 | CE 0 | 0.14 | -    |       |       |       |      |       | 270.1 | 42.5  | 0.516 | 11.94 | 6.173 | 0.177<br>40 51   | 12.78        | 28.65 | 2.337 | 132.3 | 0.896          | 98.96       | 29.17 | 173.1 | 17.47 | 1U.04                 | 11.41 | 2.016 | 25    |      | 0.895 | 0.001          | 3 276      | 58.42     | 6.041           | 1108  |          | ŗ      | < L.D. |        | 0.53 | 99.25  |        |      | 0.404    | 0.00       | 3.395    | < L.D.                                              |         | 17.4992        |   |
| Spenie         Spenie<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CaNaS<br>Syenite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13TK117A         | 66.44     | 15.75 | 4.25  | 0.51 | 0.17 | 7.22         | 5.36 | 85.0 | 0.14 | 0.04 |       |       |       |      |       | 353.6 | 29.01 | 0.491 | 13.85 | 8.021 | 40 94            | 14.37        | 35.83 | 2.862 | 183   | 1.241          | 119.9       | 36.16 | 179.6 | 19.53 | 10.05                 | 11.54 | 2.272 | 29.49 |      | 1.191 | 0.8            | 3.392      | 72        | 8.18            | 1603  | A L.D.   | 0.100  | < L.D. |        | 0.62 | 100.88 |        |      | (.434    | ŗ          | 3.89     | < L.D.                                              |         | 12.7822        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |           |       |       |      |      |              |      |      |      |      |       |       |       |      |       |       |       |       |       |       |                  |              |       |       |       |                |             |       |       |       |                       |       |       |       |      |       |                |            |           |                 |       |          |        |        |        |      |        |        |      |          |            |          |                                                     |         |                |   |
| Symme         Symme         Symme         Symme         Conversant & Convers                                                                                                                                                                                                                                                                           | NaS<br>Syenite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13TK103B         | 65.52     | 16.77 | 3.35  | 0.44 | 0.11 | 7.54         | 4.98 | 0.32 | 0.10 |      |       |       |       |      | 5.115 | 281.8 | 26.18 | 0.487 | 9.377 | 4.878 | 45.32            | 10.62        | 19.64 | 1.862 | 152.4 | 0.704          | 96.14       | 29.42 | 147.5 | 14.99 | 3 071                 | 7.671 | 1.626 | 18.99 |      | 0.694 | 3.841          | 3 4 1 1    | 46.27     | 4.638           | 793   | ^ _ D    |        | < L.D. |        | 0.67 | 99.80  |        | -    |          |            | 3.644    | < L.D.                                              | 11.8689 | 2              |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NaS<br>Syenite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13TK070          | 66.01     | 15.84 | 4.05  | 0.75 | 0.20 | 6.53         | 5.63 | 0.41 | 0.13 | 0.05 |       |       |       |      | 8.184 | 195.9 | 42.51 | 1.072 | 8.974 | 4.364 | 35 74            | 10.01        | 21.77 | 1.696 | 97.34 | 140.23         | 75.62       | 21.68 | 228   | 13.38 | 1 708                 | 9.414 | 1.536 | 19.27 |      | 0.617 | 4.601          | 5618       | 44.29     | 4.176           | 818.5 | ^        |        | < L.D. |        | 0.76 | 100.34 |        |      | 70 90    | 10.00      | 7.607    | < L.D.                                              |         | 9.385          |   |
| Syerite         Syerite         C2-marcanite C2-marcanic2-marcanicc2-marcanite C2-marcanicc2-marcanite C2-marcanicc2-mar                                                                                                                                                                                                                                                         | NaS<br>Syenite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13TK079          | 66.25     | 15.70 | 4.63  | 0.61 | 0.20 | 6.51         | 5.68 | 0.51 | 0.18 | 0.05 |       |       |       |      |       | 936.6 | 19.59 | 0.746 | 13.87 | 7.853 | 42.26            | 18.39        | 56.81 | 2.747 | 527.8 | 1.383          | 264.8       | 92.94 | 171.3 | 30.95 | о.282<br>1 л          | 9.658 | 2.545 | 28.08 |      | 1.169 | 5.449          | 2 146      | 65.52     | 8.46            | 3238  | < L.D.   |        | < L.D. |        | 0.56 | 100.88 |        | -    | 7 100    | 0.700      | 8.873    | < L.D.                                              |         | 11.4541        |   |
| Syenia         Coc-montanite Communation Communatina Communation Communatina Communation Communatin Commu                                                                                                                                                                                                                                                 | NaS<br>Syenite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13TK104          | 66.71     | 15.42 | 5.13  | 0.04 |      | 5.80         | 5.54 | 0.30 | 0.14 |      |       |       |       |      | 4.019 | 508.7 | 24.61 | 0.547 | 12.38 | 6.937 | 0.103<br>48 58   | 12.27        | 38.06 | 2.558 | 181.9 | 1.095          | 108.1       | 34.76 | 269   | 17.25 | 10.27                 | 13.44 | 1.979 | 34.88 |      | 1.038 | 6.93           | 3 017      | 64.14     | 7.085           | 1318  | AD2      | 0.101  | < L.D. |        | 1.28 | 100.35 |        | ,    |          | ŗ          | 2.53     | < L.D.                                              | 13 3001 | 0.0001         |   |
| CZ-monozontie CZ-monozontie CZ-monozontie CZ-monozontie CX-morzontie Granite         Granite         Granite         Granite           667         68.04         68.92         71.20         74.94           667         68.04         68.92         71.20         74.94           677         68.04         68.92         71.20         74.94           6.72         0.50         0.52         0.68         0.03           0.01         0.31         0.16         0.03         0.01           0.02         0.15         0.10         0.09         0.01           0.02         0.15         0.10         0.09         0.01           0.03         14.57         15.12         12.17         14.1           1.22         0.41         1         1.17         4.45           0.01         0.412         0.49         0.09         0.01           0.41         0.412         0.43         3.05         7.12         6.01           1.5         1.5         14.68         1.05         3.05         3.05           1.73         1.64         2.33         32.19         3.05         3.05           1.24         1.337         1.68         2.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NaS<br>Syenite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13TK080          | 66.78     | 15.39 | 3.78  | 0.73 | 0.15 | 6.05         | 5.45 | 0.35 | 0.13 | 0.04 |       |       |       |      | 9.184 | 496.3 | 29.13 | 0.769 | 12.4  | 6.427 | 0.26<br>39.47    | 14.99        | 23.17 | 2.393 | 267.5 | 1.011          | 156.8       | 52.48 | 176.4 | 22.7  | 7.997                 | 9.027 | 2.198 | 25.44 |      | 0.923 | 4.9<br>1 102   | 2 982      | 60.56     | 6.451           | 875.2 | ^        | ŗ      | < L.D. |        | 0.75 | 99.60  |        | 0    | 22 42    | 00.70      | 7.338    | <l.d.< td=""><td>8 10/0</td><td>0.1040</td></l.d.<> | 8 10/0  | 0.1040         |   |
| the Czmonzontie Granite         Granit         Granite <th colspa="&lt;/td"><td>NaS<br/>Qz-monzol</td><td>TC09-126/</td><td>66.7</td><td>12.95</td><td>6.75</td><td>0.52</td><td>0.19</td><td>5.46</td><td>4.8</td><td>0.46</td><td>0.22</td><td>0.03</td><td>&lt;0.01</td><td>&lt;0.01</td><td>0.62</td><td>0.02</td><td>14.2</td><td>772</td><td>90</td><td>0.41</td><td>17.3</td><td>8.77</td><td>1.05<br/>43.8</td><td>22.1</td><td>48.5</td><td>3.12</td><td>435</td><td>1.29<br/>วรว</td><td>234</td><td>71.2</td><td>186.5</td><td>34.3</td><td>13 3</td><td>16.5</td><td>3.26</td><td>57.5</td><td>&lt;0.5</td><td>1.28</td><td>&lt; 12<br/>27</td><td>o j</td><td>82 <sup>°</sup></td><td>8.7</td><td>1900</td><td>0.6</td><td>0.012</td><td>0.09</td><td>1.5</td><td>2.48</td><td>100.57</td><td>&lt;0.5</td><td>&lt;0.5</td><td><u>5 7</u></td><td>20 1</td><td>17</td><td>7</td><td>20</td><td>c</td></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <td>NaS<br/>Qz-monzol</td> <td>TC09-126/</td> <td>66.7</td> <td>12.95</td> <td>6.75</td> <td>0.52</td> <td>0.19</td> <td>5.46</td> <td>4.8</td> <td>0.46</td> <td>0.22</td> <td>0.03</td> <td>&lt;0.01</td> <td>&lt;0.01</td> <td>0.62</td> <td>0.02</td> <td>14.2</td> <td>772</td> <td>90</td> <td>0.41</td> <td>17.3</td> <td>8.77</td> <td>1.05<br/>43.8</td> <td>22.1</td> <td>48.5</td> <td>3.12</td> <td>435</td> <td>1.29<br/>วรว</td> <td>234</td> <td>71.2</td> <td>186.5</td> <td>34.3</td> <td>13 3</td> <td>16.5</td> <td>3.26</td> <td>57.5</td> <td>&lt;0.5</td> <td>1.28</td> <td>&lt; 12<br/>27</td> <td>o j</td> <td>82 <sup>°</sup></td> <td>8.7</td> <td>1900</td> <td>0.6</td> <td>0.012</td> <td>0.09</td> <td>1.5</td> <td>2.48</td> <td>100.57</td> <td>&lt;0.5</td> <td>&lt;0.5</td> <td><u>5 7</u></td> <td>20 1</td> <td>17</td> <td>7</td> <td>20</td> <td>c</td> | NaS<br>Qz-monzol | TC09-126/ | 66.7  | 12.95 | 6.75 | 0.52 | 0.19         | 5.46 | 4.8  | 0.46 | 0.22 | 0.03  | <0.01 | <0.01 | 0.62 | 0.02  | 14.2  | 772   | 90    | 0.41  | 17.3  | 8.77             | 1.05<br>43.8 | 22.1  | 48.5  | 3.12  | 435            | 1.29<br>วรว | 234   | 71.2  | 186.5 | 34.3                  | 13 3  | 16.5  | 3.26  | 57.5 | <0.5  | 1.28           | < 12<br>27 | o j       | 82 <sup>°</sup> | 8.7   | 1900     | 0.6    | 0.012  | 0.09   | 1.5  | 2.48   | 100.57 | <0.5 | <0.5     | <u>5 7</u> | 20 1     | 17                                                  | 7       | 20             | c |
| Itel Czmonzontile Granite         Granite         Granite           13TK106         13TK078         TC09-108           68.92         71.20         74.9           3.63         3.61         3.8           0.52         0.06         5.17           5.36         4.73         4.01           0.16         0.09         0.09           0.22         17.31         5.04           0.30         0.18         0.019           0.10         0.09         0.09           365.8         275.4         2.40           32.02         17.31         2.00           0.46         7.766         7.46           0.52         0.114         0.09           11.57         14.69         13.05           13.91         14.47         13.05           15.26         0.179         13.95           2.033         2.171         13.95           2.034         2.42         2.26           15.88         11.05         2.66           15.89         1.139         12.2           2.137         2.93         1.13           2.148         2.96         2.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NaS<br>nite Qz-monzoi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A 13TK108        | 68.04     | 14.57 | 4.47  | 0.50 | 0.13 | 6.07         | 5.18 | 0.34 | 0.15 | 0    |       |       |       |      | 7.544 | 641.3 | 46.65 | 0.412 | 15.68 | 8.174 | 0.195            | 18.74        | 40.44 | 3.019 | 356.3 | 1.337          | 199.3       | 68.86 | 251.4 | 28.35 | 1 0.13                | 13.18 | 2.766 | 32.19 |      | 1.211 | 1 186          | 3 787      | 79.22     | 8.341           | 1682  | < L.D.   | 0.0    | < L.D. |        | 0.68 | 100.12 |        | ,    |          | ŗ          | 3.593    | < L.D.                                              | 15.2258 | 200            |   |
| ntile Granite<br>13TK078 TC09-108<br>71.20 74.9<br>12.79 11.8<br>0.06 0.03<br>4.473 4.47<br>4.73 4.45<br>0.09 0.09<br>0.09 0.09<br>0.09 0.09<br>0.14<br>0.02<br>17.34 5.0<br>7.746 7.46<br>0.178 10.5<br>1.105 13.05<br>14.457 14.7<br>2.258.4 2.40<br>0.776 13.95<br>3.2.944 7.46<br>0.119 0.09<br>0.786 2.84<br>14.69 13.05<br>14.69 13.05<br>14.69 12.44<br>2.42 2.55<br>2.7.16<br>9.461 14<br>9.461 14<br>17.81 17.05<br>16.51 14<br>9.463 2.27<br>36.13 2.00<br>38.13 2.05<br>1.139 12.4<br>2.42 2.65<br>2.7.16<br>9.855 3<br>8.0.7 7.16<br>9.855 3<br>8.0.7 7.16<br>9.855 3<br>9.855 3<br>7.062 2.27<br>0.138 0.00<br>0.138 0.00<br>0.13<br>2.00<br>0.138 0.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.01<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.13<br>2.00<br>0.01<br>2.00<br>0.02<br>0.01<br>2.00<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03                                                                                                                                                                                        | NaS<br>nite Qz-monzor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13TK106          | 68.92     | 15.12 | 3.63  | 0.52 | 0.16 | 5.94         | 5.36 | 0.30 | 0.10 |      |       |       |       |      | -     | 365.8 | 32.02 | 0.649 | 11.57 | 5.356 | 0.152            | 13.91        | 20.33 | 2.137 | 196.6 | 151 8          | 122.5       | 33.07 | 205.4 | 19.17 | 4 J                   | 11.53 | 2.039 | 26.84 |      | 0.737 | 0.018          | 3 168      | 54.77     | 4.804           | 595.5 | ^ L.D.   | 0.1    | < L.D. |        | 0.58 | 100.63 |        |      | 7 120    | 1.100      | 3.471    | < L.D.                                              |         | 8.2513         |   |
| Granite<br>T cos-108<br>74.9<br>11.8<br>3.8<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.29<br>1.05<br>1.09<br>0.09<br>1.2.6<br>2.6<br>0.09<br>1.2.6<br>2.4<br>1.1.7<br>2.4<br>0.02<br>1.3.95<br>1.05<br>2.4<br>3.9.6<br>3.9.6<br>3.9.6<br>3.9.6<br>3.9.6<br>3.9.6<br>3.9.6<br>3.9.6<br>3.9.6<br>3.9.6<br>3.9.6<br>3.9.6<br>3.9.6<br>3.9.6<br>3.9.6<br>3.9.6<br>3.9.6<br>3.9.6<br>3.9.6<br>3.9.6<br>3.9.6<br>3.9.6<br>3.9.6<br>3.9.6<br>3.0.0<br>3.9.6<br>3.0.0<br>3.9.6<br>3.0.0<br>3.9.6<br>3.0.0<br>3.9.6<br>3.0.0<br>3.9.6<br>3.0.0<br>3.9.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.0<br>3.0.6<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>3.0.0<br>5.0.0<br>3.0.0<br>5.0.0<br>5.0.0<br>5.0.0<br>5.0.0<br>5.0.0<br>5.0.0<br>5.0.0<br>5.0.0<br>5.0.0<br>5.0.00<br>5.0.00<br>5.0.00<br>5.0.00<br>5.0.00<br>5.0.00<br>5.0.000<br>5.0000<br>5.00000<br>5.00000000 | NaS<br>nite Granite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13TK078          | 71.20     | 12.79 | 3.61  | 0.68 | 0.06 | 4.48         | 4.73 | 0.18 | 0.09 | 0.00 |       |       |       |      | 18.17 | 258.4 | 173.1 | 0.796 | 14.69 | 7.746 | 0.119<br>40 55   | 14.47        | 32.19 | 2.934 | 129.2 | 1.105<br>223 6 | 91.3        | 27.58 | 271.2 | 17.81 | 8 470                 | 16.89 | 2.42  | 36.13 |      | 1.139 | 9.461          | 9 855      | 80.7      | 7.667           | 983.3 | A L.D.   | 0.00   | 0.312  |        | 2.06 | 99.87  |        | -    | 0 170    | 0.10       | 13.3     | < L.D.                                              |         | 19.7237        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NaS<br>Granite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TC09-108         | 74.9      | 11.8  | 3.8   | 0.28 | 0.03 | 5.17         | 4.45 | 0 19 | 0.09 | 0.00 | <0.01 | <0.01 | 0.14  | 0.02 | 4.7   | 240   | 50    | 0.99  | 13.05 | 7.46  | 39.6             | 13.95        | 34.3  | 2.44  | 117.5 | 206            | 86.4        | 25.5  | 251   | 17.05 | 2 0<br>4              | 12.4  | 2.27  | 26    | <0.5 | 1.11  | ۲.68<br>م      | ω.         | 73        | 7.16            | 1250  | 0.9      | <0.005 | 0.08   | 2<br>2 | 0.62 | 101.33 | <0.5   | <0.5 | <u>1</u> | 50 50      | 7        | ъ                                                   | \$      | 1 - <u>1</u> 9 |   |

# Annexe n°12: Analyses géochimiques sur roche totale (suite)

| FIN                                           |                                                   |                                                                        |
|-----------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------|
| Lavage 3 mL HCI 0,2 N                         |                                                   |                                                                        |
| Lavage 4 mL HCI 6 N                           |                                                   |                                                                        |
| BECHER POUBELLE                               |                                                   | FIN                                                                    |
| □ 1,5 mL HCI 0,25 N                           |                                                   | 1,25 mL HCI 6 N                                                        |
| Bécher récup Nd                               |                                                   | □ □ 2 x 0,25 mL HCl 6 N                                                |
| 2,75 mL HCl 0,25 N                            |                                                   | Placer bécher récup Pb                                                 |
| □ □ □ □ 4 x 0,25 mL HCl 0,25 N                | FIN                                               | 🗆 5 x 0,1 mL HCI 3 N                                                   |
| ge des colonnes                               | □ Découpla                                        |                                                                        |
| 20 MQ                                         | □ 0,2 mL H <sub>2</sub>                           | 🗆 0,5 mL HNO3 0,05 N                                                   |
| 20 MQ                                         | □ 0,2 mL H <sub>2</sub>                           | □ □ 2 x 0,25 mL HNO3 0,05 N                                            |
| 20 MQ                                         | 0,2 mL H <sub>2</sub>                             | Placer bécher récup Sr                                                 |
| RU sur LN                                     | Empiler T                                         | □ □ □ 3 x 0,1 mL HNO <sub>3</sub> 2 N                                  |
|                                               | □ Rincer 0,5 mL HNO <sub>3</sub> 1 N              | $\Box$ 1 mL HNO <sub>3</sub> 7N                                        |
|                                               | □ Rincer 0,5 mL HNO <sub>3</sub> 1 N              | □ □ 2 x 0,25 mL HNO <sub>3</sub> 7 N                                   |
|                                               | ye des colonnes                                   | 🗆 Découplaç                                                            |
|                                               | 10 <sub>3</sub> 2 N                               | 0,2 mL HN                                                              |
|                                               | 10 <sub>3</sub> 2 N                               | 0,2 mL HN                                                              |
|                                               | mL d'échantillon                                  | 🗆 dépôt 0,5 i                                                          |
|                                               | sur TRU                                           | 🗆 Empiler Sr                                                           |
| □ Conditionnement<br>2 mL H <sub>2</sub> O MQ | $2 \times 0,5 \text{ mL HNO}_3 1 \text{ N}$       | $\square$ $\square$ Conditionnement<br>2 x 0,5 mL HNO <sub>3</sub> 2 N |
|                                               |                                                   | $\Box$ $\Box$ Lavage 2 x 2 mL HNO <sub>3</sub> 0,05N                   |
|                                               | $\Box$ $\Box$ Lavage 2 x 2 mL H <sub>2</sub> O MQ | Lavage 1 mL HCI 6N                                                     |
|                                               | 150 μL de résine                                  | 150 μL de résine                                                       |
| Colonne LN-SPEC                               | Colonne TRU-SPEC                                  | Colonne Sr-SPEC                                                        |
| ON Sr et Nd                                   | OLE DE SÉPARATIO                                  | PROTOC                                                                 |

| Annexe n°14 : Données de l'étude isotopique                                  |
|------------------------------------------------------------------------------|
| A. Résultats des mesures effectuées sur les échantillons du SRBIC (Lab. GET) |

|                        |               |               |             |           |                                       | N        | lesuré                                |               |          | _        |         |           |                                        | Corrigé     |                                          |
|------------------------|---------------|---------------|-------------|-----------|---------------------------------------|----------|---------------------------------------|---------------|----------|----------|---------|-----------|----------------------------------------|-------------|------------------------------------------|
| Structure              | Nature        | Petro         | Echantillon | 87Rb/86Sr | ( <sup>87</sup> Sr/ <sup>86</sup> Sr) | err. 2σ  | <sup>147</sup> Sm/ <sup>144</sup> Nd) | (143Nd/144Nd) | err. 2σ  | Age U-Pb | err. 2σ | 87Rb/86Sr | ( <sup>87</sup> Sr/ <sup>86</sup> Sr)i | 147Sm/144Nd | ( <sup>143</sup> Nd/ <sup>144</sup> Nd)i |
| Unit 2                 | syenite       | CaNaS         | TC09-120    | 56.6404   | 0.714172                              | 0.000012 | 0.111234977                           | 0.512572      | 0.000004 | 8.51     | 0.15    | 56.6472   | 0.70733                                | 0.1112      | 0.512566                                 |
| Unit 2                 | syenite       | CaNaS         | TC09-129    | 65.9634   | 0.717378                              | 0.000013 | 0.101738427                           | 0.512546      | 0.000016 | 9.08     | 0.10    | 65.9719   | 0.70887                                | 0.1017      | 0.512540                                 |
| Unit 2                 | syenite       | CaNaS         | TC09-59     | 94.5517   | 0.720650                              | 0.000016 | 0.101291459                           | 0.512567      | 0.000006 | 9.35     | 0.50    | 94.5643   | 0.70810                                | 0.1013      | 0.512561                                 |
| Satellite -S           | syenite       | CaNaS         | TC09-131    | 24.7153   | 0.709564                              | 0.000011 | 0.10305041                            | 0.512418      | 0.000017 | 9.5      | 0.50    | 24.7186   | 0.70623                                | 0.1031      | 0.512412                                 |
| Unit 3 - enclave Unit2 | syenite       | CaNaS         | 13TK101     | 24.6440   | 0.708387                              | 0.000013 | 0.098251985                           | 0.512602      | 0.000012 | 8.47     | 0.15    | 24.6470   | 0.70542                                | 0.0983      | 0.512597                                 |
| Unit 2                 | syenite       | CaNaS         | 13TK69      | 44.7911   | 0.711450                              | 0.000027 | 0.094095769                           | 0.512542      | 0.000007 | 8.72     | 0.10    | 44.7966   | 0.70590                                | 0.0941      | 0.512537                                 |
| Unit 2                 | syenite       | CaNaS         | 13TK81A     | 70.1252   | 0.722467                              | 0.000036 | 0.100744336                           | 0.512552      | 0.000014 | 9.31     | 0.15    | 70.1345   | 0.71320                                | 0.1008      | 0.512546                                 |
| Unit 2                 | syenite       | CaNaS         | 13TK77      | 33.2732   | 0.711991                              | 0.000047 | 0.088547307                           | 0.512577      | 0.000011 | 8.1      | 0.50    | 33.2770   | 0.70816                                | 0.0886      | 0.512572                                 |
| Unit 2                 | syenite       | CaNaS         | 13TK117B    | 299.3271  |                                       |          | 0.099640123                           | 0.512613      | 0.000009 | 8.75     | 0.20    |           |                                        | 0.0996      | 0.512607                                 |
| Unit 1                 | syenite       | CAS           | TC09-06     | 53.9195   | 0.714947                              | 0.000015 | 0.092384766                           | 0.512525      | 0.000009 | 11.57    | 0.11    | 53.9283   | 0.70609                                | 0.0924      | 0.512518                                 |
| Unit 1                 | granite       | CAS           | TC09-37     | 58.1841   | 0.713863                              | 0.000011 | 0.10580033                            | 0.512600      | 0.000007 | 10.77    | 0.15    | 58.1930   | 0.70496                                | 0.1058      | 0.512593                                 |
| Unit 1                 | syenite       | CAS           | TC09-113    | 3.2681    | 0.706130                              | 0.000009 | 0.098720319                           | 0.512568      | 0.000005 | 11.13    | 0.20    | 3.2686    | 0.70561                                | 0.0987      | 0.512561                                 |
| Unit 1                 | syenite       | CAS           | TC09-110    | 18.1964   | 0.708092                              | 0.000011 | 0.108369615                           | 0.512575      | 0.000006 | 10.59    | 0.15    | 18.1991   | 0.70536                                | 0.1084      | 0.512567                                 |
| Satellite -GV          | syenite       | CAS           | TC09-82     | 1.8097    | 0.707459                              | 0.000010 | 0.089218779                           | 0.512276      | 0.000010 | 13.74    | 0.20    | 1.8100    | 0.70711                                | 0.0892      | 0.512268                                 |
| Unit 1                 | Qz-monzonite  | CAS           | TC09-75     | 10.0704   | 0.706173                              | 0.000013 | 0.09711088                            | 0.512560      | 0.000006 | 11.3     | 0.20    | 10.0720   | 0.70456                                | 0.0971      | 0.512553                                 |
| Unit 1                 | syenite       | CAS           | 13TK42      | 3.1945    | 0.708173                              | 0.000014 | 0.105225795                           | 0.512526      | 0.000012 | 10.65    | 0.10    | 3.1950    | 0.70769                                | 0.1052      | 0.512519                                 |
| Unit 1                 | syenite       | CAS           | 13TK31      | 55.2246   | 0.714803                              | 0.000017 | 0.109493741                           | 0.512503      | 0.000014 | 10.09    | 0.10    | 55.2325   | 0.70689                                | 0.1095      | 0.512496                                 |
| Unit 1                 | syenite       | CAS           | 13TK63      | 21.3571   | 0.709538                              | 0.000015 | 0.110760139                           | 0.512522      | 0.000008 | 9.94     | 0.10    | 21.3601   | 0.70652                                | 0.1108      | 0.512515                                 |
| Unit 1                 | syenite       | CAS           | 13TK45      | 56.7820   | 0.714997                              | 0.000016 | 0.096502082                           | 0.512553      | 0.000009 | 10.22    | 0.10    | 56.7902   | 0.70676                                | 0.0965      | 0.512547                                 |
| Unit 1                 | syenite       | CAS           | TC09-41     | 14.4328   | 0.708206                              | 0.000022 | 0.103570204                           | 0.512552      | 0.000009 | 11.53    | 0.20    | 14.4352   | 0.70584                                | 0.1036      | 0.512544                                 |
| Satellite -GV          | syenite       | CAS           | 13TK01A     | 3.3253    | 0.707657                              | 0.000014 | 0.084520833                           | 0.512298      | 0.000008 | 11.87    | 0.20    | 3.3259    | 0.70710                                | 0.0845      | 0.512291                                 |
| Unit 1                 | syenite       | CAS           | 13TK118A    | 101.9513  |                                       |          | 0.100845934                           | 0.512628      | 0.000009 | 9.45     | 0.15    |           |                                        | 0.1009      | 0.512622                                 |
| CRBIC                  | syenite       | Complexe No   | or TC09-135 | 123.0985  | 0.719442                              | 0.000009 | 0.10376842                            | 0.512606      | 0.000012 | 7.31     | 0.15    | 123.1113  | 0.70666                                | 0.1038      | 0.512601                                 |
| PJ                     | monzonite     | intermediair  | e 13TK47    | 1.0752    | 0.705833                              | 0.000012 | 0.113532194                           | 0.512544      | 0.000007 | 11.19    | 0.10    | 1.0754    | 0.70566                                | 0.1135      | 0.512536                                 |
| Unit 1                 | monzo-diorite | mafique       | 13TK43      | 0.7269    | 0.705720                              | 0.000012 | 0.111206965                           | 0.512544      | 0.000009 | 11       | 0.10    | 0.7270    | 0.70561                                | 0.1112      | 0.512536                                 |
| Satellite -GV          | monzo-gabbro  | mafique       | TK002       | 0.1558    | 0.706947                              | 0.000013 | 0.114621936                           | 0.512342      | 0.000009 | 13.7     | 0.50    | 0.1559    | 0.70692                                | 0.1146      | 0.512332                                 |
| Unit3                  | granite       | NaS           | 13TK78      | 91.8020   | 0.716503                              | 0.000011 | 0.115484664                           | 0.512581      | 0.000011 | 7.9      | 0.10    | 91.8123   | 0.70620                                | 0.1155      | 0.512575                                 |
| Unit3                  | syenite       | NaS           | 13TK80      | 92.5790   | 0.719495                              | 0.000014 | 0.0910006                             | 0.512580      | 0.000010 | 8.04     | 0.05    | 92.5896   | 0.70892                                | 0.0910      | 0.512575                                 |
| Unit3                  | Qz-monzonite  | NaS           | 13TK108     | 210.2544  | 0.757258                              | 0.000020 | 0.084821372                           | 0.512563      | 0.000011 | 8.03     | 0.10    | 210.2784  | 0.73328                                | 0.0848      | 0.512559                                 |
| Unit3                  | syenite       | NaS           | 13TK070     | 145.4577  | 0.724331                              | 0.000020 | 0.109951208                           | 0.512569      | 0.000007 | 8.27     | 0.10    | 145.4748  | 0.70725                                | 0.1100      | 0.512563                                 |
| Unit 3                 | syenite       | NaS           | TK104       | 160.4960  | 0.725521                              | 0.000021 | 0.089241434                           | 0.512573      | 0.000009 | 7.88     | 0.15    | 160.5140  | 0.70756                                | 0.0892      | 0.512568                                 |
| Unit 3                 | Qz-monzonite  | NaS           | TK106       | 230.8620  | 0.749252                              | 0.000015 | 0.087277737                           | 0.512627      | 0.000010 | 7.99     | 0.20    | 230.8882  | 0.72306                                | 0.0873      | 0.512622                                 |
| Unit 2                 | trachyte      | trachyte tard | dir 13TK8   | 36.1295   | 0.710447                              | 0.000018 | 0.083527037                           | 0.512580      | 0.000008 | 7.93     | 0.30    | 36.1335   | 0.70638                                | 0.0835      | 0.512576                                 |
| U2- zone déformée      | syenite       |               | 13TK23      | 1.5835    | 0.705790                              | 0.000014 | 0.10061006                            | 0.512562      | 0.000013 | 9.38     | 0.20    | 1.5837    | 0.70558                                | 0.1006      | 0.512556                                 |

### Echantillon dont l'age a été estimé en fonction des relations de terrains

expliquant les grandes erreurs associées l'age du TC09-131 est toutefois contraint par l'age de environ 9.5 Ma issues de l'étude thermochronologique sur Apatite (F.Ahadi, en préparation)

### B. Résultats des modélisations isotopiques

liquide basaltique alcalin primaire liquide secondaire issus du manteau métasomatisé = composition du miccrogabbro de Scoates et al., (2007) auquelles sont appliquées les compositions isotopiques du panache de Kerguelen
 = gneiss d'Elan Bank dont les compositions isotopiques ont été recalculées à 14 Ma (l'age minimum d'interaction possible avec les liquides alcalins)
 = compositions de liquide à l'origine des lamproites du Gausseberg (Olierook et al., (2017)

|                                                  |   | Nd | Sm | Rb  | Sr  |      | 87Sr/86Sr | 143Nd/144Nd |
|--------------------------------------------------|---|----|----|-----|-----|------|-----------|-------------|
| liquide basaltique alcalin primaire              | = | 27 | .5 | 6.4 | 25  | 485  | 0.705300  | 0.512598    |
| croute continentale                              | = |    | 64 | 12  | 174 | 108  | 0.511820  | 0.783112    |
| liquide secondaire issus du manteau métasomatisé | = | 1: | 24 |     |     | 1718 | 0.709712  | 0.511890    |

a) Modélisation d'un melange entre les deux sources mantelliques liquide basaltique alcalin primaire liquide secondaire issus du manteau métasomatisé

Voir figure 6.11

| F |          |          |      |    |     |      |
|---|----------|----------|------|----|-----|------|
|   | 0.512598 | 0.705300 | 485  | 25 | 6.4 | 27.5 |
|   | 0.511890 | 0.709712 | 1718 |    |     | 124  |

|      |        |        | 0.705300    | 0.512598      |
|------|--------|--------|-------------|---------------|
|      | Nd M   | Sr M   | 87Sr/86Sr M | 143Nd/144Nd r |
| 0.01 | 28.465 | 497.33 | 0.705452    | 0.512567      |
| 0.02 | 29.43  | 509.66 | 0.705597    | 0.512538      |
| 0.03 | 30.395 | 521.99 | 0.705736    | 0.512511      |
| 0.04 | 31.36  | 534.32 | 0.705867    | 0.512486      |
| 0.05 | 32.325 | 546.65 | 0.705993    | 0.512462      |
| 0.06 | 33.29  | 558.98 | 0.706114    | 0.512440      |
| 0.07 | 34.255 | 571.31 | 0.706229    | 0.512419      |
| 0.08 | 35.22  | 583.64 | 0.706339    | 0.512399      |
| 0.09 | 36.185 | 595.97 | 0.706445    | 0.512380      |
| 0.1  | 37.15  | 608.3  | 0.706546    | 0.512362      |
| 0.11 | 38.115 | 620.63 | 0.706643    | 0.512345      |
| 0.12 | 39.08  | 632.96 | 0.706737    | 0.512328      |
| 0.13 | 40.045 | 645.29 | 0.706827    | 0.512313      |
| 0.14 | 41.01  | 657.62 | 0.706914    | 0.512298      |
| 0.15 | 41.975 | 669.95 | 0.706997    | 0.512284      |
| 0.16 | 42.94  | 682.28 | 0.707078    | 0.512271      |
| 0.17 | 43.905 | 694.61 | 0.707155    | 0.512258      |
| 0.18 | 44.87  | 706.94 | 0.707230    | 0.512246      |
| 0.19 | 45.835 | 719.27 | 0.707302    | 0.512234      |
| 0.2  | 46.8   | 731.6  | 0.707372    | 0.512223      |
| 0.21 | 47.765 | 743.93 | 0.707440    | 0.512212      |
| 0.22 | 48.73  | 756.26 | 0.707505    | 0.512202      |
| 0.23 | 49.695 | 768.59 | 0.707568    | 0.512192      |
| 0.24 | 50.66  | 780.92 | 0.707630    | 0.512182      |
| 0.25 | 51.625 | 793.25 | 0.707689    | 0.512173      |
| 0.26 | 52.59  | 805.58 | 0.707746    | 0.512164      |
| 0.27 | 53.555 | 817.91 | 0.707802    | 0.512155      |
| 0.28 | 54.52  | 830.24 | 0.707856    | 0.512147      |
| 0.29 | 55.485 | 842.57 | 0.707909    | 0.512139      |
| 0.3  | 56.45  | 854.9  | 0.707960    | 0.512131      |
| 0.4  | 66.1   | 978.2  | 0.708399    | 0.512067      |
| 0.5  | 75.75  | 1101.5 | 0.708741    | 0.512019      |
| 0.6  | 85.4   | 1224.8 | 0.709013    | 0.511981      |
| 0.7  | 95.05  | 1348.1 | 0.709236    | 0.511951      |
| 0.8  | 104.7  | 1471.4 | 0.709421    | 0.511927      |
| 0.9  | 114.35 | 1594.7 | 0.709578    | 0.511907      |
|      |        |        | 0.709712    | 0.511890      |

| Annexe n°14 : Données de l'ét          | ude isotopique (suite)                |
|----------------------------------------|---------------------------------------|
| b) AFC / Assimilation du gneiss recalc | ulé à 14 Ma par les liquides alcalins |
| Voir figure 6.11                       |                                       |

|              |               |               |    | 10  | quide basaitiqu | le aicaiin | primaire | 27.5      | 6.4       | 25      | 485      | 0.705300  | 0.512596   | KP          |           |            |           |
|--------------|---------------|---------------|----|-----|-----------------|------------|----------|-----------|-----------|---------|----------|-----------|------------|-------------|-----------|------------|-----------|
| Masse        |               |               |    | CI  | route continen  | tale       |          | 64        | 12        | 174     | 108      | 0.783112  | 0.511820   | GNEISS      |           |            |           |
| assimilée/m  |               |               |    |     |                 |            |          |           |           |         |          |           |            |             |           |            |           |
| asse         |               |               |    |     |                 |            |          |           | CONCENTRA | TIONS   |          |           |            |             | Résultats | d'AFC      |           |
| cristallisée | Proportions m | ineralogiques |    |     |                 |            |          | Nd        | Sm        | Rb      | Sr       | 87Sr/86Sr | 143Nd/144N | 147Sm/144Nd | 143/144Nd | 87Rb/86Sr  | 87Sr/86Sr |
| r            | CPX           | PLG           | OL | OPX | AMPH            | QTZ        | F        | 27.5      | 6.4       | 25      | 485      | 0.705300  | 0.512598   |             |           |            |           |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.01     | 28,170711 | 6.5334419 | 26.3618 | 458,114  |           |            | 0.14026073  | 0.512586  | 0.166455   | 0.705419  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.02     | 28 854176 | 6 6693543 | 27 7479 | 432 507  |           |            | 0 13978668  | 0.512575  | 0 185583   | 0 705547  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.02     | 20.55077  | 6 807800  | 20 1502 | /08 131  |           |            | 0 13032460  | 0.512563  | 0.206672   | 0.705683  |
| 0.4          | 0.05          | 0.0           | 0  | 0   | 0.1             | 0.05       | 0.03     | 20.00000  | 6 0499904 | 20.1002 | 204 020  |           |            | 0.13932403  | 0.512505  | 0.200072   | 0.705000  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.04     | 30.200880 | 0.9400004 | 30.5903 | 304.930  |           |            | 0.13007421  | 0.512552  | 0.229927   | 0.705029  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.05     | 30.984929 | 7.0926461 | 32.06   | 362.883  |           |            | 0.13843474  | 0.512542  | 0.255573   | 0.705985  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.06     | 31.723326 | 7.2391866 | 33.551  | 341.92   |           |            | 0.13800579  | 0.512531  | 0.283862   | 0.706151  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.07     | 32.476517 | 7.3885859 | 35.0702 | 322.007  |           |            | 0.1375869   | 0.512521  | 0.315070   | 0.706330  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.08     | 33.244962 | 7.5409315 | 36.6184 | 303.101  |           |            | 0.13717764  | 0.512512  | 0.349505   | 0.706521  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.09     | 34.029143 | 7.6963144 | 38.1965 | 285.162  |           |            | 0.1367776   | 0.512502  | 0.387510   | 0.706725  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.1      | 34.829558 | 7.8548295 | 39.8054 | 268,149  |           |            | 0.13638639  | 0.512493  | 0.429463   | 0.706945  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.11     | 35 646731 | 8 0165759 | 41 4461 | 252 025  |           |            | 0 13600363  | 0.512484  | 0 475785   | 0 707180  |
| 0.4          | 0.05          | 0.8           | Ő  | 0   | 0.1             | 0.05       | 0.12     | 36 481206 | 8 1816568 | 43 1195 | 236 752  |           |            | 0 13562897  | 0.512475  | 0.526940   | 0 707433  |
| 0.4          | 0.05          | 0.0           | 0  | 0   | 0.1             | 0.05       | 0.12     | 37,333553 | 0.1010300 | 44.0007 | 200.702  |           |            | 0.13502037  | 0.512475  | 0.520340   | 0.707403  |
| 0.4          | 0.05          | 0.0           | 0  | 0   | 0.1             | 0.05       | 0.13     | 37.333553 | 0.3501601 | 44.0207 | 222.294  |           |            | 0.13526207  | 0.512400  | 0.565447   | 0.707704  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.14     | 38.204366 | 8.5222584 | 40.5088 | 208.616  |           |            | 0.13490261  | 0.512458  | 0.645879   | 0.707995  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.15     | 39.094268 | 8.6980094 | 48.3468 | 195.685  |           |            | 0.13455027  | 0.512450  | 0.714870   | 0.708307  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.16     | 40.003909 | 8.8775559 | 50.1621 | 183.468  |           |            | 0.13420477  | 0.512442  | 0.791127   | 0.708643  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.17     | 40.933969 | 9.0610268 | 52.0157 | 171.934  |           |            | 0.13386582  | 0.512434  | 0.875430   | 0.709004  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.18     | 41.885162 | 9.2485565 | 53.9091 | 161.051  |           |            | 0.13353316  | 0.512426  | 0.968643   | 0.709392  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.19     | 42.858233 | 9.440286  | 55.8436 | 150.79   |           |            | 0.13320652  | 0.512419  | 1.071723   | 0.709808  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.2      | 43.853967 | 9.6363631 | 57.8205 | 141.123  |           |            | 0.13288566  | 0.512412  | 1.185729   | 0.710257  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.21     | 44 873184 | 9 8369424 | 59 8413 | 132 022  |           |            | 0 13257034  | 0 512404  | 1 311830   | 0 710738  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.22     | 45 916745 | 10 042186 | 61 9077 | 123.46   |           |            | 0 13226032  | 0 512398  | 1 451316   | 0 711257  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.22     | 46 085556 | 10.252266 | 64 0212 | 115 / 12 |           |            | 0 1310554   | 0.512301  | 1.605600   | 0 711814  |
| 0.4          | 0.05          | 0.0           | 0  | 0   | 0.1             | 0.05       | 0.23     | 40.303330 | 10.232200 | 66 1025 | 107.952  |           |            | 0.1318553   | 0.512391  | 1.776272   | 0.711014  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.24     | 40.000307 | 10.407359 | 00.1035 | 107.000  |           |            | 0.13105555  | 0.512364  | 1.770272   | 0.712413  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.25     | 49.202779 | 10.687654 | 68.3965 | 100.759  |           |            | 0.13135998  | 0.512378  | 1.965023   | 0.713057  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.26     | 50.353244 | 10.913349 | 70.662  | 94.108   |           |            | 0.13106908  | 0.512371  | 2.173745   | 0.713749  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.27     | 51.533068 | 11.144651 | 72.982  | 87.8765  |           |            | 0.13078246  | 0.512365  | 2.404493   | 0.714492  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.28     | 52.74342  | 11.381781 | 75.3586 | 82.0438  |           |            | 0.13049995  | 0.512359  | 2.659509   | 0.715290  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.29     | 53.985529 | 11.624968 | 77.794  | 76.5893  |           |            | 0.13022135  | 0.512353  | 2.941227   | 0.716147  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.3      | 55.260694 | 11.874457 | 80.2904 | 71.4933  |           |            | 0.12994649  | 0.512347  | 3.252281   | 0.717065  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.31     | 56,570287 | 12,130503 | 82,8504 | 66,7369  |           |            | 0.12967522  | 0.512341  | 3,595507   | 0.718048  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.32     | 57 915756 | 12 393378 | 85 4766 | 62 3019  |           |            | 0 12940735  | 0.512336  | 3 973946   | 0 719101  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.33     | 50 208633 | 12.663360 | 88 1715 | 58 1708  |           |            | 0 1201/27/  | 0.512330  | 4 300837   | 0 720225  |
| 0.4          | 0.05          | 0.0           | 0  | 0   | 0.1             | 0.05       | 0.33     | 60 720641 | 12.000000 | 00.1713 | 50.1700  |           |            | 0.12014274  | 0.512330  | 4.0300007  | 0.720225  |
| 0.4          | 0.05          | 0.0           | 0  | 0   | 0.1             | 0.05       | 0.34     | 60.720541 | 12.940779 | 90.9361 | 54.3200  |           |            | 0.12000122  | 0.512325  | 4.649607   | 0.721425  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.35     | 62.183197 | 13.225929 | 93.7795 | 50.754   |           |            | 0.12862265  | 0.512319  | 5.353860   | 0.722704  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.36     | 63.688425 | 13.519159 | 96.6988 | 47.4368  |           |            | 0.12836686  | 0.512314  | 5.907343   | 0.724063  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.37     | 65.238157 | 13.82083  | 99.6995 | 44.3607  |           |            | 0.12811373  | 0.512309  | 6.513923   | 0.725505  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.38     | 66.834449 | 14.131324 | 102.785 | 41.5114  |           |            | 0.12786309  | 0.512304  | 7.177535   | 0.727031  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.39     | 68.479483 | 14.451048 | 105.96  | 38.8756  |           |            | 0.12761481  | 0.512299  | 7.902133   | 0.728643  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.4      | 70.175585 | 14.780435 | 109.227 | 36.4403  |           |            | 0.12736875  | 0.512294  | 8.691624   | 0.730339  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.41     | 71.925231 | 15.119946 | 112.591 | 34.1932  |           |            | 0.12712477  | 0.512289  | 9.549789   | 0.732118  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.42     | 73 731062 | 15 47007  | 116 058 | 32 1227  |           |            | 0 12688273  | 0 512285  | 10 480205  | 0 733978  |
| 0.4          | 0.05          | 0.0           | 0  | 0   | 0.1             | 0.00       | 0.42     | 75 5050   | 15 831332 | 110.000 | 30 2175  |           |            | 0.1266425   | 0.512280  | 11 486148  | 0.735014  |
| 0.4          | 0.05          | 0.0           | 0  | 0   | 0.1             | 0.05       | 0.43     | 77 50076  | 16 204201 | 102.001 | 20 467   |           |            | 0.1200423   | 0.512200  | 12 570404  | 0.733314  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.44     | 70 514067 | 10.204291 | 123.310 | 20.407   |           |            | 0.12040393  | 0.512275  | 12.370494  | 0.737922  |
| 0.4          | 0.05          | 0.0           | 0  | 0   | 0.1             | 0.05       | 0.45     | 79.514667 | 10.569544 | 127.119 | 20.0011  |           |            | 0.1201009   | 0.512271  | 13.735031  | 0.739993  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.46     | 81.575678 | 16.987732 | 131.045 | 25.3901  |           |            | 0.12593127  | 0.512267  | 14.983359  | 0.742121  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.47     | 83.708904 | 17.399541 | 135.102 | 24.0449  |           |            | 0.1256969   | 0.512262  | 16.314813  | 0.744295  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.48     | 85.918527 | 17.825707 | 139.295 | 22.8168  |           |            | 0.12546365  | 0.512258  | 17.730406  | 0.746504  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.49     | 88.208833 | 18.267022 | 143.633 | 21.6975  |           |            | 0.1252314   | 0.512254  | 19.229781  | 0.748734  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.5      | 90.584439 | 18.724336 | 148.122 | 20.6794  |           |            | 0.12499999  | 0.512250  | 20.811816  | 0.750973  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.51     | 93.050326 | 19.198569 | 152.773 | 19.7549  |           |            | 0.12476929  | 0.512246  | 22.474642  | 0.753205  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.52     | 95.611873 | 19.690711 | 157.594 | 18.9172  |           |            | 0.12453915  | 0.512242  | 24.215718  | 0.755417  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.53     | 98.274903 | 20.201832 | 162.594 | 18.1596  |           |            | 0.12430942  | 0.512238  | 26.031930  | 0.757592  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.54     | 101.04573 | 20,733093 | 167.786 | 17.4759  |           |            | 0.12407996  | 0.512234  | 27,919737  | 0.759718  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.55     | 103 9312  | 21 285751 | 173 179 | 16 8604  |           |            | 0 12385062  | 0.512230  | 29 875340  | 0 761778  |
| 0.4          | 0.05          | 0.8           | Ő  | 0   | 0.1             | 0.05       | 0.56     | 106 93876 | 21 861172 | 178 788 | 16 3074  |           |            | 0.12362122  | 0.512227  | 31 894885  | 0.763763  |
| 0.4          | 0.05          | 0.0           | 0  | 0   | 0.1             | 0.00       | 0.57     | 110 07655 | 22.460845 | 184 626 | 15 8110  |           |            | 0.12330161  | 0.512227  | 33 07/670  | 0.765658  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.57     | 110.07035 | 22.400645 | 104.020 | 10.0119  |           |            | 0.12339101  | 0.512223  | 33.974070  | 0.705058  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.58     | 113.35343 | 23.086392 | 190.707 | 15.369   |           |            | 0.12316162  | 0.512219  | 36.111368  | 0.767456  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.59     | 116.77909 | 23.739586 | 197.049 | 14.9742  |           |            | 0.12293107  | 0.512216  | 38.302236  | 0.769149  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.6      | 120.36419 | 24.422369 | 203.668 | 14.6233  |           |            | 0.12269977  | 0.512212  | 40.545321  | 0.770730  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.61     | 124.1204  | 25.136873 | 210.586 | 14.3122  |           |            | 0.12246754  | 0.512209  | 42.839638  | 0.772196  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.62     | 128.06062 | 25.885444 | 217.822 | 14.0373  |           |            | 0.12223416  | 0.512206  | 45.185328  | 0.773546  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.63     | 132.19905 | 26.670666 | 225.401 | 13.7953  |           |            | 0.12199942  | 0.512202  | 47.583790  | 0.774779  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.64     | 136.55144 | 27.495402 | 233.35  | 13.5828  |           |            | 0.12176309  | 0.512199  | 50.037792  | 0.775898  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.65     | 141.13527 | 28.36282  | 241.697 | 13.397   |           |            | 0.12152493  | 0.512196  | 52.551555  | 0.776905  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.66     | 145.97    | 29.276448 | 250.474 | 13.2351  |           |            | 0.12128469  | 0.512192  | 55.130827  | 0.777806  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.67     | 151.07737 | 30,240218 | 259 717 | 13.0947  |           |            | 0.12104208  | 0.512189  | 57,782953  | 0.778605  |
| 0.4          | 0.05          | 0.8           | ñ  | ň   | 0.1             | 0.05       | 0.69     | 156 48174 | 31 25853  | 269 467 | 12 9733  |           |            | 0 1207969   | 0.512186  | 60 516030  | 0 770310  |
| 0.4          | 0.05          | 0.0           | ñ  | 0   | 0.1             | 0.05       | 0.00     | 162 210/0 | 32 336325 | 270 767 | 12 960   |           |            | 0.1205/854  | 0.512100  | 63 343233  | 0.770026  |
| 0.4          | 0.00          | 0.0           | 0  | 0   | 0.1             | 0.05       | 0.09     | 168 20452 | 33 470160 | 200 660 | 12.009   |           |            | 0.12004004  | 0.012100  | 66 275224  | 0.119920  |
| 0.4          | 0.05          | 0.8           | 0  | U   | 0.1             | 0.05       | 0.7      | 100.29453 | 33.479169 | 290.009 | 12.7797  |           |            | 0.12029694  | 0.512180  | 00.2/5324  | 0.780462  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.71     | 1/4.76888 | 34.693359 | 302.23  | 12.7036  |           |            | 0.12004162  | 0.512177  | 69.326879  | 0.780924  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.72     | 181.67337 | 35.986049 | 314.514 | 12.6393  |           |            | 0.11978217  | 0.512174  | 72.514921  | 0.781320  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.73     | 189.05353 | 37.365398 | 327.595 | 12.5851  |           |            | 0.11951813  | 0.512171  | 75.858564  | 0.781656  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.74     | 196.96163 | 38.840761 | 341.557 | 12.5397  |           |            | 0.119249    | 0.512168  | 79.379629  | 0.781939  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.75     | 205.45803 | 40.422913 | 356.497 | 12.5021  |           |            | 0.11897422  | 0.512165  | 83.103051  | 0.782176  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.76     | 214.61273 | 42.12434  | 372.526 | 12.4711  |           |            | 0.11869316  | 0.512162  | 87.057408  | 0.782372  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.77     | 224.5075  | 43.959587 | 389.775 | 12.4457  |           |            | 0.11840513  | 0.512159  | 91.275605  | 0.782534  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.78     | 235.23843 | 45.945715 | 408.396 | 12.4251  |           |            | 0.11810934  | 0.512157  | 95.795753  | 0.782665  |
| 0.4          | 0.05          | 0.8           | 0  | 0   | 0.1             | 0.05       | 0.79     | 246,91921 | 48,102872 | 428 567 | 12,4086  |           |            | 0.1178049   | 0.512154  | 100.662312 | 0.782771  |
| 0.4          | 0.05          | 0.8           | ñ  | ň   | 0.1             | 0.05       | 0.79     | 259 68545 | 50 455032 | 450 503 | 12 3955  |           |            | 0 11749079  | 0.512154  | 105 927571 | 0 782855  |
|              | 0.00          | 0.0           | 0  | 0   | 0.1             | 0.00       | 0.0      | _00.00040 | 555000Z   |         | .2.0000  |           | 0.000440   | 5           | 3.312101  |            | 002000    |

-00 //

### Résultats d'un vieillissement de 6Ma des premieres syénites modélisées au travers de l'AFC précédente ; considérant un rapport moyen 87Rb/86Sr de 40 et un rapport 147Sm/144Nd moyen de 0,1

| 0.512590 | 0.708828 |
|----------|----------|
| 0.512578 | 0.708955 |
| 0.512567 | 0.70909  |
| 0.512556 | 0.709237 |
| 0.512546 | 0.709393 |
| 0.512535 | 0.70955  |
| 0.512525 | 0.70973  |
| 0.512516 | 0.70992  |
| 0.512506 | 0.71013  |
| 0.512497 | 0.71035  |
| 0.512488 | 0.71058  |
|          |          |

\* \* \* \* \* \* \* \* \* \* \*

Voir figure 6.12

Annexe n°14 : Données de l'étude isotopique (suite) c) AFC / Assimilation des premieres syénites vieillies

Une seconde AFC est réalisée afin de modéliser les compositions isotopiques des liquides syénitiques récents ayant assimilées une partie les roches vieillies de 6 Ma. Les concentrations correspondent aux moyennes des syénites et leur compositions isotopiques est calqué sur la premiere modélisation AFC (voir page precedente - entre les liquides basaltiques alcalins et le gneiss) Les résultats forment les différentes courbes en pointillée de la figure 6 r.2. Cette modélisation permet donc d'expliquer les compositions du SRBIC les plus radiogéniques en Sr par dees processus d'AFC.

|                                                                         |                                                                    |                                                                           |                                                                                                   |                                                                                                    |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Concent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Résulta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ts d'AFC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| r                                                                       | CPX                                                                | PLG                                                                       | OL                                                                                                | OPX                                                                                                | AMPH                                                                       | QTZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 87Sr/86Sr 143Nd/144Nc                                                                                                                                                                             | 147Sm/144Nc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43/144Nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 87Rb/86Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 87Sr/86Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                         |                                                                    |                                                                           |                                                                                                   |                                                                                                    |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.705419 0.512586                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80.008796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.001252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 220.01846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0293684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | 0.0755977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 313.614135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.705471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81 80169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.12/08/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 221.8809                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.8900108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | 0.0759261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 94 011612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.707515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 82.723965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.387345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 225.70691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.22377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                   | 0.075939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.512586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 63.877826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.708270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 83.664144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.520904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 227.67242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.696125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | 0.0760511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51.887327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.708405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 84.622765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.657015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 229.67428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.047222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | 0.0761623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44.165361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.708492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85.600392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.795753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 231.71355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.281826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | 0.0762727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38.796286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.708553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86.597608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.937198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 233.79135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.40456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                   | 0.0763822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34.862209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.708598                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 87.615023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.081433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 235.90884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.419911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | 0.0764908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31.868253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.708632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | Ő                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 89.713021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.37862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 240.26771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.145746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | 0.0767054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27.648060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.708681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                         |                                                                    |                                                                           |                                                                                                   |                                                                                                    |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.708828 0.512590                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                         |                                                                    |                                                                           |                                                                                                   |                                                                                                    |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| r                                                                       | CPX                                                                | PLG                                                                       | OL                                                                                                | OPX                                                                                                | AMPH                                                                       | QTZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sm<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 87Sr/86Sr 143Nd/144N                                                                                                                                                                              | 147Sm/1441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 143/144Nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 87Rb/86Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 87Sr/86Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 00127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 220 01865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 026037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.705683 0.512563                                                                                                                                                                                 | 0.0755073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 512563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 314 139000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 705720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80.906181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.129452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 221.89991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.5670654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | 0.0757171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 140 576054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.707684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | ō                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.820536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.260007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 223.8149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.9871535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | 0.0758359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 92,683646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.708225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 82.752459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.393005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 225.76458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.2909108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | 0.0759538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70.310900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.708477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 83.702472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.528517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 227.74994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.482815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | 0.0760709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 57.390664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.708624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 84.671121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.666616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 229.77203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.567217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | 0.076187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.512563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 49.005156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.708719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85.658973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.807382                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 231.83191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.54834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                   | 0.0763022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43.144697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.708786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86.66662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.950894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 233.93071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.430283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | 0.0764165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38.834985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.708835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 87.694678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.097237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 236.06958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.217024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | 0.0765299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.546419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.708873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 88.743789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.246497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 238.24976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.912423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | 0.0766424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32.966388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.708903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.0                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 09.014022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.390/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 240.4723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.320221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 709091 0 512567                                                                                                                                                                                 | 0.0767539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30.898474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.708928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                         |                                                                    |                                                                           |                                                                                                   |                                                                                                    |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.705051 0.512507                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| r                                                                       | CPX                                                                | PLG                                                                       | OL                                                                                                | OPX                                                                                                | AMPH                                                                       | QTZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 87Sr/86Sr 143Nd/144N                                                                                                                                                                              | 147Sm/1441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 143/144Nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 87Rb/86Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 87Sr/86Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                         |                                                                    |                                                                           |                                                                                                   |                                                                                                    |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.705985 0.512542                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80.008984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.001289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 220.01884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0230212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | 0.075597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.512542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 314.615707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.706025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80.915929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.131388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 221.91961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.2697286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | 0.075722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.512542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 150.381885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.707888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.840121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.263895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 223.85447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.4095038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | 0.0758461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 101.056731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.708448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 82.782009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.398881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 223.82437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4404220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | 0.0759692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 77.363007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.708717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.0                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 84 721372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.550419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 220 87330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12 227415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | 0.0760914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54 400202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.708876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85 719851                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.819455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 231 95464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13 979069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | 0.0763328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48 014710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.700373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | ő                                                                                                 | ő                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86.738338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.965112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 234.0752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.643031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | 0.0764521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43,299851                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.709107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 87.777456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.113643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 236.23627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.222819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | 0.0765704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39.691365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.709149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 88.837853                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.265135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 238.43906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18.721844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | 0.0766877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36.853937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.709183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                                                                     | 0.05                                                               | 0.8                                                                       | 0                                                                                                 | 0                                                                                                  | 0.1                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 89.920206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.419682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 240.68485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.143414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | 0.076804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.512542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34.575775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.709210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                         |                                                                    |                                                                           |                                                                                                   |                                                                                                    |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 709393 0 512546                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                         |                                                                    |                                                                           |                                                                                                   |                                                                                                    |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.100000 0.012010                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                         |                                                                    |                                                                           |                                                                                                   |                                                                                                    |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.100000 0.012010                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| r                                                                       | CPX                                                                | PI G                                                                      | OL                                                                                                | OPX                                                                                                | AMPH                                                                       | 017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 87Sr/86Sr 143Nd/144N                                                                                                                                                                              | 147Sm/144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 143/144Nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 87Rb/86Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 87Sr/86Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| r                                                                       | CPX                                                                | PLG                                                                       | OL                                                                                                | OPX                                                                                                | AMPH                                                                       | QTZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nd<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sm<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rb<br>220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sr<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 87Sr/86Sr 143Nd/144N<br>0.706330 0.512521                                                                                                                                                         | 147Sm/1441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 143/144Nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 87Rb/86Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 87Sr/86Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| r<br>0.4                                                                | CPX<br>0.05                                                        | PLG<br>0.8                                                                | OL<br>0                                                                                           | OPX<br>0                                                                                           | AMPH<br>0.1                                                                | QTZ<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | f<br>0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nd<br>80<br>80.009083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sm<br>10<br>10.001309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rb<br>220<br>220.01904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sr<br>2<br>2.0202968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 87Sr/86Sr 143Nd/144N<br>0.706330 0.512521                                                                                                                                                         | 147Sm/144N<br>0.0755967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 143/144Nd<br>0.512521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87Rb/86Sr<br>315.050756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 87Sr/86Sr<br>0.706366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| r<br>0.4<br>0.4                                                         | CPX<br>0.05<br>0.05                                                | PLG<br>0.8<br>0.8                                                         | OL<br>0<br>0                                                                                      | OPX<br>0<br>0                                                                                      | AMPH<br>0.1<br>0.1                                                         | QTZ<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f<br>0.0001<br>0.0101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nd<br>80<br>80.009083<br>80.926068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sm<br>10<br>10.001309<br>10.133399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rb<br>220<br>220.01904<br>221.94006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sr<br>2<br>2.0202968<br>4.001122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 87Sr/86Sr 143Nd/144N<br>0.706330 0.512521                                                                                                                                                         | 147Sm/144N<br>0.0755967<br>0.0757272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 143/144Nd<br>0.512521<br>0.512521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 87Rb/86Sr<br>315.050756<br>160.496064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 87Sr/86Sr<br>0.706366<br>0.708132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| r<br>0.4<br>0.4<br>0.4                                                  | CPX<br>0.05<br>0.05<br>0.05                                        | PLG<br>0.8<br>0.8<br>0.8                                                  | OL<br>0<br>0<br>0                                                                                 | OPX<br>0<br>0<br>0                                                                                 | AMPH<br>0.1<br>0.1<br>0.1                                                  | QTZ<br>0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | f<br>0.0001<br>0.0101<br>0.0201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Nd<br>80<br>80.009083<br>80.926068<br>81.86049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sm<br>10<br>10.001309<br>10.133399<br>10.267935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rb<br>220<br>220.01904<br>221.94006<br>223.89553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sr<br>2<br>2.0202968<br>4.001122<br>5.8876698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 87Sr/86Sr 143Nd/144N<br>0.706330 0.512521                                                                                                                                                         | 147Sm/144№<br>0.0755967<br>0.0757272<br>0.0758567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 143/144Nd<br>0.512521<br>0.512521<br>0.512521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.036553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| r<br>0.4<br>0.4<br>0.4<br>0.4                                           | CPX<br>0.05<br>0.05<br>0.05<br>0.05                                | PLG<br>0.8<br>0.8<br>0.8<br>0.8                                           | OL<br>0<br>0<br>0                                                                                 | OPX<br>0<br>0<br>0                                                                                 | AMPH<br>0.1<br>0.1<br>0.1<br>0.1                                           | QTZ<br>0.05<br>0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f<br>0.0001<br>0.0101<br>0.0201<br>0.0301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nd<br>80<br>80.009083<br>80.926068<br>81.86049<br>82.812865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sm<br>10<br>10.001309<br>10.133399<br>10.267935<br>10.404987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rb<br>220<br>220.01904<br>221.94006<br>223.89553<br>225.88642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sr<br>2<br>2.0202968<br>4.001122<br>5.8876698<br>7.6835334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 87Sr/86Sr 143Nd/144N<br>0.706330 0.512521                                                                                                                                                         | 147Sm/144<br>0.0755967<br>0.0757272<br>0.0758567<br>0.0759852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.036553<br>85.069973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.708995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4                                    | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05                        | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                                    | OL<br>0<br>0<br>0<br>0                                                                            | OPX<br>0<br>0<br>0<br>0                                                                            | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1                                    | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | f<br>0.0001<br>0.0101<br>0.0201<br>0.0301<br>0.0401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nd<br>80<br>80.009083<br>80.926068<br>81.86049<br>82.812865<br>83.783727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sm<br>10<br>10.001309<br>10.133399<br>10.267935<br>10.404987<br>10.54463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rb<br>220<br>220.01904<br>221.94006<br>223.89553<br>225.88642<br>227.91375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sr<br>2<br>2.0202968<br>4.001122<br>5.8876698<br>7.6835334<br>9.3922038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 87Sr/86Sr 143Nd/144N<br>0.706330 0.512521                                                                                                                                                         | 147Sm/144<br>0.0755967<br>0.0757272<br>0.0758567<br>0.0759852<br>0.0761127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.036553<br>85.069973<br>70.219449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.708995<br>0.709166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4                             | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05                | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                      | OL<br>0<br>0<br>0<br>0<br>0                                                                       | OPX<br>0<br>0<br>0<br>0<br>0<br>0                                                                  | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1                             | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f<br>0.0001<br>0.0101<br>0.0201<br>0.0301<br>0.0401<br>0.0501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nd<br>80<br>80.009083<br>80.926068<br>81.86049<br>82.812865<br>83.783727<br>84.773635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sm<br>10<br>10.001309<br>10.133399<br>10.267935<br>10.404987<br>10.54463<br>10.68694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rb<br>220<br>220.01904<br>221.94006<br>223.89553<br>225.88642<br>227.91375<br>229.97857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sr<br>2<br>2.0202968<br>4.001122<br>5.8876698<br>7.6835334<br>9.3922038<br>11.017072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 875r/86Sr 143Nd/144N<br>0.706330 0.512521                                                                                                                                                         | 147Sm/144h<br>0.0755967<br>0.0757272<br>0.0758567<br>0.0759852<br>0.0761127<br>0.0762391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.036553<br>85.069973<br>70.219449<br>60.406045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.708995<br>0.709166<br>0.709279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4                      | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05        | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1                      | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | f<br>0.0001<br>0.0201<br>0.0301<br>0.0401<br>0.0501<br>0.0601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nd<br>80.009083<br>80.926068<br>81.86049<br>82.812865<br>83.783727<br>84.773635<br>85.783167<br>86.912928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sm<br>10<br>10.001309<br>10.133399<br>10.267935<br>10.404987<br>10.54463<br>10.68694<br>10.631998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rb<br>220.01904<br>221.94006<br>223.89553<br>225.88642<br>227.91375<br>229.97857<br>232.082<br>234.22515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sr<br>2<br>2.0202968<br>4.001122<br>5.8876698<br>7.6835334<br>9.3922038<br>11.017072<br>12.56143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 875r/86Sr 143Nd/144N<br>0.706330 0.512521                                                                                                                                                         | 147Sm/1441<br>0.0755967<br>0.0757272<br>0.0758567<br>0.0759852<br>0.0761127<br>0.0762391<br>0.0763645<br>0.0763645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.036553<br>85.069973<br>70.219449<br>60.406045<br>53.464437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.708995<br>0.709166<br>0.709279<br>0.709360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4        | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1               | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f<br>0.0001<br>0.0201<br>0.0301<br>0.0401<br>0.0501<br>0.0601<br>0.0701<br>0.0801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nd<br>80.009083<br>80.926068<br>81.86049<br>82.812865<br>83.783727<br>84.773635<br>85.783167<br>86.812928<br>87.883548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sm<br>10<br>10.001309<br>10.267935<br>10.404987<br>10.54463<br>10.68694<br>10.831998<br>10.979885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rb<br>220<br>220.01904<br>221.94006<br>223.89553<br>225.88642<br>227.91375<br>229.97857<br>232.082<br>234.22515<br>236.40924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sr<br>2.0202968<br>4.001122<br>5.8876698<br>7.6835334<br>9.3922038<br>11.017072<br>12.56143<br>14.028474<br>15.421304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 875r/86Sr 143Nd/144N<br>0.706330 0.512521                                                                                                                                                         | 147Sm/1441<br>0.0755967<br>0.0757272<br>0.0758567<br>0.0759852<br>0.0761127<br>0.0762391<br>0.0763645<br>0.0764889<br>0.0764889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.036553<br>85.069973<br>70.219449<br>60.406045<br>53.464437<br>48.315701<br>44.261036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.708995<br>0.709166<br>0.709279<br>0.709360<br>0.709426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                              | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                         | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1        | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f<br>0.0001<br>0.0201<br>0.0301<br>0.0401<br>0.0501<br>0.0601<br>0.0701<br>0.0801<br>0.0901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nd<br>80.009083<br>80.926068<br>81.86049<br>82.812865<br>83.783727<br>84.773635<br>85.783167<br>86.812928<br>87.863548<br>88.935683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sm<br>10<br>10.001309<br>10.133399<br>10.267935<br>10.404987<br>10.54463<br>10.68694<br>10.831998<br>10.979885<br>11.130689<br>11.284501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rb<br>220<br>220.01904<br>221.94006<br>223.89553<br>225.88642<br>227.91375<br>229.97857<br>232.082<br>234.22515<br>236.40924<br>238.6355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sr<br>2<br>2.0202968<br>4.001122<br>5.8876698<br>7.6835334<br>9.3922038<br>11.017072<br>12.56143<br>14.028474<br>15.421304<br>16 74293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 875r/86Sr 143Nd/144N<br>0.706330 0.512521                                                                                                                                                         | 147Sm/1441<br>0.0755967<br>0.0757272<br>0.0758567<br>0.0759852<br>0.076182<br>0.0763645<br>0.0763645<br>0.0764889<br>0.0766123<br>0.0767346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.036553<br>85.069973<br>70.219449<br>60.406045<br>53.464437<br>48.315701<br>44.361936<br>41.245095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708995<br>0.709166<br>0.709279<br>0.709360<br>0.709460<br>0.709420<br>0.709460<br>0.7094503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f<br>0.0001<br>0.0101<br>0.0201<br>0.0301<br>0.0501<br>0.0601<br>0.0601<br>0.0801<br>0.0901<br>0.1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nd<br>80.009083<br>80.926068<br>81.86049<br>82.812865<br>83.783727<br>84.773635<br>85.783167<br>86.812928<br>87.863548<br>88.935683<br>90.030017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sm<br>10<br>10.001309<br>10.133399<br>10.267935<br>10.404987<br>10.54463<br>10.68694<br>10.831998<br>10.879885<br>11.130689<br>11.284501<br>11.441413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rb<br>220<br>220.01904<br>221.94006<br>223.89553<br>225.88642<br>227.91375<br>229.97857<br>232.082<br>234.22515<br>236.40924<br>238.6355<br>240.90522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sr<br>2<br>2.0202968<br>4.001122<br>5.8876698<br>7.6835334<br>9.3922038<br>11.017072<br>12.56143<br>14.028474<br>15.7421304<br>16.74293<br>17.996268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 875r/86Sr 143Nd/144N<br>0.706330 0.512521                                                                                                                                                         | 147Sm/144<br>0.0755967<br>0.0757272<br>0.0758567<br>0.0758852<br>0.0762391<br>0.0762391<br>0.07663645<br>0.0766489<br>0.0766123<br>0.07667346<br>0.0767346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>0.512522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.036553<br>85.069973<br>70.219449<br>60.406045<br>53.464437<br>48.315701<br>44.361936<br>41.245095<br>38.737692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.708995<br>0.709166<br>0.709279<br>0.709360<br>0.709420<br>0.709420<br>0.709440<br>0.709503<br>0.709503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | OPX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                          | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f<br>0.0001<br>0.0101<br>0.0201<br>0.0401<br>0.0501<br>0.0601<br>0.0701<br>0.0801<br>0.0901<br>0.1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nd<br>80<br>80.009083<br>80.026068<br>81.86049<br>82.812865<br>83.783727<br>84.773635<br>85.783167<br>86.812928<br>87.863548<br>88.935683<br>90.030017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sm<br>10<br>10.001309<br>10.267935<br>10.404987<br>10.54463<br>10.68694<br>10.831998<br>10.979885<br>11.130689<br>11.284501<br>11.441413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rb<br>220<br>220.01904<br>221.94006<br>223.89553<br>225.88642<br>227.91375<br>239.07857<br>232.082<br>234.22515<br>236.40924<br>238.6355<br>240.90522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sr<br>2<br>2.0202968<br>4.001122<br>5.8876698<br>7.6835334<br>9.3922038<br>11.017072<br>12.56143<br>14.028474<br>15.421304<br>16.74293<br>17.996268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.70630 0.512521<br>0.706330 0.512521<br>0.709738 0.512525                                                                                                                                        | 147Sm/1441<br>0.0755967<br>0.0757272<br>0.0758567<br>0.0759852<br>0.0761127<br>0.0762391<br>0.07663645<br>0.0764889<br>0.0766123<br>0.076856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>0.512522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87Rb/86Sr<br>315.050756<br>160.490064<br>110.036553<br>85.069973<br>70.219449<br>60.406045<br>53.464437<br>48.315701<br>44.361936<br>41.245095<br>38.737692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.708995<br>0.709166<br>0.709279<br>0.709360<br>0.709420<br>0.709420<br>0.709450<br>0.709533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                         | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f<br>0.0001<br>0.0101<br>0.0201<br>0.0501<br>0.0501<br>0.0601<br>0.0701<br>0.0801<br>0.0901<br>0.1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nd<br>80<br>80.92608<br>81.86049<br>82.812865<br>83.783727<br>84.773635<br>85.783167<br>86.812928<br>87.863548<br>88.935683<br>90.030017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sm<br>10<br>10.001309<br>10.267935<br>10.404987<br>10.68694<br>10.68198<br>10.979885<br>11.130689<br>11.284501<br>11.441413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rb<br>220<br>220.01904<br>223.89553<br>225.88642<br>227.91375<br>232.082<br>234.22515<br>236.4024<br>236.4024<br>236.40352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sr<br>2.0202968<br>4.001122<br>5.8876698<br>7.0835334<br>9.3922038<br>11.017072<br>12.56143<br>14.028474<br>15.421304<br>16.74293<br>17.996268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.706360 0.512521<br>875r/86Sr 143Nd/144N<br>0.706330 0.512521<br>0.709738 0.512525                                                                                                               | 147Sm/1441<br>0.0755967<br>0.0757272<br>0.0758567<br>0.0759852<br>0.0761127<br>0.0762391<br>0.0763645<br>0.0764889<br>0.0766123<br>0.0766123<br>0.07667346<br>0.076856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>0.512522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.036553<br>85.069973<br>70.219449<br>60.406045<br>53.464437<br>48.315701<br>44.361936<br>41.245095<br>38.737692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.708995<br>0.709360<br>0.709279<br>0.709360<br>0.709420<br>0.709460<br>0.709503<br>0.709533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f<br>0.0001<br>0.0101<br>0.0201<br>0.0301<br>0.0501<br>0.0501<br>0.0701<br>0.0801<br>0.0901<br>0.1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nd<br>80.009083<br>80.926068<br>81.86049<br>82.812865<br>83.783727<br>84.773635<br>85.783167<br>86.812928<br>87.863548<br>89.935683<br>90.030017<br>Nd<br>80.935683<br>90.030017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sm<br>10<br>10.001309<br>10.287935<br>10.404987<br>10.58694<br>10.68694<br>10.68194<br>10.681998<br>11.130689<br>11.284501<br>11.441413<br>Sm<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rb<br>220<br>220.01904<br>223.89553<br>225.88642<br>227.91375<br>232.082<br>234.22215<br>234.22215<br>236.40924<br>238.6355<br>240.90522<br>Rb<br>220<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sr<br>2<br>2.0202966<br>4.001122<br>5.8876698<br>7.8835334<br>9.3922038<br>11.017072<br>12.56143<br>14.028474<br>15.42130<br>16.74293<br>17.996268<br>Sr<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.706360 0.512515<br>875//86Sr 143Nd/144N<br>0.706330 0.512521<br>0.709738 0.512525<br>875//86Sr 143Nd/144N<br>9.709756 0.515525                                                                  | 147Sm/1441<br>0.0755967<br>0.0757272<br>0.0758567<br>0.0759852<br>0.0761127<br>0.0762391<br>0.0764889<br>0.0764889<br>0.0766123<br>0.0767346<br>0.076856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>0.512522<br>0.512522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.036553<br>85.069973<br>70.219449<br>60.406045<br>53.464437<br>48.315701<br>44.361936<br>38.737692<br>87Rb/86Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.708799<br>0.709420<br>0.709420<br>0.709420<br>0.709503<br>0.709533<br>87Sr/86Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f<br>0.0001<br>0.0101<br>0.0301<br>0.0501<br>0.0501<br>0.0701<br>0.0801<br>0.0901<br>0.1001<br>f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Nd<br>80<br>80.099083<br>80.926068<br>81.86049<br>82.812865<br>83.783727<br>84.773635<br>85.783167<br>86.812928<br>87.863548<br>89.0330017<br>Nd<br>80.030017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sm<br>10<br>10.001309<br>10.267935<br>10.404987<br>10.54463<br>10.68694<br>10.831998<br>11.284501<br>11.424501<br>11.441413<br>Sm<br>10<br>0.011329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rb<br>220<br>221.94006<br>223.89553<br>225.88642<br>227.91375<br>239.082<br>234.22515<br>236.40924<br>238.6355<br>240.90522<br>Rb<br>220<br>220.01095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sr<br>2<br>2.0202968<br>4.001122<br>5.8876688<br>7.6835334<br>9.3922038<br>11.017072<br>12.56143<br>14.028474<br>15.421304<br>16.74233<br>17.996268<br>Sr<br>2.017841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.709738 0.512525<br>875//865r 143Nd/144N<br>0.706330 0.512521<br>0.709738 0.512525<br>875//865r 143Nd/144N<br>0.706725 0.512502                                                                  | 147Sm/144 <sup>1</sup><br>0.0755967<br>0.0757272<br>0.0758867<br>0.0759852<br>0.076139852<br>0.076139<br>0.0761239<br>0.07663645<br>0.0766423<br>0.07667346<br>0.0766566<br>147Sm/144 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>0.512522<br>143/144Nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.036553<br>85.069973<br>70.219449<br>60.406045<br>53.464437<br>48.315701<br>44.361936<br>41.245095<br>38.737692<br>87Rb/86Sr<br>315.446572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.709895<br>0.709166<br>0.709279<br>0.709360<br>0.709466<br>0.709503<br>0.709533<br>87Sr/86Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1               | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f<br>0.0001<br>0.0201<br>0.0301<br>0.0501<br>0.0501<br>0.0601<br>0.0701<br>0.0801<br>0.1001<br>f<br>0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Nd<br>80<br>80,009083<br>80,926068<br>81,86049<br>82,812865<br>83,783727<br>84,773635<br>85,783167<br>86,812928<br>87,863548<br>90,030017<br>Nd<br>80,009187<br>80,936622                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sm<br>10<br>10.001309<br>10.267935<br>10.404987<br>10.54463<br>10.68694<br>10.31998<br>11.284501<br>11.441413<br>Sm<br>10.001329<br>10.1013549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rb<br>220<br>221,94006<br>223,89553<br>225,88642<br>229,97857<br>232,082<br>234,22515<br>240,90522<br>240,90522<br>Rb<br>220,01925<br>221,96135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sr<br>2<br>2.0202968<br>4.001122<br>5.8876698<br>7.6835334<br>9.3922038<br>11.017072<br>12.56143<br>11.017072<br>14.028474<br>15.421304<br>16.74293<br>17.996268<br>Sr<br>2<br>2.017841<br>3.7589992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.709738 0.512525<br>0.709738 0.512525<br>0.709738 0.512525<br>87Sr/86Sr 143Nd/144N<br>0.706725 0.512502                                                                                          | 147Sm/144F<br>0.0755967<br>0.0757272<br>0.0758567<br>0.0759852<br>0.0761427<br>0.0763291<br>0.076346<br>0.076346<br>0.076346<br>0.0767346<br>0.076556<br>147Sm/144F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>143/144Nd<br>0.512502<br>0.512502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.036553<br>85.069973<br>70.219449<br>60.406045<br>53.464437<br>48.315701<br>44.361936<br>41.245095<br>38.737692<br>87Rb/86Sr<br>315.446572<br>170.85500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.709279<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>87Sr/86Sr<br>0.709533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f<br>0.0001<br>0.0101<br>0.0201<br>0.0401<br>0.0501<br>0.0601<br>0.0001<br>0.1001<br>f<br>0.0001<br>0.0201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Nd<br>80<br>80.099083<br>80.926068<br>81.86049<br>82.812865<br>83.783727<br>86.812928<br>87.863548<br>88.935683<br>90.030017<br>Nd<br>80.009187<br>80.396622<br>81.818169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sm<br>10<br>10.001309<br>10.287935<br>10.404987<br>10.54463<br>10.68694<br>10.31998<br>10.379885<br>11.130689<br>11.284501<br>11.284501<br>11.244113<br>Sm<br>10<br>10.001329<br>10.13549<br>10.272135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rb<br>220<br>220.01904<br>221.94006<br>223.89553<br>225.88642<br>234.22515<br>234.0924<br>234.22515<br>236.40924<br>238.6355<br>240.90522<br>Rb<br>220.01925<br>221.9613<br>223.93818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sr<br>2<br>2.0202968<br>4.001122<br>5.876698<br>7.6835334<br>13.07072<br>12.56143<br>14.028474<br>15.421304<br>16.74293<br>17.996268<br>Sr<br>2.2017841<br>3.7589992<br>5.417287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.70630 0.51251<br>875//86Sr 143Nd/144N<br>0.706330 0.512521<br>0.709738 0.512525<br>875//86Sr 143Nd/144N<br>0.706725 0.512502                                                                    | 147Sm/144 <sup>1</sup><br>0.07552967<br>0.07552867<br>0.07582607<br>0.0768122<br>0.0768123<br>0.0768489<br>0.07664123<br>0.0767846<br>0.0767856<br>147Sm/144 <sup>1</sup><br>0.0755964<br>0.0755964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>0.512522<br>143/144Nd<br>0.512502<br>0.512502<br>0.512502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.036553<br>85.069973<br>70.219449<br>60.406045<br>53.464437<br>48.315701<br>44.361936<br>41.245095<br>38.737692<br>87Rb/86Sr<br>315.446572<br>170.855091<br>119.617388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.708995<br>0.709160<br>0.709279<br>0.709360<br>0.709420<br>0.709446<br>0.709533<br>87Sr/86Sr<br>0.706758<br>0.706758<br>0.706424<br>0.709612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1               | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f<br>0.0001<br>0.0101<br>0.0201<br>0.0501<br>0.0501<br>0.0601<br>0.0601<br>0.0901<br>0.1001<br>f<br>0.0001<br>0.0101<br>0.0201<br>0.0301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Nd<br>80<br>80.009083<br>81.86049<br>82.812866<br>83.783727<br>86.812928<br>87.853548<br>89.95683<br>90.030017<br>Nd<br>80.009187<br>80.936622<br>81.881693<br>82.844921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sm<br>10<br>10.001309<br>10.133399<br>10.267935<br>10.404987<br>10.54463<br>10.68694<br>10.68594<br>11.30689<br>11.284501<br>11.441413<br>Sm<br>10<br>10.001329<br>10.272135<br>10.241336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rb<br>220 (1904)<br>221,94006<br>223,88953<br>225,88642<br>227,91375<br>229,97857<br>232,082<br>234,22215<br>236,40224<br>236,4024<br>236,4024<br>236,4025<br>240,90522<br>Rb<br>220,01925<br>221,96108<br>223,93818<br>225,95006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sr<br>2<br>2.0202968<br>4.001122<br>5.8876698<br>7.6835334<br>9.3922038<br>11.017072<br>12.56143<br>14.028474<br>15.421304<br>16.794298<br>17.966268<br>Sr<br>2<br>2.017841<br>3.7589992<br>5.417287<br>6.9958628                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.706360 0.51251<br>875r/86Sr 143Nd/144N<br>0.706330 0.512521<br>0.709738 0.512525<br>875r/86Sr 143Nd/144N<br>0.706725 0.512502                                                                   | 147Sm/144 <sup>1</sup><br>0.0755967<br>0.0757272<br>0.0758867<br>0.0759850<br>0.0768127<br>0.0762391<br>0.0766123<br>0.0766123<br>0.0766734<br>0.0766734<br>0.076856<br>147Sm/144 <sup>1</sup><br>0.0755964<br>0.0755964<br>0.07559867<br>0.07563867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>0.512522<br>143/144Nd<br>0.512502<br>0.512502<br>0.512502<br>0.512502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.036553<br>85.069973<br>70.219449<br>60.406045<br>53.464437<br>44.361306<br>41.245095<br>38.737692<br>87Rb/86Sr<br>315.446572<br>315.446572<br>110.855091<br>119.617388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.709290<br>0.709290<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1               | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f<br>0.0001<br>0.0101<br>0.0201<br>0.0501<br>0.0501<br>0.0601<br>0.0901<br>0.1001<br>f<br>0.0001<br>0.0001<br>0.0201<br>0.0201<br>0.0301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Nd<br>80<br>80,009083<br>80,926068<br>81,86049<br>82,812865<br>83,783727<br>84,773635<br>85,783167<br>86,812928<br>87,785348<br>88,935683<br>90,030017<br>Nd<br>80,099187<br>80,936622<br>81,881693<br>82,844921<br>83,826844921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sm<br>10<br>10.001309<br>10.27935<br>10.404987<br>10.54463<br>10.68694<br>10.431998<br>11.284501<br>11.441413<br>Sm<br>10.01329<br>10.01329<br>10.272135<br>10.41336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rb<br>220<br>220.01904<br>221.94006<br>223.89553<br>225.88642<br>227.91375<br>232.022<br>234.22515<br>236.40924<br>236.40924<br>236.40925<br>240.90522<br>Rb<br>220.01925<br>221.9613<br>223.93818<br>225.95086<br>228.00039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sr<br>2<br>2.0202966<br>4.001122<br>5.8376698<br>7.0835334<br>9.3922038<br>11.017072<br>12.56143<br>14.028474<br>15.42130<br>16.74293<br>17.996268<br>Sr<br>2<br>2.017841<br>3.7589992<br>5.417287<br>6.99556228<br>8.4977952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.709738 0.512525<br>0.709738 0.512525<br>0.709738 0.512525<br>87Sr/86Sr 143Nd/144N<br>0.706725 0.512502                                                                                          | 147Sm/144 <sup>k</sup><br>0.0755967<br>0.0757272<br>0.0758567<br>0.0759852<br>0.0761427<br>0.076342391<br>0.0763464<br>0.076346<br>0.0767346<br>0.0767346<br>0.07655664<br>0.0755964<br>0.0755964<br>0.0755964<br>0.0755964<br>0.0755964<br>0.0755964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>0.512522<br>0.512522<br>143/144Nd<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87Rb/86Sr<br>315.050766<br>160.496064<br>110.036553<br>85.069973<br>70.219449<br>60.406045<br>53.464437<br>44.361936<br>87Rb/86Sr<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.466572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>315.44672<br>315.44672<br>315.44672<br>315.44672<br>315.44672<br>315.44672<br>315.44672<br>315.44672<br>315.44672<br>315.446772<br>315.446772<br>315.446772<br>315.4 | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.709379<br>0.709379<br>0.709420<br>0.709420<br>0.709450<br>0.709450<br>0.709503<br>0.709503<br>87Sr/86Sr<br>0.706758<br>0.706758<br>0.706758<br>0.706758<br>0.706758<br>0.706758<br>0.706918<br>0.709318<br>0.709318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1               | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f<br>0.0001<br>0.0201<br>0.0301<br>0.0501<br>0.0701<br>0.0801<br>0.0801<br>0.1001<br>f<br>0.0001<br>0.0001<br>0.0201<br>0.0201<br>0.0201<br>0.0201<br>0.0201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nd<br>80.009083<br>81.86049<br>81.86049<br>82.812865<br>83.783727<br>84.773635<br>85.783167<br>86.812928<br>80.030017<br>Nd<br>80.030017<br>Nd<br>80.009187<br>80.36622<br>81.881693<br>81.881693<br>81.881693<br>82.844921<br>83.826448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sm<br>10<br>10.001309<br>10.133399<br>10.267935<br>10.267935<br>10.26463<br>10.68894<br>10.38198<br>10.379885<br>11.284501<br>11.441413<br>Sm<br>10.001329<br>10.13549<br>10.272135<br>10.272135<br>10.272135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rb<br>220<br>220.01904<br>221.94006<br>223.89553<br>225.88642<br>234.22515<br>234.0924<br>234.22515<br>234.0924<br>238.6355<br>240.90522<br>Rb<br>220.01925<br>221.9613<br>223.93818<br>225.95086<br>223.0039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sr<br>2<br>2.0202966<br>4.001122<br>5.8876698<br>7.6835334<br>9.3922038<br>11.017072<br>12.56143<br>14.028474<br>15.42130<br>17.996268<br>Sr<br>2<br>2.017841<br>3.7589992<br>5.417287<br>6.9958628<br>8.4977952<br>9.9250648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.70630 0.51252<br>875//86Sr 143Nd/144N<br>0.706330 0.512521<br>0.709738 0.512525<br>875//86Sr 143Nd/144N<br>0.706725 0.512502                                                                    | 147Sm/144 <sup>k</sup><br>0.0755967<br>0.07587272<br>0.07588567<br>0.0758965<br>0.0762391<br>0.07683645<br>0.0766123<br>0.0766123<br>0.076656<br>147Sm/144 <sup>k</sup><br>0.0755964<br>0.0758964<br>0.0758964<br>0.0758964<br>0.0758964<br>0.0758964<br>0.0758964<br>0.0758964<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0758961<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0758950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.0768950<br>0.076895000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>0.512522<br>143/144Nd<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.036553<br>53.46437<br>48.315701<br>44.361936<br>41.245095<br>38.737692<br>87Rb/86Sr<br>315.446572<br>170.855091<br>119.617388<br>93.461682<br>77.642227<br>67.079500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.709950<br>0.709450<br>0.709450<br>0.709420<br>0.709503<br>0.709503<br>0.709503<br>87Sr/86Sr<br>0.706758<br>0.706424<br>0.709502<br>0.709502<br>0.709502<br>0.709502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1               | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f<br>0.0001<br>0.0201<br>0.0301<br>0.0601<br>0.0601<br>0.0601<br>0.0001<br>0.1001<br>f<br>0.0001<br>0.0001<br>0.0201<br>0.0301<br>0.0401<br>0.0501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nd<br>80<br>80.009083<br>81.86049<br>82.812865<br>83.783727<br>86.812928<br>87.85348<br>88.935683<br>90.030017<br>Nd<br>80.039187<br>80.036622<br>81.881693<br>82.844921<br>83.826848<br>84.828036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sm<br>10<br>10.001309<br>10.133399<br>10.667935<br>10.64634<br>10.68694<br>10.68694<br>11.30689<br>11.284501<br>11.441413<br>Sm<br>10<br>10.001329<br>10.2135<br>10.01349<br>10.22135<br>10.41336<br>10.54504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rb<br>220 (2)<br>220 (2)<br>221,94006<br>223,8953<br>225,88642<br>227,91375<br>229,97857<br>232,082<br>234,2024<br>234,2024<br>236,4024<br>236,4024<br>236,4024<br>236,4024<br>220,01925<br>221,9613<br>223,93818<br>223,95066<br>228,00039<br>230,08782<br>230,00782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sr<br>2<br>2.0202968<br>4.001122<br>5.8876699<br>7.6835334<br>9.3922038<br>11.017072<br>12.56143<br>14.028474<br>15.42130<br>17.996268<br>17.996268<br>Sr<br>2.2017841<br>3.7589992<br>5.417287<br>6.9958628<br>8.4977952<br>9.9260648<br>11.283565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.70630 0.512521<br>875r/86Sr 143Nd/144N<br>0.706330 0.512521<br>0.709738 0.512525<br>875r/86Sr 143Nd/144N<br>0.706725 0.512502                                                                   | 147Sm/144 <sup>1</sup><br>0.0755967<br>0.0757272<br>0.0758867<br>0.0759850<br>0.0768127<br>0.076826<br>0.0766123<br>0.0766123<br>0.0766734<br>0.0766734<br>0.076856<br>147Sm/144 <sup>1</sup><br>0.0755364<br>0.0758567<br>0.07563867<br>0.07601347<br>0.07601347<br>0.0762666<br>0.0763384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>143/144Nd<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.51 | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.036553<br>85.069973<br>70.219449<br>60.406045<br>53.464437<br>44.361306<br>41.245095<br>38.737692<br>87Rb/86Sr<br>315.446572<br>170.855091<br>119.617388<br>93.461642<br>77.642227<br>67.079500<br>59.555255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.7099166<br>0.709326<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709431<br>0.706758<br>0.706424<br>0.709016<br>0.709016<br>0.709016<br>0.709016<br>0.709016<br>0.709016<br>0.709016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1               | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f<br>0.0001<br>0.0101<br>0.0201<br>0.0401<br>0.0501<br>0.0601<br>0.0901<br>0.1001<br>f<br>0.0001<br>0.0001<br>0.0201<br>0.0301<br>0.0401<br>0.0501<br>0.0501<br>0.0501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Nd<br>80<br>80<br>80,099033<br>80,926068<br>81,86049<br>82,812865<br>83,783727<br>84,773635<br>85,783167<br>86,812928<br>87,785348<br>89,935683<br>90,030017<br>Nd<br>80,09187<br>80,093672<br>81,881693<br>82,844921<br>83,826848<br>84,828036<br>85,849074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sm<br>10<br>10.001309<br>10.27935<br>10.404987<br>10.54463<br>10.68694<br>10.381998<br>11.284501<br>11.424501<br>11.424501<br>11.013549<br>10.272135<br>10.41336<br>10.453168<br>10.553168<br>10.6553168<br>10.845246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rb<br>220<br>220.01904<br>221.94006<br>223.8953<br>225.88642<br>227.91375<br>229.9757<br>232.082<br>234.22515<br>236.40924<br>238.6355<br>240.90522<br>Rb<br>220.01925<br>221.9613<br>223.93818<br>225.95086<br>228.0039<br>230.08782<br>234.38008782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sr<br>2<br>2.0202966<br>4.001122<br>5.876698<br>7.0835334<br>9.3922038<br>11.017072<br>12.56143<br>14.028474<br>15.42130<br>16.74293<br>17.996268<br>Sr<br>2.017841<br>3.7589992<br>5.417287<br>6.99556228<br>8.4977952<br>9.9260648<br>11.283565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.709738 0.512525<br>0.709738 0.512525<br>0.709738 0.512525<br>87Sr/86Sr 143Nd/144N<br>0.706725 0.512502                                                                                          | 147Sm/144P<br>0.0755967<br>0.0757272<br>0.0758850<br>0.0759852<br>0.0761427<br>0.0763291<br>0.076346<br>0.076346<br>0.0766123<br>147Sm/144P<br>0.0755964<br>0.0755964<br>0.0755964<br>0.0755964<br>0.0755964<br>0.0755964<br>0.0755964<br>0.0755964<br>0.07563677<br>0.0760374<br>0.0766374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>0.512522<br>0.512522<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512 | 87Rb/86Sr<br>315.050766<br>160.496064<br>110.03653<br>85.069973<br>70.219449<br>60.406045<br>53.464437<br>44.361936<br>87Rb/86Sr<br>315.446572<br>315.446572<br>315.446572<br>315.446572<br>717.0855061<br>119.617388<br>93.461682<br>77.642227<br>67.079590<br>59.555265<br>53.946096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.709379<br>0.709379<br>0.709420<br>0.709420<br>0.709420<br>0.709450<br>0.709503<br>0.709503<br>0.709503<br>0.709503<br>0.709675<br>0.706758<br>0.706758<br>0.706758<br>0.706758<br>0.709016<br>0.709318<br>0.7099318<br>0.709925<br>0.7099318<br>0.7099318<br>0.7099318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1               | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f<br>0.0001<br>0.0201<br>0.0301<br>0.0501<br>0.0501<br>0.0701<br>0.1001<br>f<br>0.0001<br>0.1001<br>f<br>0.0201<br>0.0201<br>0.0201<br>0.0201<br>0.0501<br>0.0501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nd<br>80<br>80.09063<br>81.86049<br>82.812865<br>83.783727<br>84.773635<br>85.783767<br>86.812928<br>87.863548<br>88.935683<br>90.030017<br>Nd<br>80.009187<br>80.936622<br>81.881663<br>82.844921<br>83.826448<br>84.828036<br>85.849074<br>86.89075<br>86.9953164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sm<br>10<br>10.001309<br>10.267935<br>10.267935<br>10.267935<br>10.26463<br>10.68694<br>10.38198<br>10.97985<br>11.30689<br>11.284501<br>11.441413<br>Sm<br>10<br>10.001329<br>10.13549<br>10.2272135<br>10.411336<br>10.55716<br>10.5697709<br>10.84504<br>10.995246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rb<br>220<br>220.01904<br>221.94006<br>223.89553<br>225.88642<br>229.97857<br>234.22515<br>234.22515<br>236.40224<br>236.40254<br>236.40252<br>240.90522<br>240.90522<br>221.9613<br>223.98088<br>228.95086<br>228.90039<br>228.95086<br>228.00039<br>230.08782<br>232.9427<br>234.88089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sr<br>2<br>2.0202968<br>4.001122<br>5.8876698<br>7.6835334<br>9.3922038<br>11.017072<br>12.56143<br>14.028474<br>15.42130<br>15.42130<br>17.996268<br>Sr<br>2<br>2.017841<br>3.7589992<br>5.417287<br>6.9958628<br>8.4977952<br>9.9220648<br>11.283565<br>12.573106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.70636 0.51252<br>875r/86Sr 143Nd/144N<br>0.706330 0.512521<br>0.709738 0.512525<br>875r/86Sr 143Nd/144N<br>0.706725 0.512502                                                                    | 147Sm/144 <sup>k</sup><br>0.0755967<br>0.0757272<br>0.0758567<br>0.0759852<br>0.0761127<br>0.07683645<br>0.0766128<br>0.0766128<br>0.076656<br>147Sm/144 <sup>k</sup><br>0.0755964<br>0.0755964<br>0.0755964<br>0.0755964<br>0.0755964<br>0.0755964<br>0.0758077<br>0.075001347<br>0.075206<br>0.07683974<br>0.0756271<br>0.07683974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>0.512522<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512 | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.036553<br>85.069973<br>70.219449<br>60.406045<br>53.464437<br>48.315701<br>44.361935<br>87.737692<br>87Rb/86Sr<br>315.446572<br>170.855091<br>119.61738<br>93.461682<br>77.642227<br>67.079590<br>59.555265<br>53.946096<br>49.622570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.7098709<br>0.709970<br>0.709420<br>0.709420<br>0.709420<br>0.709460<br>0.709420<br>0.709420<br>0.709420<br>0.709503<br>0.709503<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709513<br>0.709502<br>0.709513<br>0.709512<br>0.709513<br>0.709512<br>0.709512<br>0.709513<br>0.709512<br>0.709512<br>0.709512<br>0.709513<br>0.709513<br>0.709512<br>0.709512<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709717<br>0.709715<br>0.709715<br>0.709715<br>0.709715<br>0.709715<br>0.709715<br>0.709715<br>0 |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1               | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f<br>0.0001<br>0.0201<br>0.0301<br>0.0501<br>0.0501<br>0.0601<br>0.0001<br>0.1001<br>f<br>0.0001<br>0.0201<br>0.0301<br>0.0401<br>0.0301<br>0.0401<br>0.0501<br>0.0601<br>0.0501<br>0.0601<br>0.0601<br>0.0501<br>0.0601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Nd<br>80<br>80.009083<br>81.86049<br>82.812865<br>83.783727<br>86.812928<br>87.863548<br>88.935683<br>90.030017<br>Nd<br>80.039187<br>80.039187<br>80.039187<br>80.038622<br>81.81693<br>82.844921<br>83.826848<br>84.828036<br>85.849074<br>85.849074<br>85.849075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sm<br>10<br>10.001309<br>10.133399<br>10.267935<br>10.404987<br>10.54463<br>10.68694<br>10.331998<br>10.279885<br>11.30689<br>11.284501<br>11.441413<br>Sm<br>10<br>10.001329<br>10.272135<br>10.41134<br>10.44134<br>10.5453168<br>10.697709<br>10.2453168<br>10.84574<br>11.148415<br>11.304637                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rb<br>220<br>220.01904<br>221.94006<br>223.88642<br>227.91375<br>228.98642<br>234.222175<br>236.40224<br>236.40224<br>236.40224<br>236.40224<br>236.40224<br>220.01925<br>220.01925<br>221.9613<br>223.93818<br>225.95066<br>228.00039<br>230.08782<br>233.21427<br>234.38089<br>230.28782<br>236.58889<br>238.83952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sr<br>2 2.022968<br>4 .001122<br>5.8876699<br>7.6835334<br>9.3922038<br>11.017072<br>12.56143<br>14.028474<br>15.42130<br>17.996268<br>17.996268<br>Sr<br>2 2.017841<br>3.7589992<br>5.417287<br>6.9958628<br>8.4977952<br>9.9260648<br>11.283565<br>12.573106<br>13.3797414<br>14.9595131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.70630 0.512521<br>875r/86Sr 143Nd/144N<br>0.706330 0.512521<br>0.709738 0.512525<br>875r/86Sr 143Nd/144N<br>0.706725 0.512502                                                                   | 147Sm/144 <sup>1</sup><br>0.0755967<br>0.0757272<br>0.0758867<br>0.0759850<br>0.0761127<br>0.0762391<br>0.0766132<br>0.0766132<br>0.0766734<br>0.076856<br>147Sm/144 <sup>1</sup><br>0.0755964<br>0.07585867<br>0.07653867<br>0.07653867<br>0.076635867<br>0.07633<br>0.0765271<br>0.07663271<br>0.07663271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>143/144Nd<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.51 | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.036553<br>85.069973<br>70.219449<br>60.406045<br>53.464437<br>44.361306<br>41.245095<br>38.737692<br>87Rb/86Sr<br>315.446572<br>710.855091<br>119.61738<br>93.46166S<br>73.464572<br>77.642227<br>67.079590<br>93.46166<br>53.946096<br>49.622570<br>49.622570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.709209<br>0.709360<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709424<br>0.709513<br>0.709510<br>0.709779<br>0.709851<br>0.709851<br>0.709851                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1               | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f<br>0.0001<br>0.0101<br>0.0201<br>0.0501<br>0.0501<br>0.0601<br>0.0001<br>0.1001<br>f<br>0.0001<br>0.0201<br>0.0201<br>0.0201<br>0.0201<br>0.0401<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0601<br>0.0701<br>0.0601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Nd<br>80<br>80,009083<br>80,926068<br>81,86049<br>82,812865<br>83,783727<br>86,812928<br>87,763548<br>88,935683<br>90,030017<br>Nd<br>80,0396622<br>81,881693<br>82,844921<br>83,826488<br>84,828036<br>85,849074<br>85,849057<br>87,953164<br>89,037517<br>90,144322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sm<br>10<br>10.001309<br>10.27935<br>10.6463<br>10.68694<br>10.68694<br>10.68694<br>10.68694<br>11.130689<br>11.284501<br>11.441413<br>10.01329<br>10.272135<br>10.41336<br>10.553168<br>10.6553168<br>10.6553168<br>10.6553168<br>10.6553168<br>10.6553168<br>10.6553168<br>10.84504<br>11.304637<br>11.304637<br>11.304637                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rb<br>220<br>220.01904<br>221.94006<br>223.8953<br>225.88642<br>227.91375<br>229.97857<br>232.082<br>234.22515<br>236.40924<br>236.40924<br>236.40924<br>221.9613<br>223.93818<br>225.95086<br>225.000872<br>228.00039<br>230.08782<br>232.21427<br>234.38089<br>236.88889<br>236.88889<br>236.88889<br>236.88889<br>236.88889<br>236.88889<br>236.88889<br>236.88889<br>236.88889<br>236.88889<br>236.88889<br>236.88889<br>236.88889<br>236.88889<br>236.88889<br>236.88889<br>236.88889<br>236.88889<br>236.88889<br>236.88889<br>236.88889<br>236.88889<br>236.88899<br>236.88889<br>236.88889<br>236.88899<br>236.88899<br>236.88899<br>236.88899<br>236.88899<br>236.88899<br>236.83892<br>241.13408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sr<br>2<br>2.0202966<br>4.001122<br>5.8376698<br>7.8835334<br>11.017072<br>12.56143<br>14.028474<br>15.42130<br>16.74293<br>17.996268<br>Sr<br>2.017841<br>3.7589992<br>5.417287<br>6.9958628<br>8.49777952<br>9.9260648<br>11.283565<br>12.573106<br>13.797414<br>14.959131<br>16.060823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.700708 0.512525<br>875r/86Sr 143Nd/144N<br>0.706738 0.512525<br>875r/86Sr 143Nd/144N<br>0.706725 0.512502                                                                                       | 147Sm/144 <sup>k</sup><br>0.0755967<br>0.0755722<br>0.07588567<br>0.0759852<br>0.0761127<br>0.0763845<br>0.0764889<br>0.0766123<br>0.0767346<br>0.0765364<br>0.0755964<br>0.0755964<br>0.0755964<br>0.0755964<br>0.0755964<br>0.0755964<br>0.0756126<br>0.0761323<br>0.0761323<br>0.076133<br>0.0763974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>0.512522<br>143/144Nd<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.51 | 87Rb/86Sr<br>315.050766<br>160.496064<br>110.036553<br>85.069973<br>70.219449<br>60.406045<br>33.464437<br>48.315701<br>44.361306<br>41.245095<br>38.737692<br>87Rb/86Sr<br>315.446572<br>315.446572<br>315.446572<br>33.46182<br>77.642227<br>67.079590<br>59.552526<br>53.946096<br>49.622470<br>46.204486<br>43.448675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 87Sr/86Sr<br>0.706366<br>0.708709<br>0.708709<br>0.709925<br>0.709166<br>0.709279<br>0.709420<br>0.709420<br>0.709420<br>0.709430<br>0.709503<br>0.709533<br>87Sr/86Sr<br>0.706758<br>0.706758<br>0.706758<br>0.706758<br>0.709016<br>0.709318<br>0.709925<br>0.709913<br>0.709925<br>0.709779<br>0.709930<br>0.709930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8 | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | OPX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                          | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1               | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f<br>0.0001<br>0.0201<br>0.0301<br>0.0501<br>0.0601<br>0.0701<br>0.1001<br>f<br>0.0001<br>0.1001<br>f<br>0.0001<br>0.0201<br>0.0201<br>0.0301<br>0.0201<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0201<br>0.0201<br>0.0201<br>0.0201<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.000100000000                                                                                                                                                                                                                                                                                                                                                      | Nd<br>80.009083<br>81.86049<br>81.86049<br>82.812865<br>83.783727<br>84.773635<br>85.783167<br>86.812928<br>80.030017<br>Nd<br>80.030017<br>Nd<br>80.009187<br>80.36622<br>81.881693<br>82.844921<br>83.826848<br>84.828036<br>85.849074<br>86.89075<br>87.953164<br>89.037517<br>90.144322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sm<br>10<br>10.001309<br>10.133399<br>10.267935<br>10.404985<br>10.68694<br>10.68694<br>10.31998<br>10.979855<br>11.130689<br>11.284501<br>11.441413<br>Sm<br>10.001329<br>10.13549<br>10.272135<br>10.411336<br>10.553168<br>10.553168<br>10.553168<br>10.595709<br>10.84504<br>10.995246<br>11.148404<br>11.304637<br>11.464009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rb<br>220<br>220.01904<br>221.94006<br>223.8953<br>225.88642<br>227.91375<br>229.97857<br>232.082<br>234.22515<br>234.090522<br>234.6255<br>240.90522<br>280.0039<br>221.9613<br>223.93818<br>225.95086<br>228.00039<br>230.08782<br>232.21427<br>234.38089<br>236.8889<br>238.83952<br>241.13408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sr<br>2<br>2.0202968<br>4.001122<br>5.8876698<br>7.0835334<br>9.3922038<br>11.017072<br>12.56143<br>14.028474<br>15.42130<br>17.996268<br>Sr<br>2<br>2.017841<br>3.7589992<br>5.417287<br>6.9958628<br>8.4977952<br>9.9250648<br>12.573106<br>13.797414<br>14.959131<br>16.060823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.70030 0.512521<br>875r/86Sr 143Nd/144N<br>0.706330 0.512521<br>0.709738 0.512525<br>875r/86Sr 143Nd/144N<br>0.706725 0.512502<br>0.710134 0.512506                                              | 147Sm/144 <sup>k</sup><br>0.0755967<br>0.0758967<br>0.0758965<br>0.0758965<br>0.0762391<br>0.0762391<br>0.0766123<br>0.0766123<br>0.076656<br>147Sm/144 <sup>k</sup><br>0.07655964<br>0.076856<br>0.076856<br>0.0768596<br>0.0758964<br>0.0758964<br>0.0758964<br>0.0758964<br>0.0758964<br>0.0768301<br>0.0768394<br>0.0766588<br>0.07663894<br>0.0766588<br>0.07663894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>0.512522<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.036555<br>53.46437<br>48.315701<br>44.361936<br>41.245095<br>38.737692<br>87Rb/86Sr<br>315.446572<br>170.855091<br>19.617388<br>53.946096<br>53.946096<br>43.94682570<br>46.204486<br>43.448675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.709360<br>0.709360<br>0.709360<br>0.709420<br>0.709503<br>0.709503<br>0.709503<br>0.709503<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709503<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709                                                                                                                                                                                                                                                                                  |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1               | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f<br>0.0001<br>0.0101<br>0.0201<br>0.0501<br>0.0601<br>0.0601<br>0.0001<br>0.1001<br>f<br>0.0001<br>0.0101<br>0.0201<br>0.0301<br>0.0401<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0011<br>0.0011<br>0.0501<br>0.0011<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.05010000000000               | Nd<br>80<br>80.009083<br>81.86049<br>81.86049<br>82.81286<br>83.783727<br>86.812928<br>87.783346<br>88.935683<br>90.030017<br>Nd<br>80<br>80.009187<br>80.936622<br>81.881693<br>82.844921<br>83.826848<br>84.828036<br>85.849074<br>86.89057<br>87.953164<br>89.037517<br>90.144322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sm<br>10<br>10.267935<br>10.267935<br>10.267935<br>10.26935<br>10.26935<br>10.26935<br>10.26935<br>10.27985<br>11.30689<br>11.284501<br>11.441413<br>Sm<br>10.001329<br>10.272135<br>10.411336<br>10.553168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5553168<br>10.5553168<br>10.5553168<br>10.5553168<br>10.5553168<br>10.5553168<br>10.5553168<br>10.5553168<br>10.5553168<br>10.5553168<br>10.5553168<br>10.5555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.555568<br>10.5555568<br>10.5555688<br>10.55556                                           | Rb<br>220 (1904)<br>221,94006<br>223,89653<br>225,88642<br>227,91375<br>229,97857<br>232,082<br>234,22515<br>234,40294<br>238,6355<br>240,90522<br>241,9052<br>221,9508<br>228,95086<br>228,0039<br>228,95086<br>228,0039<br>230,08782<br>232,21427<br>234,38009<br>238,63895<br>234,113408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sr<br>2<br>2.0202968<br>4.001122<br>5.8876698<br>7.6835334<br>14.028474<br>15.42130<br>17.996268<br>17.996268<br>Sr<br>2.2017841<br>3.7589992<br>5.417287<br>6.9958628<br>8.4977952<br>9.9260648<br>11.283565<br>12.573106<br>13.797414<br>14.959131<br>16.660823<br>Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.70030 0.51252<br>875r/86Sr 143Nd/144N<br>0.706330 0.512521<br>0.709738 0.512525<br>875r/86Sr 143Nd/144N<br>0.706725 0.512502<br>0.710134 0.512506<br>875r/86Sr 143Nd/144N                       | 147Sm/144 <sup>h</sup><br>0.0755967<br>0.0757272<br>0.0758867<br>0.07598567<br>0.0762321<br>0.076345<br>0.0764889<br>0.0766123<br>0.07667346<br>0.07667346<br>0.0768568<br>147Sm/144 <sup>h</sup><br>0.0755964<br>0.0758687<br>0.0758687<br>0.0758687<br>0.0758687<br>0.0760394<br>0.0761347<br>0.0762268<br>0.0768374<br>0.07662271<br>0.07662271<br>0.0766997<br>147Sm/144 <sup>h</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>10.512522<br>143/144Nd<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.5 | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.036553<br>85.069973<br>70.219449<br>60.406045<br>53.464437<br>48.315701<br>44.361936<br>41.245095<br>38.737692<br>87Rb/86Sr<br>315.446572<br>170.855091<br>119.617388<br>93.461685<br>53.946096<br>43.448675<br>87Rb/86Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.7098709<br>0.709980<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709503<br>0.709503<br>0.709502<br>0.709513<br>0.709502<br>0.709513<br>0.709502<br>0.709513<br>0.709513<br>0.709512<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709515<br>0.709515<br>0.709515<br>0.709515<br>0.709515<br>0.709515<br>0.709515<br>0.709515<br>0 |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1               | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f<br>0.0001<br>0.0201<br>0.0301<br>0.0501<br>0.0501<br>0.0001<br>0.1001<br>f<br>0.0001<br>0.0201<br>0.0301<br>0.0401<br>0.0301<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0501<br>0.0401<br>0.0501<br>0.0501<br>0.0401<br>0.0401<br>0.0401<br>0.0401<br>0.0501<br>0.1001<br>0.1001<br>0.0501<br>0.1001<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.05010000000000                                                                                                                   | Nd<br>80<br>80.009083<br>81.86049<br>82.812865<br>83.783727<br>86.812928<br>87.863548<br>88.935683<br>90.030017<br>Nd<br>80.009187<br>80.036822<br>81.81893<br>82.844921<br>83.26848<br>84.428036<br>85.849074<br>86.89057<br>87.953164<br>86.89057<br>87.953164<br>86.89057<br>87.953164<br>86.89057<br>87.953164<br>86.89057<br>87.953164<br>86.89057<br>87.953164<br>86.89057<br>87.953164<br>86.89057<br>87.953164<br>86.89057<br>87.953164<br>86.89057<br>87.953164<br>86.89057<br>87.953164<br>86.89057<br>87.953164<br>86.89057<br>87.953164<br>80.0528<br>87.953164<br>86.89057<br>87.953164<br>86.89057<br>87.953164<br>86.89057<br>87.953164<br>86.89057<br>87.953164<br>86.89057<br>87.953164<br>86.89057<br>87.953164<br>86.89057<br>87.953164<br>86.89057<br>87.953164<br>86.89057<br>87.953164<br>87.953164<br>88.93568<br>87.953164<br>88.95568<br>87.953164<br>87.953167<br>87.953164<br>87.953164<br>87.953167<br>87.953164<br>87.953167<br>87.953164<br>87.953167<br>87.953167<br>87.953164<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.95757<br>87.953167<br>87.95757<br>87.953167<br>87.95757<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.953167<br>87.95757<br>87.953167<br>87.95757<br>87.95757<br>87.95757<br>87.95757<br>87.95757<br>87.95757<br>87.957577<br>87.957577<br>87.9575777<br>87.9575777777777777777777 | Sm<br>10<br>10.001309<br>10.133399<br>10.267935<br>10.64634<br>10.68694<br>10.68694<br>10.68594<br>11.304699<br>11.284501<br>11.411413<br>Sm<br>10.001329<br>10.272135<br>10.41136<br>10.4553168<br>10.697709<br>10.2553168<br>10.695746<br>11.148415<br>11.304637<br>11.148409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rb<br>220<br>220.01904<br>221.94006<br>223.89653<br>225.88642<br>227.91375<br>229.97857<br>232.082<br>234.40224<br>236.40224<br>236.40224<br>236.40244<br>238.6355<br>240.90522<br>221.9613<br>223.93818<br>225.95066<br>228.00039<br>230.08782<br>233.21427<br>234.38089<br>236.68889<br>236.68889<br>236.588952<br>241.13408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sr<br>2<br>2,0202968<br>4,001122<br>5,8876699<br>7,0835334<br>10,01702<br>12,56143<br>11,017072<br>12,56143<br>11,017072<br>12,56143<br>17,996268<br>Sr<br>2,2017841<br>3,7589992<br>5,417287<br>6,9956622<br>8,4977952<br>9,9200648<br>11,283565<br>12,573106<br>13,797414<br>13,797414<br>11,283565<br>12,573106<br>13,797414<br>14,959131<br>16,060823<br>Sr<br>2,273106<br>14,959131<br>16,060823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.70030 0.512525<br>87Sr/86Sr 143Nd/144N<br>0.706330 0.512521<br>0.709738 0.512525<br>87Sr/86Sr 143Nd/144N<br>0.706725 0.512502<br>0.710134 0.512506<br>87Sr/86Sr 143Nd/144N<br>0.70180 0.512248  | 147Sm/144 <sup>1</sup><br>0.0755967<br>0.0757272<br>0.07588567<br>0.0759852<br>0.0761127<br>0.0763845<br>0.0764889<br>0.0766123<br>0.07667346<br>0.076856<br>147Sm/144 <sup>1</sup><br>0.0755964<br>0.0758677<br>0.07653647<br>0.0765371<br>0.0760347<br>0.0765271<br>0.0766358<br>0.076833<br>0.0767333<br>0.076733<br>0.076997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>0.512522<br>143/144Nd<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.51 | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.03653<br>85.069973<br>70.219449<br>60.406045<br>31.5476<br>44.361305<br>44.361305<br>44.361305<br>44.361305<br>87Rb/86Sr<br>77.642227<br>67.079500<br>53.946096<br>49.622570<br>49.622570<br>87Rb/86Sr<br>87Rb/86Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.709366<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709421<br>0.709502<br>0.709421<br>0.709502<br>0.709421<br>0.709525<br>0.709421<br>0.709525<br>0.709421<br>0.709525<br>0.709421<br>0.709525<br>0.709421<br>0.709525<br>0.709421<br>0.709525<br>0.709424<br>0.709525<br>0.709424<br>0.709525<br>0.709425<br>0.709425<br>0.709425<br>0.709426<br>0.709426<br>0.709426<br>0.709426<br>0.709426<br>0.709426<br>0.709426<br>0.709426<br>0.709426<br>0.709426<br>0.709426<br>0.709426<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709450<br>0.70940000000000000000000000000000000000                                               |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1               | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f<br>0.0001<br>0.0201<br>0.0301<br>0.0401<br>0.0601<br>0.0701<br>0.0801<br>0.0001<br>0.1001<br>f<br>0.0201<br>0.0401<br>0.0201<br>0.0401<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.001<br>0.001<br>0.1001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Nd<br>80<br>80,009083<br>80,926068<br>81,86049<br>82,812865<br>83,783727<br>84,773635<br>85,783167<br>86,812928<br>87,763548<br>83,935683<br>90,030017<br>Nd<br>80,09187<br>80,036622<br>81,861693<br>82,844921<br>83,826848<br>84,828036<br>85,82907<br>87,953164<br>86,9057<br>87,953164<br>86,9057<br>87,953164<br>80,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,007295<br>81,00755<br>81,00755<br>81,00755<br>81,00755<br>81,00755<br>81,00755<br>81,00755<br>81,00755<br>81,00755<br>81,00755<br>81,00755<br>81,00755<br>81,00755<br>81,00755<br>81,00755<br>81,007555<br>81,007555<br>81,0075555<br>81,0075555<br>81,007555555<br>81,00755555555555555555555555555555555555                                                                                                                                                                                                                                                                                                                                                                                            | Sm<br>10<br>10.001309<br>10.27935<br>10.64634<br>10.68694<br>10.68694<br>10.68694<br>10.68694<br>11.130689<br>11.284501<br>11.441413<br>10.01329<br>10.272135<br>10.41534<br>10.553168<br>10.653168<br>10.65376<br>10.45544<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637<br>11.304637           | Rb<br>220<br>220.01904<br>221.94006<br>223.89553<br>225.88642<br>227.91375<br>229.97857<br>232.082<br>234.22515<br>236.40924<br>238.6355<br>240.90522<br>220.01925<br>221.9613<br>223.93818<br>225.95086<br>228.00039<br>230.08782<br>234.38089<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.28889<br>236.2889<br>236.2889<br>236.2889<br>236.2889<br>236.2889<br>236.2889<br>236.2889<br>236.2889<br>236.2889<br>236.2897<br>236.2997<br>236.2997<br>246.2997<br>246.2997<br>246.2997<br>246.2977<br>24777<br>24777<br>247777<br>2477777777777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sr<br>2<br>2.0202966<br>4.001122<br>5.8376698<br>7.0835334<br>11.017072<br>12.56143<br>14.028474<br>15.421304<br>16.74293<br>17.996268<br>Sr<br>2.017841<br>3.7589992<br>5.417287<br>6.9958628<br>4.9977952<br>9.9260648<br>11.283565<br>4.977951<br>12.573106<br>13.797414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.28356<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>11.283565<br>3.757414<br>1.2575716<br>1.257574<br>1.257574<br>1.257576<br>1.257574<br>1.257576<br>1.25757774<br>1.25757777777777777777777777777777777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.70030 0.512525<br>875r/86Sr 143Nd/144N<br>0.706330 0.512521<br>0.709738 0.512525<br>87Sr/86Sr 143Nd/144N<br>0.706725 0.512502<br>0.710134 0.512506<br>87Sr/86Sr 143Nd/144N<br>0.707180 0.512484 | 147Sm/144 <sup>1</sup><br>0.0755967<br>0.0757272<br>0.0758850<br>0.0759850<br>0.0763945<br>0.0763945<br>0.076346<br>0.076346<br>0.076346<br>0.076346<br>0.076346<br>0.076346<br>0.076346<br>0.0755964<br>0.0755964<br>0.076018<br>0.0763267<br>0.0760018<br>0.0763267<br>0.0760018<br>0.076333<br>0.0766558<br>0.0766558<br>0.0767833<br>0.07655961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>0.512522<br>0.512522<br>0.512522<br>0.512522<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512 | 87Rb/86Sr<br>315.050766<br>160.496064<br>110.036553<br>85.069973<br>70.219449<br>60.406045<br>53.464437<br>48.315701<br>44.361936<br>41.245095<br>38.737692<br>87Rb/86Sr<br>315.446572<br>170.855091<br>119.617388<br>93.461682<br>77.6422277<br>67.079590<br>59.55265<br>59.55265<br>87Rb/86Sr<br>315.84696<br>43.448675<br>87Rb/86Sr<br>315.806469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 87Sr/86Sr<br>0.706366<br>0.708709<br>0.7098709<br>0.7098709<br>0.709925<br>0.709166<br>0.709279<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709503<br>0.709533<br>87Sr/86Sr<br>0.706758<br>0.706758<br>0.706758<br>0.706758<br>0.7090310<br>0.709318<br>0.709713<br>0.709713<br>0.709713<br>0.709714<br>0.709625<br>0.709714<br>0.709924<br>0.709924<br>0.709924<br>0.709925<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709713<br>0.709924<br>0.709924<br>0.709924<br>0.709924<br>0.709924<br>0.709924<br>0.709924<br>0.709924<br>0.709924<br>0.709924<br>0.709924<br>0.709924<br>0.70929<br>0.70924<br>0.707209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1               | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0 | f<br>0.0001<br>0.0101<br>0.0201<br>0.0501<br>0.0601<br>0.0601<br>0.0001<br>0.1001<br>f<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nd<br>80<br>80.009083<br>81.86049<br>81.86049<br>82.81286<br>83.783727<br>86.812928<br>87.783348<br>88.935683<br>90.030017<br>Nd<br>80.039187<br>80.936622<br>81.881693<br>82.844921<br>83.826848<br>84.828036<br>85.849074<br>83.826848<br>84.828057<br>87.953164<br>89.037517<br>90.144322<br>Nd<br>80.009285<br>80.947617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sm<br>10<br>10.267935<br>10.267935<br>10.267935<br>10.267935<br>10.26935<br>10.26935<br>10.26935<br>10.27985<br>11.30689<br>11.284501<br>11.441413<br>Sm<br>10.01329<br>10.13549<br>10.272135<br>10.411336<br>10.553168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>10.5453168<br>11.148415<br>11.1484109<br>10.84544<br>10.94546<br>11.148415<br>11.1484109<br>10.84544<br>10.94546<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.645746<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.045756<br>10.0457566<br>10.045756<br>10.045756<br>10.0457566<br>10.0457566<br>10.0457566<br>10.045          | Rb<br>220<br>220.01904<br>221.94006<br>223.89653<br>225.88642<br>227.91375<br>229.97857<br>232.082<br>234.40224<br>238.6355<br>240.90522<br>240.90522<br>220.01925<br>221.9613<br>229.95066<br>228.0039<br>230.08782<br>232.21427<br>233.68009<br>238.63952<br>241.13408<br>Rb<br>220.012946<br>225.5508<br>238.83952<br>241.13408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sr<br>2<br>2.0202968<br>4.001122<br>5.8876698<br>7.6835334<br>14.028474<br>15.42130<br>17.996268<br>17.996268<br>7.2<br>2.017841<br>3.7589992<br>5.417287<br>6.9958628<br>8.4977952<br>9.9260648<br>11.283565<br>12.573106<br>13.797414<br>14.959131<br>16.060823<br>Sr<br>2.20156324<br>Sr<br>2.20156324<br>3.5412463<br>3.5412463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.70030 0.512525<br>875r/86Sr 143Nd/144N<br>0.706330 0.512521<br>0.709738 0.512525<br>875r/86Sr 143Nd/144N<br>0.706725 0.512502<br>0.710134 0.512506<br>875r/86Sr 143Nd/144N<br>0.707180 0.512484 | 147Sm/144 <sup>h</sup><br>0.0755967<br>0.0757272<br>0.0758867<br>0.0759850<br>0.0761127<br>0.0763345<br>0.0766128<br>0.0766128<br>0.07667346<br>0.07667346<br>0.076675964<br>0.0755964<br>0.0755964<br>0.0758677<br>0.0762271<br>0.0762271<br>0.07663974<br>0.07663974<br>0.07663974<br>0.07663974<br>0.0766997<br>147Sm/144 <sup>h</sup><br>0.0755961<br>0.0755961<br>0.0755961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>10.512522<br>143/144Nd<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.5 | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.036553<br>85.069973<br>70.219449<br>60.406045<br>53.464437<br>48.315701<br>44.361935<br>87Rb/86Sr<br>315.446572<br>170.855091<br>119.61738<br>93.46168Sr<br>77.642227<br>76.642227<br>76.795500<br>59.555265<br>53.946096<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.622570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>49.62570<br>4                                                                                                                                                                      | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.7098709<br>0.709360<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709503<br>0.709503<br>0.709502<br>0.709616<br>0.709502<br>0.709616<br>0.709502<br>0.709620<br>0.709620<br>0.709620<br>0.709620<br>0.709620<br>0.709620<br>0.709620<br>0.709620<br>0.709620<br>0.709620<br>0.709620<br>0.709620<br>0.709620<br>0.709620<br>0.709620<br>0.709620<br>0.709620<br>0.709620<br>0.709620<br>0.709620<br>0.709620<br>0.709620<br>0.709620<br>0.709770<br>0.709620<br>0.707209<br>0.707209<br>0.707740<br>0.707720<br>0.707740<br>0.707720<br>0.707740<br>0.707740<br>0.707740<br>0.707720<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707209<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.707740<br>0.7077740<br>0.7077740<br>0.707740000000000                                           |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1               | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0 | f<br>0.0001<br>0.0201<br>0.0301<br>0.0501<br>0.0501<br>0.0901<br>0.1001<br>f<br>0.0001<br>0.0401<br>0.0201<br>0.0401<br>0.0401<br>0.0401<br>0.0501<br>0.0401<br>0.0501<br>0.0601<br>0.0601<br>0.0601<br>0.0601<br>0.0601<br>0.0601<br>0.0601<br>0.0601<br>0.0601<br>0.0601<br>0.0601<br>0.0601<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.00000000                                                                                                     | Nd<br>80<br>80.009043<br>81.86049<br>82.812865<br>83.783727<br>86.812928<br>87.85384<br>88.935683<br>90.030017<br>80.936622<br>81.81693<br>82.844921<br>83.826448<br>84.428036<br>82.844921<br>83.826448<br>84.828037<br>87.953164<br>82.844921<br>90.037517<br>90.144322<br>Nd<br>80.092927<br>90.144322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sm<br>10<br>10.001309<br>10.133399<br>10.267935<br>10.64634<br>10.68694<br>10.68694<br>10.68594<br>11.304699<br>11.284501<br>11.411413<br>Sm<br>10.001329<br>10.272135<br>10.641304<br>10.95246<br>10.95246<br>10.95246<br>10.441304<br>11.1484109<br>Sm<br>10.001351<br>11.0137666<br>10.276566<br>10.417365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rb<br>220<br>220.01904<br>221.94006<br>223.88642<br>227.91375<br>229.97857<br>232.082<br>234.22215<br>236.40924<br>236.40924<br>236.40924<br>220.01925<br>221.9613<br>223.93818<br>223.9218<br>230.03782<br>230.21427<br>234.38089<br>230.08782<br>230.21427<br>234.38089<br>236.48852<br>241.13408<br>Rb<br>220<br>220.01946<br>221.98338<br>221.98238<br>221.98338<br>221.98238<br>221.98338<br>221.98238<br>221.98338<br>223.98251<br>220.01946<br>220.01946<br>220.01946<br>220.2198438<br>223.98251<br>221.98338<br>223.98251<br>221.98338<br>223.98251<br>221.98338<br>223.98251<br>221.98338<br>223.98251<br>221.98338<br>223.98251<br>221.98338<br>223.98251<br>221.98338<br>223.98251<br>221.98338<br>223.98251<br>221.98338<br>223.98251<br>221.98338<br>223.98251<br>221.98338<br>223.98251<br>222.98538<br>223.98251<br>223.98252<br>223.98252<br>223.98252<br>223.98252<br>224.982538<br>223.98252<br>224.982538<br>224.98252<br>225.98562<br>225.98562<br>226.98252<br>227.98252<br>227.98252<br>227.98252<br>227.98252<br>227.98252<br>228.98252<br>227.98252<br>227.98252<br>228.98252<br>227.98252<br>228.98252<br>227.98252<br>228.98252<br>228.98252<br>228.98252<br>228.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>220.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>229.98252<br>29          | Sr<br>2 2.022968<br>4 .001122<br>5.8876699<br>7.8835334<br>10.107072<br>12.56143<br>14.028474<br>15.42130<br>17.996268<br>7.2<br>2.017841<br>3.7589992<br>5.417287<br>6.9956622<br>8.4977952<br>9.9200648<br>11.283565<br>12.573106<br>13.797414<br>13.797414<br>13.7894112<br>6.9956023<br>8.4977952<br>9.9200648<br>11.283565<br>12.573106<br>13.797414<br>14.959131<br>16.060823<br>Sr<br>2.201565324<br>3.5412463<br>4.9942466<br>6.9374072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.70030 0.512525<br>875r/86Sr 143Nd/144N<br>0.706330 0.512521<br>0.709738 0.512525<br>875r/86Sr 143Nd/144N<br>0.706725 0.512502<br>0.710134 0.512506<br>87Sr/86Sr 143Nd/144N<br>0.707180 0.512484 | 147Sm/144 <sup>1</sup><br>0.0755967<br>0.0757272<br>0.07588567<br>0.0759852<br>0.0761127<br>0.0763845<br>0.0766489<br>0.0766123<br>0.0766734<br>0.0766734<br>0.076856<br>147Sm/144 <sup>1</sup><br>0.0755964<br>0.0768567<br>0.0768567<br>0.076635867<br>0.076635867<br>0.0766326<br>0.076733<br>0.076733<br>0.076733<br>0.076793<br>0.076793<br>0.0765961<br>0.07578961<br>0.07578792<br>0.07578792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>143/144Nd<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.51 | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.03653<br>85.069973<br>70.219449<br>60.406045<br>33.464437<br>44.361305<br>41.245095<br>38.737692<br>87Rb/86Sr<br>315.446572<br>77.642227<br>67.079500<br>53.946096<br>49.622570<br>87Rb/86Sr<br>87Rb/86Sr<br>315.806469<br>811.385286<br>812.8779850<br>10.255091<br>87Rb/86Sr<br>315.806469<br>813.85286<br>813.85286<br>813.85286<br>87Rb/86Sr<br>315.806469<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>813.85286<br>81                                                                                                                                                                                                | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.708929<br>0.709166<br>0.709279<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709421<br>0.709502<br>0.709719<br>0.709825<br>0.709825<br>0.709825<br>0.709825<br>0.709826<br>0.709826<br>0.709826<br>0.709826<br>0.709826<br>0.709827<br>0.709827<br>0.709827<br>0.709827<br>0.709827<br>0.709827<br>0.709827<br>0.709827<br>0.709827<br>0.709827<br>0.709827<br>0.709826<br>0.709290<br>0.709874<br>0.709290<br>0.709874<br>0.709376<br>0.709376<br>0.709376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1               | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f<br>0.0001<br>0.0201<br>0.0301<br>0.0501<br>0.0601<br>0.0701<br>0.0801<br>0.0001<br>0.1001<br>0.0201<br>0.0001<br>0.0001<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0601<br>0.0001<br>0.1001<br>0.0001<br>0.1001<br>0.0001<br>0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nd<br>80.009083<br>81.86049<br>82.812865<br>83.783727<br>84.773635<br>85.783167<br>86.812928<br>87.863548<br>88.935683<br>90.030017<br>Nd<br>80.009187<br>80.936622<br>81.881693<br>82.844921<br>83.826848<br>84.828036<br>85.849074<br>88.49207<br>89.037517<br>90.144322<br>Nd<br>80.009295<br>80.947617<br>81.937617<br>90.144322<br>Nd<br>80.80.009295<br>80.947617<br>81.93783<br>82.878319<br>83.87177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sm<br>10<br>10.001309<br>10.27935<br>10.6463<br>10.68694<br>10.68694<br>10.68694<br>10.68694<br>10.68694<br>11.130689<br>11.284501<br>11.441413<br>10.01329<br>10.272135<br>10.41534<br>10.553168<br>10.653168<br>10.653168<br>10.65375<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.304537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.3045537<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.304557<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.30457<br>11.304 | Rb<br>220<br>220.01904<br>221.94006<br>223.8953<br>225.88642<br>227.91375<br>229.97857<br>232.082<br>234.22515<br>236.40924<br>238.6355<br>240.90522<br>220.01925<br>221.9613<br>223.93818<br>225.95086<br>226.001925<br>224.901925<br>224.9413<br>223.93818<br>225.95086<br>226.90039<br>230.08782<br>234.38089<br>236.58889<br>236.58889<br>236.58889<br>236.58889<br>236.58889<br>236.28829<br>241.13408<br>Rb<br>220.01946<br>221.9838<br>223.98251<br>226.01785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sr<br>2 2.0202966<br>4.001122<br>5.8376698<br>7.0835334<br>11.017072<br>12.56143<br>14.028474<br>15.421304<br>16.74293<br>17.996268<br>Sr<br>2.017841<br>3.7589992<br>5.417287<br>6.9958628<br>4.9977925<br>9.9260648<br>11.283565<br>4.997245<br>12.573106<br>13.797414<br>11.283565<br>3.757416<br>13.797414<br>11.283565<br>2.0156324<br>3.5412463<br>4.9942466<br>6.3774067<br>7.893406<br>4.9942466<br>6.3774067<br>7.893406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.70030 0.512525<br>875r/86Sr 143Nd/144N<br>0.706330 0.512521<br>0.709738 0.512525<br>87Sr/86Sr 143Nd/144N<br>0.706725 0.512502<br>0.710134 0.512506<br>87Sr/86Sr 143Nd/144N<br>0.707180 0.512484 | 147Sm/144 <sup>k</sup><br>0.0755967<br>0.0757272<br>0.07588507<br>0.07598507<br>0.0763945<br>0.0763452<br>0.0764889<br>0.0763346<br>0.076346<br>0.076346<br>0.076346<br>0.076346<br>0.0755964<br>0.0755964<br>0.0761018<br>0.076558<br>0.0766558<br>0.0766558<br>0.0766558<br>0.0767382<br>0.0765961<br>0.075382<br>0.075382                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>0.512522<br>0.512522<br>0.512522<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512 | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.036555<br>53.46437<br>48.315701<br>87Rb/86Sr<br>315.446572<br>87Rb/86Sr<br>315.446572<br>170.855091<br>170.855091<br>170.655091<br>93.461682<br>77.642227<br>67.079590<br>49.622570<br>46.204486<br>43.448675<br>87Rb/86Sr<br>315.806469<br>181.385298<br>129.779850<br>102.559396<br>48.70276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87Sr/86Sr<br>0.706366<br>0.708709<br>0.708709<br>0.7098709<br>0.709925<br>0.709166<br>0.709279<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709503<br>0.709533<br>87Sr/86Sr<br>0.706758<br>0.706758<br>0.706758<br>0.706758<br>0.709210<br>0.709318<br>0.709211<br>0.709318<br>0.70929<br>0.709779<br>0.709830<br>0.709830<br>0.709779<br>0.709830<br>0.709774<br>0.709904<br>87Sr/86Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1               | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0 | f<br>0.0001<br>0.0101<br>0.0201<br>0.0501<br>0.0601<br>0.0601<br>0.0901<br>0.1001<br>f<br>0.0001<br>0.0101<br>0.0201<br>0.0601<br>0.0501<br>0.0501<br>0.0501<br>0.0501<br>0.0601<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.00000000                     | Nd<br>80<br>80.009083<br>81.86049<br>81.86049<br>82.81286<br>83.783727<br>86.812928<br>87.783368<br>88.935683<br>90.030017<br>Nd<br>80.936622<br>81.86193<br>82.844921<br>83.826448<br>84.828036<br>85.849074<br>83.826448<br>84.828036<br>85.849074<br>80.9057<br>87.953164<br>89.037517<br>90.144322<br>Nd<br>80.009285<br>80.947617<br>81.903783<br>82.878319<br>83.871772<br>83.871772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sm<br>10<br>10.267935<br>10.267935<br>10.267935<br>10.267935<br>10.26935<br>10.26935<br>10.26935<br>10.26935<br>10.27985<br>11.30689<br>11.284501<br>11.441413<br>Sm<br>10.001232<br>10.411336<br>10.55716<br>10.411336<br>10.55716<br>11.48415<br>11.304637<br>11.48409<br>Sm<br>10.417345<br>11.304637<br>11.48409<br>Sm<br>10.417543<br>10.001351<br>10.0137666<br>10.276506<br>10.276506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rb<br>220<br>220<br>221,94006<br>223,98953<br>225,88642<br>227,91375<br>229,97857<br>232,082<br>234,2024<br>236,40924<br>236,40924<br>236,40924<br>220,01925<br>221,9613<br>223,95086<br>228,95086<br>228,0039<br>238,38089<br>238,38089<br>238,38052<br>241,13408<br>Rb<br>220,01946<br>221,9838<br>224,920,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>221,9413<br>221,9413<br>221,9413<br>221,9413<br>221,9413<br>221,9413<br>221,9413<br>221,9414<br>221,9413<br>221,9413<br>221,9413<br>221,9413<br>221,9413<br>221,9413<br>221,9413<br>221,9413<br>221,9413<br>221,9414<br>221,9414<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>220,01946<br>200,01946<br>200,01946<br>200,01946<br>200,01946<br>200,01946<br>200,01946<br>200,01946<br>200,01946<br>200    | Sr<br>2<br>2.0202968<br>4.001122<br>5.8876698<br>7.6835334<br>14.028474<br>15.42130<br>17.996268<br>17.996268<br>7.2<br>2.017841<br>3.7589992<br>5.417287<br>6.9958628<br>8.4977952<br>9.9260648<br>1.283565<br>12.573106<br>13.797414<br>14.959131<br>16.060823<br>Sr<br>2.20156324<br>3.5412463<br>4.9942466<br>6.3774067<br>7.6934094<br>8.9487952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.70030 0.512525<br>875r/86Sr 143Nd/144N<br>0.706330 0.512521<br>0.709738 0.512525<br>875r/86Sr 143Nd/144N<br>0.706725 0.512502<br>0.710134 0.512506<br>875r/86Sr 143Nd/144N<br>0.707180 0.512484 | 147Sm/144 <sup>k</sup><br>0.0755967<br>0.0757272<br>0.0758867<br>0.07598567<br>0.0762321<br>0.0762321<br>0.076345<br>0.0766127<br>0.0766127<br>0.07667346<br>0.07667346<br>0.0756964<br>0.0755964<br>0.0755964<br>0.07563974<br>0.0762271<br>0.0762276<br>0.0768374<br>0.0766374<br>0.0765271<br>0.07663974<br>0.0765961<br>0.0766997<br>147Sm/144 <sup>k</sup><br>0.0755961<br>0.075782<br>0.0756783<br>0.07659782<br>0.0765792<br>0.0765177<br>0.076271577<br>0.076275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512 | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.036553<br>85.069973<br>70.219449<br>60.406045<br>53.464437<br>48.315701<br>44.361936<br>41.245095<br>38.737692<br>87Rb/86Sr<br>315.446572<br>170.855091<br>119.617388<br>93.46168Sr<br>77.642227<br>76.795500<br>93.461685<br>53.946096<br>43.448675<br>87Rb/86Sr<br>315.806469<br>181.385298<br>129.779850<br>102.559396<br>85.797259<br>74.477447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.7098709<br>0.709360<br>0.709420<br>0.709420<br>0.709460<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709503<br>0.709420<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709502<br>0.709513<br>0.709502<br>0.709502<br>0.709513<br>0.709502<br>0.709513<br>0.709502<br>0.709574<br>0.709503<br>0.709574<br>0.709503<br>0.709574<br>0.709574<br>0.707209<br>0.708774<br>0.709376<br>0.709574<br>0.709576<br>0.709574<br>0.709576<br>0.709576<br>0.709576<br>0.709576<br>0.709576<br>0.709576<br>0.709576<br>0.709576<br>0.709576<br>0.709576<br>0.709576<br>0.709576<br>0.709576<br>0.709576<br>0.709576<br>0.709576<br>0.709576<br>0.709576<br>0.709576<br>0.709576<br>0.709576<br>0.709576<br>0.709576<br>0.709576<br>0.709576<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0.709577<br>0 |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1               | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f<br>0.0001<br>0.0101<br>0.0301<br>0.0501<br>0.0501<br>0.0001<br>0.1001<br>f<br>0.0001<br>0.0201<br>0.0301<br>0.0401<br>0.0301<br>0.0401<br>0.0301<br>0.0401<br>0.0501<br>0.0001<br>0.1001<br>f<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nd<br>80<br>80.009083<br>81.86049<br>82.812665<br>83.783727<br>86.812928<br>87.783348<br>88.935683<br>90.030017<br>Nd<br>80.039187<br>80.036622<br>81.881693<br>82.844921<br>83.826848<br>84.628036<br>84.828036<br>85.849074<br>86.90057<br>87.953164<br>89.037517<br>90.144322<br>Nd<br>80.09295<br>80.037617<br>90.144322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sm<br>10<br>10.001309<br>10.133399<br>10.267935<br>10.68694<br>10.68694<br>10.68694<br>10.68194<br>11.30089<br>11.284501<br>11.411413<br>Sm<br>10.001329<br>10.272135<br>10.41136<br>10.553168<br>10.697709<br>10.2553168<br>10.697709<br>10.41136<br>10.553168<br>10.697709<br>10.135616<br>10.137666<br>10.137666<br>10.1376760<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137616<br>10.137617<br>10.137617<br>10.137617<br>10.137617<br>10.13777<br>10.137777<br>10.1377777<br>10.1377777777777777777777777777777777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rb<br>220<br>220.01904<br>221.94006<br>223.89653<br>229.97857<br>232.082<br>234.22515<br>236.40924<br>236.40924<br>236.40924<br>221.9613<br>223.93818<br>225.95086<br>220.01925<br>220.01925<br>221.9613<br>223.93818<br>225.95086<br>230.038782<br>230.2127<br>234.38089<br>230.08782<br>230.2137<br>234.38089<br>236.83952<br>241.13408<br>Rb<br>220<br>220.01946<br>221.98338<br>223.98251<br>226.01946<br>220.9824<br>221.98338<br>223.98251<br>226.01946<br>220.98348<br>223.98251<br>226.01946<br>220.98348<br>223.98251<br>226.01946<br>220.98344<br>232.98251<br>226.01946<br>220.99344<br>232.98251<br>226.01946<br>220.99344<br>232.98251<br>226.01946<br>220.99344<br>232.98251<br>226.01946<br>220.99344<br>232.98251<br>226.01946<br>220.99344<br>232.98251<br>226.01947<br>220.01946<br>220.99344<br>220.01946<br>220.01946<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>220.01947<br>200.01947<br>200.01947<br>200.01947<br>200.01947<br>200.01947<br>200.01947<br>200.01947<br>200.01947<br>200.01947<br>200.01947<br>200.01947<br>200.01947<br>200.01947<br>200.01947<br>200.01947<br>200.0194          | Sr<br>2<br>2.0202968<br>4.001122<br>5.8876699<br>7.8835334<br>10.1027<br>12.56143<br>14.028474<br>15.42130<br>15.42130<br>15.42130<br>17.996268<br>Sr<br>2.2017841<br>3.7589992<br>5.417287<br>6.9956622<br>5.417287<br>6.9956625<br>12.573106<br>13.797414<br>14.959131<br>16.060823<br>Sr<br>2.20156324<br>3.5412463<br>4.9942486<br>6.3774067<br>7.6934094<br>8.944863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.70030 0.512525<br>87Sr/86Sr 143Nd/144N<br>0.706330 0.512521<br>0.709738 0.512525<br>87Sr/86Sr 143Nd/144N<br>0.706725 0.512502<br>0.710134 0.512506<br>87Sr/86Sr 143Nd/144N<br>0.707180 0.512484 | 147Sm/144 <sup>1</sup><br>0.0755967<br>0.075722<br>0.07588507<br>0.0759852<br>0.0761127<br>0.0763845<br>0.0764889<br>0.0766123<br>0.0766123<br>0.0767346<br>0.076856<br>147Sm/144 <sup>1</sup><br>0.0755964<br>0.0768567<br>0.0761347<br>0.076358677<br>0.0761347<br>0.0765271<br>0.0766358<br>0.0768587<br>147Sm/144 <sup>1</sup><br>0.07655961<br>0.0767833<br>0.076997<br>147Sm/144 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>0.512522<br>143/144Nd<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.51 | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.03653<br>85.069973<br>70.219449<br>60.406045<br>315.46437<br>44.36136<br>41.245095<br>38.737692<br>87Rb/86Sr<br>315.446572<br>170.855091<br>19.617388<br>93.46166Sr<br>33.46166Sr<br>49.622570<br>49.622570<br>49.622570<br>87Rb/86Sr<br>315.806469<br>181.385298<br>129.779850<br>120.559396<br>85.797259<br>74.477447<br>65.559396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.708709<br>0.709366<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709502<br>0.709719<br>0.709820<br>0.709779<br>0.709820<br>0.709779<br>0.709820<br>0.709779<br>0.709820<br>0.709779<br>0.709820<br>0.709779<br>0.709820<br>0.709779<br>0.709820<br>0.709779<br>0.709820<br>0.709779<br>0.709820<br>0.709779<br>0.709820<br>0.709779<br>0.709820<br>0.709779<br>0.709820<br>0.709779<br>0.709820<br>0.709779<br>0.709820<br>0.709779<br>0.709820<br>0.709779<br>0.709820<br>0.709779<br>0.709820<br>0.709779<br>0.709820<br>0.709779<br>0.709820<br>0.709779<br>0.709820<br>0.709779<br>0.709820<br>0.709720<br>0.709720<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.709520<br>0.700520<br>0.700520<br>0.700520<br>0.700520<br>0.700520<br>0.700520<br>0.700520<br>0.700520<br>0.700520<br>0.700520<br>0.700520<br>0.700520<br>0.700520<br>0.700520<br>0.700520<br>0.700520<br>0.700520<br>0.70052000000000000000000000000000000000                                               |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | AMPH 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1                               | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0 | f<br>0.0001<br>0.0201<br>0.0301<br>0.0501<br>0.0601<br>0.0701<br>0.1001<br>f<br>0.0001<br>0.0201<br>0.0001<br>0.0001<br>0.0201<br>0.0301<br>0.0401<br>0.0301<br>0.0601<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.00000000                                                             | Nd<br>80.009083<br>81.86049<br>82.812865<br>83.783727<br>84.773635<br>85.783167<br>86.812928<br>86.812928<br>80.030017<br>Nd<br>80.030017<br>Nd<br>80.030017<br>Nd<br>80.030612<br>81.881693<br>82.844921<br>83.826448<br>84.828036<br>85.849074<br>85.864907<br>87.953164<br>89.037517<br>90.144322<br>Nd<br>80.009295<br>80.947617<br>81.903783<br>82.878319<br>83.871772<br>83.871773<br>83.8971773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sm<br>10<br>10.001309<br>10.133399<br>10.267935<br>10.267935<br>10.68694<br>10.33198<br>10.68694<br>11.30689<br>11.284501<br>11.414113<br>Sm<br>10.001329<br>10.13549<br>10.272135<br>10.411336<br>10.553168<br>10.9553168<br>10.9553168<br>10.995246<br>11.148415<br>11.304637<br>11.464009<br>0.003551<br>10.37666<br>0.417943<br>10.276505<br>0.027655<br>10.17666<br>10.276556<br>0.0276556<br>10.0276576<br>10.0276576<br>10.0276576<br>10.0276576<br>10.0276576<br>10.0276576<br>10.0276576<br>10.0276576<br>10.0276576<br>10.0276576<br>10.0276576<br>10.0276576<br>10.0276576<br>10.0276576<br>10.0276576<br>10.0276576<br>10.0276576<br>10.0276576<br>10.0276576<br>10.0276576<br>10.0276576<br>10.0276576<br>10.0276576<br>10.0276577<br>10.0276577<br>10.0276577<br>10.0276577<br>10.0276577<br>10.0276577<br>10.027677<br>10.027677<br>10.027677<br>10.027677<br>10.027677<br>10.027677<br>10.027677<br>10.027777<br>10.027777<br>10.027777<br>10.027777<br>10.027777<br>10.027777<br>10.027777<br>10.027777<br>10.027777<br>10.0277777<br>10.0277777<br>10.0277777<br>10.02777777<br>10.0277777777777777777777777777777777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rb<br>220<br>220.01904<br>221.94006<br>223.8953<br>225.88642<br>227.91375<br>229.97857<br>232.082<br>234.22515<br>236.40924<br>238.6355<br>240.90522<br>221.9613<br>223.93818<br>225.95086<br>228.001925<br>224.9013<br>223.93818<br>225.95086<br>226.001925<br>224.921<br>234.38089<br>230.68889<br>236.58889<br>236.58889<br>236.28829<br>241.13408<br>Rb<br>220.01946<br>221.98231<br>228.01785<br>228.98044<br>229.88251<br>228.01785<br>228.89014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sr<br>2<br>2.0202968<br>4.001122<br>5.8876698<br>7.0835334<br>10.107072<br>12.56143<br>14.022474<br>15.42130<br>17.996268<br>37.2<br>2.017841<br>3.7589992<br>5.417287<br>6.9958628<br>8.4977952<br>9.9250648<br>12.573106<br>13.797414<br>14.959131<br>16.060823<br>Sr<br>2<br>2.0156324<br>3.412463<br>4.9942466<br>6.3774067<br>7.8934094<br>8.9484663<br>3.0134319<br>11.264273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.70030 0.512525<br>875r/86Sr 143Nd/144N<br>0.706330 0.512521<br>0.709738 0.512525<br>87Sr/86Sr 143Nd/144N<br>0.706725 0.512502<br>0.710134 0.512506<br>87Sr/86Sr 143Nd/144N<br>0.707180 0.512484 | 147Sm/144P<br>0.0755967<br>0.0758967<br>0.0758952<br>0.0758952<br>0.0762391<br>0.0762391<br>0.07683645<br>0.0766189<br>0.0766129<br>0.076656<br>147Sm/144P<br>0.0755964<br>0.076856<br>0.0768394<br>0.0766397<br>0.0766397<br>0.0766397<br>0.0766397<br>0.076658<br>0.0768397<br>0.076658<br>0.0767833<br>0.076658<br>0.0767833<br>0.076658<br>0.0767833<br>0.07665961<br>0.0755961<br>0.0755961<br>0.0755961<br>0.0755961<br>0.0756197<br>0.0766197<br>0.0766197<br>0.0766197<br>0.0766197<br>0.0766294316<br>0.07624316<br>0.0765431<br>0.07652941<br>0.07652941<br>0.07624316<br>0.0765431<br>0.0765431<br>0.0765431<br>0.07652961<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.076619<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0765594<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0766294<br>0.0765                                                                                                                                                                                                                                                                                                                                                                                                     | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512 | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.036553<br>35.059973<br>70.219449<br>60.406045<br>53.464437<br>48.315701<br>44.361936<br>41.245095<br>38.737692<br>87Rb/86Sr<br>315.446572<br>170.855091<br>170.855091<br>171.64738<br>93.461682<br>77.642227<br>67.079590<br>59.555265<br>53.946096<br>43.448675<br>87Rb/86Sr<br>315.806469<br>181.385298<br>129.779850<br>102.559396<br>85.797259<br>74.477447<br>60.350819<br>60.288656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.709360<br>0.709360<br>0.709360<br>0.709420<br>0.709420<br>0.709460<br>0.709503<br>0.709503<br>0.709503<br>0.709503<br>0.709502<br>0.709424<br>0.709512<br>0.709502<br>0.709502<br>0.709713<br>0.709520<br>0.709713<br>0.709583<br>0.709594<br>0.709594<br>0.709964<br>0.709964<br>0.709964<br>0.709964<br>0.709964<br>0.709964<br>0.709684<br>0.709964<br>0.709964<br>0.709964<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709694<br>0.709675<br>0.709694<br>0.709675<br>0.709694<br>0.709675<br>0.709695<br>0.709675<br>0.709695<br>0.709675<br>0.709695<br>0.70075<br>0.70075<br>0.70075<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.709675<br>0.70075<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057<br>0.70057                                                                                                                                                                                                                                                                     |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1               | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0 | f<br>0.0001<br>0.0101<br>0.0201<br>0.0501<br>0.0601<br>0.0901<br>0.1001<br>f<br>0.0001<br>0.0101<br>0.0201<br>0.0301<br>0.0501<br>0.0501<br>0.0501<br>0.0601<br>0.0001<br>0.1001<br>f<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.00000000                                                                            | Nd<br>80<br>80.009083<br>81.86049<br>81.86049<br>82.812865<br>83.783727<br>86.812928<br>87.783364<br>88.935683<br>90.030017<br>Nd<br>80.039187<br>80.936622<br>81.861993<br>82.844921<br>83.826848<br>84.828036<br>85.849074<br>83.826848<br>84.828036<br>85.849074<br>80.037517<br>90.144322<br>Nd<br>80.092925<br>80.947617<br>81.903783<br>80.947617<br>81.903783<br>80.947617<br>81.903783<br>85.917738<br>86.971461<br>88.946528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sm<br>10<br>10.267935<br>10.267935<br>10.267935<br>10.267935<br>10.26935<br>10.26935<br>10.26935<br>10.27985<br>11.30689<br>11.284501<br>11.441413<br>0.979885<br>11.30469<br>10.272135<br>10.001329<br>10.272135<br>10.411336<br>10.553168<br>10.54570<br>10.84504<br>10.84504<br>10.84504<br>10.001351<br>10.137666<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.276606<br>10.2777<br>10.58614<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.168620<br>11.1       | Rb<br>220<br>220<br>221,94006<br>223,98953<br>225,88642<br>227,91375<br>223,422515<br>234,40224<br>238,6355<br>240,90522<br>241,9052<br>221,9613<br>223,95086<br>228,95086<br>228,0039<br>230,08782<br>231,21427<br>234,38089<br>238,83952<br>241,13408<br>Rb<br>220,011946<br>223,58889<br>238,83952<br>241,13408<br>Rb<br>220,011946<br>220,011946<br>220,011946<br>220,011946<br>220,011946<br>220,011946<br>220,011946<br>220,011946<br>220,011946<br>220,01195<br>228,01785<br>228,09044<br>230,20317<br>234,54276<br>234,54276<br>234,54276<br>234,54276<br>234,54276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sr<br>2 2.022966<br>4 .001122<br>5.8876698<br>7.6835334<br>14.028474<br>15.42130<br>17.996268<br>17.996268<br>7.2<br>2.017841<br>3.7589992<br>5.417287<br>6.9958628<br>8.4977952<br>9.9260648<br>0.9958023<br>8.4977952<br>9.9260648<br>1.283565<br>12.573106<br>13.797414<br>14.959131<br>16.060823<br>Sr<br>2.0156324<br>3.5412463<br>3.5412463<br>4.9942466<br>6.3774067<br>7.6934094<br>8.944863<br>0.134319<br>11.264223<br>12.336969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.70030 0.512525<br>875r/86Sr 143Nd/144N<br>0.706330 0.512521<br>0.709738 0.512525<br>875r/86Sr 143Nd/144N<br>0.706725 0.512502<br>0.710134 0.512506<br>875r/86Sr 143Nd/144N<br>0.707180 0.512484 | 147Sm/144 <sup>k</sup><br>0.0755967<br>0.0757272<br>0.0758867<br>0.07598567<br>0.0762391<br>0.0763945<br>0.0766127<br>0.0766126<br>0.0766128<br>0.07667346<br>0.07667346<br>0.07667346<br>0.0755964<br>0.0755964<br>0.0755964<br>0.0755964<br>0.0755964<br>0.0755964<br>0.0755964<br>0.0766374<br>0.0766271<br>0.0762271<br>0.0766397<br>0.0766997<br>147Sm/144 <sup>k</sup><br>0.0755964<br>0.075782<br>0.07659872<br>0.0756782<br>0.0765782<br>0.0765782<br>0.07661577<br>0.0762265<br>0.07664316<br>0.07656668<br>0.076764316<br>0.07656668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512 | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.036553<br>85.069973<br>70.219449<br>60.406045<br>53.464437<br>48.315701<br>44.361936<br>41.245095<br>38.737692<br>87Rb/86Sr<br>315.446572<br>170.855091<br>119.617388<br>93.46168Sr<br>33.464572<br>87.079590<br>93.46168Sr<br>49.622570<br>46.204486<br>43.448675<br>87Rb/86Sr<br>315.806469<br>181.385298<br>129.779850<br>102.559396<br>85.797259<br>74.477447<br>44.77447<br>66.350819<br>60.258565<br>55.542945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.7098709<br>0.709360<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709503<br>0.709420<br>0.709502<br>0.709502<br>0.709502<br>0.709513<br>0.709502<br>0.709513<br>0.709502<br>0.709513<br>0.709502<br>0.709513<br>0.709502<br>0.709513<br>0.709503<br>0.709513<br>0.709503<br>0.709503<br>0.709503<br>0.709513<br>0.709504<br>0.709504<br>0.709504<br>0.709504<br>0.709504<br>0.709505<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709513<br>0.709515<br>0.709515<br>0.709515<br>0.709515<br>0.709515<br>0.709515<br>0.709515<br>0.709515<br>0 |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | AMPH<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1               | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f<br>0.0001<br>0.0101<br>0.0201<br>0.0501<br>0.0501<br>0.0501<br>0.0901<br>0.1001<br>f<br>0.0001<br>0.0201<br>0.0401<br>0.0201<br>0.0401<br>0.0401<br>0.0501<br>0.0601<br>0.0601<br>0.0001<br>0.0001<br>0.0001<br>0.0201<br>0.0001<br>0.0201<br>0.0201<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.00000000 | Nd<br>80<br>80.009083<br>81.86049<br>82.812665<br>83.783727<br>86.812928<br>87.85385<br>85.783167<br>86.812928<br>87.85384<br>88.935683<br>90.0300177<br>80.936622<br>81.881693<br>80.009187<br>80.936622<br>81.881693<br>82.844921<br>83.826448<br>84.628036<br>84.628036<br>89.037517<br>90.144322<br>Nd<br>80.09295<br>80.037617<br>90.144322<br>Nd<br>80.09275<br>80.037617<br>80.037617<br>80.37517<br>80.484714<br>83.871172<br>83.871172<br>84.884714<br>85.917738<br>86.971461<br>88.04628<br>89.143611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sm<br>10<br>10.001309<br>10.133399<br>10.267935<br>10.68694<br>10.68694<br>10.68694<br>10.68694<br>11.300699<br>11.284501<br>11.414141<br>Sm<br>10.001329<br>10.272135<br>10.41136<br>10.553168<br>10.957709<br>10.2533168<br>10.95246<br>11.148415<br>11.304637<br>11.464009<br>Sm<br>10.01351<br>10.01351<br>10.01351<br>10.01356<br>10.137666<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.276506<br>10.2776506<br>10.2776506<br>10.2776506<br>10.2776506<br>10.2776506<br>10.2776506<br>10.2776506<br>10.2776506<br>10.2776506<br>10.2776506<br>10.2776506<br>10.2776506<br>10.2776506<br>10.2776506<br>10.2776506<br>10.2776506<br>10.2776506<br>10.277757<br>11.265506<br>10.2776506<br>10.2776506<br>10.2776506<br>10.2776506<br>10.2776506<br>10.2776506<br>10.2776506<br>10.2776506<br>10.2776506<br>10.277757<br>11.265506<br>10.277757<br>11.265506<br>10.277757<br>11.265506<br>10.277757<br>11.265506<br>10.277757<br>11.275757<br>11.275757<br>11.275757<br>11.275757<br>11.275757<br>11.275757<br>11.275777<br>11.2757777<br>11.2757777777777777777777777777777777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rb<br>220<br>220.01904<br>221.94006<br>223.89653<br>225.88642<br>227.91375<br>229.97857<br>232.082<br>234.4024<br>236.4024<br>236.4024<br>236.4024<br>220.01925<br>221.9613<br>223.93818<br>225.95066<br>228.0039<br>230.08782<br>232.21427<br>234.38089<br>236.28392<br>241.13408<br>Rb<br>220<br>220.01946<br>220.92388<br>238.83952<br>241.13408<br>Rb<br>220<br>220.01946<br>221.98338<br>238.23952<br>241.13408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sr<br>2<br>2.0202968<br>4.001122<br>5.8876699<br>7.8835334<br>10.17027<br>12.56143<br>14.028474<br>15.42130<br>17.996268<br>7.2<br>2.017841<br>3.7589992<br>5.417287<br>6.9956622<br>8.4977952<br>9.9260648<br>11.283565<br>12.573106<br>13.797414<br>14.959131<br>16.060823<br>7.573106<br>13.797444<br>4.959131<br>16.060823<br>7.573106<br>13.797444<br>4.959131<br>16.060823<br>7.76934094<br>8.9448683<br>6.3774067<br>7.76934094<br>8.9448683<br>10.13434199<br>11.264223<br>12.306969<br>11.264253<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.336487<br>12.                                        | 0.70030 0.512525<br>87Sr/86Sr 143Nd/144N<br>0.706330 0.512521<br>0.709738 0.512525<br>87Sr/86Sr 143Nd/144N<br>0.706725 0.512502<br>0.710134 0.512506<br>87Sr/86Sr 143Nd/144N<br>0.707180 0.512484 | 147Sm/144 <sup>1</sup><br>0.0755967<br>0.0757272<br>0.07588567<br>0.0759852<br>0.0761127<br>0.0763845<br>0.0764889<br>0.0766123<br>0.0766123<br>0.0767346<br>0.076856<br>147Sm/144 <sup>1</sup><br>0.0755964<br>0.0758677<br>0.0761347<br>0.0765271<br>0.07685867<br>0.07685271<br>0.0768587<br>0.07685867<br>0.0768587<br>0.0768587<br>0.0768587<br>0.0768587<br>0.0768587<br>0.0768587<br>0.0768587<br>0.0768587<br>0.0768586<br>0.07678792<br>0.076619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07610<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.07619<br>0.076 | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>0.512522<br>143/144Nd<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.51 | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.03653<br>85.069973<br>70.219449<br>60.406045<br>315.46437<br>44.36136<br>41.245095<br>38.737692<br>87Rb/86Sr<br>315.446572<br>170.855091<br>33.461662<br>77.642227<br>67.079500<br>59.552525<br>53.940096<br>49.622570<br>87Rb/86Sr<br>315.806469<br>817.806469<br>817.806469<br>813.385286<br>25.797299<br>74.477447<br>66.350819<br>60.258565<br>55.542945<br>51.802911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.708709<br>0.709366<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709420<br>0.709502<br>0.709420<br>0.709502<br>0.709719<br>0.709825<br>0.709719<br>0.709826<br>0.709779<br>0.709826<br>0.709779<br>0.709826<br>0.709779<br>0.709826<br>0.709779<br>0.709826<br>0.709779<br>0.709826<br>0.707209<br>0.709826<br>0.707209<br>0.709844<br>0.700376<br>0.709376<br>0.709376<br>0.709694<br>0.709376<br>0.709694<br>0.709376<br>0.709694<br>0.709376<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709694<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709820<br>0.709799<br>0.709904<br>0.709799<br>0.709904<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709904<br>0.709799<br>0.709904<br>0.709799<br>0.709904<br>0.709799<br>0.709904<br>0.709799<br>0.709904<br>0.709799<br>0.709904<br>0.709799<br>0.709904<br>0.709904<br>0.709799<br>0.709904<br>0.709904<br>0.709799<br>0.709904<br>0.709904<br>0.709799<br>0.709904<br>0.709904<br>0.709904<br>0.709904<br>0.709799<br>0.709904<br>0.709904<br>0.709904<br>0.709799<br>0.709904<br>0.709904<br>0.709904<br>0.709799<br>0.709904<br>0.709904<br>0.709904<br>0.709799<br>0.709904<br>0.709799<br>0.709904<br>0.709799<br>0.709904<br>0.709799<br>0.709799<br>0.709904<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709799<br>0.709904<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70910<br>0.70010<br>0.70010<br>0.70010<br>0.70010<br>0.70010<br>0.70010<br>0.70010<br>0.70010<br>0.70010<br>0.70010<br>0.700100<br>0.70010000000000                                                                                                                                                                                                                                                                                                                                |
| r<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | CPX<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | PLG<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8               | OL<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | OPX<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | AMPH 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1                               | QTZ<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0 | f<br>0.0001<br>0.0201<br>0.0201<br>0.0501<br>0.0601<br>0.0701<br>0.1001<br>0.0001<br>0.1001<br>0.0201<br>0.0001<br>0.0001<br>0.0201<br>0.0201<br>0.0201<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.00000000      | Nd<br>80.009083<br>81.86049<br>82.812865<br>83.783727<br>84.773635<br>85.783167<br>86.812928<br>80.030017<br>Nd<br>80.030017<br>Nd<br>80.030017<br>Nd<br>80.030622<br>81.881693<br>82.844921<br>83.82648<br>84.828036<br>85.849074<br>83.82844921<br>83.82648<br>84.828036<br>85.849074<br>83.827819<br>90.144322<br>Nd<br>80.009295<br>80.947617<br>81.937819<br>83.871772<br>83.87819<br>83.871773<br>83.8781773<br>83.871773<br>83.871773<br>83.8484714<br>85.917461<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.8417173<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>84.884714<br>85.91743<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.871773<br>83.8717773<br>83.8717773<br>83.8717773<br>83.8717773<br>83.8717777777777777777777777777777777777                                                                           | Sm<br>10<br>10.001309<br>10.133399<br>10.267935<br>10.267935<br>10.68694<br>10.33198<br>10.68694<br>11.30689<br>11.284501<br>11.414113<br>Sm<br>10.001329<br>10.13549<br>10.272135<br>10.411336<br>10.553168<br>10.955216<br>11.34594<br>10.955246<br>11.148415<br>11.304537<br>11.464002<br>Sm<br>10<br>10.001351<br>10.37666<br>0.417943<br>10.562054<br>10.7768814<br>11.07788514<br>11.07788514<br>11.07788514<br>11.07788514<br>11.07788514<br>11.07788514<br>11.07788514<br>11.07788514<br>11.07788514<br>11.07788514<br>11.07788514<br>11.07788514<br>11.07788514<br>11.07788514<br>11.07788514<br>11.07788514<br>11.07788514<br>11.07788514<br>11.07788514<br>11.07788514<br>11.07788514<br>11.07788514<br>11.07788514<br>11.07788514<br>11.07788514<br>11.07788514<br>11.07788514<br>11.07788514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>11.0778514<br>1                                                          | Rb<br>220<br>220.01904<br>221.94006<br>223.89553<br>225.88642<br>229.97857<br>232.082<br>234.22515<br>234.22515<br>234.22515<br>240.90522<br>234.22515<br>221.9613<br>223.93818<br>225.95086<br>228.0039<br>232.93087<br>232.393818<br>233.08782<br>232.91427<br>233.08782<br>234.21427<br>234.38095<br>241.13408<br>Rb<br>220.01946<br>220.01946<br>221.98388<br>238.83952<br>241.13408<br>Rb<br>220.01946<br>223.98218<br>238.83952<br>241.13408<br>Rb<br>220.01946<br>223.98218<br>238.83952<br>241.13408<br>Rb<br>223.98218<br>238.83952<br>241.13408<br>Rb<br>223.98218<br>238.83952<br>241.13408<br>Rb<br>223.98218<br>238.83952<br>241.34517<br>233.5175<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.54276<br>234.5 | Sr<br>2.2.022986<br>4.001122<br>5.8876698<br>7.0835334<br>11.017072<br>12.56143<br>14.028474<br>15.42130<br>17.996268<br>37.2<br>2.017841<br>3.7589992<br>5.417287<br>6.9958628<br>8.4977952<br>9.9250648<br>13.797414<br>14.959131<br>16.060823<br>9.9260648<br>13.797414<br>14.959131<br>16.060823<br>13.797414<br>14.959131<br>16.060823<br>13.797414<br>14.959131<br>16.060823<br>13.797414<br>14.959131<br>16.060823<br>13.797414<br>14.959131<br>16.060823<br>13.797414<br>14.959131<br>16.060823<br>13.797414<br>14.959131<br>16.060823<br>13.774067<br>7.9934094<br>3.9942468<br>3.0134319<br>11.264223<br>12.335687<br>11.264223<br>12.335687<br>11.264223<br>12.335687<br>11.264223<br>12.335687<br>11.264223<br>12.335687<br>11.264223<br>12.335687<br>11.264223<br>12.335687<br>11.264223<br>12.335687<br>11.264223<br>11.264223<br>12.335687<br>11.264223<br>11.264223<br>11.264223<br>11.264223<br>11.264223<br>11.264223<br>11.264223<br>11.264223<br>11.264223<br>11.264223<br>11.264223<br>11.264223<br>11.264223<br>11.264223<br>11.264223<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11.26423<br>11 | 0.700300 0.51213<br>875r/86Sr 143Nd/144N<br>0.706330 0.512521<br>0.709738 0.512525<br>87Sr/86Sr 143Nd/144N<br>0.706725 0.512502<br>0.710134 0.512506<br>87Sr/86Sr 143Nd/144N<br>0.707180 0.512484 | 147Sm/144P<br>0.0755967<br>0.0758967<br>0.0758952<br>0.0758952<br>0.0762391<br>0.07683645<br>0.0766129<br>0.0766129<br>0.076656<br>147Sm/144P<br>0.0755964<br>0.076856<br>0.076856<br>0.0768394<br>0.07685961<br>0.0768394<br>0.076858<br>0.0768394<br>0.076858<br>0.076858<br>0.076858<br>0.076858<br>0.076858<br>0.076858<br>0.076858<br>0.076858<br>0.076858<br>0.076858<br>0.076858<br>0.076858<br>0.076858<br>0.076858<br>0.076619<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758961<br>0.0758963<br>0.076819<br>0.076619<br>0.076619<br>0.076619<br>0.076619<br>0.076619<br>0.076619<br>0.076619<br>0.076619<br>0.076838<br>0.0767099<br>0.076619<br>0.076619<br>0.076838<br>0.076709<br>0.076838<br>0.076709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 143/144Nd<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512521<br>0.512522<br>0.512522<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512502<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512484<br>0.512 | 87Rb/86Sr<br>315.050756<br>160.496064<br>110.036553<br>35.069973<br>70.219449<br>60.406045<br>53.464437<br>48.315701<br>44.361936<br>41.245095<br>38.737692<br>87Rb/86Sr<br>315.446572<br>170.855091<br>19.617388<br>93.461682<br>77.642227<br>67.079590<br>39.461682<br>87Rb/86Sr<br>315.806469<br>818.25570<br>46.204486<br>43.448675<br>87Rb/86Sr<br>315.806469<br>181.385298<br>129.779850<br>102.556356<br>55.542945<br>51.802911<br>48.78004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 87Sr/86Sr<br>0.706366<br>0.708132<br>0.708709<br>0.7098709<br>0.7099360<br>0.709420<br>0.709420<br>0.709466<br>0.709503<br>0.709503<br>0.709503<br>0.709503<br>0.709502<br>0.709513<br>0.709502<br>0.709713<br>0.709502<br>0.709713<br>0.709904<br>87Sr/86Sr<br>0.709904<br>87Sr/86Sr<br>0.70209<br>0.709871<br>0.709904<br>0.709904<br>0.709971<br>0.709904<br>0.709971<br>0.709904<br>0.709971<br>0.709904<br>0.709971<br>0.709904<br>0.709971<br>0.709904<br>0.709971<br>0.709971<br>0.709904<br>0.709971<br>0.709904<br>0.709971<br>0.709904<br>0.709910<br>0.709991<br>0.700991<br>0.700929<br>0.700574<br>0.709991<br>0.700952<br>0.700574<br>0.709991<br>0.700574<br>0.700574<br>0.709991<br>0.700574<br>0.700574<br>0.700574<br>0.700574<br>0.700574<br>0.700574<br>0.700575<br>0.709910<br>0.700574<br>0.700574<br>0.700575<br>0.709910<br>0.700575<br>0.700575<br>0.700575<br>0.709713<br>0.709910<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.700575<br>0.                                                                                                                                                                                                                                                                                  |

| RECALCULE A<br>L'Age 14 Ma<br>L'Age Biblio<br>CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                | RECALCULE A REC<br>L'Age 14 Ma L'A                                                                                                                                                                                                                                                        | CALCULE A<br>Age Biblio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude<br>Latitude<br>Latitude<br>Latitude<br>Aue Correction Mai<br>Aue reference<br>Not Doministic Construction<br>Not Not Doministic Construction<br>Not Not Not Not Not Not Not Not Not Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | # (Olerook et al., 2017 - n.)<br>Geochemistry Reference<br>Province<br>Location<br>Sample Name | (143wdr) 4446) initial resolution<br>(143wdr) 4466) initial resolution<br>Aver 14Mar L- Donnik Install resolution<br>(RSS measured resolution<br>(RSS Model) Initial resolution<br>(RSS Model) Initial resolution<br>(143wdh 4446) Initial resolution<br>(StanMd 1446) Initial resolution | 2280/224Pb<br>2280/224Pb<br>2280/224Pb<br>2280/224Pb<br>2005/204Pb minal<br>2005/204Pb mi | Interview 2016/2017<br>Interview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | # (Olerook et al. 2017 - n.)<br>Geochemistry Reference<br>Province<br>Location<br>Rampte Name<br>Rampte Name<br>Location<br>Aue Correcton Ma)<br>Ale Correcton Ma) |
| Besatt<br>Basatt<br>34,42<br>115,4<br>115,4<br>115,4<br>115,4<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115,6<br>115, | 13<br>[10]<br>Bunbury Basalt<br>Bunbury Basalt<br>Bunbury Basalt                               | 0.172<br>0.172<br>0.704/022<br>0.704/022<br>0.022                                                                                                                                                                                                                                         | 0,127<br>0,028<br>0,028<br>0,028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42<br>122<br>230<br>0.704110<br>0.704110<br>0.704110<br>17.890<br>17.890<br>17.890<br>0.70052<br>0.0052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>Bunbury Basat<br>Bunbury Basat<br>Sel713<br>                                                                                                                  |
| Basalt<br>Basalt<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.7<br>115.7<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117.5<br>117. | 14<br>Bunbury Basetit<br>Bunbury Basetit<br>Bunbury Basetit<br>8 87719                         | 0.194<br>0.194<br>0.194<br>0.2704<br>0.2704<br>0.2704<br>0.272<br>0.194<br>0.5122001<br>0.194                                                                                                                                                                                             | 0.137<br>0.270450<br>0.037<br>0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.9<br>3.0<br>2.55<br>3.0<br>2.55<br>0.704389<br>0.704389<br>0.704389<br>0.704389<br>0.704389<br>0.704389<br>0.704389<br>0.704389<br>0.704389<br>0.704389<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704394<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.70449444<br>0.7044944<br>0.7044944<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.704494<br>0.70449444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2<br>Banbury Baset<br>Banbury Baset<br>9 68/12<br>9 58/12<br>9 58/12<br>153<br>153<br>157<br>157                                                                   |
| Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat<br>Skeat  | 15<br>Innbury Basett<br>Bunbury Basett<br>Bunbury Basett<br>s 80723                            | 0.157<br>0.157<br>0.180<br>0.190                                                                                                                                                                                                                                                          | 0.150<br>0.150<br>0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.5<br>110.7<br>110.7<br>1180.0<br>1.8<br>18.001<br>18.001<br>18.001<br>18.001<br>18.001<br>18.001<br>18.001<br>18.001<br>18.001<br>18.001<br>19.272<br>0.197<br>0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3<br>Bunbury 5(10)<br>Bunbury 5 Besett<br>8 68774<br>Beset<br>34.42<br>115<br>13<br>13                                                                             |
| Basad<br>Basad<br>-34.42<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4<br>115.4 | 16<br>[10]<br>Bunbury Basalt<br>Bunbury Basalt<br>s 8072                                       | 0.177<br>0.114<br>0.0229<br>0.72485<br>0.0229                                                                                                                                                                                                                                             | 1327<br>0.7020<br>0.7020<br>0.020<br>0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.0<br>12.0<br>22.0<br>0.4<br>0.704860<br>17.982<br>15.982<br>0.17<br>0.17<br>0.172<br>0.172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4<br>Bunbury Basett<br>Bunbury Basett<br>8 90685<br>Baset<br>-33 32<br>115 65<br>132 7<br>132 7                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11<br>[5]<br>Bunbury Baselt<br>Bunbury Baselt<br>s Baselt                                      | 0,176<br>0,14<br>0,049<br>0,784279<br>0,049                                                                                                                                                                                                                                               | 0.1327<br>0.04049<br>0.050<br>0.1327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 140<br>130<br>1223<br>1273<br>1273<br>1273<br>1273<br>1273<br>1273<br>1273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5<br>Bunbury Baselt<br>Bunbury Baselt<br>8 90504<br>Basel<br>-33 32<br>115 65<br>132 7<br>132 7                                                                    |
| Basati / Thoeile<br>33<br>115.25<br>115.25<br>115.26<br>0.704128<br>17.820<br>17.820<br>17.820<br>17.820<br>17.820<br>17.821<br>15.851<br>15.851<br>15.851<br>15.851<br>37.940<br>0.051<br>0.051<br>0.051<br>0.051<br>0.051<br>0.051<br>0.051<br>0.051<br>0.051<br>0.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12<br>Burbury Besalt<br>Burbury Besalt<br>Burbury Besalt                                       | 0,173<br>0,114<br>0,704912<br>0,704912<br>0,0690                                                                                                                                                                                                                                          | 1327<br>0780<br>0797<br>080<br>080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.9<br>15.0<br>22.10<br>11.0<br>11.0<br>11.1<br>0.704830<br>15.860<br>15.860<br>15.860<br>38.151<br>0.70<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6<br>Bunbury Beart<br>Bunbury Beart<br>8 80690<br>Baat<br>-33 32<br>115.65<br>132.7<br>132.7                                                                       |
| Gamodionite<br>2022<br>2022<br>2022<br>2022<br>2022<br>2022<br>2022<br>2022<br>2022<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027<br>2027                                                                                                                                                                                                                                                                                                                                                        | 49<br>[178]<br>Comel Province<br>Lagulia Intrusive Rocks                                       | 0.100<br>0.14<br>0.078<br>0.70478<br>0.078                                                                                                                                                                                                                                                | 132.7<br>0.708<br>0.708<br>0.078<br>0.198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.1<br>12.2<br>220.0<br>6.5<br>0.7<br>0.704770<br>0.70470<br>1.7526<br>1.5526<br>0.109<br>0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7<br>Burbury Baset<br>Burbury Baset<br>Burbury Baset<br>589996<br>Baset<br>-33.32<br>115.63<br>132.7<br>132.7                                                      |
| Gemodicate<br>(2012)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170)<br>(1170                                                                                                                                                    | 50<br>[176]<br>Comel Province<br>Laguila Intrusive Rocks                                       | 0,771<br>0,171<br>14<br>0,705<br>0,705<br>0,108                                                                                                                                                                                                                                           | 132.7<br>0.76506<br>0.7666<br>0.786<br>0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.2<br>11.2<br>11.2<br>11.2<br>12.8<br>1.0<br>0.705.320<br>0.705.320<br>17.531<br>15.505<br>15.505<br>0.158<br>0.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8<br>Burbury E100<br>Burbury Baset<br>9 66700<br>Baset<br>1-33.32<br>1-53.32<br>152.7<br>132.7                                                                     |
| Casbbro<br>28,22<br>92,22<br>197,23<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19,22<br>19, | 51<br>(176)<br>Comei Province<br>Laguila Intrusive Rocks<br>L1617                              | 0.512614<br>0.102<br>0.102<br>0.704700<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100                                                                                                                                                                   | 0.7 0.610<br>0.7 0.610<br>0.100<br>0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.0<br>15.1<br>2.24.0<br>2.54.1<br>0.761.2<br>0.764.780<br>0.764.780<br>15.501<br>17.5010<br>17.5010<br>15.514<br>3.614.1<br>3.614.1<br>3.614.1<br>3.614.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9<br>Burbury [10]<br>Burbury Basalt<br>8 88964<br>Basalt<br>Basalt<br>15.63<br>115.63<br>115.63<br>115.63                                                          |
| Subbo<br>28.19<br>92.22<br>11.55<br>12.22<br>15.22<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25<br>15.25  | 52<br>[176]<br>Comel Province<br>Laguila Intrusive Rocks<br>D1618-2                            | 0.512517<br>0.189<br>0.119<br>0.705316<br>0.119<br>0.120<br>0.189<br>0.512664<br>0.189                                                                                                                                                                                                    | 132.7<br>0.119<br>0.705115<br>0.189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.8<br>15.4<br>15.4<br>10.0<br>2.1<br>0.5<br>12.62<br>15.62<br>15.62<br>15.62<br>15.62<br>15.62<br>15.62<br>15.62<br>15.62<br>15.62<br>15.62<br>15.62<br>15.62<br>15.62<br>15.62<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15.63<br>15. | 10<br>Bunbury Basalt<br>Bunbury Basalt<br>8 8697<br>Basalt<br>-33 32<br>115.63<br>112.21<br>[22]                                                                   |

Annexe n°15: Compilation des données isotopiques de roches liées à la présence du panache de Kerguelen, recalculées à 14 Ma (modifiée d'après Olierook et al. 2017)

| R                         | ECAL<br>L'Age              | CULE<br>14 Ma                                                | A                      | RECA<br>L'Ag                                                  | ALCULE /<br>ge Biblio                                                                     | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                 |                                                          | RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                                 | RECALCULE A<br>L'Age Biblio                                                                                                                                                                                         | CALCUL OLIEROOK 2017                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------|----------------------------|--------------------------------------------------------------|------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Sm/Nd) initial recalculé | (Sm/Nd) measured recalculé | (Rb/Sr) measured recalculé<br>(87 Sr/86Sr) initial recalculé | Age 14 Ma (L. Ponthus) | (Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé | (Rb/Sr) measured recalculé<br>(87 Sr/86S n initial recalculé<br>(Rb/Sr) initial recalculé | 1. VSVID14440 HITAL<br>HISANC4440 HITAL<br>HISANC4440 HITAL<br>HISANC440 HITAL<br>HISAN | Sin form)<br>Nd form)<br>St form)<br>D form)<br>Urom)<br>143 Nd/1 44 Nd measured<br>206 PC/2049b measured<br>206 PC/2049b measured<br>206 PC/2049b measured                                                                                                                                                                                                           | Provine<br>Location<br>Sambie Name<br>Rock Type<br>Rock Type<br>Longitude<br>Longitude<br>Longitude<br>Age Correction (Ma)<br>Age Oprecion (Ma) | # (Olierook et al., 2017 - n.)<br>Geochemistry Reference | Ace 114/a (L. Ponthus)<br>(RD: S): measured recalculé<br>(RD: S): Initial recalculé<br>(RD: Nota) Initial recalculé<br>(143:Wrf.44/a) Initial Initial Initialité<br>(143:Wrf.44/a) Initial Initial Initial | Age erf. (L. Ponthus)<br>(RDS Vanesured recalculé<br>(RDS vinitial recalculé<br>(RDS vinitial recalculé<br>(RDS vinitial recalculé<br>(RDS vinitial recalculé<br>(RDS vinitial recalculé<br>(RDS vinitial recalculé | 147Sm/144Ad<br>143Xm/144Ad<br>875/085F intel<br>875/085F intel<br>225U/024Fb<br>225U/024Fb<br>225U/024Fb<br>206Fb/024Fb intel<br>207Fb/024Fb intel<br>207Fb/024Fb intel | # (Olarook et al. 2017 - n.)<br>Geochemikary Neurence<br>Elocation<br>Samole Manne<br>Rock Trave<br>Rock Trave<br>Roc                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.152                     | 0.152                      | 0.037<br>0.704588                                            | 0.152                  | 0.512607                                                      | 0.037<br>0.704518<br>0.038                                                                | 0.122<br>0.037<br>0.11<br>0.40<br>0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.3<br>35.3<br>1068.2<br>0.5<br>0.5<br>0.7014595<br>0.7014595                                                                                                                                                                                                                                                                                                         | Come Province<br>Laikary Formation<br>s Basalt<br>28<br>91.9<br>145<br>134                                                                      | 22<br>[31]                                               | 0.110<br>0.706078<br>0.110<br>0.150<br>0.512713<br>0.150                                                                                                                                                   | 0.135<br>0.140<br>0.140<br>0.140<br>0.150<br>0.150<br>0.150<br>0.150                                                                                                                                                | 0.511495<br>0.11102<br>0.7059<br>18.855<br>15.825<br>15.825                                                                                                             | (155)<br>Come Province<br>Lapula Information<br>(166)<br>(166)<br>(166)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(176)<br>(17 |
| 0.138                     | 0.138                      | 0.002<br>0.705961                                            | 0.136<br>14            | 0.512632                                                      | 0.002<br>0.705957<br>0.002                                                                | 0.00<br>0.00<br>0.06<br>0.06<br>0.20<br>0.20<br>0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 512763<br>0 512763<br>0 512763<br>0 512763                                                                                                                                                                                                                                                                                                                          | Lakang Fernation<br>s CN14-1<br>Diabase<br>91.9<br>91.9<br>145                                                                                  | 23                                                       | 14<br>0.143<br>0.705762<br>0.143<br>0.155<br>0.155<br>0.151<br>0.155                                                                                                                                       | 0.143<br>0.70 <b>5516</b><br>0.143<br>0.143<br>0.155<br><b>0.5128</b> 16                                                                                                                                            | 0.512619<br>0.512619<br>0.143<br>0.7055<br>18.402<br>18.602<br>38.60                                                                                                    | 54<br>Comei Provins<br>Laguila Intrasive Reces<br>Galactica<br>28 10<br>28 27<br>27 30<br>27 30<br>38 20<br>27 50<br>38 20<br>27 50<br>38 20<br>27 50<br>38 20<br>27 50<br>38 20<br>27 50<br>38 20<br>27 50<br>27 50<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.145                     | 0.145                      | 0.112<br>0.704763                                            | 0.145                  | 0.512626                                                      | 0.112<br>0.704554<br>0.113                                                                | 0.617284<br>0.1122<br>0.770454<br>0.07<br>0.00<br>0.28<br>0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120<br>50<br>151<br>151<br>07<br>87<br>87<br>87<br>0.7<br>27<br>0.51<br>27<br>47<br>0.7<br>47<br>55                                                                                                                                                                                                                                                                   | Lakang Fermation<br>s CN24-1<br>Basalt<br>28<br>91.9<br>145<br>[34]                                                                             | [31]                                                     | 0.171<br>0.705856<br>0.171<br>0.149<br>0.512713<br>0.149                                                                                                                                                   | 0.173<br>0.171<br>0.705566<br>0.172<br>0.149<br>0.512597<br>0.149                                                                                                                                                   | 0.512897<br>0.17135<br>0.77056<br>0.7056<br>18.764<br>15.694<br>39.046                                                                                                  | 55<br>Comes P [175]<br>Dictors<br>Dictors<br>92,22<br>92,22<br>92,22<br>92,22<br>94,22<br>95,89<br>0,7559<br>0,7559<br>10,7559<br>10,7559<br>11,7759<br>15,772<br>15,772<br>15,772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.148                     | 0.148                      | 0.005<br>0.707742                                            | 0.146<br>14            | 0.512635                                                      | 0.005<br><b>0.707733</b><br>0.005                                                         | 0.619.87<br>0.619.87<br>0.005<br>0.05<br>0.05<br>0.21<br>0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 2<br>37 7<br>20 4<br>21 3<br>22 1.3<br>7.4<br>7.1<br>7.1<br>0.4<br>7.1<br>7.1<br>0.0127743                                                                                                                                                                                                                                                                          | Lakang Formation<br>s CN1-1<br>Diabase<br>28<br>91.9<br>91.45<br>[341]                                                                          | 25                                                       | 14<br>0.112<br>0.705568<br>0.112<br>0.153<br>0.512572<br>0.153                                                                                                                                             | 0.112<br>0.705378<br>0.112<br>0.115<br>0.153<br>0.512453<br>0.153                                                                                                                                                   | 0.1525<br>0.1119<br>0.7054                                                                                                                                              | 56<br>(178)<br>Luguia Intraisive Province<br>Diblosiz<br>(178)<br>62.2.3<br>(178)<br>64.7<br>28.5.4<br>28.5.4<br>28.5.4<br>28.5.4<br>3.56<br>0.5.1<br>28.6.0<br>3.56<br>0.5.1<br>28.6.0<br>0.5.1<br>28.6.0<br>0.5.1<br>28.6.0<br>0.5.1<br>28.6.0<br>0.5.1<br>28.6.0<br>0.5.1<br>28.6.0<br>0.5.1<br>28.6.0<br>0.5.1<br>28.6.0<br>0.5.1<br>28.6.0<br>0.5.1<br>28.6.0<br>0.5.1<br>28.6.0<br>0.5.1<br>28.6.0<br>0.5.1<br>28.6.0<br>0.5.1<br>28.6.0<br>0.5.1<br>28.5.0<br>0.5.1<br>28.5.1<br>0.5.1<br>28.5.1<br>0.5.1<br>28.5.1<br>0.5.1<br>28.5.1<br>0.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.1<br>29.5.5.1<br>29.5.1<br>29.5.1<br>29.5.                                                                                                                                     |
| 0.153                     | 0.153                      | 0.085                                                        | 0.153                  | 0.512646                                                      | 0.085<br>0.705696<br>0.085                                                                | 0.5126/153<br>0.7055<br>0.7055<br>0.006<br>0.000<br>0.14<br>145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 94<br>372<br>246<br>8390<br>804<br>804<br>904<br>904<br>904<br>905<br>114<br>0.512791                                                                                                                                                                                                                                                                                 | Comel Province<br>Lakang Formation<br>s CN13-1<br>Diabase<br>91.9<br>145<br>[34]                                                                | 26                                                       | 0,133<br>0,706883<br>0,149<br>0,512886<br>0,149                                                                                                                                                            | 0.133<br>0.706638<br>0.134<br>0.149<br>0.512720<br>0.149                                                                                                                                                            | 0.1487<br>0.1328<br>0.1333<br>0.7066<br>15.671<br>15.671<br>38.326                                                                                                      | 1180<br>(188)<br>(188)<br>(188)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)<br>(1983)                                                                                                                                         |
| 0.138                     | 0.138                      | 0.119<br>0.703897                                            | 0.130                  | 0.138<br>0.512673                                             | 0.119<br>0.703675<br>0.120                                                                | 0.512673<br>0.119<br>0.005<br>0.00<br>0.03<br>0.37<br>145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93<br>218<br>228<br>258<br>258<br>258<br>258<br>258<br>258<br>258<br>259<br>257<br>259<br>257<br>257<br>257<br>257<br>257<br>257<br>257<br>257<br>257<br>257                                                                                                                                                                                                          | Cornel Province<br>Lakang Fermation<br>s CN23-1<br>Basat<br>91.9<br>145<br>145                                                                  | 27                                                       | 0.031<br>0.031<br>0.031<br>0.031<br>0.57<br>0.51268<br>0.157<br>0.51268                                                                                                                                    | 145<br>0.031<br>0.031<br>0.031<br>0.317<br>0.3157<br>0.3157<br>0.157                                                                                                                                                | 0.512546<br>0.031<br>0.70863<br>0.007<br>0.00<br>0.00<br>0.30                                                                                                           | 17<br>Conve Produce<br>Lakara Formize<br>SCN6-1<br>Diakara<br>91,2<br>91,4<br>14,5<br>2,4<br>4,4<br>2,4<br>4,4<br>2,4<br>4,4<br>2,4<br>4,4<br>2,4<br>4,4<br>2,4<br>4,4<br>2,5<br>4,4<br>2,4<br>4,4<br>2,5<br>4,5<br>3,5<br>4,5<br>3,5<br>4,5<br>4,5<br>4,5<br>4,5<br>4,5<br>4,5<br>4,5<br>4,5<br>4,5<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.153                     | 0.153                      | 0.277<br>0.709186                                            | 0.153                  | 0.512669                                                      | 0.277<br>0.708670<br>0.278                                                                | 0.5120<br>0.2077<br>0.2082<br>0.05<br>0.05<br>0.14<br>0.14<br>145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 56<br>378<br>3784<br>3270<br>74<br>74<br>0512812<br>0512812<br>0700241                                                                                                                                                                                                                                                                                                | Cornel Province<br>Lakang Formation<br>S CN7-1<br>Diabase<br>91.9<br>91.9<br>145                                                                | 28                                                       | 0.703349<br>0.703349<br>0.154<br>0.512685<br>0.154                                                                                                                                                         | 145<br>0.709344<br>0.51255<br>0.512553<br>0.154                                                                                                                                                                     | 0.512553<br>0.512553<br>0.0003<br>0.001<br>0.001<br>0.001<br>0.001                                                                                                      | 18<br>Comei Province<br>Lasarg Forsince<br>18 502-1<br>Distass<br>19 5<br>19 5<br>19 5<br>19 5<br>21 3<br>21 3<br>21 3<br>21 3<br>21 3<br>21 3<br>21 3<br>21 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.151                     | 0.151                      | 0.002                                                        | 0.151                  | 0.151<br>0.512691                                             | 0.002<br>0.707701<br>0.002                                                                | 0.5 (1.8)<br>0.70702<br>0.003<br>0.03<br>0.23<br>0.23<br>145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.4<br>41.7<br>41.7<br>0.7<br>0.7<br>0.7<br>1.5<br>0.5<br>1.2<br>8.5<br>0.5<br>1.2<br>8.5<br>0.5<br>1.2<br>8.5<br>0.5<br>1.2<br>8.5                                                                                                                                                                                                                                  | Comel Province<br>Lakang Formation<br>s CN9-1<br>Diabase<br>91.9<br>91.9<br>145                                                                 | 28                                                       | 0.705123<br>0.705123<br>0.032<br>0.032<br>0.512864<br>0.512864<br>0.143                                                                                                                                    | 145<br>0.705004<br>0.705004<br>0.002<br>0.143<br>0.512571<br>0.143                                                                                                                                                  | 0.512571<br>0.512571<br>0.002<br>0.13<br>0.13<br>0.03<br>0.52                                                                                                           | 19<br>Come Province<br>3 (X19-1<br>Diabase<br>91.9<br>81.9<br>81.9<br>81.9<br>81.9<br>81.9<br>81.9<br>8.1<br>8.1<br>8.1<br>8.1<br>8.1<br>8.1<br>8.1<br>8.1<br>8.1<br>8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.195                     | 0.195                      | 0.197<br>0.709831                                            | 0.195                  | 0.512560                                                      | 0.197<br>0.709478<br>0.198                                                                | 0.199<br>0.197<br>0.011<br>0.49<br>0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60<br>80<br>150<br>2201<br>2201<br>0.7<br>201<br>2.7<br>0<br>0.7<br>12.7<br>20<br>0.7<br>12.7<br>20<br>0.7<br>12.7<br>20<br>0.7<br>12.7<br>20<br>0.7<br>12.7<br>20<br>0.7<br>12.7<br>20<br>0.7<br>12.7<br>20<br>0.7<br>12.7<br>20<br>0.7<br>12.7<br>20<br>0.7<br>12.7<br>20<br>0.7<br>12.7<br>20<br>0.7<br>12.7<br>12.7<br>12.7<br>12.7<br>12.7<br>12.7<br>12.7<br>12 | Comel Province<br>Lakang Formation<br>S CNZ2-3<br>Basalt<br>91.9<br>140<br>[341                                                                 | [34]<br>30                                               | 0.707384<br>0.707384<br>0.002<br>0.142<br>0.517707<br>0.142                                                                                                                                                | 145<br>0,002<br>0,707379<br>0,002<br>0,142<br>0,142                                                                                                                                                                 | 0.51256<br>0.51256<br>0.70727<br>0.005<br>0.05<br>0.31                                                                                                                  | 20<br>Come Forwhold<br>Lakard Forwhold<br>Diakas<br>91.9<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.222                     | 0.222                      | 0.024<br>0.705584                                            | 14                     | 0.222                                                         | 0.024<br>0.705543<br>0.024                                                                | 0.512746<br>0.024<br>0.705540<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.6<br>9.8<br>14.1<br>1.3<br>154.1<br>1.3<br>0.5<br>129.0<br>0.7.055.89<br>0.7.055.89                                                                                                                                                                                                                                                                                 | Comel Province<br>Lakang Formation<br>S CN16-1<br>Diabase<br>28<br>91.9<br>132<br>132                                                           | 31                                                       | 14<br>0.145<br>0.705325<br>0.145<br>0.147<br>0.512724<br>0.147                                                                                                                                             | 0.145<br>0.705052<br>0.145<br>0.145<br>0.147<br>0.512598<br>0.147                                                                                                                                                   | 0.747<br>0.515588<br>0.7455<br>0.705055<br>0.055<br>0.00<br>0.31                                                                                                        | 21<br>Corone Frences<br>Lakeag Formation<br>28<br>915-2<br>145<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| REC<br>L'A                                                   | ALCULE A<br>.ge 14 Ma                                                                                                                  | <b>`</b>                                           | RECAL<br>L'Age                                                | CULE A<br>Biblio                                                                       | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                    |                                                 |                                                              |                                    |                                                                                                 | RECAL<br>L'Age                                                                             | CULE A<br>14 Ma                                                                     | REC<br>L'A                                                   | ALCULE A<br>ge Biblio                                                                                                                                       | CALCUL OLIEROOK 201                                                                                                                                                                                                                     | 7                                                                                                       |                                                              |                                                                                         |                                                                                               |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| (143Nd/144Nd) Initial recalculé<br>(Sm/Nd) initial recalculé | (87 Sr/86Sr) initial recalculé<br>(87 Sr/86Sr) initial recalculé<br>(Sm/M/Sr) (RM/Sr) initial recalculé<br>(Sm/M/Sr) initial recalculé | (Sm/Nd) initial recalculé<br>Age 14Ma (L. Ponthus) | (Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé | Age ref. (L. Ponthus)<br>(Rb/Sr) measured recalculé<br>(87 Sr/86S/t) initial recalculé | 147 Styri Vahar<br>143 Nori Vahar<br>143 Nori Andre Influi<br>147 Nori Sen Influi<br>147 Nori Sen Influi<br>147 Nori Sen Influi<br>147 Nori Vahar<br>147 Nori Vaha | Th (born)<br>143 Nd/1 44 Nd measured<br>875/r/865 measured<br>2065b/2045b measured<br>2075b/2045b measured<br>2089b/2045b measured | Rb (span)<br>Sr (span)<br>U (span)<br>Pb (span) | Aqe Correction (Ma)<br>Aqe reference<br>Sm (bbm)<br>Nd (com) | Rock Tvpe<br>Latitude<br>Longitude | # (Olierook et al., 2017 - n.)<br>Geochemistry Reference<br>Province<br>Location<br>Samble Name | (Sm/Nd) measured recalcule<br>(143Nd/144Nd) initial recalcule<br>(Sm/Nd) initial recalcule | Age 14 Ma (LPonthus)<br>(Rb/Sr) measured recalculé<br>(87 Sr/86S/ initial recalculé | (143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | Age rer. (L. POTINUS)<br>(87 Sr/86Sr) Initial recalculé<br>(87 Sr/86Sr) Initial recalculé<br>(Sm (Nd) measurised recalculé<br>(Sm (Nd) measurised recalculé | Colouri Audi Initial<br>Britologi, Initial<br>Designer, Initial<br>Designer, Initial<br>Designer, Initial<br>Designer, Initial<br>Designer, Initial<br>Designer, Initial<br>Designer, Initial<br>Designer, Initial<br>Designer, Initial | Th (opm)<br>143Nd/1 44Nd measured<br>87Sr/86Sr measured<br>206Fb/204Pb measured<br>207Fb/204Pb measured | Sm (bopm)<br>Nd (bopm)<br>Rb (bopm)<br>U (bopm)<br>Pb (bopm) | Rock Type<br>Rock Type<br>Latitude<br>Longitude<br>Age Correction (Ma)<br>Age reference | # (Olerook et al. 2017 - n.)<br>Geochemistry Reference<br>Province<br>Location<br>Seante Name |
| 0.511870<br>0.114                                            |                                                                                                                                        | 0.114                                              | 0.114                                                         | 3.328<br>3.328                                                                         | 4 CO<br>14 CO<br>14 CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.511880<br>0.511880                                                                                                               | 131.0<br>106.0<br>2.5                           | 132<br>1341<br>703                                           | Dacite<br>28.746<br>90.715         | 34<br>Comel Province<br>Sangxiu Formation<br>s S XI9-1                                          | 0.224<br>0.512941<br>0.224                                                                 | 0.039<br>0.70 <b>5053</b>                                                           | 0.512768<br>0.224                                            | 0,704988<br>0,204988                                                                                                                                        | 0.51276<br>0.23<br>0.704983<br>0.00<br>0.00<br>0.10                                                                                                                                                                                     | 0.51201<br>0.51261<br>0.705061                                                                          | 32<br>32<br>37<br>37<br>3.7                                  | Dabase<br>91.9<br>132<br>132                                                            | 32<br>[31]<br>Comel Province<br>Lakang Fermation                                              |
| 0.511882<br>0.113                                            |                                                                                                                                        | 0.113                                              | 0.511794                                                      | 132<br>4.741<br>4.750                                                                  | 4 10<br>87<br>87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.511892                                                                                                                           | 125.0<br>71.0<br>2.3                            | 132<br>1341<br>72.8                                          | Dacite<br>28.746<br>90.715         | 35<br>[33]<br>Comel Province<br>Sangxiu Formation<br>s SXI8-3                                   | 0.221<br>0.512967<br>0.221                                                                 | 0.705131                                                                            | 0.512796<br>0.221                                            | 0.704976<br>0.092                                                                                                                                           | 0.612725<br>0.7704955<br>0.001<br>0.00<br>0.00<br>0.00                                                                                                                                                                                  | 0.512.987<br>0.7051.49                                                                                  | 0.2<br>0.2<br>0.2<br>0.2<br>0.2                              | Diabase<br>28.061<br>92.366<br>132<br>[34]                                              | 33<br>Comei Province<br>Lakang Formation                                                      |
| 0.511886<br>0.113                                            |                                                                                                                                        | 0.113                                              | 0.113<br>0.511799                                             | 132<br>2.308<br>2.313                                                                  | 1 10<br>81 F.U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.511896                                                                                                                           | 108.0<br>126.0<br>2.3                           | 1 32<br>[34]<br>12.7                                         | Dacite<br>28.7.46<br>90.7.15       | 36<br>Comei Province<br>Sangxiu Formation<br>s SXI12-2                                          | 0.135<br>0.512544<br>0.135                                                                 | 14                                                                                  | 0.512439<br>0.136                                            | 0                                                                                                                                                           | 0.512(39)                                                                                                                                                                                                                               | 0.512556                                                                                                | 43.8<br>8                                                    | NORG (Sven<br>28.7.46<br>90.7.15<br>132<br>[34]                                         | 40<br>[32]<br>Comei Province<br>Sangxiu Formation<br>s Strutt1-1-27                           |
| 0.512485<br>0.136                                            |                                                                                                                                        | 0.136<br>14                                        | 0.512380                                                      | 132                                                                                    | 0,130<br>61,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.512497                                                                                                                           |                                                 | 132<br>[34]<br>9.3                                           | Dacite<br>28.746<br>90.715         | 37<br>[33]<br>Comel Province<br>Sangxiu Formation<br>s SXI1-1                                   | 0.141<br>0.512606<br>0.141                                                                 | 0.707785                                                                            | 0.512497<br>0.141                                            | 0.017<br>0.707756<br>0.017                                                                                                                                  | 0.0017<br>0.707756                                                                                                                                                                                                                      | 0.512819<br>0.707788                                                                                    | 42.6<br>1.6<br>1.4                                           | 90010<br>Basalt<br>28,746<br>90,715<br>132<br>[34]                                      | 42<br>[32]<br>Comel Province<br>Sangxiu Formation<br>Sangxiu Formation                        |
| 0.512540<br>0.132                                            | 2<br>2<br>2<br>2                                                                                                                       | 0.132                                              | 0.132                                                         | 132                                                                                    | 0.132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512652                                                                                                                           | i                                               | 132<br>[34]<br>10.0                                          | Dacite<br>28.746<br>90.715         | 38<br>[33]<br>Comel Province<br>Sangviu Formation<br>s SXI2-1                                   | 0.137<br>0.512675<br>0.137                                                                 | 14<br>0.70764<br>0.164                                                              | 0.512570<br>0.137                                            | 0.164<br>0.707373<br>0.164                                                                                                                                  | 0.707373                                                                                                                                                                                                                                | 3.1<br>0.512688<br>0.707680                                                                             | 45.5<br>196.1<br>198.1                                       | 90.715<br>90.715<br>132<br>132                                                          | 43<br>[32]<br>Sangalu Formation<br>Sangalu Formation                                          |
| 0.512544<br>0.135                                            | 0<br>40                                                                                                                                | 0.136                                              | 0.135<br>0.512439                                             | 132                                                                                    | 0.512439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.512556                                                                                                                           |                                                 | 132<br>[34]<br>9.8                                           | Dacile<br>28.746<br>90.715         | 39<br>[33]<br>Comel Province<br>Sangxiu Formation<br>s SXI1-1-2                                 | 1. A A A A                                                                                 | 0.004<br>0.709134                                                                   | 0.119                                                        | 0.004<br>0.709127<br>0.004                                                                                                                                  | 0.704<br>0.709127                                                                                                                                                                                                                       | 4.1<br>0.709135                                                                                         | 44.5<br>1.1<br>753.4                                         | 907417<br>Basalt<br>28,746<br>90,715<br>132<br>[34]                                     | 44<br>[32]<br>Comei Province<br>Sangxiu Formation                                             |
| 0.512575<br>0.135                                            | 2<br>3<br>7                                                                                                                            | 0.135                                              | 0.135                                                         | 132                                                                                    | 0.512470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.512587                                                                                                                           | ļ                                               | 132<br>[34]<br>9.5                                           | Dacite<br>28.746<br>90.715         | 41<br>[33]<br>Comel Province<br>Sangxiu Formation<br>s SXI1-2                                   | 81,000 B                                                                                   | 0.063<br>0.710011                                                                   | 0.120                                                        | 0.77099063<br>0.0064                                                                                                                                        | 0,709905                                                                                                                                                                                                                                | 0.710024                                                                                                | 456<br>8.5<br>1.3                                            | 90740<br>283746<br>90.715<br>132<br>[34]                                                | 45<br>[32]<br>Comel Province<br>Sangxiu Formation                                             |
|                                                              | 0.704804<br>0.704804                                                                                                                   | 1                                                  | 0.0000                                                        | 0.704804                                                                               | 0.704804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.512720<br>0.704804<br>18.656<br>15.577<br>38.980                                                                                 | 1189.0                                          | ן<br>[43]                                                    | Trachyandesite<br>-53.12<br>73.33  | 77<br>[36]<br>Heard Island<br>Laurens Peninsula Series<br>s 65054                               | an vouer                                                                                   | 14<br>2.529<br>0.725928                                                             |                                                              | 0.721687<br>2.529<br>2.533                                                                                                                                  | 2,529<br>0.7.21887                                                                                                                                                                                                                      | 0.726431                                                                                                | 110.7<br>126.9                                               | Not Griven<br>28,746<br>90,715<br>132<br>[34]                                           | 46<br>[32]<br>Comel Province<br>Sangxiu Formation<br>s 32/(11)-2                              |
|                                                              | 0.000<br>0.704862<br>0.000                                                                                                             |                                                    | or word                                                       | 0.704862                                                                               | 0.000<br>0.7 04862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5.12705<br>0.7.04862<br>18.776<br>15.588<br>39.170                                                                               | 0,939                                           | ר<br>[43]                                                    | Basanite<br>-53.12<br>73.33        | 78<br>(36)<br>Heard Island<br>Laurens Peninsula Series<br>s 69244                               | AL VYYM                                                                                    | 14<br>2.881<br>2.882                                                                | 0.118                                                        | 0.723615<br>0.1487                                                                                                                                          | 2.261<br>0.723615                                                                                                                                                                                                                       | 3.0<br>0.729021                                                                                         | 52.5<br>52.5<br>128.9<br>128.7<br>129.7                      | 9 - Sanger - 1<br>Basalt<br>28,746<br>90,715<br>132<br>[34]                             | 47<br>[32]<br>Comei Province<br>Sangxiu Formation                                             |
|                                                              | 0.186<br>0.705310<br>0.186                                                                                                             | _                                                  |                                                               | 1<br>0.186<br>0.7 <b>05310</b>                                                         | 0.785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0<br>0.512602<br>0.705313                                                                                                        | 39.0<br>607.0                                   | 1<br>[43]                                                    | Basanite<br>-53.12<br>73.5         | 58<br>[37]<br>Heard Island<br>Big Ben Series<br>s 69289                                         |                                                                                            | 14<br>4,791<br>0,730083<br>4,792                                                    |                                                              | 0.722047<br>4.800                                                                                                                                           | 4.791<br>0.722047                                                                                                                                                                                                                       | 0.731036                                                                                                | 121.9<br>73.8                                                | 8 007007-0<br>Not Given<br>28.746<br>90.715<br>132<br>[34]                              | 48<br>[32]<br>Comei Province<br>Sangxiu Formation<br>s SX (/8).3                              |

|                         | REC/                                                          | LCUL<br>ge 14 I                                             | E A<br>Na                                           | REC/                                                                                       | ALCULE A<br>ge Biblio                                                                                                             | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                                                                                                           |                                                                                                                                                                                                                                                                                                            |                                                                                      |                                                                      | REC/                                                                                        | ALCULE A<br>ge 14 Ma                                                                                         | RECALCULE A<br>L'Age Biblio                                                                                                                                                             | CALCUL OLIEROOK 2017                                                                                                                                                                                           |                                                                                                                                  |                                                 |                                                                                                                |                                                                     |
|-------------------------|---------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| DIDARA I INTRO I DARANG | (Sm/Nd) measured recalcule<br>(143Nd/144Nd) initial recalculé | (87 Sr/86Sr) initial recalculé<br>(Rb/Sr) initial recalculé | Age 14Ma (L. Ponthus)<br>(Rb/Sr) measured recalculé | (Sm/NG) measured recalcule<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | Mate ter, (LFUTURIS) measured recalculé<br>(RSVS) measured recalculé<br>(RSVSR6Sr) initial recalculé<br>(Rb/Sr) initial recalculé | Harshort Annu British<br>HSNMA Annu British<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DRSS<br>BTR/DTR/DRSS<br>BTR/DTR/DRSS<br>BTR/DTR/DRSS<br>BTR/DTR/DTR/DTR/DTR/DTR/DTR/DTR/DTR/DTR/D | r to tubini)<br>143Nd/144Nd Tineasured<br>875/R857 maasured<br>2078/b2049b maasured<br>2078/b2049b maasured | Age reference Sm (ppm)<br>Nd (ppm)<br>St (ppm)<br>U (ppm)                                                                                                                                                                                                                                                  | Location<br>Sample Name<br>Rock Type<br>Latitude<br>Longitude<br>Age Correction (Ma) | # (Olierook et al., 2017 - n.)<br>Geochemistrv Reference<br>Province | (143Md7 Md0 initial recalcule<br>(143Md7 Md0 initial recalculé<br>(Sm/Nd) initial recalculé | Age 14Ma (L.Ponthus)<br>(Rb/Sr) measured recalculé<br>(Rb/Sr) initial recalculé<br>(Rb/Sr) initial recalculé | Age ref. (L Pontha)<br>(Rb:S) moasured recalcule<br>(87:Sr86S) initial recalcule<br>(SmNA) measured recalcule<br>(SmNA) measured recalcule<br>(1143A1/141A0) Initial recalcule<br>(SmA) | 147 Smr14Held<br>143 Nmr14Held<br>143 Nmr14Held<br>167 Smr63 Smithal<br>256 Ur (204Pb<br>256 Ur (204Pb<br>256 Ur (204Pb<br>256 Ur (204Pb<br>206 Pb (204Pb<br>206 Pb (204Pb<br>206 Pb (204Pb)<br>206 Pb (204Pb) | Pb (born)<br>143Nd/1 4ANd measured<br>8757186Sr measured<br>206Fb/204Pb measured<br>206Fb/204Pb measured<br>208Fb/204Pb measured | Sm (cpcm)<br>Nd (cpcm)<br>Sr (cpcm)<br>U (cpcm) | Sample Name<br>Sample Name<br>Rack Type<br>Latitude<br>Longitude<br>Age Correction (Ma)<br>Age Correction (Ma) | # (Olierook et al. 2017 - n.)<br>Geochemistry Reference<br>Province |
| 0.121                   | 0.512617                                                      | 0.705232<br>0.142                                           | 0.142                                               | 0.121<br>0.512617<br>0.121                                                                 | 0.142<br>0.705232                                                                                                                 | 0.55/2017<br>0.7005332<br>0.7005332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.0<br>0.512618<br>0.705234<br>18.189<br>15.566<br>38.646                                                   | 143)<br>10.3<br>51.4<br>965.0                                                                                                                                                                                                                                                                              | Big Ben Series<br>8 × H10<br>Basanite<br>-53 12<br>73 .5                             | 70<br>[37][36]<br>Heard Island                                       | 0.127<br>0.512629<br>0.127                                                                  | 0.159<br>0.705333<br>0.159                                                                                   | 1<br>0.159<br>0.159<br>0.157<br>0.157<br>0.52829<br>0.127                                                                                                                               | 0.127<br>0.52828<br>0.169<br>0.705333                                                                                                                                                                          | 6.0<br>0.512830<br>0.705335                                                                                                      | 11.1<br>52.8<br>44.0<br>800.0                   | 53 Corono<br>9 SE3001<br>-53.12<br>-73.5<br>73.5<br>1<br>1                                                     | 59<br>Heard Island                                                  |
| 0.110                   | 0.512548                                                      | 0.705673<br>0.223                                           | 1 0.223                                             | 0.119<br>0.512548<br>0.119                                                                 | 0.223<br>0.705673<br>0.223                                                                                                        | 0.510210<br>0.2223<br>0.709673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.0<br>0.512549<br>0.705676                                                                                 | 6<br>8<br>4<br>5<br>8<br>9<br>3<br>0<br>8<br>9<br>3<br>0<br>8<br>9<br>3<br>0<br>9<br>8<br>9<br>3<br>0<br>9<br>8<br>9<br>1<br>4<br>9<br>1<br>8<br>9<br>1<br>8<br>9<br>1<br>8<br>9<br>1<br>8<br>9<br>1<br>8<br>9<br>1<br>8<br>9<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>1 | Big Ben Series<br>s 65 143<br>453 12<br>-53 12<br>73 5                               | 68<br>[37][54]<br>Heard Island                                       |                                                                                             | 1<br>0,183<br>0,70 <b>5310</b><br>0,183                                                                      | 0.183<br>0.7 <b>05310</b><br>0.183                                                                                                                                                      | 0.183<br>0.705310                                                                                                                                                                                              | 10.0<br>0.512842<br>0.705313<br>18.138<br>15.556<br>38.575                                                                       | 62.0<br>979.0                                   | Basalt, Basantic<br>-53.12<br>73.5<br>[4]                                                                      | 60<br>Heard Island                                                  |
| 41144                   | 0.134<br>0.512647                                             | 0.705343<br>0.168                                           | 1<br>0.168                                          | 0.134<br>0.512647<br>0.134                                                                 | 0.168<br>0.705343<br>0.168                                                                                                        | 0.51784.7<br>0.51784.7<br>0.108<br>0.705343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.0<br>0.512848<br>0.705345                                                                                 | [43]<br>5.3<br>23.9<br>24.2<br>415.0                                                                                                                                                                                                                                                                       | Big Ben Series<br>as H61<br>Basanite<br>-53.12<br>73.5                               | 71<br>[37][54]<br>Heard Island                                       |                                                                                             | 1<br>0.207<br><b>0.705338</b><br>0.207                                                                       | 1<br>0.207<br>0.207<br>0.207                                                                                                                                                            | 0.207<br>0.705338                                                                                                                                                                                              | 0.512592<br>0.705341                                                                                                             | 43.0<br>600.0                                   | -53.12<br>Basalt<br>-53.12<br>73.5<br>1<br>[43]                                                                | 61<br>[37]<br>Heard Island                                          |
|                         |                                                               | 0.704725<br>0.229                                           | 1<br>0.229                                          |                                                                                            | 0.229<br>0.704725<br>0.229                                                                                                        | 0.229<br>0.704725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.0<br>0.512729<br>0.704728<br>18.6822<br>15.601<br>39.270                                                 | [43]<br>76.0<br>960.0                                                                                                                                                                                                                                                                                      | Laurens Peninsufa Series<br>s 65254<br>Easanite<br>-53.12<br>73.33                   | 79<br>[37][54]<br>Heard Island                                       |                                                                                             | 1<br>0.249<br>0.705514<br>0.249                                                                              | 1<br>0.705514<br>0.249<br>0.249                                                                                                                                                         | 0.705514                                                                                                                                                                                                       | 6.0<br>0.512827<br>0.705518                                                                                                      | 70.0<br>814.0                                   | Basalt, Basantic<br>73.5<br>[43]                                                                               | 62<br>Heard Island                                                  |
| V: 16.7                 | 0.512603                                                      | 0.705481<br>0.196                                           | 1<br>0.196                                          | 0.127<br>0.512603<br>0.127                                                                 | 0.196<br>0.705481<br>0.196                                                                                                        | 0.512603<br>0.196<br>0.706.496<br>0.00<br>0.00<br>107.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.512604<br>0.705484<br>15.864<br>15.864<br>38.590                                                          | [43]<br>7.6<br>40.0<br>589.0<br>0.0                                                                                                                                                                                                                                                                        | Big Ben Steries<br>s 65085<br>Basatt<br>-53.12<br>73.5                               | 67<br>[37][54][36]<br>Heard Island                                   | 0.512568<br>0.116<br>0.116                                                                  | 0.705645<br>0.705645<br>0.189                                                                                | 0.189<br>0.705645<br>0.189<br>0.51266<br>0.51266                                                                                                                                        | 0.512586<br>0.512588<br>0.789<br>0.705645                                                                                                                                                                      | 7,0<br>0.512569<br>0.705648                                                                                                      | 11.9<br>61.8<br>997.0                           | Trachyandesite<br>-53.12<br>73.5<br>[43]                                                                       | 63<br>Heard Island                                                  |
| 0.110                   | 0.512507                                                      | 0.705991<br>0.249                                           | 1<br>0.249                                          | 0.125<br>0.512507<br>0.125                                                                 | 0.249<br>0.705991<br>0.249                                                                                                        | 0.512807<br>0.249<br>0.705991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.0<br>0.512508<br>0.705985<br>17.953<br>15.550<br>38.420                                                   | [43]<br>9.8<br>47.7<br>52.0<br>604.0                                                                                                                                                                                                                                                                       | Big Ben Series<br>s 65151<br>Trachybasatt<br>-53.12<br>73.5                          | 69<br>[37][54][36]<br>Heard Island                                   |                                                                                             | 1<br>0.213<br>0.213<br>0.213                                                                                 | 1<br>0.213<br>0.205811<br>0.213                                                                                                                                                         | 0.213<br>0.705611                                                                                                                                                                                              | 5.0<br>0.512537<br>0.705814<br>17.958<br>15.568<br>38.443                                                                        | 40,0<br>543.0                                   | s 66030<br>Basalt<br>-53.12<br>73.5<br>1<br>[43]                                                               | 64<br>Heard Island                                                  |
| 011.0                   | 0.512580                                                      | 0.705318<br>0.204                                           | 0.204                                               | 0.512580<br>0.119                                                                          | 0.204<br>0.705318<br>0.204                                                                                                        | 0.51280<br>0.204<br>0.705318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.0<br>0.512581<br>0.705331<br>18.211<br>15.567<br>38.508                                                   | [43]<br>57.9<br>818.0<br>2.0                                                                                                                                                                                                                                                                               | Mawson Peak<br>s 65171<br>Trachybasalt / Basanite<br>-53.12<br>73.5                  | 80<br>[37][54][36][77]<br>Heard Island                               |                                                                                             | 1<br>0.236<br>0.705966<br>0.236                                                                              | 0.236<br>0.7 <b>05966</b><br>0.236                                                                                                                                                      | 0.705366                                                                                                                                                                                                       | 0.512520<br>0.705969<br>17.5913<br>15.559<br>38.412                                                                              | 63.0<br>772.0                                   | Trachyandesile<br>73.5<br>1<br>1<br>1                                                                          | 65<br>Heard Island                                                  |
| V: 16.V                 | 0.512596                                                      | 0.705408<br>0.155                                           | 1<br>0.155                                          | 0.5120<br>0.512596<br>0.120                                                                | 0.155<br>0.705408<br>0.155                                                                                                        | 0.512386<br>0.155<br>0.705498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.4<br>0.512597<br>0.705410                                                                                 | [43]<br>8.9<br>345.0<br>0.8                                                                                                                                                                                                                                                                                | Heard Island<br>s BM1967, P9<br>Basett, Alcaline<br>-53, 12<br>73, 33                | 73<br>[68]<br>Heard Island                                           |                                                                                             | 1<br>0.254<br>0.264<br>0.254                                                                                 | 1<br>0.254<br>0.26111<br>0.254                                                                                                                                                          | 0.706111                                                                                                                                                                                                       | 6.0<br>0.512483<br>0.706115<br>17.582<br>15.560<br>38.4/1                                                                        | 54.0<br>616.0                                   | s 65104<br>Trachybasalt<br>73.5<br>1<br>1<br>[43]                                                              | 66<br>Heard Island                                                  |
| 0, IEU                  | 0.512581                                                      | 0.705547<br>0.195                                           | 1<br>0.195                                          | 0.512581<br>0.512581                                                                       | 0.195<br>0.705547<br>0.195                                                                                                        | 0.51250<br>0.51258<br>0.705547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.512582<br>0.705550<br>18.009<br>15.547<br>38.461                                                          | [43]<br>54.0<br>57.0<br>845.0<br>1.2                                                                                                                                                                                                                                                                       | Heard Island<br>s BM64986<br>Basalt, Alkaline<br>-53.12<br>73.33                     | 74<br>[68]<br>Heard Island                                           | 0.5128<br>0.512651<br>0.129                                                                 | 0.142<br>0.705471<br>0.142                                                                                   | 1<br>0.706471<br>0.142<br>0.142<br>0.129<br>0.512661<br>0.129<br>0.129                                                                                                                  | 0.5128<br>0.512851<br>0.142<br>0.705477                                                                                                                                                                        | 6.0<br>0.512652<br>0.705473                                                                                                      | 96<br>45.0<br>1234.0                            |                                                                                                                | 72<br>[37]<br>Heard Island                                          |
|                         |                                                               | 0.705748<br>0.155                                           | 0.155                                               | 0.109                                                                                      | 0.155<br>0.705748<br>0.155                                                                                                        | 0.109<br>0.155<br>0.705748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.3<br>0.7.05750<br>17.993<br>15.559<br>38.511                                                              | [43]<br>11.9<br>580<br>45.0<br>839.0<br>1.0                                                                                                                                                                                                                                                                | Heard Island<br>s BM64992<br>Basalt, Alkaline<br>-53.12<br>73.33                     | 75<br>[68]<br>Heard Island                                           |                                                                                             | 1<br>0.228<br><b>0.704856</b><br>0.228                                                                       | 1<br>0.228<br>0.704856<br>0.228                                                                                                                                                         | 0.228<br>0.704856                                                                                                                                                                                              | 0,512706<br>0,704859                                                                                                             | 80.0<br>1013.0                                  |                                                                                                                | 76<br>[37]<br>Heard Island                                          |

| RECALCU<br>L'Age 14                                                                                                                                     | Ma RECALO                                                                                                                                                                                                                              | CALCUL OLIEROOK 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2017                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                                       | RECALCULE A<br>L'Age Biblio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (N. V. V. V. Initial recalculé<br>(RNS) initial recalculé<br>(Sm/Nd) measured recalculé<br>(143Nd/ 44Nd) initial recalculé<br>(Sm/Nd) initial recalculé | (RUSS) Initial recalculé<br>(Sm/Nd) masured recalculé<br>(143Nd/144Ng) Initial recalculé<br>(Sm/Nd) Initial recalculé<br>(Sm/Nd) Initial recalculé<br>(RUSS) masured recalculé<br>(RUSS) masured recalculé<br>(RUSS) masured recalculé | grzybiesi<br>grzybiesi<br>zasuczałe<br>zasuczałe<br>dobezczele nala<br>zoreczele | P Loom<br>PL John<br>143Nd/144Nd measured<br>2/5/R58/r measured<br>2/0F1/204/b measured<br>2/0F1/204/b measured<br>2/0F1/204/b measured<br>147Sm/14Nd<br>147Sm/14Nd | # (Olenook et al., 2017 - n.)<br>Province<br>Location<br>Samole Name<br>Rock Type<br>Mar Contracton (Ma)<br>Aler of erence<br>Molitude<br>Molitude<br>Mar Contracton (Ma)<br>Aler of erence<br>Not Location<br>Not Location<br>Not Location<br>Structor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Ptb/S) newsured recalculé<br>(Ptb/S) newsured recalculé<br>(RSVR6S) nintel recalculé<br>(Sm/Nd) neusier de recalculé<br>(143Ndf14Nd) nintal recalculé<br>(Sm/Nd) initial recalculé<br>(Sm/Nd) initial recalculé | 2026/2044b Initial<br>2026/2044b Initial<br>Age off (L.Porthus)<br>(RVS) measured resolution<br>(RVS) notation and the<br>(RVS) notation and (RVS) notation<br>(RVS) notation ( | Di Olemi<br>To Longi<br>To | # (Olerook et al. 2017 - n.)<br>Geochemistr Reference<br>Province<br>Sample Nam<br>Rock Twee<br>Rock |
| 0.209<br>0.513077<br>0.209                                                                                                                              | 0.209<br>0.513077<br>0.209<br>0                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.519077<br>0.70302<br>17.932<br>15.509<br>37.822                                                                                                                   | 635<br>Indian Ocean Synaeling Ridges<br>Southeast Indian Ridge<br>CHRHYMA-010014<br>74.67<br>74.67<br>74.67<br>5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.213<br>0.213<br>0.213                                                                                                                                                                                          | 0<br>0.213<br>0.213<br>0.213<br>0.213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 51302<br>0 70342<br>15 80<br>37 985<br>37 985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Indan Oceans Spinoling Filipi<br>Southeast Inden Folds<br>CHRHYAM201-1026<br>CHRHYAM201-1026<br>4-03<br>7-8.65<br>0<br>N/A<br>2.65<br>5.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.153<br>0.512925<br>0.153                                                                                                                              | 0.153<br>0.512925<br>0.153<br>0                                                                                                                                                                                                        | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.512925<br>0.770863<br>18.585<br>15.583<br>39.802                                                                                                                  | 635<br>Indian Ocean Spreading Fidge<br>Southeast trials Fidge<br>CHRIVANSTPALL<br>-387<br>775<br>175<br>NUA<br>3.39<br>13.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.181<br>0.512854<br>0.181                                                                                                                                                                                       | 0<br>0.181<br>0.512854<br>0.181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.51284<br>0.70435<br>16.065<br>15.665<br>28.445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 628<br>Indian Ocame Spinneding Fulgers<br>Southware Marking<br>CHIPHAWA002<br>78.48<br>78.48<br>78.48<br>8.0<br>4.19<br>4.19<br>4.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.179<br>0.512821<br>0.179                                                                                                                              | 0.179<br>0.512821<br>0.179<br>0.179<br>0                                                                                                                                                                                               | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.512821<br>0.77443<br>18.008<br>15.55<br>38.636                                                                                                                    | 640<br>Indian Ocean Spreading R1(141<br>Southeast Indian R402<br>DUFF007-006-002<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,155<br>0.512822<br>0.155                                                                                                                                                                                       | 0<br>0.155<br>0.152<br>0.155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.51282<br>0.74411<br>18.738<br>16.578<br>38.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 827<br>Indian Ocean Spreading Ridge<br>Scuttering Holds<br>CHRENYAMA005-00<br>37.82<br>78.42<br>78.42<br>8.5<br>8.5<br>8.5<br>8.5<br>2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.198<br>0.512978<br>0.198                                                                                                                              | 0.198<br>0.512078<br>0.198<br>0.198                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.512978<br>0.7733134<br>18.0825<br>15.4757<br>37.9914                                                                                                              | 885<br>hidan Ocean Spreading 1123<br>Southeast Indian Roge<br>10P0187-1152A-001R-001/052-122<br>1227.087<br>1227.087<br>1237.087<br>1433<br>1433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.195<br>0.572991<br>0.195                                                                                                                                                                                       | 0<br>195<br>0.195<br>0.195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.612891<br>0.72012<br>18.531<br>38.215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1823<br>Indian Ocean Spreading Fielding<br>Scaling at Indian<br>CHRIVMA004.043<br>-34.91<br>-78.67<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.196<br>0.512987<br>0.196                                                                                                                              | 0.196<br>0.512887<br>0.196<br>0                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.512887<br>0.7750687<br>18.0625<br>18.4757<br>15.4757<br>37.9871                                                                                                   | 891<br>hrdan Ocean Spreading 1223<br>Southers Indian Robe<br>Dip 197 - 11528-044-00020-244<br>1/870.078<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.229<br>0.229<br>0.229                                                                                                                                                                                          | 0<br>0.51289<br>0.229<br>0.229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.672890<br>0.7287<br>18.41<br>15.698<br>39.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 823<br>Indian Oceans Spranding Polygo<br>Scatterate Indian<br>CHRHYMADD4-2020<br>-34.91<br>1767<br>0<br>ND<br>148<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.214<br>0.513060<br>0.214                                                                                                                              | 0.214<br>0.513080<br>0.214<br>0.214                                                                                                                                                                                                    | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.51308<br>0.702758<br>18.3053<br>15.4716<br>37.9344                                                                                                                | 885<br>Indian Ocan Spreading Riges<br>Santasett ritar Riges<br>DDP0187-1183A-007W-004065-05<br>193-81515<br>193-81515<br>193-81515<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-8151<br>193-81551<br>193-81551<br>193-8155555555555555555                                                                                                 | 0.201<br>0.512963<br>0.201                                                                                                                                                                                       | 0<br>0.201<br>0.212863<br>0.201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.662863<br>0.70321<br>18.406<br>15.551<br>38.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 630<br>Intellin<br>Scattered in Plage<br>Scattered in Plage<br>CHRHWAU05.00<br>34.96<br>78.54<br>0.0<br>NA<br>2.14<br>2.45<br>6.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                         | 0                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.513053<br>0.702734<br>18.422<br>15.4864<br>38.0487                                                                                                                | 888<br>holian Ocean Spreading Ridge<br>COPP0187-1153A-004R-001701-11-<br>Essant<br>12-28151<br>12-28151<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.208<br>0.208<br>0.208                                                                                                                                                                                          | 0<br>0.208<br>0.213003<br>0.208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 513083<br>077286<br>17 86<br>18 477<br>15 477<br>37 860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 631<br>Holan Osan Systems Fill<br>Suthers Holan<br>Content And<br>Suthers<br>Cherkinkan<br>Content<br>Total<br>NA<br>NA<br>830<br>840<br>840<br>840<br>840<br>840<br>840<br>840<br>840<br>840<br>84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.210<br>0.513073<br>0.210                                                                                                                              | 0.210<br>0.513073<br>0.210<br>0                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.513073<br>0.702771<br>18.428<br>16.4894<br>38.095                                                                                                                 | 890<br>holian Ocean Sprading Roge<br>Southeast Indian Roge<br>ODP1087-1153A-008R-001154-11<br>123-8151<br>123-8151<br>4.000<br>4.11<br>1189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.202<br>0.202<br>0.202                                                                                                                                                                                          | 202.0<br>202.0<br>202.0<br>202.0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.51308<br>0.77283<br>17.6694<br>15.6794<br>37.728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1920<br>Hollan Oceans Spensation (Figure<br>Southaan Hollan Regins<br>CHRHYNAUCTOR<br>-512<br>765<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.511<br>0.513100<br>0.214                                                                                                                              | 0.21<br>0.513100<br>0.214<br>0.214                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.513<br>0.702944<br>18.613<br>15.4595<br>38.1483                                                                                                                   | 900<br>Indian Ocean Spreading Rdg<br>ODP0187-118-4-4028-4001/025-021<br>8-84<br>13-3377<br>13-3377<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13-3372<br>13 | 0.200<br>0.200<br>0.200                                                                                                                                                                                          | 0.510070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.51307<br>0.7028<br>15.645<br>37.728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10dian Ocean Spreading Fudge<br>Sutheast Indian Regist<br>CHRHYMAG9.00<br>767.7<br>76.7<br>8.0<br>8.0<br>9.0<br>8.0<br>8.0<br>9.0<br>9.0<br>9.0<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.223<br>0.513076<br>0.223                                                                                                                              | 0.223<br>0.513076<br>0.223<br>0                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 5 13076<br>0 7768529<br>18 5875<br>15 54778<br>35,1148                                                                                                            | 911<br>Indian Ocean Spreading P125<br>Southeast Indian Ocean Spreading P126<br>Southeast Indian Robert<br>Based<br>131.3173<br>131.3173<br>4.5<br>12.2<br>12.2<br>12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.205<br>0.205<br>0.205                                                                                                                                                                                          | 9020<br>6505<br>9220<br>0220<br>0220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5 (30:59<br>0.77286<br>15.430<br>15.430<br>37.785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10dan Ocara Spreading Life2<br>Southeat Indian Rages<br>CHRH/MAC94008<br>333<br>75.76<br>NA<br>NA<br>9.43<br>9.43<br>9.43<br>9.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| RECALCU<br>L'Age 14                                                                                                                                                      | JLE A<br>Ma                                        | RECAI<br>L'Ag                                                                              | LCULE A<br>e Biblio                                                                                              | CALCUL OLIEROOK 2017                                                                                                                                                                       |                                                                                                                     |                                                         |                                    |                                    |                                                                                                           | RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                             | RECALCULE A<br>L'Age Biblio                                                                                                                                                                                | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (TO AND/OUT) Initial receive<br>(RNS) initial receive<br>(Sm/Nd) measured receive<br>(143Nd/144Nd) initial receive<br>(Sm/Nd) initial receive<br>(Sm/Nd) initial receive | Age 14Ma (L.Ponthus)<br>(Rb/Sr) measured recalculé | (Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | Age ref. (L. Ponthus)<br>(Rb/Sr) measured recalculé<br>(875/86S1) initial recalculé<br>(Rb/Sr) initial recalculé | 147Sm/144AQ<br>147Sm/144AQ<br>87K/b65K/bfab<br>87K/b65K/bfab<br>228U/204Pb<br>228U/204Pb<br>228U/204Pb<br>228U/204Pb<br>228U/204Pb<br>228U/204Pb<br>228U/204Pb<br>228U/204Pb<br>228U/204Pb | 143Nd/714ANd measured<br>87Sr/86Sr measured<br>206Fb/204Pb measured<br>207Fb/204Pb measured<br>208Pb/204Pb measured | Rb (opm)<br>Sr (opm)<br>U (opm)<br>Pb (opm)<br>Th (opm) | Age reference Sm (ppm)<br>Nd (ppm) | Rock Type<br>Latitude<br>Longitude | # (Olerook et al., 2017 - n.)<br>Geochemistry Reference<br>Province<br>Lucention<br>Samble Name           | Aqe 14Ak L. Pontrus)<br>(Rb:S'n measured recalculé<br>(87 Sr/86Sh initial recalculé<br>(Rb:S'n)intial recalculé<br>(Sm/Md) initial recalculé<br>(Sm/Md) initial recalculé<br>(Sm/Md) initial recalculé | (RUS) measured recalculé<br>(RUS) measured recalculé<br>(RTS/RSS) Initial re calculé<br>(RTV) measured recalculé<br>(RTV) measured recalculé<br>(143Nd/14ANB initial recalculé<br>(Sm/N) Initial recalculé | 14 Swith Hand<br>14 Swith Hand<br>14 Swith Hand<br>15 Swith Hand<br>16 Swith Hand<br>17 Swith Hand<br>17 Swith Hand<br>18 | A management of the second of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | # (Olencok et al. 2017 - n.)<br>Geschmitter Veterend<br>Location<br>Rock Tvoo<br>Rock Tvoo<br>Lanttude<br>Lanttude<br>Lanttude<br>Se formene<br>Se formene<br>Se formene<br>Se formene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.211<br>0.513021<br>0.211                                                                                                                                               | 0                                                  | 0.211<br>0.513021<br>0.211                                                                 | c                                                                                                                | ,                                                                                                                                                                                          | 0.513021<br>0.702942<br>17.9848<br>15.4608<br>37.8079                                                               |                                                         | N/A<br>3.02<br>8.65                | Basalt<br>-43.2611<br>128.8861     | 938<br>Indian Ocean Spreading Ridges<br>Sourteast Indian Ridge<br>IDP0187-1157A00W-CC012-016              | 0.199<br>0.199<br>0.199                                                                                                                                                                                | 0.199<br>0.513031<br>0.199                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.513031<br>0.702875<br>15.0637<br>15.4666<br>37.5466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 112<br>hrdan Ocean Screeting [112]<br>Screen Screeting [112]<br>Screen Screeting [112]<br>Based<br>4.13652<br>127.6948<br>NA<br>NA<br>1.55<br>1.55<br>1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.214<br>0.513066<br>0.214                                                                                                                                               | 0                                                  | 0.214<br>0.513066<br>0.214                                                                 | o                                                                                                                |                                                                                                                                                                                            | 0.513006<br>0.702661<br>18.692<br>15.5054<br>38.242                                                                 |                                                         | N/A<br>4.42<br>12.49               | Basalt<br>-43.2611<br>128.8861     | 942<br>[125]<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge<br>DP0187-1157A-0266-001(066-000  | 0.513026<br>0.200<br>0.200                                                                                                                                                                             | 0.513026<br>0.200<br>0.200                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.513028<br>0.70259<br>17.9871<br>15.4871<br>37.7631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1151<br>1151<br>1152<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1153<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155                                                                   |
| 0.218<br>0.513064<br>0.218                                                                                                                                               | 0                                                  | 0.218<br>0.513064<br>0.218                                                                 | c                                                                                                                | ,                                                                                                                                                                                          | 0.513064<br>0.702729<br>18.6895<br>15.5027<br>38.2411                                                               |                                                         | N/A<br>4.35<br>12.05               | Basalt<br>-43.2611<br>128.8961     | 945<br>[125]<br>Indian Ocean Spreading Ridges<br>Soffwaat Indian Ridge<br>DDP0 167-1157A-0036-001/30-021  | 0.205<br>0.513049<br>0.205                                                                                                                                                                             | 0.205<br>0.513049<br>0.205                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.513049<br>0.702848<br>18.0056<br>15.6455<br>37.7568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 818<br>Indian Ocean Spineling F(122)<br>Scotthead Holding Fords<br>Scotthead Holding Fords<br>Baseling<br>115982<br>4115982<br>21<br>NA<br>21<br>6199<br>619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.213<br>0.513061<br>0.213                                                                                                                                               | 0                                                  | 0.213<br>0.513061<br>0.213                                                                 | 0                                                                                                                |                                                                                                                                                                                            | 0.513061<br>0.70282<br>18.6493<br>15.4973<br>38.2084                                                                |                                                         | N/A<br>4.18<br>11.86               | Basalt<br>-43.2611<br>128.8861     | 946<br>Indan Ocean Spreading Ridges<br>Soffwaat Not 2001 18-1840<br>DDP0167-1157A-000128-1840             | 0.216<br>0.216<br>0.216                                                                                                                                                                                | 0.216<br>0.513005<br>0.216                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.513055<br>0.702854<br>18.0081<br>15.6406<br>37.7819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 822<br>Indian Ocean Spinadrig Fil25<br>Scitthaet Holdin Ford<br>Scitthaet Active<br>Baselit<br>127 592-4<br>0<br>241<br>675<br>675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.204<br>0.513038<br>0.204                                                                                                                                               | 0                                                  | 0.204<br>0.513038<br>0.204                                                                 | c                                                                                                                |                                                                                                                                                                                            | 0.513038<br>0.702867<br>17.9842<br>15.456<br>37.757                                                                 |                                                         | N/A<br>3.32<br>9.83                | Basalt<br>-43.2613<br>128.8638     | 950<br>[12]<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge<br>ODP0187-11572-00740             | 0<br>0.219<br>0.219<br>0.219                                                                                                                                                                           | 0.219<br>0.513048<br>0.219                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.513048<br>0.702804<br>15.458<br>15.458<br>37.7611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 823<br>hdan Ocean Spreading Fid2s<br>Southware and fid2s<br>OpP0187-11558-0086-002<br>Basel<br>1-27.982<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.204<br>0.5 13050<br>0.204                                                                                                                                              | 0                                                  | 0.204<br>0.513050<br>0.204                                                                 | c                                                                                                                | ,                                                                                                                                                                                          | 0.51305<br>0.702913<br>17.987<br>15.4566<br>37.758                                                                  |                                                         | N/A<br>3.41<br>10.11               | Basalt<br>-43 2613<br>128.8638     | 956<br>[125]<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge<br>ODP0187-1 1572-0008-001042-001 | 0<br>0.230<br>0.230<br>0.230                                                                                                                                                                           | 0.230<br>0.230<br>0.230                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.513039<br>0.702877<br>15.79682<br>15.4545<br>37.7697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 824<br>brdian Ocean Spreading [1/23]<br>Scattores Total Reduce<br>COPPO167-11558-0086-0020-009<br>Basel<br>1529 824<br>1279 824<br>1279 824<br>1279 824<br>1279 824<br>1298 24<br>1298 24<br>1298<br>1298 24<br>1298 24<br>1298 24<br>1298 24<br>1298 24<br>1298 24<br>12988 24<br>1298 24 |
| 0.201<br>0.513060<br>0.201                                                                                                                                               | 0                                                  | 0.201<br>0.513060<br>0.201                                                                 | c                                                                                                                |                                                                                                                                                                                            | 0.51306<br>0.702852<br>17.9854<br>15.4575<br>37.7611                                                                |                                                         | N/A<br>3,47<br>10,46               | Basalt<br>-43.2613<br>128.8838     | 957<br>[125]<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge<br>ODP0 187-1577 0084-001/02-00   | 0.207<br>0.513010<br>0.207                                                                                                                                                                             | 0.207<br>0.207<br>0.207                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.51301<br>0.702594<br>15.028<br>15.4662<br>37.8457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 522<br>Holan Ocean Syreading Tess<br>Scathana Indan Robert<br>Scathana Ind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.201<br>0.512982<br>0.201                                                                                                                                               | 0                                                  | 0.201<br>0.512982<br>0.201                                                                 | e                                                                                                                |                                                                                                                                                                                            | 0.312982<br>0.703284<br>18.3142<br>15.4918<br>38.091                                                                |                                                         | N/A<br>3.94<br>11.86               | -43.948283<br>128.828285           | 959<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge<br>ODP0187-1156A-00370-001                 | 0.216<br>0.513001<br>0.216                                                                                                                                                                             | 0.216<br>0.216                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.513001<br>0.702821<br>16.0282<br>15.4434<br>37.8424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1831<br>Ibrian Ocean Spranding 1848<br>Southwat Indian Fedge<br>ODP0187-1156A-00278-0127-868<br>Basta<br>1827-885<br>1827-885<br>1828-1829<br>1829<br>1829<br>1830<br>1830<br>1830<br>1830<br>1830<br>1830<br>1830<br>1830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.51306<br>0.201<br>0.202                                                                                                                                                | _                                                  | 0.20<br>0.513064<br>0.205                                                                  |                                                                                                                  |                                                                                                                                                                                            | 0.70730<br>0.7072<br>18.581<br>15.500<br>38.1772                                                                    |                                                         | 4.3<br>12.7                        | -43.94639<br>128.8263              | 96:<br>Indian Ocean Spreading Ridge<br>Indian Cocean Spreading Ridge<br>ODP0 187 - 1158E00404 R001101     |                                                                                                                                                                                                        |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 97 848<br>18.011<br>18.012<br>19.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 83<br>Indian Ocean Syna, 162<br>Sutheast Indian Res<br>Sutheast Indian Res<br>Based<br>162<br>172, 8880-0<br>172, 8880-0<br>172, 8880-0<br>NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.217<br>0.513080<br>0.217                                                                                                                                               | 0                                                  | 0.217<br>0.513080<br>0.217                                                                 | 0                                                                                                                |                                                                                                                                                                                            | 5 0.51308<br>0.70282<br>18.7117<br>15.5054<br>38.257                                                                |                                                         | N/A<br>4.37<br>12.17               | t Basalt<br>-45,9567<br>129,9999   | 125<br>Indian Ocean Spreading Ridges<br>ODP0 187-1156/JUNE Ridge                                          | 0.512982<br>0.512982<br>0.202                                                                                                                                                                          | 0.512882<br>0.202                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,1698<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1,2000<br>1, | 1 Indian Ocean Spreading Tel:<br>Southern Right<br>Southern Right<br>Based<br>Based<br>1 27146<br>1 271806-007<br>1 271800-00<br>1 271800-                                                                                                                                                                                                                                              |

| RECALCULE A<br>L'Age 14 Ma                                                                                                                                                        | RECAI                                                                                                              | LCULE A<br>e Biblio                                                                           | CALCUL OLIEROOK 2017                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                             |                                                                      | RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                                | RECALCULE A<br>L'Age Biblio                                                                                                                                                                                | CALCUL OLIEROOK 2017                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Rb/S) measured recalculé<br>(875/868) Initial recalculé<br>(87/898/101/81) Initial recalculé<br>(87/140) measured recalculé<br>(143/40/14/81/86/81)<br>(Sm/Md) Initial recalculé | (Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé<br>Age 14Ma (L.Ponthus) | (87 Sr/86Sr) initial recalculé<br>(87 Sr/86Sr) initial recalculé<br>(Rb/Sr) initial recalculé | 147 Sm/144AQ<br>149 Nor/144AQ<br>149 Nor/144AQ<br>1875-0885 Inhal<br>1875-0885 Inhal<br>2820 I/2415<br>2821 I/2415<br>2821 I/2415 Inhal<br>2821 I/2445 Inhal<br>2015-I/2445 Inhal<br>2015-I/2445 Inhal<br>2015-I/2445 Inhal | A strate and experiments of the strategy of th | Age reference<br>Sm (bbm)<br>Nd (bbm) | Location Sample Name<br>Rock Type<br>Latitude<br>Latitude                                   | # (Olierook et al., 2017 - n.)<br>Geochemistry Reference<br>Province | Age 1414 (L-Yonthus)<br>(RDS/S) measured recalculé<br>(RDS/S) initial recalculé<br>(RDVS) initial recalculé<br>(Sm/Nd) measured recalculé<br>(143Nd/141Nd) initial recalculé<br>(Sm/Nd) initial recalculé | Age teri, L-Portrus)<br>(RbS) measured recalculé<br>(87 Sr/86Sh Initial recalculé<br>(Rb/S) initial recalculé<br>(Sm/Nd) initial recalculé<br>(14 3Nd/14Nd) initial recalculé<br>(Sm/Nd) initial recalculé | 147 Sm/144AQ<br>143 Nm/144AQ<br>875/b685 Initial<br>875/b685 Initial<br>825/b785 Zolu /204Pb<br>225U /204Pb<br>225U /204Pb<br>225U /204Pb<br>225U /204Pb<br>225U /204Pb<br>225U /204Pb<br>225U /204Pb<br>225U /204Pb | A constraint of the constraint | # (Oterook et al. 2017 - n.)<br>Geochemiatev tekterenes<br>Lucation<br>Rock Types<br>Rock Types<br>Rock Types<br>Lucatitude<br>Londitide<br>Mac Garretelon Mish<br>Aue reference<br>Sta (Janni)<br>Aue reference<br>Sta (Janni)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.195<br>0.512999<br>0.195                                                                                                                                                        | 0.195<br>0.512999<br>0.195<br>0                                                                                    | ,                                                                                             | 0                                                                                                                                                                                                                           | 0.512999<br>0.703017<br>15.0494<br>15.4494<br>15.4599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A<br>3.21<br>9.95                   | ODP0187-1163A-003R-002/002-006<br>Basalt<br>-44.4246<br>126.9983                            | 1009<br>[125] Indian Ocean Spreading Ridges                          | 0<br>0.217<br>0.513012<br>0.217                                                                                                                                                                           | 0<br>0.513072<br>0.217<br>0.217                                                                                                                                                                            | ,                                                                                                                                                                                                                    | 0 513072<br>0 702861<br>18 5604<br>15 5011<br>38 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 888<br>hd/an Ocean Storedrig Riches<br>Southeast Index Ridge<br>DDP0187.1153A.008R.002/053.007<br>45.0867<br>45.0867<br>3.10<br>3.10<br>3.10<br>10.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.216<br>0.512992<br>0.216                                                                                                                                                        | 0.216<br>0.512992<br>0.216<br>0                                                                                    |                                                                                               | 0                                                                                                                                                                                                                           | 0.512992<br>0.703064<br>18.0767<br>15.4689<br>37.9281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A<br>3.5<br>9.79                    | DP0187-1163A-006R-003046-049<br>Basatt<br>-44.4246<br>126.9083<br>000                       | 1011<br>[125]<br>Indian Ocean Spreading Ridges                       | 0<br>0.510<br>0.513074<br>0.210                                                                                                                                                                           | 0.513074<br>0.210<br>0.210                                                                                                                                                                                 | ,                                                                                                                                                                                                                    | 0.513074<br>0.702542<br>18.8694<br>15.2203<br>38.3600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 974<br>Indian Oceans Storeding Ridges<br>South east Indians Ridge<br>DDP0187-1160A-000R-001/078-021<br>-14.000978<br>144.998258<br>0.0<br>3.45<br>3.45<br>9.55<br>9.55<br>9.55<br>9.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.200<br>0.512988<br>0.200                                                                                                                                                        | 0.200<br>0.512988<br>0.200<br>0                                                                                    | ,                                                                                             | •                                                                                                                                                                                                                           | 0.512988<br>0.702895<br>18.0757<br>15.4035<br>37.9165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A<br>3.35<br>10.15                  | ODP0187-1163A-010R-001/116-120<br>Basat<br>-44.4246<br>126.9080<br>-000                     | 10.16<br>[125]<br>Indian Ocean Soreading Ridges                      | 0<br>0.513076<br>0.233<br>0.233                                                                                                                                                                           | 0.233<br>0.513076<br>0.233                                                                                                                                                                                 | ,                                                                                                                                                                                                                    | 0.513076<br>0.708607<br>18.7761<br>15.477<br>38.2132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 978<br>Hofan Oceans Spreating Fides<br>Southoat Nation Region<br>Southoat Nation Region<br>Essantia<br>144.0082<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.208<br>0.208<br>0.208                                                                                                                                                           | 0.208<br>0.513033<br>0.208<br>0                                                                                    |                                                                                               | •                                                                                                                                                                                                                           | 0.513033<br>0.702823<br>15.46018<br>15.4601<br>3.7.8584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A<br>3.42<br>9.94                   | Southeast Indian Ridge<br>ODP0187-1164A-004R-001/020-024<br>43.7483<br>127.7483<br>127.7480 | 1018<br>[125]<br>Indian Ocean Spreading Ridges                       | 0.241<br>0.513107<br>0.241                                                                                                                                                                                | 0.241<br>0.513107<br>0.241                                                                                                                                                                                 | ,                                                                                                                                                                                                                    | 0.513107<br>0.7702529<br>18.635<br>15.527<br>38.376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 981<br>1123<br>Scatta Sarradina Editas<br>Scatta Sarradina Editas<br>ODP0187-111068-0047-027/12-126<br>Basali<br>Basali<br>134.9883<br>0<br>0<br>137<br>137<br>137<br>137<br>137<br>137<br>137<br>137<br>137<br>137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.214<br>0.513005<br>0.214                                                                                                                                                        | 0.214<br>0.513005<br>0.214<br>0                                                                                    |                                                                                               | 0                                                                                                                                                                                                                           | 0.513005<br>0.702366<br>18.0489<br>15.4703<br>37.8838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A<br>2.94<br>8.3                    | ODP0187-11648-003R-001/038-097<br>Basalt<br>-43.7492<br>127.7461                            | 1020<br>[125]<br>Indian Ocean Spreading Ridges                       | 0<br>0.257<br>0.257<br>0.257                                                                                                                                                                              | 0.257<br>0.2513096<br>0.257                                                                                                                                                                                | ,                                                                                                                                                                                                                    | 0.513096<br>0.7702576<br>18.7687<br>15.4881<br>38.2517<br>38.2517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 983<br>holan Ocean Spreading 1/23<br>South Spreading 1/27<br>000P0187-11008-0096-001/127-129<br>Baselit<br>1/34.983<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.219<br>0.513001<br>0.219                                                                                                                                                        | 0.219<br>0.513001<br>0.219<br>0                                                                                    |                                                                                               | 0                                                                                                                                                                                                                           | 0.513001<br>0.702546<br>15.4682<br>37.8911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A<br>2.58<br>7.13                   | ODP0187-1164B-010R-001/021-025<br>Basalt<br>-43.7461<br>-127.7461<br>0                      | 1027<br>Indian Ocean Screading Ridges                                | 0,210<br>0,210<br>0,210                                                                                                                                                                                   | 0.210<br>0.513080<br>0.210                                                                                                                                                                                 | ,                                                                                                                                                                                                                    | 0.51308<br>0.702884<br>15.4593<br>37.746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 988<br>Indian Ocean Styreading 1/28<br>Southeast Indian Rote<br>Basel<br>Basel<br>1/200510<br>3.17<br>9.13<br>9.15<br>9.15<br>9.15<br>9.15<br>9.15<br>9.15<br>9.15<br>9.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                   | 0                                                                                                                  |                                                                                               |                                                                                                                                                                                                                             | 0.513072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NIA                                   | Southeast Indian Ridge<br>VEM0033-1-001-002<br>Basati<br>-50.408<br>131.005                 | 1031<br>[126][125]<br>Indian Ocean Sereading Ridges                  | 0,228<br>0,513052<br>0,228                                                                                                                                                                                | 0.228<br>0.513062<br>0.228                                                                                                                                                                                 |                                                                                                                                                                                                                      | 0.513052<br>0.705028<br>17.9182<br>15.4557<br>37.6837                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>1120<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11200<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>10 |
|                                                                                                                                                                                   | 0                                                                                                                  |                                                                                               |                                                                                                                                                                                                                             | 0.513072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                    | Southeast Indian Ridge<br>VEMD033-1-002-019<br>-50.267<br>132.55                            | 1036<br>Indian Ocean Spreading Ridges                                | 0.209<br>0.513033<br>0.200                                                                                                                                                                                | 0.5 13 003<br>0.206                                                                                                                                                                                        |                                                                                                                                                                                                                      | 0 5 1003<br>0 7 2240<br>18 1594<br>19 4 733<br>37 1594<br>37 1594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1000<br>Kdian Ocean Spanisting Fidure<br>Sutheast Indian Reduce<br>Sutheast Indian Reduce<br>Basel<br>122 0613<br>00000187-11615-0038-001/039-04<br>Basel<br>122 0613<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                   | 0                                                                                                                  | ·                                                                                             |                                                                                                                                                                                                                             | 0.5.13055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                                     | Southeast Indian Rida<br>VEM0033-1-003-00<br>-50.417<br>-50.417                             | 1039<br>[126][125]<br>Indian Ocean Spreading Ridges                  | 0.210<br>0.210<br>0.210                                                                                                                                                                                   | 0.513066                                                                                                                                                                                                   |                                                                                                                                                                                                                      | 0 5 1306<br>0 7 70390<br>16 1 70<br>37 848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100<br>Indian Ocean Spread of 1<br>Scuttmast Indian Ridge<br>Scuttmast Indian Ridge<br>Scuttmast Indian Ridge<br>Indian Ocean Spread of 1<br>Scuttmast Indian Ridge<br>Indian Ocean Spread of 1<br>Indian Ocea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                   | 0                                                                                                                  |                                                                                               |                                                                                                                                                                                                                             | 0.513035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                    | Southeast Indian Ridge<br>VEM0033-2-007-407<br>Basalt<br>-49.033<br>124<br>124              | 1049<br>[126][125]<br>Indian Ocean Streadino Ridotea                 | 0<br>0.225<br>0.573013<br>0.225                                                                                                                                                                           | 0<br>0.225<br>0.513013<br>0.225                                                                                                                                                                            |                                                                                                                                                                                                                      | 0 5 130 13<br>0 7 702986<br>15 06859<br>15 4704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1007<br>1103in Ocean Strendtin (2018)<br>Southeast Index (2018)<br>Basel<br>1000<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010                                                                                                                                                                                                                                                                                                                                                                      |

|                           | RECALCULE #<br>L'Age 14 Ma                                                                                                                              | RE                                                                                  | CALCULE A<br>Age Biblio                                                                                                                       | CALCUL OLIEROOK 2017                                                                                                                                                                   |                                                                                                                                               |                                                                                                                                      |                                                                                                                                                                 | RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                            | RECALCULE A<br>L'Age Biblio                                                                                                                                                                         | CALCUL OLIEROOK 2017                                                                                                                                                                         |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Sm/Nd) initial recalculé | (Rb/Sr) measured recalculé<br>(87S/86S9 initial recalculé<br>(Rb/Sr) initial recalculé<br>(Sn/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé | (143Nd/144Nd) initial recalculé<br>(SmNd) initial recalculé<br>Age 14Ma (L.Ponthus) | Age rei: (Lrommus)<br>(Rb/Sr) measured recalculé<br>(87 Sr/86Sr) initial recalculé<br>(Rt/Sr) initial recalculé<br>(Sm/Nd) measured recalculé | HTS/IN144404 Initial<br>HSR/AUA AND Initial<br>BTS/UNSS Initial<br>BTS/UNSS Initial<br>ZSB/UZAHPS<br>ZSB/UZAHPS Initial<br>ZSB/ZCHPS Initial<br>ZSB/ZCHPS Initial<br>ZSB/ZCHPS Initial | Th (com)<br>143 Nd/1 44 Nd measured<br><i>STS:1865</i> measured<br>207P b/20,4Pb measured<br>207P b/20,4Pb measured<br>208P b/20,4Pb measured | Loncitude<br>Aus Correction (Ma)<br>Aus reference<br>Ma (com)<br>Ma (com)<br>Sr (com)<br>Sr (com)<br>U (com)<br>Pb (com)<br>Pb (com) | # (Olerook et al., 2017 - n.)<br>Geochemistry Reference<br>Province<br>Location<br>Sambe Name<br>Sambe Name<br>Jatitude<br>Latitude                             | Ane 14Me (L Porthus)<br>(RUS measured recalcule<br>(Sam (RUSS) initial recalcule<br>(Sam (RUSS)) initial recalcule<br>(14394854) initial recalcule<br>(14394744463864876<br>(SamMd) Initial recalcule | Age ref (L.Ponthus)<br>(RUS/S) measured recalculé<br>(875/8656) Initial recalculé<br>(878/8656) Initial recalculé<br>(878/8656) Initial recalculé<br>(878/86/11/11/11/11/11/11/11/11/11/11/11/11/11 | 14750rd 4440 http:<br>1430rd 4440 http:<br>1876 b085 http:<br>2580 U204 Pb<br>2580 U204 Pb<br>2580 U204 Pb<br>2580 U204 Pb<br>2580 U204 Pb<br>2087 Pb 2044 Pb minal<br>2087 Pb 2044 Pb minal | Sr (born)<br>Sr (born)<br>D (born)<br>143 Nd/r 44 Nd maaured<br>875 //855 maaured<br>206 FV2/2049 braaured<br>207 FV2/2049 braaured<br>207 FV2/2049 braaured | # (Olierook et al. 2017 - n.)<br>Geochemistry Reference<br>Province<br>Location<br>Samula Mann<br>Call None<br>Locati Yone<br>Locati Yone<br>Ada Carroction (Ma)<br>Ada reference<br>Nd form)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.208                     | 0.208                                                                                                                                                   | 0.513102<br>0.208<br>0                                                              | 0.208                                                                                                                                         |                                                                                                                                                                                        | 0.513102<br>0.70259<br>18.617<br>15.48<br>38.085                                                                                              | 130,417<br>N/A<br>4.8<br>13.99                                                                                                       | 1044<br>Indian Ocean Spreading Ridge<br>Southeast Indian Ridge<br>VEM0033-1-006-001<br>Basalt<br>-50.3                                                          |                                                                                                                                                                                                       | c                                                                                                                                                                                                   |                                                                                                                                                                                              | 0.512988<br>0.703212<br>19.2441<br>15.4927<br>38.2809                                                                                                        | 1051<br>Indian Ocean Spreading Ruges<br>Surbeat Indian Ridge<br>VEM052-006-005<br>Jackson<br>121.055<br>121.055<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.184                     | 0.184<br>0.512972                                                                                                                                       | 0.512972<br>0.184<br>0                                                              | 0.184 c                                                                                                                                       | ,                                                                                                                                                                                      | 0.512972<br>0.70314<br>18.225<br>15.465<br>38.211                                                                                             | 121.033<br>NIA<br>3.29<br>10.79                                                                                                      | 1052<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge<br>VEM0033-2-008-008<br>Basalt<br>49.467                                                        | •                                                                                                                                                                                                     | c                                                                                                                                                                                                   |                                                                                                                                                                                              | 0.513017<br>0.7702849<br>18.0008<br>15.4888<br>38.0123                                                                                                       | 1053<br>Indian Ocean Spreading Ridges<br>VEMOD2-2008-001<br>VEMOD2-2008-001<br>113175<br>113175<br>113175<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.214                     | 0.214                                                                                                                                                   | 0.513036<br>0.214<br>0                                                              | 0.214                                                                                                                                         |                                                                                                                                                                                        | 0.513038<br>0.770293<br>18.248<br>15.489<br>38.003                                                                                            | 119,175<br>NA<br>3.15<br>8.9                                                                                                         | 1054<br>[127][126]<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge<br>VEM0033-2-009-002<br>Basett<br>-49.808                                         | •                                                                                                                                                                                                     | c                                                                                                                                                                                                   |                                                                                                                                                                                              | 0.513006<br>17.7835<br>15.5004<br>37.887                                                                                                                     | Indian Ocean Spinearing (128)<br>Southread Trading Roge<br>VEMO25010-010<br>143.37<br>143.37<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0,198                     | 0.198<br>0.51 297 8                                                                                                                                     | 0.512978<br>0.198<br>0                                                              | 0.198                                                                                                                                         |                                                                                                                                                                                        | 0.512878<br>0.70346<br>17.772<br>15.494<br>37.837                                                                                             | 115.375<br>NA<br>2.74<br>8.35                                                                                                        | 1055<br>[127][126]<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge<br>VEM0033-2-010-010<br>VEM0033-2-010-010<br>-49.917                              | •                                                                                                                                                                                                     | c                                                                                                                                                                                                   |                                                                                                                                                                                              | 0.51304                                                                                                                                                      | 1060<br>Indian Ocean Spreading Roges<br>Scothest Indian Roge<br>VEMO03-2011.005<br>8888<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.206                     | 0.206                                                                                                                                                   | 0.513041<br>0.206<br>0                                                              | 0.206                                                                                                                                         | ,                                                                                                                                                                                      | 0.513041<br>0.70284<br>17.944<br>15.409<br>37.743                                                                                             | 118<br>0 0<br>2.46<br>7.546                                                                                                          | 1059<br>[127][128]<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge<br>VEM0033-2-011-006<br>VEM0033-2-011-006<br>ABasit<br>-49.858                    |                                                                                                                                                                                                       | c                                                                                                                                                                                                   |                                                                                                                                                                                              | 0.70612                                                                                                                                                      | 1060<br>Indan Ocean Spreading Roge<br>Southwast Indan Hotge<br>VEMOS-2-006-02<br>VEMOS-2-006-02<br>VEMOS-2-006-02<br>VEMOS-2-006-02<br>VEMOS-2-006-02<br>VEMOS-2-006-02<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.211                     | 0.211                                                                                                                                                   | 0.513058<br>0.211<br>0                                                              | 0.211                                                                                                                                         |                                                                                                                                                                                        | 0.513058<br>0.70281<br>18.911<br>15.514<br>38.319                                                                                             | 132,55<br>0 0<br>14,5<br>4,5<br>12,3<br>9                                                                                            | 1035<br>[127][128][11]<br>Indian Ocean Spreading Ridge<br>Southeast Indian Ridge<br>VEM0033-1-002-019<br>Basalt                                                 |                                                                                                                                                                                                       | c                                                                                                                                                                                                   |                                                                                                                                                                                              | 0.513066                                                                                                                                                     | 1041<br>Indian Ocean Spreading Hogs<br>Southwest Indian Rodge<br>VEMOUST-B04-C07<br>0,52 at<br>137,655<br>0,0<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.189                     | 0.51307                                                                                                                                                 | 0.51307-<br>0.189                                                                   | 0.18                                                                                                                                          |                                                                                                                                                                                        | 0.51307<br>0.7025<br>18.99<br>15.61<br>38.46                                                                                                  | 135.00<br>N/<br>3.844<br>12.23                                                                                                       | 103]<br>Indian Ocean Spreading Ridge<br>Southeast Indian Ridge<br>VEM0033-1-003-00-<br>VEM0033-1-003-00-<br>Basal<br>-50-41-                                    | 0.201<br>0.51307<br>0.202                                                                                                                                                                             | 0.20<br>0.51307<br>0.20                                                                                                                                                                             |                                                                                                                                                                                              | 0.51307                                                                                                                                                      | 100:<br>Indian Ocean Spreading Factor<br>Scutheeat Indian Rody<br>VEM/031005 Co<br>VEM/031005 Co<br>VEM/04<br>140:710<br>2.7.<br>2.7.<br>2.7.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.<br>8.1.1.1.<br>8.1.1.1.<br>8.1.1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.21                      | 0.51313                                                                                                                                                 | 0.51313<br>0.21                                                                     | 0.21                                                                                                                                          |                                                                                                                                                                                        | 0.51312<br>0.7025<br>18.811<br>18.813<br>15.50<br>38.16                                                                                       | 137.55<br>NG<br>2.68<br>7.4                                                                                                          | 104<br>Indian Ocean Spreading Ridge<br>Southeast Indian Ridg<br>VEM0033-1-004-00<br>VEM0033-1-004-00<br>                                                        | 0 0 0 20 0 20 0 20 0 20 0 20 0 20 0 20                                                                                                                                                                | 0.20<br>0.21307<br>0.20                                                                                                                                                                             |                                                                                                                                                                                              | 0.51307                                                                                                                                                      | 100<br>Indian Ocean Spreading Fedge<br>Southeast Indian Red<br>VeDM053006 CO<br>130-07<br>130-07<br>4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4 0.2                     | 0.51300<br>9 0.51300                                                                                                                                    | 9 0.51300<br>4 0.22                                                                 | 0.22                                                                                                                                          | 2                                                                                                                                                                                      | 9<br>3<br>2<br>2<br>18.0<br>3<br>3<br>3<br>3<br>7.7<br>6                                                                                      | 8 P. Z 4                                                                                                                             | 10<br>11<br>12<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                      | N <b>4</b> N 6                                                                                                                                                                                        | 272 0                                                                                                                                                                                               |                                                                                                                                                                                              | 0.5130<br>5                                                                                                                                                  | 5 Indian Ocean Spreading Ridg<br>Southeast Indian Ocean Spreading Ridg<br>USAN Spreading Ridg<br>Base<br>Southeast Indian Spreading Ridg<br>Base<br>Southeast Indian Spreading Ridg<br>Base<br>Spreading Ridg<br>Spreading Ridg<br>Spre |
| 0.183                     | 0.183<br>77 0.513007                                                                                                                                    | 0.513007<br>0.183<br>0<br>0                                                         | 0.18 <u>ය</u> ද                                                                                                                               | 2                                                                                                                                                                                      | 77 0.513007<br>33 0.7028<br>38 18.057<br>28 18.057<br>29 16.439<br>4 37.858                                                                   | 124<br>0 0 0<br>1/1<br>1/1<br>1/1<br>1/1<br>1/1<br>1/1<br>1/1                                                                        | 48 1046<br>59 [127][126][163][15]<br>59 Indian Ocean Spreading Ridges<br>19 Southeast Indian Ridge<br>19 VEM0033-2:007-003<br>11 VEM0033-2:007-003<br>13 40,003 | 0<br>0<br>0<br>0<br>181<br>0<br>181<br>0<br>181                                                                                                                                                       | 0<br>0.181<br>0.181<br>0.181                                                                                                                                                                        |                                                                                                                                                                                              | 12 0.51305<br>18.772<br>18.75<br>15.49<br>38.19<br>38.19                                                                                                     | 47<br>47<br>55<br>55<br>55<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| RECAI<br>L'Age                                                                             | LCULE A<br>e 14 Ma                                                                                                | RECA<br>L'Ag                                                                               | LCULE A<br>ge Biblio                                                                                             | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                    |                                                                        |                                                                               |                                                                                  | RECALCU<br>L'Age 14                                                                                                                                   | JLE A<br>Ma                                                                      | RECALCULE A<br>L'Age Biblio                                                                                                                                                                  | CALCUL OLIEROOK 2017                                                                                                                                                                                                 |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | Age 14Ma (L.Ponthus)<br>(Rb/Sr) measured recalculé<br>(87 Sr/86S / Initial recalculé<br>(Rb/Sr) initial recalculé | (Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | Age ref. (L. Ponthus)<br>(Rb/Sr) measured recalculé<br>(875/8651) initial recalculé<br>(Rb/Sr) initial recalculé | 147 Smr / 1440<br>143 Nmr / 1440<br>157 Lossis<br>157 Lossis<br>258 Li Zoute<br>258 L | rr to Lourn)<br>Th Loopm<br>143 Nd/144 Nd measured<br>20Fb/204b measured<br>20Fb/204b measured<br>20Fb/204b measured<br>208b/224/b | Acte reference Sm (ppm)<br>Nd (ppm)<br>Rb (ppm)<br>Sr (ppm)<br>U (ppm) | Samble Name C<br>Rock Tvpe<br>Latitude<br>Longitude                           | # (Olierook et al., 2017 - n.)<br>Geochemistry Reference<br>Province             | (Textoroso) initial revenues<br>(SmNch messured recalculé<br>(SmNch messured recalculé<br>(143Nd/144Nd) initial recalculé<br>(SmNch initial recalculé | Age 14Ma (L.Ponthus)<br>(Rb/Sr) measured recalculé<br>(RD/Sr) measured recalculé | (RbSr) measured recalculé<br>(R5Sr88S) Initial recalculé<br>(R7Sr88S) Initial recalculé<br>(R1Sr10S) Initial recalculé<br>(143Md/144Nd) Initial recalculé<br>(143Md/144Nd) Initial recalculé | 147 Sur / 44 Ai<br>143 Nur / 44 Ai<br>143 Nur / 44 Ai<br>875/1985 initial<br>875/1985 initial<br>2001/20419<br>2001/20419 nitial<br>2005/20419 nitial<br>2005/20419 nitial<br>2005/20419 nitial<br>2005/20419 nitial | U (borm)<br>Pb (born)<br>Th (born)<br>143Nd/144Nd measured<br>875/865r measured<br>20Pb b/204Pb measured<br>20Pb b/204Pb measured | # COlerook et al 2017 - n.)<br>Goochemistry Reference<br>Location<br>Samole Name<br>Samole Name<br>Location<br>Latitude<br>Latitude<br>Latitude<br>Aue reference<br>San Loom<br>Autorition<br>Aue reference<br>Roticom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.213<br>0.513061<br>0.213                                                                 | 0                                                                                                                 | 0.213<br>0.513061<br>0.213                                                                 | c                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.513061<br>0.703051                                                                                                               | N/A<br>4.62<br>13.1                                                    | DP0 187-1154A-002R-001/075-077 C<br>Basait<br>-41.4778<br>131.3173            | 902<br>[129]<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridges         | 0.174<br>0.513065<br>0.174                                                                                                                            | 0                                                                                | 0.174                                                                                                                                                                                        | -                                                                                                                                                                                                                    | 0.513085<br>0.72284<br>18.805<br>14.499<br>38.262                                                                                 | 1030<br>[127][126][163][125][111]<br>Indian Ocean Spreading Ridge<br>Southeast Indian Ridge<br>VEM0033-1031-003<br>50 A98<br>[131:005<br>[131:005<br>[131:005]<br>[131:005]<br>[131:005]<br>[131:005]<br>[131:005]<br>[131:005]<br>[131:005]<br>[131:005]<br>[131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:005][131:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.217<br>0.513070<br>0.217                                                                 | 0                                                                                                                 | 0.217<br>0.513070<br>0.217                                                                 | Q                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.51307<br>0.703183                                                                                                                | 4.31<br>12                                                             | DP0187-1154A-005R-001/091-093 Basalt<br>-41.4778<br>131.3173                  | 907<br>Indian Ocean Spreading Ridges<br>South-oest Indian Bridge                 | 0.210<br>0.513118<br>0.210                                                                                                                            | 0                                                                                | 0.210<br>0.211<br>0.2118                                                                                                                                                                     | 2                                                                                                                                                                                                                    | 0.513118<br>0.70255<br>18.572<br>15.482<br>38.097                                                                                 | 1/12/11/51/51/2<br>1/12/11/51/51/2<br>Sumeair Indua Roges<br>VENO25-105-005<br>49.738<br>12.708<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.738<br>14.7388<br>14.7388<br>14.7388<br>14.7388<br>14.7388<br>14.7388<br>14.7388<br>14.7388<br>14.7388<br>14.7388<br>14.7388<br>14.7388<br>14.7388<br>14.7388<br>14.7388<br>14.7388<br>14.7388<br>14.7388<br>14.7388<br>14.7388<br>14.7388<br>14.7388<br>14.7388<br>14.7388<br>14.7388<br>14.7388<br>14.73888<br>14.73888<br>14.73888<br>14.73888<br>14.73888<br>14.738888<br>14.7388                                                                                                                                                                                                  |
| 0.212<br>0.513057<br>0.212                                                                 | 0                                                                                                                 | 0.212<br>0.513057<br>0.212                                                                 | o                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5130 <i>57</i><br>0.703288                                                                                                       | 14.4                                                                   | DDP0187-1154A-008R-002.051-055<br>Basalt<br>-41.4778<br>131.3173              | 910<br>[122]<br>Indian Ocean Spreading Ridges<br>Southsast Indian Bridge         |                                                                                                                                                       | 0                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                      | 0.513075<br>0.702506                                                                                                              | 1870<br>Indian Ocean Spineading F1(28)<br>Southeast Indian F3(28)<br>MOX4001-107-033<br>B2828<br>127-47<br>127-47<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                            | 0                                                                                                                 |                                                                                            | 0                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.51304<br>0.702828                                                                                                                | NĂ                                                                     | ODP0187-1155B-009R-00270 19-022<br>Basalt<br>-41.9582<br>127.9924             | 926<br>Indian Ocean Spreading R1229<br>Southeast Indian Bidne                    |                                                                                                                                                       | 0                                                                                |                                                                                                                                                                                              | _                                                                                                                                                                                                                    | 0.513035<br>0.77236                                                                                                               | 676<br>Indian Ocean Spreading Ridges<br>Someast Indian Ridge<br>MCN4801-077-090<br>48 0021<br>124 90<br>NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.207<br>0.512991<br>0.207                                                                 | 0                                                                                                                 | 0.207<br>0.512991<br>0.207                                                                 | c                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.512991<br>0.703332                                                                                                               | 8.6<br>8.6                                                             | OD P0187-1156A-002R-002/076-080<br>Basalt<br>-42.7332<br>127.888              | 928<br>Indian Ocean Spreading R12981<br>Southeast Indian Biotee                  |                                                                                                                                                       | 0                                                                                |                                                                                                                                                                                              | 5                                                                                                                                                                                                                    | 0.513041<br>0.702329                                                                                                              | 1831<br>Indian Ocean Spreading Ridges<br>Kicket Joseph<br>Kicket Joseph<br>Hat Strong<br>12-48 Strong<br>12-48 Strong<br>12-49<br>NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.203<br>0.512998<br>0.203                                                                 |                                                                                                                   | 0.203<br>0.512998<br>0.203                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.512998<br>0.703522                                                                                                               | N/2<br>3.22<br>9.8                                                     | ODP0187-1156A-003R-001/0 15-019<br>Basal<br>-42.7333<br>127.8882              | 933<br>Indian Ocean Spreading Ridges<br>Southwast Indian Ridge                   | 0.196<br>0.512303<br>0.196                                                                                                                            |                                                                                  | 0.196<br>0.1212935                                                                                                                                                                           |                                                                                                                                                                                                                      | 0.512835                                                                                                                          | 88:<br>holian Ocean Spreading Holia<br>Holian Ocean Spreading Holia<br>(12) 000<br>(12) 1554-011-0012<br>(12) 1554-011-0012<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.22<br>0.51300<br>0.21                                                                    |                                                                                                                   | 0.21<br>0.51300<br>0.22                                                                    |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.51300                                                                                                                            | 0 N z                                                                  | ODP0187-1156A-003R-001/140-1<br>Bas<br>-42.73<br>127.88                       | 12<br>Indian Ocean Spreading Ridg<br>Southeast Indian Rid                        | 0.2<br>0.5<br>0.2<br>0.2                                                                                                                              |                                                                                  | 0.5128                                                                                                                                                                                       |                                                                                                                                                                                                                      | 0.5129                                                                                                                            | 8<br>10 Indian Ocean Spreading Rig<br>2000 187-1152-00176-00176-102<br>188<br>172 100<br>172 1                                                                                                                                                                                                                                             |
| 6 0.2<br>11 0.5133<br>6 0.2                                                                | 0                                                                                                                 | 10<br>11<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1            | C                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11<br>13 0.5130                                                                                                                    | öñ≯¢                                                                   | 4 ODP0187-1157A-002R-001/025-02<br>##<br>12<br>22<br>128.88                   | 14<br>14<br>19<br>19<br>10<br>10<br>10<br>10<br>11<br>10<br>10<br>10<br>10<br>10 | 0<br>11<br>0<br>0.5125                                                                                                                                | 0                                                                                | 0.512<br>0.512                                                                                                                                                                               | >                                                                                                                                                                                                                    | 0.5125<br>5 0.703                                                                                                                 | 4 4 4 4 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 209 0.513<br>332 0.513<br>209 0                                                            | 0                                                                                                                 | 209 0.513<br>332 0.513<br>209 0                                                            | c                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.513<br>0.703<br>0.703                                                                                                            | 28<br>8<br>8                                                           | 77A ODP0187-1157A-002R-001/025-0<br>salt B<br>311                             | 940<br>29)<br>ges Indian Ocean Spreading R(<br>906 Southwast Indian R            | 200                                                                                                                                                   | 0                                                                                | 200<br>200                                                                                                                                                                                   | >                                                                                                                                                                                                                    | 967 0.512<br>985 0.702                                                                                                            | 987<br>1987<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1997<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1 |
| 209 0.203<br>14 <b>5 0.513008</b><br>199 0.203                                             | 0                                                                                                                 | 209 0.203<br>145 0.513008<br>0.203                                                         | 0                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M5 0.513008<br>0.703277                                                                                                            | N/A<br>3.95<br>2.6<br>11.9                                             | 77F ODP0187-1157B-002R-001/010-012<br>salt Basalt<br>111 -43.2613<br>128.8838 | 141 947<br>29) Indian Ocean Spreading Ridges<br>ne Southeast Indian Ridges       | 0.199<br>0.512960<br>0.199                                                                                                                            | 0 0                                                                              | 0.139                                                                                                                                                                                        | 2                                                                                                                                                                                                                    | 965 0.51286<br>966 0.703682                                                                                                       | 686 830<br>1014m Ocean Spreading Riges<br>1014m Ocean Spreading Riges<br>1020 0000 187-11525404R01079-945<br>1020 0000 187-11525404R01079-945<br>1020 1020 187-11525404R01079-945<br>1020 1020 1020 1020 1020<br>1020 1020 1020 1020 1020<br>1020 1020 1020 1020 1020 1020<br>1020 1020 1020 1020 1020 1020<br>1020 1020 1020 1020 1020 1020 1020<br>1020 1020 1020 1020 1020 1020 1020 1020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| REC                                                          | CALCULE A<br>Age 14 Ma                                                                                           | RECAL<br>L'Age                                                                                                           | CULE A<br>Biblio                                                                                                      | CALCUL OLIEROOK 2017                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                                  | RECALCULI<br>L'Age 14 M                                                                                                                                   | EA RE<br>Ma L                                                                            | CALCULE A<br>'Age Biblio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ROOK 2017                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | Age 14Ma (L.Ponthus)<br>(Rb/Sr) measured recalculé<br>(875/8657) initial recalculé<br>(Sm/Nd) measured recalculé | (Sm/Nd) measured recalcule<br>(Sm/Nd) measured recalcule<br>(143Nd/144Nd) initial recalcule<br>(Sm/Nd) initial recalcule | Age ref. (L.Ponthus)<br>(Rb/Sh measured recalculé<br>(87 Sr&6S A) Initial recalculé<br>(87 Sr&6S A) Initial recalculé | 147Sm/144A0<br>143Nm/144A0<br>143Nm/144A0<br>87K/b085/http:<br>25KU/204Pb<br>22KU/204Pb<br>22KU/204Pb<br>200FP2/204Pb Initial<br>200FP2/204Pb Initial<br>200FP2/204Pb Initial | and the state and activity of the state activi | Sample Name<br>Rock Type<br>Latitude<br>Londitude<br>Age reference<br>Age reference<br>Mat (ppm)<br>Rb (ppm) | # (Olierook et al., 2017 - n.)<br>Geochemistry Reference<br>Province<br>Location | (87 Sr.86Sh) initial recalcule<br>(Rb/Sr) initial recalcule<br>(Sm/Nd) measured recalcule<br>(143Nd/144Nd) initial recalcule<br>(Sm/Nd) Initial recalcule | (14.3NG/) 44NOJ Initial recalcule<br>Age 14Ma (L. Ponthus)<br>(Rb/Sr) measured recalculé | 222 Tr2042b<br>2221 Tr2042b<br>2221 Tr2042b<br>2021 Pr2042b<br>2021 P | U Journey<br>(1) Journey<br>(45) 40/1 44Md Thatasured<br>2019/2014/2015/2016/2014/2014/2014/2014/2014/2014/2014/2014 | # (Olerook et al. 2017 - n.)<br>Geochemister Reference<br>Province<br>Location<br>Samob Name<br>Construction<br>Construction<br>Lastitude<br>Lastitude<br>Construction (Ma)<br>Ade reference<br>Sin Lorent<br>Ade reference<br>Sin Lorent<br>Ade reference<br>Sin Lorent<br>Ade reference<br>Sin Lorent<br>Net Lorent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.513049<br>0.214                                            | 0.2.14                                                                                                           | 0.214<br>0.513049<br>0.214                                                                                               | o                                                                                                                     |                                                                                                                                                                               | 0.513049<br>0.703359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | upruta - i toswo-jurk-su jurju a- v je<br>Basali<br>45.9867<br>129.9990<br>N/A<br>4.31<br>4.21<br>12.2       | 968<br>Indian Ocean Spreading Ridge<br>Southeast Indian Ridge                    | 0.208<br>0.513042<br>0.208                                                                                                                                | 0.208                                                                                    | 0.228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.513042<br>0.703195                                                                                                 | 946<br>1/229<br>1/6 an Ocean Spreading Riggs<br>Southeast Indan Riggs<br>DDP0187-11579-002R-001090-053<br>128-883<br>128-883<br>128-883<br>128-883<br>128-99<br>102<br>102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.513013<br>0.210                                            | 0.210 0                                                                                                          | 0.210<br>0.513013<br>0.210                                                                                               | 0                                                                                                                     |                                                                                                                                                                               | 0.513013<br>0.703546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0167-1138-4-007-6-001 Baselin<br>Baselin<br>45.9567<br>123.9990<br>0.0<br>0.14<br>6.11<br>17.6               | 970<br>[129]<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge          | 0.205<br>0.513025<br>0.205                                                                                                                                | 0.205                                                                                    | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.613025<br>0.703444                                                                                                 | 953<br>Indian Ocean Spinouring Ridges<br>cot87-11578-004R-001/93-400E COP<br>158-014R-001/93-400E COP<br>158-683<br>128.683<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>143.2813<br>14 |
|                                                              | 0                                                                                                                |                                                                                                                          | 0                                                                                                                     |                                                                                                                                                                               | 0.513063<br>0.703239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9r018r-11808-0044-00482-005<br>Basel<br>134.9982<br>N/A<br>N/A                                               | 129<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge                   |                                                                                                                                                           | 0                                                                                        | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.513044<br>0.702845                                                                                                 | VIN<br>Basel<br>Basel<br>Basel<br>Basel<br>Control School 2011-2810<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel<br>Basel                                                                                       |
|                                                              | 0                                                                                                                |                                                                                                                          | ٥                                                                                                                     |                                                                                                                                                                               | 0.513051<br>0.702536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Proto TrobOrr-On 214<br>Basta<br>134.9982<br>N/A<br>N/A                                                      | 1281<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge                  | 0.205<br>0.513033<br>0.205                                                                                                                                | 0.205                                                                                    | 0.225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.51303<br>0.703284                                                                                                  | 955<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge<br>1157-11578-004R-001135-140M<br>43.2613<br>128.885<br>NA<br>3.33<br>10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                              | 0                                                                                                                |                                                                                                                          | 0                                                                                                                     |                                                                                                                                                                               | 0.513055<br>0.702541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ргу на 7-тнове-чи инсусти<br>Вазвід<br>144, 9082<br>134, 9982<br>N/A<br>N/A                                  | 990<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge                   | 0.206<br>0. <b>513045</b><br>0.206                                                                                                                        | 0.206<br>0                                                                               | 0 2206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.513045<br>0.703243                                                                                                 | 959<br>hrdan Ocean Spreading Fid2)<br>pporter: 15/26-0049-003<br>Baati<br>-4-22/13<br>7/28/85<br>80<br>0<br>35/7<br>10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                              | 0                                                                                                                | ,<br>,                                                                                                                   | 0                                                                                                                     |                                                                                                                                                                               | 0.513046<br>0.702872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,007-0107-1110003-00087-00020-00087-00020-00082-<br>134.9988-<br>00<br>N/A                                  | 994<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridges                  |                                                                                                                                                           | 0                                                                                        | ۰                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.513046<br>0.702894                                                                                                 | 960<br>holian Ooxan Spreading F1230<br>Dopote7.1588.004.00.004.003<br>Esadi<br>4.334.595<br>128.520<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.513030<br>0.214                                            | 0.214                                                                                                            | 0.214<br>0.513030<br>0.214                                                                                               | o                                                                                                                     |                                                                                                                                                                               | 0.51303<br>0.703597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CUDPUI 67 - 11 10 14-00 34-00 14-00<br>Based 12,2061<br>129,0513<br>0<br>0<br>1,35<br>1,35<br>13,5           | 996<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge                   | 0.211<br>0.513042<br>0.211                                                                                                                                | 0.211                                                                                    | 0.2211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.513042<br>0.703642                                                                                                 | 681<br>Indian O cean Spreading Fit2ge<br>OPD167-11588-0044-00140-ABA<br>-43-0458-044-00140-ABA<br>-43-0458-044-00140-ABA<br>-43-0458-044-0414-04-04-04-04-04-04-04-04-04-04-04-04-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.513046<br>0.217                                            | 0.217                                                                                                            | 0.217<br>0.513046<br>0.217                                                                                               | 0                                                                                                                     |                                                                                                                                                                               | 0.513046<br>0.703437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UDFU107-1101A-UD4-K40<br>Basalt<br>1220513<br>0<br>N/A<br>3.13<br>8.72                                       | 999<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridges                  | 0.210<br>0.513049<br>0.210                                                                                                                                | 0.210                                                                                    | 0.220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5 (3049<br>0.7 03 043                                                                                              | 962<br>holian Ocean Spreading Ridges<br>Southeast Indam Ridge<br>Southeast Indam Ridge<br>43.946386<br>128.8285<br>128.8285<br>NA<br>NA<br>2.8<br>12.3<br>12.3<br>12.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.513052<br>0.216                                            | 0.216                                                                                                            | 0.216<br>0.513052<br>0.216                                                                                               | 0                                                                                                                     |                                                                                                                                                                               | 0.513062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UUPU18/-1181B40425404<br>                                                                                    | 1001<br>Indian Ocean Spreading Ridges<br>Southest Indian Ridges                  | 0.212<br>0.513049<br>0.212                                                                                                                                | 0.212<br>0.212                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5 13049<br>0.70331                                                                                                 | 1965<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge<br>ODP0187-1159A-0056-001014-013 A<br>Bisati<br>45.567<br>12.5.969<br>NJ<br>NJ<br>13.5<br>13.5<br>13.5<br>13.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.513045<br>0.212                                            | 0.212                                                                                                            | 0.212<br>0.513045<br>0.212                                                                                               | 0                                                                                                                     |                                                                                                                                                                               | 0.513045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UPP0107-1101B-40428-40<br>                                                                                   | 1002<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridges                 | 0.211<br>0.513043<br>0.211                                                                                                                                | 0.211                                                                                    | 02211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5 130.43<br>0.7 028 73                                                                                             | 966<br>Indian Ocean Spreading Ridges<br>Scotheast Indian Ridge<br>ODP0187-1159A-00EX-01014-019M<br>Besatt<br>-45.5657<br>128.5959<br>84<br>85<br>81<br>14<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| RECALCI<br>L'Age 1                                                                                                      | ULE A RECAI                                                                                                                                                                               | LCULE A<br>e Biblio                                                                                             | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                            |                                                                                                                                                       |                                                                                                  | RECALCU<br>L'Age 14                                                                                                     | JLE A<br>Ma                                                                    | RECALCULE A<br>L'Age Biblio                                                                                                                                                                                              | CALCUL OLIEROOK 2017                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Rb/Sr) initial recalcule<br>(Sm/Nd) measured recalcule<br>(143Nd/144Nd) initial recalcule<br>(Sm/Nd) initial recalcule | (143Nd/14Nd) measured recalculé<br>(143Nd/14Nd) initial recalculé<br>(Rb/S) measured recalculé<br>(Rb/S) measured recalculé<br>(875/865) initial recalculé<br>(875/865) initial recalculé | Age ref. (L.Ponthus)<br>(Rb/Sr) measured recalculé<br>(875/86S/) initial recalculé<br>(Rb/Sr) initial recalculé | 147 Sm/14400<br>143 Nm/14400<br>8775 0685 http:<br>87876 0685 http:<br>228U /24145<br>228U /24145<br>228U /24145<br>228U /24145<br>228U /24145 http:<br>2007 Pb/2445 http:<br>20 | 143Nd/1 44Nd measured<br>87Sr/86Sr measured<br>206Fb/204Pb measured<br>207Fb/204Pb measured<br>208Pb/204Pb measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Age reference<br>Mage reference<br>Nd (som)<br>Rb (dom)<br>Sr (pom)<br>U (pom)<br>Pb (pom) | Province<br>Location<br>Sample Name<br>Rock Troe<br>Latitude<br>Longitude                                                                             | # (Oliercok et al., 2017 - n.)<br>Geochemistry Reference                                         | (Sr.VN) initial recalcule<br>(Sm/Nd) measured recalcule<br>(143Nd/144Nd) initial recalcule<br>(Sm/Nd) initial recalcule | Age 14Ma (L. Ponthus)<br>Age 14Ma (L. Ponthus)<br>(875-8852) initial recalculé | Age ref. (L-Vortmus)<br>(RUSO) measured recalculé<br>(87 Sr&SS) Initial recalculé<br>(87 Sr/KOS) Initial recalculé<br>(Sm/Nd) measured recalculé<br>(143 Nd/144Nd) Initial recalculé<br>(143 Nd/144Nd) Initial recalculé | 147 Smr144AQ<br>147 Smr144AQ<br>875/0685 Initial<br>875/0685 Initial<br>228U/2049b<br>228U/2049b<br>228U/2049b<br>2009/2049b Initial<br>2009/2049b Initial<br>2009/2049b Initial | Analysis and sector an | # (Olerook et al. 2017 - n.)<br>Geochmistry Réference<br>Province<br>Location<br>Samole Name<br>Correction Man<br>Aue reference<br>Aue reference<br>Nd formi<br>Nd formi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.214<br>0.513037<br>0.214                                                                                              | 0.214<br>0.513037<br>0.2130<br>0.214<br>0.214<br>0.214                                                                                                                                    | 0                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.513037<br>0.703332<br>18.012<br>15.459<br>37.765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A<br>5.75                                                                                | Indian Ocean Spreading Hoges<br>Southeast Indian Ridge<br>DDP0187-1155B-009R-002/025-029<br>Basalt<br>-41:9582<br>127:9924                            | 128<br>[128]                                                                                     |                                                                                                                         | 0                                                                              | c                                                                                                                                                                                                                        | 2                                                                                                                                                                                | 0.512996<br>0.702927                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1008<br>1129<br>Indian Ocean Spreading 1129<br>Southeast Indian Ridge<br>Basel<br>44.42-4<br>126.908<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.229<br>0.513057<br>0.229                                                                                              | 0.229<br>0.513057<br>0.229<br>0<br>0                                                                                                                                                      | 0                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.513057<br>0.702965<br>18.728<br>15.484<br>38.192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.81<br>6.81                                                                               | Indian Ocean Spreading Ridges<br>DD P0187-1160B-002R-001/021-025<br>Basait<br>-44.0082<br>134.9983                                                    | 976                                                                                              | 0.151<br>0.512380<br>0.151                                                                                              | 0                                                                              | 0.151<br>0.151                                                                                                                                                                                                           |                                                                                                                                                                                  | 0.51238<br>0.711147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1010<br>hdan Ocean Synading R(20)<br>DP0187-1163-0026-0104-109<br>Baset<br>44-22-6<br>125.005<br>05<br>05<br>05<br>05<br>05<br>05<br>05<br>05<br>05<br>05<br>05<br>05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.237<br>0.513059<br>0.237                                                                                              | 0.5130237<br>0.513059<br>0235<br>0                                                                                                                                                        | 0                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.513059<br>0.703019<br>18.872<br>15.504<br>38.297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NIA<br>207<br>5.29                                                                         | Indian Ocean Spreading Ridges<br>Southeast Indian Ridge<br>0DP0187-1160B-004R-002/141-119<br>Basait<br>-44.0082<br>134.9983                           | [82]1[62]1<br>086                                                                                | 0.197<br>0.512869<br>0.197                                                                                              | 0                                                                              | 0.197<br>0.512960                                                                                                                                                                                                        |                                                                                                                                                                                  | 0.512969<br>0.703242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1013<br>hofan Ocean Synearing F123<br>bofan Ocean Synearing F123<br>Baatin<br>44,4246<br>126,003<br>3,29<br>3,29<br>10,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.239<br>0.513053<br>0.239                                                                                              | 0.239<br>0.513053<br>0.239<br>0.239<br>0                                                                                                                                                  | 0                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.513053<br>0.702722<br>18.747<br>15.504<br>38.234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 2 N A<br>3 3 5 15 A                                                                      | Indian Ocean Spreading Ridges<br>ODP0187-1160B-007R-001049-052<br>Basilt<br>-44.0082<br>134.9983                                                      | 1129 1281                                                                                        | 0.212<br>0.512975<br>0.212                                                                                              | 0                                                                              | 0.212<br>0.512975                                                                                                                                                                                                        |                                                                                                                                                                                  | 0.512975<br>0.703222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1011<br>hrdan Ocean Spreading Fidges<br>ODP0187-1165A008-001064-007<br>44.4246<br>1756.000<br>200<br>200<br>203<br>837<br>837                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                         | 0                                                                                                                                                                                         | 0                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.512889<br>0.70364<br>17.50<br>15.501<br>37.979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X                                                                                          | Indian Ocean Spreading Ridges<br>Southeast Indian Ridges<br>MELBMRG-6-033-002<br>-42.115<br>-48.042                                                   | 786                                                                                              |                                                                                                                         | 0                                                                              | c                                                                                                                                                                                                                        |                                                                                                                                                                                  | 0.512804<br>0.702801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1023<br>Indian Ocean Spreading Ridges<br>COPPO167-11648-008200/061408<br>437.892<br>127.7461<br>WM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.221<br>0.512904<br>0.221                                                                                              | 0.221<br>0.512990<br>0.221<br>0.221                                                                                                                                                       | 0                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.512904<br>0.70358<br>17.812<br>15.497<br>37.886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 121<br>121                                                                                 | Indian Ocean Spreading Ridges<br>MEL BMRG-6-034-001<br>MEL BMRG-6-034-001<br>Basali<br>810.092<br>87.092                                              | 787                                                                                              | 0.194<br>0.512986<br>0.194                                                                                              | 0                                                                              | 0.512986                                                                                                                                                                                                                 |                                                                                                                                                                                  | 0.512966<br>0.7034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1024<br>Indian Ocean Spreading Ridge<br>COPP0187-11644-0080-001040-6886.<br>43.749<br>127.7461<br>0.001041-0826.<br>127.7461<br>0.011010101010101010101010101010101010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.219<br>0.51294<br>0.219                                                                                               | 0.213<br>0.51284<br>0.21                                                                                                                                                                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.51294;<br>0.70341<br>17.733<br>15.48<br>37.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.3-<br>1                                                                                  | Indian Ocean Spreading Ridge<br>Southeast Indian Ridge<br>MELBMRG-6-036-00<br>Basai<br>-41.091<br>-86.2                                               | [139                                                                                             | 0.21<br>0.51298<br>0.21                                                                                                 |                                                                                | 0.51298                                                                                                                                                                                                                  |                                                                                                                                                                                  | 0.5.1208:<br>0.7.0386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102<br>102<br>103<br>104<br>104<br>104<br>104<br>104<br>104<br>104<br>104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.15<br>0.51296<br>0.15                                                                                                 | 0.15<br>0.12<br>0.12<br>0.13                                                                                                                                                              |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 0.51296<br>3 0.7030<br>7 18.45<br>5 15.51<br>5 38.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14 N                                                                                       | <ul> <li>Indian Cocan Spreading Ridge</li> <li>Southeast Indian Ridge</li> <li>MELWEST-10-048W/</li> <li>Basa</li> <li>46.00</li> <li>95.9</li> </ul> | 3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 4 0.21<br>7 0.51288                                                                                                     | 0.201                                                                          | 0.51288                                                                                                                                                                                                                  |                                                                                                                                                                                  | 7<br>3<br>0.7/0330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100         100           Inclian Ocean Spreading Roge         Southeast Indu Roge           100         Indu Roge           100         Indu Roge           110         Indu Roge                                                                                                                       |
| 3<br>3<br>0.21<br>3<br>0.22                                                                                             | 0.23<br>0.23<br>0.23<br>0.22<br>0.22<br>0.22                                                                                                                                              | 0                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 0.5130<br>9 0.703<br>9 1703<br>9 15.4<br>5 15.4<br>5 37.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | √ 3 ≯ c<br>10 3.: z                                                                        | indian Ocean Spreading Ridg<br>Southeast Indian Rid<br>C MELWEST-10-065-0<br>it -43.082<br>9<br>3 91.0946                                             | 10<br>77<br>17                                                                                   | 2<br>2<br>0.51300<br>0.21                                                                                               | 10                                                                             | 2 0.51303                                                                                                                                                                                                                | 2                                                                                                                                                                                | 2 0.51300<br>1 0.70316<br>15.40<br>15.40<br>37.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 112011         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12 <td< td=""></td<> |
| 0.227<br>88 0.512854<br>8 0.227                                                                                         | 38 0.227<br>88 0.512254<br>0 0.225<br>0 0.225<br>0 0.225<br>0 0.225                                                                                                                       | 0                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 98 0.512954<br>12 0.70331<br>18 14 15<br>14 15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>1 | 9<br>4<br>4<br>1.79<br>4.77<br>4.77                                                        | Piese Indian Cocen Spreading Ridges<br>Pie MELWEST-10-069-001<br>If ABSalt<br>7 7 88.92217<br>7 88.92217                                              | 00<br>1139]                                                                                      | 22 0.216<br>77 0.513027<br>2 0.216                                                                                      | 0 0                                                                            | 0.5100276<br>7 0.5100276                                                                                                                                                                                                 | 2                                                                                                                                                                                | 77 0,5 (30,27)<br>77 0,7 (0,5 (30,27)<br>5 18,108<br>9 9,7 (5 (5 (3,17))<br>9 9,7 (5 (5 (3,17)))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| RECALCU<br>L'Age 14                                                                                                                                                     | Ma RECALO                                                                                                                                                                                           | CULE A<br>Biblio CALCUL OLIE                                                                                                                                                                                                                    | ROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RECALCULE A<br>L'Age 14 Ma                                                                                                                                                 | RECALCULE A<br>L'Age Biblio                                                                                                                                                                                                                                                                                                                                                                                                        | LIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Christian Carbon) i minuari v carbone<br>(Rh/Sr) i hitital recalculé<br>(Sm/Nd) measured recalculé<br>(143Nd/144Nd) i nitital recalculé<br>(Sm/Nd) i nitital recalculé | (RUS) Initial reacule<br>(Sm/Nd) mesured reacule<br>(143Nd/144Nd) Initial recalculé<br>(Sm/Nd) Initial recalculé<br>(Sm/Nd) Initial recalculé<br>(RUS) mesured recalculé<br>(RUS) mesured recalculé | 220/USAPPU<br>220/USAPPU<br>220/USAPPU<br>220/Pb/204Pb initial<br>200Pb/204Pb initial<br>200Pb/204Pb initial<br>200Pb/204Pb initial<br>200Pb/204Pb initial<br>(FbUS) measured recalculé<br>(FBUS) Initial recalculé<br>(FBUS) Initial recalculé | This price is the price of the | # (Olivroke et al., 2017 - n.)<br>Geochemistry Reference<br>Erovince<br>Location<br>Sambe Name<br>Sambe Name<br>Sambe Name<br>Auto Correction (Ma)<br>Auto Correction (Ma)<br>Auto Correction (Ma)<br>Auto Correction (Ma)<br>Md (com)<br>Md (com)<br>Scriberth)<br>Scriberth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (Bb/S) masaured readculé<br>(Bb/S) masaured readculé<br>(Bb/S) initial recalculé<br>(SmN4) measured readculé<br>(143Md/14Md) initial recalculé<br>(SmN4) initial recalculé | Zastricziek<br>Zastricziek<br>Diebsczuste<br>Rusz<br>(Rusz) mealund realcule<br>(Rusz) mealund realcule<br>(Rusz) mealund realcule<br>(Rusz) miał realcule<br>(Rusz) miał realcule<br>(Rusz) miał realcule<br>(Rusz) miał realcule<br>(Rusz) real realcule | bb (cimi)<br>Th (cimi)<br>(143Mdr) 444M masured<br>(2757/657 masured<br>2767/2424 http://www.ed<br>2767/2424 http://www.ed<br>2777/2424 http://www.ed<br>2777/2424 http://www.ed<br>2777/2424 http://www.ed<br>2777/2424 http://www.ed<br>2777/2424 http://www.ed<br>2777/2424 http://www.ed<br>2777/2424 http://w | # (Olerook et al. 2017 - n.)<br>Geochemistry Reference<br>Locarice<br>Samale Kam<br>Resk Twa<br>Resk Twa<br>Lastitude<br>Lastitude<br>Lastitude<br>Mate Correnton (Ma)<br>Are reference<br>Sin Loomi<br>Net Joomi<br>Net Joomi<br>Stational<br>Licenti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.205<br>0.513011<br>0.205                                                                                                                                              | 0.205<br>0.513011<br>0.205<br>0                                                                                                                                                                     | o                                                                                                                                                                                                                                               | 0.513011<br>0.72005<br>17.460<br>37.540<br>37.540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 902<br>Indian Ocean Spreading (1139)<br>Scuthwest Indian Ridges<br>MIELWEST-1043<br>95-59<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80<br>85-80 | 0.513021<br>0.204<br>0.204                                                                                                                                                 | 0<br>0.55 3021<br>0.204<br>0.204                                                                                                                                                                                                                                                                                                                                                                                                   | 0.513021<br>0.70302<br>17.51<br>15.474<br>37.646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 792<br>Indian Count Spinatring Folds<br>Schwart Indian Roden<br>MELWEST-10-070-032<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-256<br>90-20 |
| 0.204<br>0.513018<br>0.204                                                                                                                                              | 0.204<br>0.513018<br>0.204<br>0                                                                                                                                                                     | o                                                                                                                                                                                                                                               | 0.513018<br>0.72318<br>17230<br>15.740<br>37.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 803<br>Indian Ocean Spreading (159)<br>MELIVEST: 1062.203<br>Baadi<br>Sci 2014<br>Sci 2014                                                                                                                                                                                                                                                                                                                                    | 0.211<br>0.553040<br>0.211                                                                                                                                                 | 0<br>0.211<br>0.211<br>0.211<br>0.211                                                                                                                                                                                                                                                                                                                                                                                              | 0.51304<br>0.70283<br>17.863<br>15.478<br>97.459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 733<br>Hofan Ocean Springeling Ridge<br>MELWEST-10-071-00<br>4-0.2863<br>90.7.9617<br>91.7.9617<br>91.7.9617<br>91.7.9617<br>91.7.9617<br>91.4.2.8633<br>91.4.3.9.945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.175<br>0.512986<br>0.175                                                                                                                                              | 0.175<br>0.512866<br>0.175<br>0                                                                                                                                                                     | 0                                                                                                                                                                                                                                               | 0.51208<br>0.07032<br>16.133<br>16.533<br>37.52<br>37.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 804<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge<br>MELWEST-0.083-017<br>46.03117<br>89.764<br>NA<br>2.74<br>9.49<br>9.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.217<br>0.513029<br>0.217                                                                                                                                                 | 0<br>0.217<br>0.217<br>0.217<br>0.217<br>0.217                                                                                                                                                                                                                                                                                                                                                                                     | 0.519028<br>0.7028<br>17.57<br>15.464<br>37.661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pat<br>Indian Ocean Screeding Filtasi<br>Scalibraset Hotelan Ridge<br>MELWEST-10-072-002<br>91-28017<br>91-28017<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.203<br>0.513036<br>0.203                                                                                                                                              | 0.203<br>0.513036<br>0.203<br>0                                                                                                                                                                     | o                                                                                                                                                                                                                                               | 0.5513006<br>0.72006<br>15.7264<br>15.7264<br>37.440<br>37.440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 105<br>Indian Ocean Spreading Riggs<br>Sontheat Indian Ridge<br>MELVEST-10.084-007<br>IS-307 0<br>NA<br>NA<br>9.326<br>9.69<br>9.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.213<br>0.513032<br>0.213                                                                                                                                                 | 0<br>0.61303<br>0.213<br>0.213<br>0.213<br>0.213<br>0.213                                                                                                                                                                                                                                                                                                                                                                          | 0.513032<br>0.70922<br>17.688<br>15.485<br>37.669                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ndan Ocean Spording PE(29)<br>Indan Ocean Spording PE(29)<br>Sporth-sait Horizan Ridge<br>MELWEST-10-073-009<br>MELWEST-10-073-009<br>Basel<br>43-4683<br>91:684<br>0<br>0<br>0<br>0<br>1:684<br>27<br>12:11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.218<br>0.512981<br>0.218                                                                                                                                              | 0.218<br>0.512891<br>0.218<br>0<br>0                                                                                                                                                                | 0                                                                                                                                                                                                                                               | 0.5:2081<br>0.70223<br>17:71<br>15:47<br>37:50<br>37:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 806<br>Indian Ocean Spreading F16309<br>Submast Indian Rege<br>MELWEST-100477439<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.193<br>0.513016<br>0.193                                                                                                                                                 | 0,0113<br>0,0113<br>0,113<br>0,113<br>0,113<br>0,113                                                                                                                                                                                                                                                                                                                                                                               | 0.513016<br>0.70314<br>15.464<br>15.464<br>37.549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 796<br>hdan Osean Synoding Pidigi<br>MELWEST-10074-027<br>Basel<br>1-3-42617<br>1-3-3333<br>10<br>11-8<br>11-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.223<br>0.513015<br>0.223                                                                                                                                              | 0.223<br>0.513015<br>0.223<br>0                                                                                                                                                                     | 0                                                                                                                                                                                                                                               | 0.510015<br>0.20315<br>17.841<br>15.461<br>37.760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 807<br>broken Oosen Spreeding F1839<br>Keutweit richt an Rober<br>Heutweit richt an Rober<br>Heutweit richt auf der<br>Bel 2019<br>Bel 201                                                                                                                                                                                                                                                                                                                                                | 0.199<br>0.512995<br>0.199                                                                                                                                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                        | 0.51286<br>0.7024<br>15.444<br>15.478<br>37.647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 797<br>htdin Oran Syndig Picija<br>Sontwart Indan Regio<br>MELWEST-10/75-007<br>40.577<br>92.07<br>92.07<br>92.07<br>92.07<br>93.0<br>93.0<br>10.07<br>10.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.178<br>0.512911<br>0.178                                                                                                                                              | 0.178<br>0.512911<br>0.178<br>0.178<br>0                                                                                                                                                            | o                                                                                                                                                                                                                                               | 0.5.12011<br>0.170351<br>17.037<br>15.4400<br>37.801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 808<br>Indian Ocean Spreading Fildpare<br>Suchwart Indua Ridge<br>WILTWET-10408,004<br>-17, Hassa<br>17,145<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,15<br>17,   | 0.192<br>0.192<br>0.192                                                                                                                                                    | 0<br>192<br>0.192<br>0.192<br>0.192                                                                                                                                                                                                                                                                                                                                                                                                | 0.512961<br>0.70332<br>17.874<br>15.444<br>37.896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 193<br>Helian Count Spradding Felgins<br>Suthers Indus Regins<br>MELWEST-1007b; 001<br>438223<br>11433<br>11433<br>11.16<br>11.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.512952<br>0.512952<br>0.186                                                                                                                                           | 0.186<br>0.512952<br>0.186<br>0                                                                                                                                                                     | o                                                                                                                                                                                                                                               | 0.512982<br>0.70230<br>16.2890<br>14.2890<br>37.7402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 800<br>Horlian Ocean Spreading Ridges<br>Surface Horlia Ridges<br>MILEWEST-0.086 107<br>4-17 Hetes<br>19:130<br>11.1<br>11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.208<br>0.208<br>0.208                                                                                                                                                    | 0<br>0.28<br>0.28<br>0.28<br>0.28                                                                                                                                                                                                                                                                                                                                                                                                  | 0.51306<br>0.70262<br>15.445<br>37.443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1900<br>1910<br>Hotian Course Speaking Regist<br>Southeast Indian Regist<br>MELWEST-F0.077.007<br>44.1106<br>43.077<br>03.077<br>03.077<br>0.017<br>12.08<br>12.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.204<br>0.512960<br>0.204                                                                                                                                              | 0.204<br>0.512860<br>0.204<br>0                                                                                                                                                                     | o                                                                                                                                                                                                                                               | 0.5128<br>0.7288<br>17.843<br>37.844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 510<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge<br>MELWEST-10-080-001<br>961-1263<br>3.32<br>9.82<br>9.82<br>9.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.206<br>0.206<br>0.206                                                                                                                                                    | 0<br>0.286<br>0.286<br>0.286                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5 (30)2<br>0.70312<br>17.871<br>15.489<br>37.537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 800<br>Indian Coain Spreading 17:39<br>Southwart Indian Ridges<br>MELWEST-10-075-000<br>MELWEST-10-075-000<br>MALASS<br>94.82285<br>0<br>NAA<br>2.85<br>8.39<br>8.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.200<br>0.512986<br>0.200                                                                                                                                              | 0.200<br>0.512886<br>0.200<br>0                                                                                                                                                                     | 0                                                                                                                                                                                                                                               | 0,5,1296<br>0,70316<br>15,214<br>15,414<br>37,828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 611<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge<br>MELWEST-10-09-1003<br>81:000120<br>96:0120<br>5,61<br>17,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.513018<br>0.210<br>0.210                                                                                                                                                 | 0<br>0210<br>0613018<br>0210<br>0613018                                                                                                                                                                                                                                                                                                                                                                                            | 0.513018<br>0.70304<br>17.875<br>15.477<br>57.523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 801<br>Indian Coann Sgrending 1139<br>Scutharat Indian Ridge<br>MELWEST-10.079.017<br>MELWEST-10.079.017<br>0.04.0883<br>0.04.0883<br>NJ<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| REC/                                                                                       | ALCULE A<br>ge 14 Ma                                                                                           | RECA<br>L'Ag                                                                               | LCULE A<br>e Biblio                                                                                          | CALCUL OLIEROOK 2017                                                                                                                                                             |                                                                                                                         |                                                              |                                                              |                                                                                   |                                                                       | RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                              | RECALCULE A<br>L'Age Biblio                                                                                                                                                                                                                                           | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Sm/Nd) méasuréd recalcule<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | Age 14Ma (L.Ponthus)<br>(Rb/Sr) measured recalculé<br>(87 Sr8651 initial recalculé<br>(RVSr) initial recalculé | (Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | Age ref. (L.Ponthus)<br>(Rb/S) measured recalculé<br>(875/856) initial recalculé<br>(RD/S) initial recalculé | 147 Strut And Initial<br>147 Strut And Initial<br>875/b885 Initial<br>2581/CAR56 Initial<br>2581/CAR56 Initial<br>2581/CAR56 Initial<br>2585/CAR56 Initial<br>2585/CAR56 Initial | 143 Nd/1 44Nd messured<br>875.4855r measured<br>207P b/204Pb measured<br>207P b/204Pb measured<br>208P b/204Pb measured | Rb (span)<br>Sr (span)<br>U (span)<br>Pb (span)<br>Th (span) | Age Correction (Ma)<br>Age reference<br>Sm (ppm)<br>Nd (ppm) | Location<br>Samble Name<br>Rock Tupa<br>Latitude<br>Longitude                     | # (Olierook et al., 2017 - n.)<br>Geochermistry Reference<br>Province | Age 14,14-bornus)<br>(Rb:SS) masuned recalculé<br>(87 Sr/86Sh 1 nbial recalculé<br>(Rb:S) ninitial recalculé<br>(Sm/kd) masuned recalculé<br>(143Nd/144Nd) inhial recalculé<br>(Sm/kd) inhial recalculé | Ander trei, Lin vontinkas ja<br>(RD250) metastured recaliculé<br>( <b>875665</b> ) initial recaliculé<br>( <b>8705</b> ) initial recaliculé<br>( <b>870VG)</b> initial recaliculé<br>( <b>143Wd14VA)</b> initial recaliculé<br>( <b>143Wd14VA)</b> initial recaliculé | 147 Stru 1440 http:<br>143 Nort 1440 http:<br>875-1985 http:<br>875-1985 http:<br>2281/22419<br>2281/22419 http:<br>2281/22419 http:<br>2381/22419 | An on norm<br>An on | # (Olienook et al., 2017 - n.)<br>Geochemistry Reference<br>Landuice<br>Samoth Mann<br>Rock Twee<br>Rock Twee<br>Rock Twee<br>And Correction (Ma)<br>Ade ordremoe<br>Samoth<br>Ade ordremoe<br>Samoth<br>Mid Ioomi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.205<br>0.513024<br>0.205                                                                 | 0                                                                                                              | 0.205<br>0.513024<br>0.205                                                                 | o                                                                                                            |                                                                                                                                                                                  | 0.513024<br>0.70293<br>18.103<br>15.482<br>37.936                                                                       |                                                              | 0<br>N/A<br>2.66                                             | Southeast Indian Ridge<br>MELWEST-10-108-003<br>-47.972<br>103.57133              | 822<br>[139]<br>Indian Ocean Spreading Ridges                         | 0<br>0.513019<br>0.207                                                                                                                                                                                  | 0.513019<br>0.207                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.513019<br>0.70317<br>17.891<br>15.486<br>37.578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1312<br>Indian Ocean Spinadrika [1139]<br>Southeast Indian Ridge<br>MELWEST-10.002.009<br>48.1005<br>99.94317<br>2.5<br>8.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.213<br>0.513028<br>0.213                                                                 | 0                                                                                                              | 0.213<br>0.513028<br>0.213                                                                 | 0                                                                                                            |                                                                                                                                                                                  | 0.513028<br>0.70286<br>18.062<br>15.466<br>37.844                                                                       |                                                              | N/A<br>2.65                                                  | Southeast Indian Ridge<br>MELWEST-10-110-004<br>-48.10367<br>103.93133            | 823<br>Indian Ocean Spreading Ridges                                  | 0<br>0.189<br>0.513001<br>0.189                                                                                                                                                                         | 0.513001<br>0.189<br>0.189                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.513001<br>0.70301<br>16.133<br>16.435<br>37.925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 613<br>Indian Ceann Screating Filips)<br>Scatheast Indian Ridge<br>MELWEST-10:066-071<br>47:355<br>100:67167<br>0<br>NA<br>NA<br>3.81<br>12.2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.170<br>0.512934<br>0.170                                                                 | 0                                                                                                              | 0.170<br>0.512934<br>0.170                                                                 | 0                                                                                                            |                                                                                                                                                                                  | 0.512934<br>0.70312<br>18.322<br>15.506<br>38.217                                                                       |                                                              | 0<br>3.88<br>13.79                                           | Southeast Indian Ridge<br>MELWEST-10-111-018<br>Basalt<br>-48.2 1333<br>104.66167 | 824<br>Indian Ocean Spreading Ridges                                  | 0.186<br>0.186<br>0.186                                                                                                                                                                                 | 0.186<br>0.186                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.513018<br>0.70284<br>18.088<br>15.466<br>37.874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.4<br>Indian Ocean Styneding Fildball<br>South-basil Hollan Ridge<br>MELWEST-10-007-008<br>MELWEST-10-007-008<br>4.71768-5<br>100.956327<br>2.75<br>8.22<br>2.75<br>8.22<br>2.75<br>8.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.197<br>0.512985<br>0.197                                                                 |                                                                                                                | 0.197<br>0.512985<br>0.197                                                                 | 0                                                                                                            |                                                                                                                                                                                  | 0.512985<br>0.70304<br>18.14<br>15.494<br>37.99                                                                         |                                                              | N/A<br>2.91<br>8.94                                          | Southeast Indian Ridge<br>MELWEST-10-112-001<br>48.31717<br>104.9665              | 825<br>Indian Ocean Spreading Ridges                                  | 0<br>0.182<br>0.512988<br>0.182                                                                                                                                                                         | 0.182<br>0.182<br>0.182                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.512888<br>0.70201<br>18.227<br>15.512<br>38.102<br>38.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 115<br>115<br>115<br>115<br>115<br>115<br>115<br>115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.199<br>0.513052<br>0.199                                                                 |                                                                                                                | 0.199<br>0.513052<br>0.199                                                                 | 0                                                                                                            |                                                                                                                                                                                  | 0.513052<br>0.70274<br>18.144<br>15.467<br>37.936                                                                       |                                                              | N/A<br>3.27<br>9.95                                          | Southeast Indian Ridge<br>MELWEST-10-113-007<br>Basalt<br>-48.7517<br>105.2241    | 826<br>Indian Ocean Spreading Ridges                                  | 0<br>0.51302<br>0.51302                                                                                                                                                                                 | 0.199<br>0.199                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.51302<br>0.70233<br>17.596<br>15.467<br>37.764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 816<br>Indan Ocean Spinsdrig F193]<br>MELWEST-10030-015<br>MELWEST-10030-015<br>101.22287<br>0<br>0.2237<br>0.33<br>10.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.156<br>0.512857<br>0.156                                                                 | 0                                                                                                              | 0.156<br>0.512857<br>0.156                                                                 | o                                                                                                            |                                                                                                                                                                                  | 0.512857<br>0.70351<br>18.351<br>15.536<br>38.268                                                                       |                                                              | 0<br>N/A<br>3.72                                             | Southeast Indian Ridge<br>MELWEST-10-114-012<br>Basalt<br>-49.11633<br>105.58767  | 827<br>[139]<br>Indian Ocean Spreading Ridges                         | 0.182<br>0.512978<br>0.182                                                                                                                                                                              | 0.182<br>0.512978<br>0.182                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.512978<br>0.70306<br>18.105<br>15.455<br>37.944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 817<br>Istian Ocaran Spreading Fid.93<br>Scrittheast India Fidge<br>MELWEST-10-100-001<br>401-532<br>101-532<br>3.64<br>3.64<br>12.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.512992<br>0.203<br>0.203                                                                 |                                                                                                                | 0.203<br>0.512992<br>0.203                                                                 | o                                                                                                            |                                                                                                                                                                                  | 0.512992<br>0.70311<br>18.06<br>15.495<br>38.005                                                                        |                                                              | 0<br>N/A<br>3.33<br>9.92                                     | Southeast Indian Ridge<br>MELWEST-10-115-003<br>-49.22867<br>105.86767            | 828<br>Indian Ocean Spreading Ridges                                  | 0<br>0.513021<br>0.207<br>0.207                                                                                                                                                                         | 0.207<br>0.213021<br>0.207                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.513021<br>0.70393<br>15.459<br>15.475<br>37.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 818<br>Irodian Ocean Spreading Fiddian<br>Southeast Indian Redge<br>MELWEST-10-102-001<br>Bealth<br>102-1395<br>0<br>NKA<br>2,85<br>8,34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.513007<br>0.183<br>0.183                                                                 | 0                                                                                                              | 0.183<br>0.513007<br>0.183                                                                 | 0                                                                                                            |                                                                                                                                                                                  | 0.513007<br>0.70224<br>18.233<br>15.487<br>38.175                                                                       |                                                              | 0<br>3.79<br>12.5                                            | Southeast Indian Ridge<br>MELWEST-10-116-002<br>48.87333<br>106.49417             | 829<br>[139] Indian Ocean Spreading Ridges                            | 0.5.13039<br>0.2.10<br>0.2.10                                                                                                                                                                           | 0.210<br>0.213039<br>0.210                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.513039<br>0.70291<br>15.451<br>15.45<br>37.719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 815<br>Hollan Occean Spinarafing Ridging<br>Scittbareau todan Ridging<br>MELWEST-10-102-004<br>Based<br>HELWEST-10-102-004<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-102-00<br>Based<br>HELWEST-10-1 |
| 0.184<br>0.513008<br>0.184                                                                 |                                                                                                                | 0.184<br>0.513008<br>0.184                                                                 | 0                                                                                                            |                                                                                                                                                                                  | 0.513008<br>0.7029<br>18.251<br>15.5<br>38.223                                                                          |                                                              | 0<br>N/A<br>3.84                                             | Southeast Indian Ridge<br>MELWEST-10-116-015<br>-48.87333<br>106.49417            | 830<br>[139] Indian Ocean Spreading Ridges                            | 0.513047<br>0.189<br>0.189                                                                                                                                                                              | 0.513047<br>0.189<br>0.189                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5 13047<br>0.7029<br>17.887<br>15.887<br>37.802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 820<br>Indian Catan Synerading (1139)<br>Southwart Indian Ridges<br>MELWEST-10-105-001<br>MELWEST-10-105-001<br>103.008<br>0<br>0<br>3.32<br>10.5<br>103.008<br>0<br>3.32<br>10.5<br>10<br>10.5<br>10<br>10.5<br>10<br>10.5<br>10<br>10.5<br>10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.184<br>0.513011<br>0.184                                                                 |                                                                                                                | 0.184<br>0.513011<br>0.184                                                                 | 0                                                                                                            |                                                                                                                                                                                  | 0.513011<br>0.70289<br>18.2649<br>15.508<br>38.249                                                                      |                                                              | 0<br>N/A<br>4.4<br>14.49                                     | Southeast Indian Ridge<br>MELWEST-10-117-001<br>-48.34967<br>107.14543            | 831<br>[139] Indian Ocean Spreading Ridges                            | 0<br>0.197<br>0.197<br>0.197                                                                                                                                                                            | 0.197<br>0.197<br>0.197                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5 130 15<br>0.7028<br>18 114<br>18 14<br>15 477<br>37 522<br>37 522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 821<br>Indian Coann Sgreadain (1139)<br>Scuthan Ridges<br>MELWEST-0-106-004<br>103-385<br>0<br>0<br>303<br>87-38<br>2-38<br>7-38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| RECALCU<br>L'Age 14                                                                                                                                | JLE A<br>I Ma                                                                                         | RECALCULE A<br>L'Age Biblio                                                                                                                                                    | CALCUL OLIEROOK 2017                                                                                                                                                    | 7                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          | RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                                       | RECALCULE A<br>L'Age Biblio                                                                                                                                                            | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (RVS) i nitial recalcule<br>(RVS) i nitial recalcule<br>(Sm/Nd) measured recalcule<br>(143Nd/144Nd) initial recalcule<br>(Sm/Nd) initial recalcule | (SmNd)initial recalculé<br>Age 14Ma (L.Ponthus)<br>Age 14Ma (L.Ponthus)<br>(8758860 Initial recalculé | Ade rer. (L-POTITUS)<br>(REVS) measured recalculé<br>(R7Sr/86Sh initial recalculé<br>(RVS) initial recalculé<br>(Sm/Nd) measured recalculé<br>(143Nud/14/Nd) initial recalculé | 147 Stru 1444 Hotid<br>HSNM 1444 Hotid<br>875-0685 milai<br>875-0685 milai<br>2020 UZAIP5<br>2020 UZAIP5<br>2020 F2A450 milai<br>2021 F2A450 milai<br>2021 F2A450 milai | U (com)<br>U (com)<br>Pb (com)<br>H (com)<br>443Wdr 444K measured<br>873-885 measured<br>2079-1220-49 measured<br>2079-1220-49 measured | Province<br>Location<br>Samole Name<br>Rock Troe<br>Landhuide<br>Landhuide<br>Landhuide<br>Alas eference<br>Mais of erence<br>Mais marking and the<br>Mais marking and the<br>Mais marking and the<br>Mais marking and the<br>Mais marking and the<br>Roleman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | # (Olierook et al., 2017 - n.)<br>Geochemistry Reference | Age 14.Mg (L-Poorbus)<br>(RUSS) massured recalculé<br>(87.SV/86.S6) Initial recalculé<br>(87.SV/86.S6) Initial recalculé<br>(SmN40) massured recalculé<br>(SmN40) Initial recalculé<br>(SmN40) Initial recalculé | Age ref. (L. Ponthus)<br>(REVS) measured recalculé<br>(RTS/R6S5) Initial recalculé<br>(Sm/Nd) measured recalculé<br>(143Md/141Nd) Initial recalculé<br>(143Md/141Nd) Initial recalculé | 147 Strut Vatuda Initial<br>143 Nort Vatuda Initial<br>875 MolSen Initial<br>255 U Code Po<br>255 U Code Po<br>255 U Code Po<br>255 U Code Po<br>255 Po Z Code Po Z Code Po<br>255 Po Z Code Po Z Code Po<br>255 Po Z Code Po<br>255 Po Z Code P | Sr (born)<br>Sr (born)<br>D (born)<br>D (born)<br>D (born)<br>143Nd/14Nd masured<br>275/85S7 masured<br>206/b72/2040 masured<br>2077b72/040 masured<br>2077b72/040 masured | # (Olenook et al. 2017 - n.)<br>Geochemistry Reference<br>Province<br>Sciczation<br>Rock Twheme<br>Rock T                                                                                                                                                                   |
| 0.207<br>0.513040<br>0.207                                                                                                                         | 0.207                                                                                                 | 0.513040                                                                                                                                                                       | -                                                                                                                                                                       | 0.5.1304<br>0.7.0285<br>17.964<br>15.454<br>37.8.19                                                                                     | mdar ucean spreading riverges<br>Southeast India Ridge<br>Basat<br>(2006)<br>112 490.06<br>112 490.06<br>1                                                                                                                                                                                                                                                                        | 842<br>[139]                                             | 0<br>0.512973<br>0.175                                                                                                                                                                                           | 0<br>0.175<br>0.512913<br>0.175                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.512973<br>0.72001<br>18.885<br>16.503<br>38.383                                                                                                                          | 1822<br>Indian Ocean Spinodring F1<br>Southeau Indian F1459<br>MELWEST-10-118-009<br>MELWEST-10-118-009<br>46-2283<br>107-52717<br>5-16<br>5-16<br>17-54<br>17-54<br>17-54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.207<br>0.513055<br>0.207                                                                                                                         | 0.207                                                                                                 | 0.207<br>0.513055                                                                                                                                                              | -                                                                                                                                                                       | 0.513055<br>0.70281<br>17.931<br>16.455<br>37.785                                                                                       | Indian Cuenta Spreading Honges<br>Scutterest (un Ridge<br>46,00733<br>112,59467<br>0<br>10,2947<br>10,22<br>10,22<br>10,22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R43                                                      | 0<br>0.187<br>0.512972<br>0.187                                                                                                                                                                                  | 0<br>0.187<br>0.187<br>0.187                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.512072<br>0.70298<br>18.282<br>15.491<br>15.491                                                                                                                          | 633<br>Indian Ceam Synoximp (1139)<br>Seam-mart Hollan Ridges<br>MELWEST-10-122007<br>MELWEST-10-122007<br>108/27667<br>108/27667<br>108/27667<br>46<br>14.9<br>14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.207<br>0.513044<br>0.207                                                                                                                         | 0.207                                                                                                 | 0.513044                                                                                                                                                                       | -                                                                                                                                                                       | 0.513044<br>0.730283<br>17.95<br>14.486<br>37.821                                                                                       | Indian Outers Systeming Houses<br>Southeast Houses<br>MEL/WEST-10-138-015<br>Basati<br>112:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:68028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA<br>Southeast<br>12:69028<br>NA | 844<br>[139]                                             | 0<br>0.513041<br>0.221<br>0.221                                                                                                                                                                                  | 0<br>0.221<br>0.513041<br>0.221                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.513041<br>0.72273<br>18.011<br>15.459<br>37.845                                                                                                                          | BA<br>Indian Ocean Sponding F1(39)<br>Scalib and Holman Fidge<br>MELWEST-10-74-00<br>MELWEST-10-74-00<br>106-51383<br>2.3<br>5.3<br>6.3<br>6.3<br>6.3<br>6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0,198<br>0,513035<br>0,198                                                                                                                         | 0.198                                                                                                 | 0.513035                                                                                                                                                                       | 5                                                                                                                                                                       | 0.513035<br>0.70289<br>17.998<br>15.413<br>37.723                                                                                       | Indam Outers Systeming Krages<br>Southeast Hules Rtdge<br>40, 1876 - 10, 188-001<br>- 20, 18768<br>112, 86965<br>- 0, 18768<br>- 12, 86965<br>- 0, 18768<br>- 12, 18965<br>- 0, 18768<br>- 12, 18965<br>- 12, 1997<br>- 12, 199                                                                                                                                                                                                                                                                                 | 845<br>[139]                                             | 0<br>0.201<br>0.513023<br>0.201                                                                                                                                                                                  | 0<br>0.201<br>0.513023<br>0.201                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.513023<br>0.70285<br>18.128<br>15.475<br>38.047                                                                                                                          | 153<br>1630 Ocean Spreding F(193)<br>16400 Ocean Spreding F(193)<br>16200<br>16200<br>16200<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>10210<br>100                                                                                               |
| 0.197<br>0.513012<br>0.197                                                                                                                         | 0.197<br>0                                                                                            | 0<br>0.197<br>0.513012                                                                                                                                                         | 2                                                                                                                                                                       | 0.513012<br>0.7028<br>17.952<br>15.46<br>37.786                                                                                         | indan/Ucean/spreamg/indan/Kage<br>Southeat indian Ridge<br>MELWEST-10-138-036<br>112 85665<br>0<br>0<br>0<br>0<br>0<br>0<br>2.26<br>9.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Participan Connection Distance                           | 0<br>0.165<br>0.165                                                                                                                                                                                              | 0<br>0.165<br>0.512909<br>0.165                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.512609<br>0.70336<br>15.18<br>15.18<br>15.202<br>38.202                                                                                                                  | 830<br>Motion Ocean Stonading (193)<br>Scattmand Internation Regard<br>MELWEST-10-78-009<br>MELWEST-10-78-009<br>49.027<br>100-484<br>0<br>0<br>0<br>100-484<br>12.75<br>100-484<br>12.75<br>100-484<br>12.75<br>100-484<br>12.75<br>100-484<br>12.75<br>100-484<br>12.75<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100-485<br>100                                                                                                                                                                                                                           |
| 0.191<br>0.513018<br>0.191                                                                                                                         | 0,191<br>0                                                                                            | 0.191<br>0.513018                                                                                                                                                              |                                                                                                                                                                         | 0.513018<br>0.70292<br>18.017<br>19.51<br>37.81<br>37.81                                                                                | rotain Ocean spreezing voges<br>Southest T-0-104,005<br>MELWEST-0-104,005<br>113,454<br>113,454<br>NIA<br>NIA<br>13,453<br>13,05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 847<br>Idain Doone Screeding Bidges                      | 0<br>0.190<br>0.190<br>0.190                                                                                                                                                                                     | 0<br>0.190<br>0.512917<br>0.190                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.512917<br>0.70343<br>15.633<br>38.193<br>38.193                                                                                                                          | 837<br>Holian Ocean Screeding FU 391<br>Scansserviceding FUges<br>MELWEST-10-128-03re<br>10-03276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-0276<br>-40-020 |
| 0,193<br>0,512999<br>0,193                                                                                                                         | 0,193<br>0                                                                                            | 0.193<br>0.512999                                                                                                                                                              | 5                                                                                                                                                                       | 0.512899<br>0.70287<br>17.947<br>15.41<br>37.796                                                                                        | nolain Uodan Systealung Honges<br>Southeast<br>MELWEST-10-11-001<br>13.61633<br>00<br>NA<br>4.05<br>12.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 848<br>[139]                                             | 0<br>0.214<br>0.213141<br>0.214                                                                                                                                                                                  | 0<br>0.214<br>0.213141<br>0.214                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.513141<br>0.70273<br>17.734<br>15.449<br>37.621                                                                                                                          | 828<br>Hollan Cosan Syraedina E133<br>Saturati Ridges<br>MELWEST-10-128, 034<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.201<br>0.513015<br>0.201                                                                                                                         | 0.201<br>0                                                                                            | 0.201<br>0.213015                                                                                                                                                              |                                                                                                                                                                         | 0.5.13015<br>0.70308<br>15.285<br>16.785<br>37.338                                                                                      | Noisin Ocean Streaming Hog is<br>Southeast Indian Ridge<br>MELWEST-10-142-001<br>114-480804<br>114-48080<br>0<br>0<br>0<br>10<br>27<br>10.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 849<br>[139]                                             | 0<br>0.203<br>0.203<br>0.203                                                                                                                                                                                     | 0<br>0.203<br>0.203<br>0.203                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5.13.057<br>0.70.274<br>18.064<br>15.064<br>37.9646<br>37.964                                                                                                            | E30<br>Indian Coans Spreading (1939)<br>McLuvES 1, 102,000<br>McLuvES 1, 102,000<br>McLuvES 1, 102,000<br>McLuvES 1, 111,1345<br>0, 111,1345<br>2, 255<br>8, 77<br>8, 77<br>8, 77<br>8, 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.201<br>0.513011<br>0.201                                                                                                                         | 0.201<br>0                                                                                            | 0.201<br>0.513011                                                                                                                                                              |                                                                                                                                                                         | 0.513011<br>0.70315<br>15.884<br>15.484<br>37.887                                                                                       | Indian Ocean Spreaduring Hodg es<br>Southeast Indian Redge<br>MeLWEST-10-14-000<br>Based<br>4-000783<br>115.2127<br>0<br>0<br>0<br>0<br>8.81<br>8.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Indian Oceans Second film Bide and                       | 0<br>0.188<br>0.188<br>0.188                                                                                                                                                                                     | 0<br>0.186<br>0.186<br>0.186                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5 13038<br>0.70287<br>15.47<br>37.823<br>37.823                                                                                                                          | 800<br>11/103<br>10/13/10<br>10/15/10/13/2000<br>MELWISST-10/32/000<br>11/178317<br>11/178317<br>11/178317<br>11/178317<br>13/20<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10/27<br>10                                                                                               |
| 0.182<br>0.512929<br>0.182                                                                                                                         | 0.182<br>0                                                                                            | 0.182<br>0.182                                                                                                                                                                 |                                                                                                                                                                         | 0.5.12923<br>0.10268<br>17.554<br>16.47<br>37.612<br>37.612                                                                             | Indian Spreading Koges<br>Southeast Indian Reset<br>MELWEST-10-145-001<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Indian Ocean Second in Bio                               | 0<br>0.513071<br>0.201                                                                                                                                                                                           | 0<br>0.201<br>0.201<br>0.201                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5.13071<br>0.70271<br>17.701<br>17.643<br>37.5844<br>37.584                                                                                                              | 841<br>Indian Ocean Sprending (113)<br>Scathean Indian Rdgs<br>MELWEST-10-173-000<br>MELWEST-10-173-000<br>112-31633<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| RECALC<br>L'Age 1                                                                                                       | ULE A REC<br>4 Ma L'V                                                                                                                             | ALCULE A                                                                                                                                      | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                  |                                                                                                                                     | RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                              | RECALCULE A<br>L'Age Biblio                                                                                                                                                                                 | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Rb/Sr) initial recalculé<br>(Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | (143Nd/144Nd) initial recalculé<br>(SmNd) initial recalculé<br>Age 14Ma (L. Pontrus)<br>(Rb/S) measured recalculé<br>(875/865/1 initial recalculé | Ade rer. (L. Formus)<br>(Rb/Sr) measured recalculé<br>(875/8651) initial recalculé<br>(Rb/Sr) initial recalculé<br>(Sm/Nd) measured recalculé | 147 San Var ANA<br>147 San Var Ana<br>157 Coles<br>157 | Sr (John)<br>Sr (John)<br>H | Reck Trive<br>Latitude<br>Longitude<br>Age reference<br>Age reference<br>Mid (born)<br>Nd (born) | # (Olierook et al., 2017 - n.)<br>Geochemistry Reference<br>Province<br>Location<br>Sambe Name                                      | Act 14ML L-bontrus)<br>(FBCS) neasured recalculé<br>(875://BGS/ninklar recalculé<br>(Sm/Nd) inklar recalculé<br>(Sm/Nd) inklar recalculé<br>(143/Nd/14MNd) inklar recalculé<br>(Sm/Nd) inklar recalculé | Age rat. (L-PORTus)<br>(RUS2) measured recalculé<br>(RTS/RSSA) Initial recalculé<br>(RTV/S1) Initial recalculé<br>(Sm/Vd) measured recalculé<br>(143/Nd/AAN) Initial recalculé<br>(Sm/Vd) Initial recalculé | <ul> <li>HY Sim Hand</li> <li>HS Sim H</li></ul> | Sr (oppm)<br>Sr (oppm)<br>Photometry (oppm)<br>Photometry (oppm)<br>143 Nd/1 44 Nd (oppm)<br>143 Nd (oppm)<br>143 Nd/1 44 Nd (oppm)<br>143 Nd ( | # (Olerook et al., 2017 - n.)<br>Geochamistry Reference<br>Province<br>Scalar<br>Rear De Name<br>Rear De Name<br>Rear De Name<br>Rear De Name<br>Longitude<br>Ane Correction (Ma)<br>Ane reference Sin (opin)<br>Ma (opin)<br>Ma (opin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.195<br>0.512854<br>0.195                                                                                              | 0.512954<br>0.195<br>0                                                                                                                            | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.512854<br>0.70312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Basalt<br>41.8979<br>127.0067<br>N/A<br>81/A<br>4.9/2<br>15.23                                   | 886<br>Indian Ocean Spreading Ridge<br>Ridges 1152-0010-002                                                                         | 0<br>0.185<br>0.185<br>0.185                                                                                                                                                                            | 0,185<br>0,185<br>0,185                                                                                                                                                                                     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.513075<br>0.70311<br>17.362<br>15.443<br>37.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 822<br>Indian Ocean Synoxistip (1139)<br>South near Indian (11439)<br>MELWEST-10-145000<br>MELWEST-10-145000<br>116771753<br>116771753<br>2161<br>2161<br>2161<br>2161<br>2161<br>2161<br>2161<br>216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.199<br>0.512962<br>0.199                                                                                              | 0.512962<br>0.199<br>0                                                                                                                            | 0<br>1<br>2<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.512962<br>0.703165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41.8972<br>127.0076<br>0<br>0<br>3.75<br>11.41                                                   | 889<br>Indian Ocean Spreading Ridges<br>Indian Ocean Spreading Ridges<br>Surfnest Indian Ridge<br>0 P0187-11258-0086,00 (100:00-00) | 0.193<br>0.193<br>0.193                                                                                                                                                                                 | 0.193<br>0.193<br>0.193                                                                                                                                                                                     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.51291<br>0.70318<br>17.974<br>15.513<br>38.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 885<br>Hof an Ocean Sponship R (199)<br>Scott near horing R (199)<br>MELWEST-10-146 (0)9<br>MELWEST-10-166 (0)<br>49 50653<br>117.16175<br>0 0<br>0 2.67<br>9.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.198<br>0.512855<br>0.198                                                                                              | 0.512955<br>0.198<br>0                                                                                                                            | 0 100 0                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.512955<br>0.703074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hasait<br>-41.8972<br>127.0076<br>0<br>N/A<br>3.9<br>11.89                                       | 892<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge                                                                      | 0.194<br>0.513018<br>0.194                                                                                                                                                                              | 0.194<br>0.513018<br>0.194                                                                                                                                                                                  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.513018<br>0.770285<br>15.011<br>15.47<br>37.847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 155<br>Indian Ocean Speeding FU39<br>Scenario et aluar Folge<br>MELWEST-10-47-006<br>497 20467<br>1175 1667<br>5,31<br>5,31<br>16,57<br>16,57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.198<br>0.512953<br>0.198                                                                                              | 0.512953<br>0.198<br>0                                                                                                                            | 0 108 C                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.512853<br>0.703095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hassit<br>-41.8972<br>127.0076<br>0<br>N/A<br>4.17<br>12.72                                      | 893<br>Indian Ocean Spreading Ridges<br>DOP01 67: 11528-0056-001142-142-142                                                         | 0.216<br>0.513047<br>0.216                                                                                                                                                                              | 0.216<br>0.513047<br>0.216                                                                                                                                                                                  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.513047<br>0.70308<br>17.62<br>15.42<br>37.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 638<br>Indan Ocean Spinaeting Fid-45<br>South-are Hoto2:3002-007<br>DUF002:3002-007<br>Baselin<br>Baselin<br>71:025<br>0<br>0<br>0<br>2.26<br>6.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.212<br>0.513060<br>0.212                                                                                              | 0.513060<br>0.212<br>0                                                                                                                            | 0 212 0                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.51306<br>0.702745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Basast<br>-41 2715<br>129,8161<br>N/A<br>4,67<br>13.32                                           | 894<br>[156]<br>Indian Ocean Spreading Ridges<br>Softwast Indian Ridge<br>20P0 187-1155A-007W-004-080-05                            | 0<br>0.207<br>0.513018<br>0.207                                                                                                                                                                         | 0.207<br>0.23018<br>0.207                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.513018<br>0.703146<br>15.466<br>15.475<br>37.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 640<br>(F44)<br>Notan Ocean State<br>DU007201-008<br>South-sectors<br>DU007201-008<br>Salari<br>72242<br>0<br>0<br>0<br>0<br>224<br>224<br>6.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.209<br>0.513045<br>0.209                                                                                              | 0.513045<br>0.209<br>0                                                                                                                            |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.513045<br>0.702742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Basalt<br>-41.2715<br>128,8151<br>N/A<br>4.37<br>12.62                                           | 896<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge                                                                      | 0.204<br>0.513044<br>0.204                                                                                                                                                                              | 0.204<br>0.204<br>0.204                                                                                                                                                                                     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.513044<br>0.70289<br>17.817<br>15.447<br>37.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 642<br>II43)<br>Notian Ocean Screeding Fidges<br>South-Sector/Code<br>DUF9037-026-036<br>28.7<br>7-5-191<br>0<br>0<br>8.87<br>8.87<br>8.87<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.209<br>0.513047<br>0.209                                                                                              | 0.513047<br>0.209<br>0                                                                                                                            | 0.000                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.513047<br>0.702717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Basalt<br>-41 2715<br>129 8151<br>0<br>N/A<br>415<br>11.99                                       | 897<br>[159]<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge<br>COP0187-1153A-008R-001700-0                              | 0.197<br>0.513010<br>0.197                                                                                                                                                                              | 0.197<br>0.513010<br>0.197                                                                                                                                                                                  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.51301<br>0.702982<br>15.489<br>38.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 645<br>14 dig<br>14 dig<br>15 dig<br>15 dig<br>16 dig<br>17 dig<br>18 dig<br>19 dig |
| 0.211<br>0.513061<br>0.211                                                                                              | 0.513061<br>0.211<br>0                                                                                                                            | 0 2111                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.513061<br>0.702689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Basah<br>-414788<br>1313173<br>010<br>4.83<br>13.83                                              | 901<br>[166]<br>Indian Ocean Spreading Ridges<br>DDP0187-1154.v0078.r001031-020                                                     | 0.226<br>0.226<br>0.226                                                                                                                                                                                 | 0.513006<br>0.226                                                                                                                                                                                           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5.13006<br>0.7.03024<br>15.012<br>15.012<br>35.029<br>38.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 648<br>Indian Coans Specialing (14)<br>Southers reading (14)<br>Southers read (14)<br>UFeO37-405-001<br>17:855<br>0<br>0<br>0<br>10<br>2.8<br>7.555<br>7.555<br>7.555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.211<br>0.513061<br>0.211                                                                                              | 0.513061<br>0.211<br>0                                                                                                                            | 0 241                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.513061<br>0.702572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Easant<br>41.4778<br>131.3173<br>0<br>N/A<br>4.93<br>14.12                                       | 903<br>[156]<br>Indian Ocean Spreading Ridges<br>Opp 187-1 15-Koutheast Indian Ridge                                                | 0<br>0.176<br>0.512712<br>0.176                                                                                                                                                                         | 0<br>0.176<br>0.176<br>0.176                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.512712<br>0.704747<br>15.554<br>38.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 660<br>Indian Ocean Streading Adapt<br>South-an Indian Robert<br>DU-9027-006-002<br>78 438<br>0<br>78 438<br>3.12<br>3.12<br>10.7<br>10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.211<br>0.513063<br>0.211                                                                                              | 0.513063<br>0.211<br>0                                                                                                                            | 0 221                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5 13063<br>0.7 028 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Basali<br>-41:4778<br>131:3173<br>0<br>4.93<br>4.93<br>14:14                                     | 904<br>[158]<br>Indian Ocean Spreading Ridges<br>ODP0 187-1 154-0054 0028 002190                                                    | 0<br>0.512969<br>0.181                                                                                                                                                                                  | 0.181<br>0.181<br>0.181                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5 12969<br>0.7 02982<br>18.4<br>15.524<br>38.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 653<br>Indian Ocean Spreading Ridge<br>Scottenatineading Ridge<br>Scottenatineading Ridge<br>Scottenating Ridge<br>Scottenating Ridge<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Scottenating<br>Sco                                                                            |

| RECALC<br>L'Age 1                                                                                                       | ULE A RECAL<br>4 Ma L'Age                                                                                                                                            | CULE A                                                                                                            | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RECALCULE A<br>L'Age 14 Ma                                                                                                                                                    | RECALCULE A<br>L'Age Biblio                                                                                                                                                              | CALCUL OLIEROOK 2017                                                                                                                                                                                                      |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Rb/Sr) initial recalculé<br>(Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | (1434d/144Nd) Initial recalcule<br>(1434d/144Nd) Initial recalcule<br>(Phonthus)<br>(PDS) nessured recalcule<br>(PDS) nessured recalcule<br>(PDS) nessured recalcule | Age ref. (L.Ponthus)<br>(Rb/Sr) measured recalculé<br>(87 Sr/86S7) initial recalculé<br>(Rb/Sr) initial recalculé | 147 Star V44AQ<br>H43 Not 144AQ<br>B75 b985 hital<br>875 b985 hital<br>256 U204Pb<br>256 U20 | Pb (ppm)<br>Th (ppm)<br>143Nd/144Nd masured<br>276Pb274Pb massured<br>277Pb274Pb massured<br>207Pb274Pb massured | Lantitude<br>Lantitude<br>Alse Correction (Ma)<br>Alse reference<br>Matomi<br>Re (open)<br>Sr (open)<br>U (com)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | # (Olierrock et al., 2017 - n.)<br>Geochemistry Reference<br>Province<br>Location<br>Sample Name<br>Rock Toxe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Rb/S) initial recalculé<br>(Rb/S) initial recalculé<br>(Rb/S) initial recalculé<br>(Sm/Nd) initial recalculé<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | (RUS) mesured recalculé<br>(RUS) mesured recalculé<br>(RUS) initial recalculé<br>(SmNd) mesured recalculé<br>(143Nd/14Nd) initial recalculé<br>(SmNd) Initial recalculé<br>(SmNd) (SmNd) | 147 Smr (1444)<br>143 Nor (1444)<br>875 NBS - Initial<br>875 NBS - Initial<br>875 NBS - Initial<br>226 U/2041Ph<br>226 U/2041Ph<br>2007 IPA/2041Ph<br>Initial<br>2007 IPA/2041Ph<br>Initial<br>2007 IPA/2041Ph<br>Initial | Sr (ppm)<br>U (ppm)<br>Th (ppm)<br>143Ndr/141Nd measured<br>8753/8557 measured<br>2017F2/24F5 measured<br>2017F2/24F5 measured<br>2017F2/24F5 measured<br>2017F2/24F5 measured | # (Olerook et al. 2017 - n.)<br>Geochariaty Reference<br>Province<br>Location<br>Sample Name<br>Carect Yose<br>Latitude<br>Latitude<br>Latitude<br>Alse Orarction Mai<br>Alse reference<br>Sam (Dem)<br>Nd (Dem)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.204<br>0.512991<br>0.204                                                                                              | 0.204<br>0.512991<br>0.204<br>0                                                                                                                                      | 0                                                                                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.512891<br>0.702915                                                                                             | 127,382<br>127,386<br>N/A<br>2,59<br>8,85<br>8,85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 933<br>Indian Ocean Spreading Ridges<br>Sourheast Indian Ridges<br>20P0187-1156A-003R-001/102-104<br>Date: Date: D | 0.513062<br>0.211<br>0.211                                                                                                                                                    | 0.513062<br>0.513062<br>0.211                                                                                                                                                            | 2                                                                                                                                                                                                                         | 0.513062<br>0.702852                                                                                                                                                           | 905<br>1156<br>101 an Ocean Spreading Ridge<br>Southeast Indian Ridge<br>Basal<br>41.4778<br>13.173<br>NA<br>4.57<br>13.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.202<br>0.512980<br>0.202                                                                                              | 0.202<br>0.512980<br>0.202<br>0                                                                                                                                      | 0                                                                                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.51298<br>0.703003                                                                                              | 42,73145<br>127,88000<br>NIA<br>3,20<br>9,78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 936<br>Indian Ocean Spreading Rtdges<br>Southeast Indian Rtdge<br>DP0187-1156B-004R-001/102-106<br>DP0187-1156B-004R-001/102-106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.211<br>0.513069<br>0.211                                                                                                                                                    | 0.513069<br>0.211<br>0.213<br>0.211                                                                                                                                                      | -                                                                                                                                                                                                                         | 0.513069<br>0.702801                                                                                                                                                           | 900<br>hrdan Ocean Spreading R1699<br>DP0187-154A-004R-02001-044<br>Baat<br>41-4/78<br>1313170<br>NA<br>4.8<br>13.8<br>13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.204<br>0.513015<br>0.204                                                                                              | 0.204<br>0.513015<br>0.204<br>0.204                                                                                                                                  | 0                                                                                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.513015<br>0.702894                                                                                             | 128.8861<br>128.8861<br>N/4<br>3.18<br>9.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 938<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridges<br>20P0187-1157A-001W-CC013-017<br>DBast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.211<br>0.513063<br>0.211                                                                                                                                                    | 0.211<br>0.513063<br>0.21                                                                                                                                                                |                                                                                                                                                                                                                           | 0.513063<br>0.702699                                                                                                                                                           | 508<br>hdan Ocean Spreading R169<br>DDP0187-1154A0008-001005-011<br>41.4778<br>41.4778<br>131.317<br>4.1478<br>4.14778<br>4.14778<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.1478<br>4.14784444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.208<br>0.513049<br>0.208                                                                                              | 0.208<br>0.513049<br>0.208<br>0                                                                                                                                      | 0                                                                                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.513049<br>0.702613                                                                                             | 128.8061<br>128.806<br>N.K.<br>4.50<br>13.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 943<br>Indan Ocean Spreading Ridges<br>Southeast Indian Ridges<br>ODP0187-1157A-003R-001/02a024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.211<br>0.53367<br>0.211                                                                                                                                                     | 0.211<br>0.513057<br>0.21                                                                                                                                                                |                                                                                                                                                                                                                           | 0.513057<br>0.702801                                                                                                                                                           | 909<br>Indian Ocean Synading F8169<br>Summark Johnson Holm Ridge<br>DDP0187-1154-00776-00100-008<br>4154-0078-001000-008<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>4154-007<br>41                                                   |
| 0.206<br>0.513048<br>0.206                                                                                              | 0.206<br>0.513048<br>0.206<br>0                                                                                                                                      | 0                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.513048<br>0.70258                                                                                              | 128.8861<br>128.8861<br>N.0<br>4.54<br>13.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 944<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridges<br>00 Pht 87-11 57A-003R-001 /028-029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.195<br>0.195<br>0.195                                                                                                                                                       | 0.195<br>0.13001<br>0.19<br>0.19                                                                                                                                                         | 2                                                                                                                                                                                                                         | 0.513001<br>0.702987                                                                                                                                                           | 913<br>hdan Ocean Syneadrig 1763<br>Southeat rulan Ridges<br>00P0187-1155-0095-00102-023<br>419 5940<br>0<br>0<br>127 5948<br>438<br>13 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.205<br>0.513040<br>0.205                                                                                              | 0.205<br>0513040<br>0.205<br>0                                                                                                                                       | 0                                                                                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.51304<br>0.70283                                                                                               | 128,82613<br>128,830<br>830<br>840<br>3,940<br>11,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 949<br>Polan Ocean Spreading Rdges<br>Southeast Indian Rdges<br>COP0187-11578-002R-01055-055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.211<br>0.513031<br>0.211                                                                                                                                                    | 0.211<br>0.513031<br>0.21                                                                                                                                                                | -                                                                                                                                                                                                                         | 0.513031<br>0.702833                                                                                                                                                           | 915<br>Indian Ocean Spreading Ridges<br>COPP0187-11558-0278-01005-057<br>Based<br>41558-0278-01005-057<br>127.950<br>02<br>02<br>02<br>04<br>02<br>04<br>02<br>04<br>02<br>04<br>02<br>04<br>02<br>04<br>02<br>04<br>02<br>04<br>02<br>04<br>02<br>04<br>04<br>04<br>04<br>04<br>04<br>04<br>04<br>04<br>04<br>04<br>04<br>04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.209<br>0.513047<br>0.209                                                                                              | 0.509<br>0.513047<br>0.209<br>0                                                                                                                                      | 0                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.513047<br>0.702679                                                                                             | 1228388<br>12288888<br>0<br>0<br>3344<br>1142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 951<br>Indian Ocean Spreading R1ges<br>Southeast Indian Ridges<br>ODP0187-11578-004R-001/034-084-084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.210<br>0.513021<br>0.210                                                                                                                                                    | 0.210<br>0.513021<br>0.210                                                                                                                                                               |                                                                                                                                                                                                                           | 0.513021                                                                                                                                                                       | 916<br>hdian Ocean Spreading Fidge<br>copp0187-11550-028-001066-08<br>-415982<br>127:592<br>0<br>127:592<br>247<br>247<br>7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.204<br>0.513043<br>0.204                                                                                              | 0.513043<br>0.204<br>0.200                                                                                                                                           |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.513043<br>0.702813                                                                                             | 128 8291<br>128 8291<br>8<br>10<br>10<br>3<br>3<br>10<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 952<br>Indian Ocean Spreading Ridge<br>Southeast Indian Ridge<br>ODP0187-11578-004R-001/136-132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.211<br>0.51303<br>0.211                                                                                                                                                     | 0.513032<br>0.211                                                                                                                                                                        |                                                                                                                                                                                                                           | 0.51303<br>0.702823                                                                                                                                                            | 917<br>Istice<br>braine Ocean Spreading Rege<br>Southeast Indian Rege<br>Opph 187-11556-0002 A0000540-41<br>9586<br>4-19 958<br>127 950<br>2 96<br>2 96<br>2 96<br>7 56<br>7 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.21<br>0.51304<br>0.21                                                                                                 | 0.51304<br>0.21                                                                                                                                                      |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.51304<br>0.70263                                                                                               | - 45.956<br>123.966<br>- 123.967<br>- 129.967<br>- 129.977<br>- 129.9777<br>- 129.97777<br>- 129.97777<br>- 129.97777<br>- 129.97777<br>- 129.97777<br>- 129.97 | 96<br>[156]<br>Indian Ocean Spreading Ridge<br>Southeast Indian Rid<br>ODP0187-1159A-006R-002/054-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.21<br>0.51303<br>0.21                                                                                                                                                       | 0.21<br>0.51303                                                                                                                                                                          |                                                                                                                                                                                                                           | 0.5 1303                                                                                                                                                                       | 00000167-11550-0084-000000<br>00000167-11555-0088-001004-01<br>Basa<br>41.958<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>127.952<br>17 |
| 0.211<br>0.513045<br>0.211                                                                                              | 0.513<br>0.513<br>0.211<br>0.211<br>0.211<br>0.211<br>0.211<br>0.211                                                                                                 | 0                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.513045<br>0.702642                                                                                             | 122.99867<br>122.99867<br>NI<br>12.9986<br>NI<br>12.9986<br>NI<br>11.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 971<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridges<br>ODP0187-159A-0077R-001/139-141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.204<br>0.51285<br>0.204                                                                                                                                                     | 0.512865<br>0.204                                                                                                                                                                        | 5                                                                                                                                                                                                                         | 0.512985                                                                                                                                                                       | 1930<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge<br>ODPN 1877-1156A-002031/33-136<br>Basalt<br>-42.1322<br>127.1882<br>NA<br>3,177<br>9,38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| RECALO<br>L'Age 1                                                                                                       | ULE A RECALO                                                                                                                                                                                                 | CULE A<br>Biblio                                                                  | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                 |                                                                                                                        |                                                                           | RECALCULE A<br>L'Age 14 Ma                                                                                                                            | RECALCU<br>L'Age Bit                                                                                                                                                          | LE A<br>CALCUL OLIEROOK 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 017                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Rb/Sr) initial recalculé<br>(Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | (KOSY) Initial recalcule<br>(Sm/Nd) mesured recalcule<br>(13Nd/14Nd) Initial re calcule<br>(Rb/Sm/Nd) Initial re calcule<br>(Rb/Sh Initial recalcule<br>(Rb/Sh Initial recalcule<br>(Rb/Sh Initial recalcule | Age ref. (L.Ponthus)<br>(Rb/Sr) measured recalculé<br>(875:R6Sn initial recalculé | 147 Sm/144AQ<br>143 Ng/144AQ<br>875 bills<br>875 bills | U (Jopm)<br>Pb (Jopm)<br>Th (Jopm)<br>143Nd/144Nd measured<br>875/865r measured<br>2070Fb204Pb measured<br>2070Fb204Pb measured | Sannik ikan<br>Rack Tve<br>Lanitude<br>Lanitude<br>Age rofeence<br>Age rofeence<br>Ser (com)<br>Ser (com)<br>Ser (com) | # (Olierook et al., 2017 - n.)<br>Geochemistry Reference<br>Location      | (Rb/S) measured recalcule<br>(87 S/86Sh initial recalcule<br>(Sm/NS) initial recalcule<br>(Sm/Nd) measured recalcule<br>(143Hd/14M) initial recalcule | (875/8587) Initial recalculé<br>(RtVS) Initial recalculé<br>(Sm/Nd) measured recalculé<br>(143Nd/144N8) Initial recalculé<br>(SmNd) Initial recalculé<br>Age 14Ma (L-Ponthus) | 14 NACA And An initial<br>8775 (2005) Initial<br>8775 (2005) Initial<br>2756 (1204) Po<br>2756 (1204) Po<br>2757 (PA) Cube Initial<br>2005 PC) Cube I | 147.200/144MG          | # (Olerook et al. 2017 - n.)<br>Geochmistry Reference<br>Provine<br>Location<br>Sample Name<br>Concentration<br>Sample Name<br>Correction (Ma)<br>Aue reference<br>Sin Loom<br>Aue reference<br>Sin Loom<br>Ref Loom<br>Ref Loom<br>Ref Loom<br>Ref Loom<br>Ref Loom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.207<br>0.513061<br>0.207                                                                                              | 0.207<br>0.513061<br>0.207<br>0                                                                                                                                                                              | ō                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.513061<br>0.702837                                                                                                            | ODP0187-1161A-003R-00168-66 0<br>Basalt<br>-44.2860<br>129.0610<br>0.0<br>0.0<br>0.0<br>10.29<br>10.29                 | 995<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge            | 0.212<br>0.513041<br>0.212                                                                                                                            | 0.212<br>0.513041<br>0.212<br>0.212<br>0.212                                                                                                                                  | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.513041<br>0.702828   | 972<br>Indian Ocean Spreading 1155<br>Swineast Indian R16<br>Swineast Indian R16<br>Basat<br>45,5667<br>123,909<br>NA<br>1,39<br>1,39<br>1,37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.207<br>0.513057<br>0.207                                                                                              | 0.207<br>0.513057<br>0.207<br>0                                                                                                                                                                              | 0                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.513057<br>0.702851                                                                                                            | DP0187-1161A-003R-001/008-0010<br>Basait<br>44.2260<br>129.0513<br>NA<br>3.51<br>10.28                                 | 997<br>[156]<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge   | 0.206<br>0.513044<br>0.206                                                                                                                            | 0.513044<br>0.206<br>0.206<br>0.206<br>0.206                                                                                                                                  | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.513044<br>0.702533   | 973<br>1973<br>1973<br>1973<br>1974<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1                                                                                                                                                                                                                                                                                                                        |
| 0.208<br>0.513042<br>0.208                                                                                              | 0.208<br>0.513042<br>0.208<br>0                                                                                                                                                                              | o                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.513042<br>0.703014                                                                                                            | DP0187-11629-009R-001090-092<br>44, 63301<br>129,188015<br>NA<br>3,88<br>11.3                                          | 1005<br>[156]<br>Indian Ocean Spreading Ridge<br>Southeast Indian Ridge   | 0.235<br>0.513055<br>0.235                                                                                                                            | 0.235<br>0.513055<br>0.23<br>0.25                                                                                                                                             | ō                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.513065<br>0.702576   | 975<br>Indian Ocean Spreading [155]<br>Suthead Indian Ridge<br>Baselt<br>44.0082<br>134.989<br>NM<br>227<br>5.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                         | 0                                                                                                                                                                                                            | ٥                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.513056<br>0.703044                                                                                                            | DP0187-11625-008R-001/080-094<br>44.63208<br>129.188015<br>N/A<br>N/A                                                  | 1006<br>[156]<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge  | 0.225<br>0.513066<br>0.225                                                                                                                            | 0.225<br>0.513066<br>0.225<br>0.225                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.513066<br>0.702363   | 977<br>Indian Ocean Spreading [195]<br>Bootest Halin Ridge<br>Basit<br>44.002<br>134.985<br>194<br>195<br>194<br>195<br>4.19<br>195<br>197<br>197<br>197<br>197<br>197<br>197<br>197<br>197<br>197<br>197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.195<br>0.512975<br>0.195                                                                                              | 0.195<br>0.512975<br>0.195<br>0                                                                                                                                                                              | ٥                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.512975<br>0.702983                                                                                                            | DP0187-1163A-008R-0018041-04-3<br>-44-8248<br>126-9063<br>N/A<br>3.35<br>10.41                                         | 1012<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge           | 0.210<br>0.513043<br>0.210                                                                                                                            | 0.210<br>0.513043<br>0.210<br>0.210                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.513043<br>0.702641   | 982<br>Indian Ocean Spreading [195]<br>Southeast Indian Ridge<br>Baset<br>14,002<br>13,993<br>NA<br>2,48<br>7,13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.195<br>0.512963<br>0.195                                                                                              | 0.195<br>0.512963<br>0.195<br>0                                                                                                                                                                              | 0                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.512963<br>0.702979                                                                                                            | 0P0187-1163A-009R-002.000-002<br>Basalt<br>126-9083<br>N/A<br>3.63<br>11.27<br>11.27<br>11.27                          | 1015<br>[156]<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridge  | 0.237<br>0.513069<br>0.237                                                                                                                            | 0.237<br>0.513069<br>0.23<br>0.237                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.513069               | 983<br>holun Ocaan Spreading R48pa<br>Spreading R48pa<br>Esait<br>44.0082<br>13.9.98<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.203<br>0.512975<br>0.203                                                                                              | 0.203<br>0.512975<br>0.203<br>0                                                                                                                                                                              | 0                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.512875<br>0.702912                                                                                                            | 00P0187-1164A-002R-001001-005<br>-43-7482<br>127.7482<br>NA<br>2.69<br>8<br>8                                          | 1017<br>[156]<br>Indian Ocean Spreading Ridges<br>Southeast Indian Ridges | 0.211<br>0.513046<br>0.211                                                                                                                            | 0.211<br>0.513046<br>0.214<br>0.214                                                                                                                                           | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.513046<br>0.702634   | 984<br>Indian Ocean Spreading PR098<br>Summer Indian R098<br>Based Cortex Ord/006-011<br>Based - 410-002<br>134-395<br>9<br>2.5<br>7.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.209<br>0.512979<br>0.209                                                                                              | 0.209<br>0.512979<br>0.209<br>0                                                                                                                                                                              | 0                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.512979<br>0.702945                                                                                                            | ODP0187-1164B-001W-CC/023-025<br>Besett<br>127.7461<br>2.51<br>2.51<br>8.43<br>8.43                                    | 1019<br>[156]<br>Indian Ocean Spreading Ridge<br>Southeast Indian Ridge   | 0.238<br>0.513058<br>0.238                                                                                                                            | 0.238<br>0.513058<br>0.238<br>0.238                                                                                                                                           | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5.13088<br>0.7.02573 | 888<br>hrdian Ocean Spreading Rdgs<br>Southeast Indian Rdge<br>Southeast Indian Rdge<br>Southeast Indian Rdge<br>Beatt<br>- 44 002<br>- 13 985<br>- 84<br>- 84<br>- 84<br>- 84<br>- 84<br>- 84<br>- 84<br>- 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.211<br>0.512986<br>0.211                                                                                              | 0.211<br>0.512986<br>0.211<br>0                                                                                                                                                                              | o                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5.12986<br>0.7.02939                                                                                                          | ODP0 187-1164B-004R-002/135-138<br>Basalt<br>-43.748<br>127.7461<br>2.59<br>2.59<br>7.41                               | 1021<br>[156]<br>Indian Ocean Spreading Ridge<br>Southeast Indian Ridge   | 0.237<br>0.513061<br>0.237                                                                                                                            | 0.237<br>0.513061<br>0.230<br>0.237                                                                                                                                           | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5.13081<br>0.7.02551 | 991<br>Indian Ocean Spreading Rdge<br>ODP0 187-1160E-008-00 1005-007<br>Basati<br>44.002<br>19.985<br>01.04<br>1.94<br>3.8<br>3.8<br>1.94<br>1.94<br>3.8<br>3.8<br>1.94<br>1.94<br>3.8<br>1.94<br>1.94<br>1.94<br>3.8<br>3.8<br>3.8<br>3.8<br>3.8<br>3.8<br>3.8<br>3.8<br>3.8<br>3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.211<br>0.512987<br>0.211                                                                                              | 0.211<br>0.512987<br>0.211<br>0                                                                                                                                                                              | o                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5 12987<br>0.7 02934                                                                                                          | ODP0187-1164B-008R-001036-039<br>Basalt<br>-43.7482<br>127.7481<br>0<br>8.2<br>8.2<br>8.2<br>8.2<br>8.2<br>8.2         | 1022<br>[156]<br>Indian Ocean Spreading Ridge<br>Southeast Indian Ridge   | 0.238<br>0.513069<br>0.238                                                                                                                            | 0.238<br>0.513069<br>0.238<br>0.238                                                                                                                                           | O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5.10069<br>0.7.02591 | 1912<br>Indian Ocean Spreading Ridge<br>ODP0187-11605-00040/01070-074<br>Basati<br>-14,0002<br>-14,9983<br>-14,9983<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24,0<br>-24, |

| RECALCI<br>L'Age 1                                                                                                      | ULE A<br>4 Ma                                                                         | RECA<br>L'Ag                                                  | LCULE A<br>e Biblio                                                                                             | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                            |                                                                      | RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                                  | RECALCULE<br>L'Age Bibli                                                                                                                                                                           | A CALCUL OLIEROOK 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Rb/Sr) initial recalculé<br>(Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | Age 14Ma (L. Ponthus)<br>(Rb/Sr) measured recalculé<br>(87 Sr/86Sr) initial recalculé | (Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé | Age ref. (L.Ponthus)<br>(Rb/Sr) measured recalculé<br>(875/86Sn) initial recalculé<br>(Rb/Sr) initial recalculé | 147 Stri Val AND<br>148 Stri Val AND<br>875 UKS in Itali<br>875 UKS in Itali<br>288 UKAH bi<br>288 UKAH b | An and a start and | Age Correction (Ma)<br>Age reference<br>Nd (ppm)<br>Rb (ppm) | Location<br>Samble Name<br>Rock Type<br>Latitude                           | # (Olierook et al., 2017 - n.)<br>Geochemistry Reference<br>Province | Age 14Ma (L. Ponthus)<br>(RbtS) measured recalcule<br>(RbtS) Initial recalcule<br>(RTS-8655) Initial recalcule<br>(RTVKS) Initial recalcule<br>(Sm/N0) Initial recalcule<br>(14,3Md/14Nd) Initial recalcule | (100 cs) intensities reserved<br>(875/8656) initial recalculé<br>(Rb/St) initial recalculé<br>(Sm/Nd) measured recalculé<br>(143/Nd/14A/Nd) initial recalculé<br>(143/Nd/14A/Nd) initial recalculé | 140W01/44M04Initial<br>877E/0855: http:<br>2782/0855: http:<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2281/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2381/204Pb<br>2 | A contract of the second secon | # (Olerook et al. 2017 - n.)<br>Geochemistry Reliferino<br>Locarion<br>Rock Twe<br>Rock Twe<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Set form<br>Rock for the set<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                         | 0                                                                                     | 0.166                                                         | c                                                                                                               | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.7.11<br>15.49<br>98.2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>N/A<br>4.407<br>14.122                                  | Southeast Indian Ridge<br>MOAB801-011-017<br>Basalt<br>-50.152<br>127.652  | 863<br>[158][117][111]<br>Indian Ocean Soread to Ridoes              | 0<br>0.513024<br>0.211<br>0.211                                                                                                                                                                             | 0.211<br>0.513024<br>0.211                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.513024<br>0.702819<br>15.641<br>15.465<br>37.786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1, 160 126<br>Indam Covan System<br>Scattmast Indam Ridge<br>DP0187-1155B-005R-002019-022<br>141.9562<br>127.9624<br>127.9624<br>7.6<br>7.6<br>7.6<br>7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                         | 0                                                                                     | 0.176                                                         | c                                                                                                               | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.685<br>15.485<br>38.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>N/A<br>7.872<br>23.8                                    | Southeast Indian Ridge<br>MOA8801-012-001<br>Basalt<br>-50.162<br>127.833  | 864<br>[158][17][11]<br>Indian Ocean Spreading Ridges                | 0                                                                                                                                                                                                           | 0.182                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18 594<br>15 4 594<br>39 1 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Idan Ocean Spracting Fide<br>Southeast Idan Edge<br>Southeast Idan Edge<br>MoA801:000-001<br>1-30.533<br>1-30.553<br>4-50<br>1-30.553<br>1-30.553<br>1-30.553<br>1-30.553<br>1-30.553<br>1-30.553<br>1-30.553<br>1-30.553<br>1-30.553<br>1-30.553<br>1-30.553<br>1-30.553<br>1-30.553<br>1-30.553<br>1-30.553<br>1-30.553<br>1-30.553<br>1-30.553<br>1-30.553<br>1-30.553<br>1-30.553<br>1-30.553<br>1-30.553<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.555<br>1-30.5555<br>1-30.5555<br>1-30.5555<br>1-30.5555<br>1-30.5555<br>1-30.5555<br>1-30.5555<br>1-30.5555<br>1-30.5555<br>1-30.5555<br>1-30.5555<br>1-30.55555<br>1-30.555555<br>1-30.5555 |
| 0.193<br>0.512943<br>0.193                                                                                              | 0                                                                                     | 0.193<br>0.512943                                             | Q                                                                                                               | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.512943<br>17.954<br>15.485<br>37.754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>N/A<br>9.676                                            | Southeast Indian Ridge<br>MOA8801-029-005<br>-48 997<br>-48 997<br>124 468 | [158][163][117][111]<br>[158][163][117][111]                         | o                                                                                                                                                                                                           | 0.166                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.583<br>15.479<br>38.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 (58) (11)<br>Indian Ocean Symethys 19(49)<br>Scatharast telain REga<br>MOA8011-006-041<br>- 50 (188<br>- 50 (188)) - 50 (188<br>- 5                                                                                                                                                                                                                                                                                                           |
| 0.207<br>0.513076<br>0.207                                                                                              | 0                                                                                     | 0.207<br>0.513076                                             | C                                                                                                               | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.513076<br>0.70258<br>18.655<br>18.485<br>18.485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>N/A<br>5.89<br>17.203                                   | Southeast Indian Ridge<br>MOA8801-013-047<br>Basitt<br>-50.147<br>128.015  | 159]158]1158]1111<br>[159]158]1111                                   | o                                                                                                                                                                                                           | 0.174                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12 BES<br>15 486<br>38 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Indian Ocean Symetry Reg<br>Scathward Reg<br>McAsson Levin Reg<br>McAsson - Children Reg<br>Based<br>- Scathward Reg<br>Based<br>- Scathward Reg<br>Based<br>- Scathward<br>- Scathw                                                                                                                                                             |
| 0.181<br>0.513092<br>0.181                                                                                              | 0                                                                                     | 0.181<br>0.513092                                             | C                                                                                                               | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.513092<br>0.77248<br>15.609<br>15.458<br>16.458<br>38.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>N/A<br>9.964                                            | Southeast Indian Ridge<br>MOAB601-004-002<br>-48.763<br>127.36             | [159][158][117][111]<br>Indian Ocean Soreading Ridges                | o                                                                                                                                                                                                           | 0.165                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12 689<br>15 489<br>38.187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 115011071<br>Indian Ocean Symetry Region<br>Scathwast Intellin<br>MOA801-019-056<br>Basat<br>50-147<br>127.017<br>127.017<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.214<br>0.513038<br>0.214                                                                                              | 0                                                                                     | 0.214<br>0.513038                                             | 0                                                                                                               | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.513008<br>0.70284<br>18.238<br>18.238<br>18.48<br>37.998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>N/A<br>3.403<br>9.617                                   | Southeest Indian Ridge<br>MOA88014-005-001<br>Basalt<br>-48.68<br>126.52   | [159][158][117][11]<br>[159][158][117][11]                           | 0                                                                                                                                                                                                           |                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17.885<br>15.464<br>37.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Holian Ocean Spreading Totality<br>Scatterest Indian Roge<br>MCA801427 206<br>MCA801427 206<br>Basat<br>49 002<br>124 895<br>124 895<br>NNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.207<br>0.513050<br>0.207                                                                                              | 0                                                                                     | 0.207<br>0.513050                                             | c                                                                                                               | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.51305<br>0.70288<br>18.4<br>15.45<br>38.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>N/A<br>9.799                                            | Southeast Indian Ridge<br>MOA8801-006-002<br>Basalt<br>-48.765<br>126.883  | [159][159][178][117][111]<br>[159][169][117][111]                    | •                                                                                                                                                                                                           | 0.191                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17.788<br>15.482<br>37.547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Helian Orean Screeting (158)<br>Scattmast Indian Rodge<br>Scattmast Indian Rodge<br>MOA801-028001<br>124.708<br>124.708<br>340<br>345<br>96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.205<br>0.513088<br>0.205                                                                                              | 0                                                                                     | 0.205<br>0.513088                                             | o                                                                                                               | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5.13088<br>0.70251<br>18.728<br>18.728<br>15.455<br>38.245<br>38.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>N/A<br>3.382<br>9.971                                   | Southeast Indian Ridge<br>MCA8801-016-001<br>Basalt<br>-50.163<br>127.577  | [159][159][117][117]<br>Indian Ocean Screading Ridges                | 0                                                                                                                                                                                                           | 0. 185<br>0. 185                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.689<br>15.5<br>38.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Helian Ocean Streading Fields<br>Scathwart Streading Fields<br>MOA801-001-015<br>Basati<br>128.54<br>0<br>0<br>5.727<br>16.462<br>16.462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.174<br>0.513064<br>0.174                                                                                              | 0                                                                                     | 0.174<br>0.513064                                             | c                                                                                                               | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.513064<br>0.70258<br>0.70258<br>18.787<br>15.487<br>38.2497<br>38.2497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>N/A<br>3.769<br>13.096                                  | Southeast Indian Ridge<br>MOA8801-016-012<br>Basalt<br>-50.163<br>127.577  | [159][158][117][111]<br>Indian Ocean Screading Ridges                | 0                                                                                                                                                                                                           | 0.181                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.667<br>15.505<br>38.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1156[1177111]<br>Indian Oceane Streading Richer<br>Southeast Indian Richer<br>MO4801-003-006<br>Basel<br>50107<br>127362<br>0<br>0<br>7 081<br>208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.174<br>0.512903<br>0.174                                                                                              | 0                                                                                     | 0.174<br>0.512903<br>0.174                                    | c                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.512803<br>15451<br>15852<br>12888<br>15203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>N/A<br>3.66<br>12.725                                   | Southeast Indian Ridge<br>MOA8801-027-058<br>Basait<br>49.062<br>124.965   | 877<br>[159][158][177][11]<br>Indian Ocean Streading Ridges          |                                                                                                                                                                                                             | 0.171                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.657<br>15.488<br>38.169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 163(1):17(1)<br>101(a): Ocean Spravids, 164(a):1<br>Southeast Jointon Ridge<br>MO485(1-101-001<br>Basati<br>02.243<br>127.59<br>0.0<br>0.2<br>0.2<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5<br>12.   |

|                           | RECAL<br>L'Age                                                | CULE A<br>14 Ma                                                                            | R                                                 | L'Ag                                                          | LCUI<br>e Bit                                               | LE A<br>blio                                       | CALCUL O                                                                                                        | LIEROC                                             | DK 2017                                              |                                                                                                                                       |                                                           |                                                            |                                                                          |                                                                      | RECALCULE A                                                                                                                                                                         | A                                                 | RECALCULE<br>L'Age Biblic                                                                                                                                 | A (                   | CALCUL OLIEROOK 2017                                                                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Sm/Nd) initial recalculé | (Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé | (Rb(Sc) measured recalculé<br>(Rb(Sc) miasured recalculé<br>(87 Sr/86St) initial recalculé | (Sm/Nd) initial recalculé<br>Age 14Ma (L.Ponthus) | (Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé | (87 Sr/86Sr) initial recalculé<br>(Rb/Sr) initial recalculé | Age ref. (L.Ponthus)<br>(Rb/Sr) measured recalculé | 232 Th/204Pb<br>232 Th/204Pb initial<br>206 Pb/204 Pb initial<br>207 Pb/204 Pb initial<br>208 Pb/204 Pb initial | 87Sr/86Sr initial<br>238 U/204 Pb<br>2351 U/204 Pb | 147 Sm/144Nd<br>143 Nd/1 44 Nd initial<br>87R b/86Sr | Th (com)<br>143 Nd/1 44 Nd measured<br>8/75 /865r measured<br>20/P b/204Pb measured<br>20/P b/204Pb measured<br>20/P b/204Pb measured | Variations<br>National<br>Sr (pom)<br>U (pom)<br>Pb (pom) | Longitude<br>Age Correction (Ma)<br>Age reference Sm (nom) | Location<br>Sample Name<br>Rock Type<br>Latitude                         | # (Olierook et al., 2017 - n.)<br>Geochemistry Reference<br>Province | (Rb/S) measured recalcule<br>(87 SreSs) Initial recalcule<br>(Rb/S) Initial recalcule<br>(Sm/Nc) measured recalcule<br>(143Nd/141Nd) Initial recalcule<br>(Sm/Nc) Initial recalcule | (Sm/Nd) initial recalculé<br>Age 14Ma (L.Ponthus) | (RD/S7) measured recalcule<br>(875/858) initial recalculé<br>(RD/S7) initial recalculé<br>(Sm/Nd) measured recalculé<br>(143/Nd/144/Nd) initial recalculé | Age ref. (L. Ponthus) | 147 Sm/14440<br>143 Nm/14440<br>143 Nm/14440<br>1875/085 P. Initial<br>1875/085 P. Initial<br>2281/024/Pb<br>2281/024/Pb<br>2019/024/Pb<br>2019/024/Pb<br>2019/024/Pb<br>2019/024/Pb<br>2019/024/Pb | Sr (opm)<br>U (opm)<br>Pb (opm)<br>Th (opm)<br>143Nd/f 44Nd measured<br>875r/685r measured<br>2061b/2041b measured<br>2061b/2041b measured | # Cleinosk et al2117 - n.)<br>Geochemistr Reference<br>Province<br>Sample Name<br>Rock Twos<br>Rock Twos<br>Rock Twos<br>Rock Twos<br>Rock Twos<br>Rock Twos<br>Rock Two<br>Rock                                                                                  |
|                           |                                                               |                                                                                            | 0                                                 |                                                               |                                                             | 0                                                  |                                                                                                                 |                                                    |                                                      | 0.70575                                                                                                                               |                                                           | N/A                                                        | Southeast Indian Ridge<br>VEM0033-1-002-001<br>Basalt<br>50.267          | 1034<br>[85]<br>Indian Ocean Spreading Ridges                        | 0.198<br>0.513012<br>0.188                                                                                                                                                          | 0.198                                             | 0.198                                                                                                                                                     | 0                     |                                                                                                                                                                                                     | 0.513012<br>0.70285<br>17.83<br>17.83<br>15.4774<br>37.774                                                                                 | 14 501 (158) 1711 11<br>hdan Cean Spreading Ridges<br>Scotheast Idages<br>MOABOT COLO<br>Basad<br>123 202<br>123 202<br>123 202<br>9,62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                           |                                                               | ¢                                                                                          | 0                                                 |                                                               |                                                             | 0                                                  |                                                                                                                 |                                                    |                                                      | 0.70492                                                                                                                               |                                                           | N/A<br>0                                                   | Southeast Indian Ridge<br>VEM0033-1-003-002<br>Basait<br>-50.417         | 1037<br>[85]<br>Indian Ocean Spreading Ridges                        | 0.200<br>0.513261<br>0.200                                                                                                                                                          | 0 200                                             | 0.200<br>0.513261                                                                                                                                         | 0                     |                                                                                                                                                                                                     | 0.512261<br>0.70281<br>11.763<br>15.428<br>37.591                                                                                          | [169][169][163][17][[11]<br>hdanOcean Syneating Ridges<br>Southeast Unit an Ridge<br>Southeast Unit an Ridge<br>Southeast Unit and Ridge<br>Based<br>123.800<br>2.417<br>7.317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                           |                                                               | ¢                                                                                          | 0                                                 |                                                               |                                                             | 0                                                  |                                                                                                                 |                                                    |                                                      | 0.7096                                                                                                                                |                                                           | N/A<br>0                                                   | Southeast Indian Ridge<br>VEM0033-2-011-001<br>Basalt<br>-49.858         | 1057<br>[85]<br>Indian Ocean Spreading Ridges                        | 0.216<br>0.513054<br>0.216                                                                                                                                                          | 0216                                              | 0.216<br>0.513054                                                                                                                                         | 0                     |                                                                                                                                                                                                     | 0.513054<br>0.70254<br>18.513<br>15.466<br>38.009                                                                                          | [159][10][158][117][111]<br>hrdan.Ceena Spreading Ridges<br>Scatheast Luina Ridge<br>Baset<br>152, 477<br>152, 477<br>3, 02<br>3, 02<br>8, 449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                           |                                                               | ¢                                                                                          | 0                                                 |                                                               |                                                             | 0                                                  |                                                                                                                 |                                                    |                                                      | 0.71384                                                                                                                               |                                                           | N/A<br>N/A                                                 | Southeast Indian Ridge<br>VEM0033-2-011-002<br>Basalt<br>-49.858         | 1058<br>[85]<br>Indian Ocean Spreading Ridges                        | 0.233<br>0.513224<br>0.233                                                                                                                                                          | 0.233                                             | 0.233<br>0.513234                                                                                                                                         | 0                     |                                                                                                                                                                                                     | 0.513234<br>0.70285<br>17.779<br>5.4<br>37.6                                                                                               | [159][10][158][117][111]<br>hndan Ocean Spreading Hoges<br>Scatheast Unian Ridge<br>McNa801-032.001<br>Halers<br>123.680<br>2.320<br>6.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.212                     | 0.212<br>0.513181                                             |                                                                                            | 0.212                                             | 0.212<br>0.513181                                             |                                                             | 0                                                  |                                                                                                                 |                                                    |                                                      | 0.513181<br>0.70319                                                                                                                   | 9.71                                                      | 14:542<br>0<br>N/A<br>3.41                                 | Southeast Indian Ridge<br>ARGDODO-113-A1<br>23.343                       | 622<br>[89]<br>Indian Ocean Spreading Ridges                         | 0.220<br>0.513048<br>0.220                                                                                                                                                          | 0.220                                             | 0.220<br>0.513048                                                                                                                                         | 0                     |                                                                                                                                                                                                     | 0.513048<br>0.70276<br>17.887<br>15.453<br>37.634                                                                                          | [150]160[150]117[11]<br>holian Ocean Spreading Redges<br>Southeast India Redge<br>MOA8011-026 001<br>East<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295<br>124.295 |
| 0.200                     | 0.200                                                         |                                                                                            | 0.200                                             | 0.200<br>0.513119                                             |                                                             | 0                                                  |                                                                                                                 |                                                    |                                                      | 0.513119                                                                                                                              | 9.76                                                      | 72:433<br>N/A<br>3.22                                      | Southeast Indian Ridge<br>ARGDODO-114-A<br>Basalt<br>-24.117             | 624<br>[89] Indian Ocean Spreading Ridges                            |                                                                                                                                                                                     | 0.174                                             | 0.174                                                                                                                                                     | 0                     |                                                                                                                                                                                                     | 0.7029<br>17.843<br>15.459<br>37.626                                                                                                       | [150]160]150]117[111]<br>holian Oram Spreading Rolges<br>Southeast Indan Rolges<br>MOA801-027.071<br>Basati<br>124.480<br>124.480<br>2.824<br>8.626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                           |                                                               | ,                                                                                          | 0                                                 |                                                               |                                                             | 0                                                  |                                                                                                                 |                                                    |                                                      | 0.7026<br>18.68<br>15.5<br>38.13                                                                                                      |                                                           | 13 1:000<br>0<br>N/A                                       | Southeast Indian Ridge<br>VEM0033-1-001-A<br>Baselt<br>-50.408           | 1032<br>[95]<br>Indian Ocean Spreading Ridges                        | 0.207<br>0.513007<br>0.207                                                                                                                                                          | 0.207                                             | 0.207<br>0.513007                                                                                                                                         | 0                     |                                                                                                                                                                                                     | 0.513007                                                                                                                                   | Hdian Ocean Spreading Filips<br>Southwest Intain Ridge<br>DUF0037-003-001-01<br>Baset<br>72-24<br>V/A<br>224<br>6.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.181                     | 0.513050                                                      | c                                                                                          | 0.181                                             | 0.181<br>0.513050                                             |                                                             | 0                                                  |                                                                                                                 |                                                    |                                                      | 0.51305<br>0.70261<br>18.75<br>15.49<br>38.19                                                                                         | 15.9                                                      | 13 1.000<br>0<br>N/A<br>4.77                               | Southeast Indian Ridge<br>VEM0033-1-001-G<br>Basalt<br>-50.408           | 1033<br>[95]<br>Indian Ocean Spreading Ridges                        |                                                                                                                                                                                     | 0                                                 |                                                                                                                                                           | 0                     |                                                                                                                                                                                                     | 0.7033<br>18.21<br>18.57<br>38.57                                                                                                          | It est] feat<br>brain Ocean Streading Ridges<br>Sudhest Halan Ridge<br>ARG0000-114<br>Thrateite<br>24.117<br>7.2.43<br>N/A<br>2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                           |                                                               | :                                                                                          | 0.212                                             | 0.212                                                         | 0.014                                                       | 95<br>0.014                                        | 0.00                                                                                                            | 0.00                                               | 0.212<br>0.014                                       | 18.002<br>15.543<br>38.879                                                                                                            | 3.2<br>0.8<br>156.1<br>0.3                                | 95<br>1.3                                                  | Central Broken Ridge. Dredge 10<br>s M-D10-1_LEACHED<br>Bassit<br>-31.23 | 87<br>[20]<br>Kerguelen (Broken Ridge)                               |                                                                                                                                                                                     | 0                                                 |                                                                                                                                                           | 0                     |                                                                                                                                                                                                     | 0.7043                                                                                                                                     | 1028<br>Indian Ocean Spreading Ridges<br>Southeast Hotan Ridges<br>VEM019 524<br>76.06<br>76.00<br>10.00<br>4.21<br>4.21<br>4.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                           |                                                               |                                                                                            | 0.155                                             | 0.155                                                         | 0.106                                                       | 95<br>0.106                                        | 0.00                                                                                                            | 0.00                                               | 0.155<br>0.106                                       | 18 249<br>15 498<br>38 396                                                                                                            | 12.0<br>7.5<br>190.7<br>0.7                               | 191<br>102<br>102                                          | Central Broden Ridge. Dredge 10<br>s M-D-2_UNLEACHED<br>Basalt<br>-31.23 | 88<br>[20]<br>Kerguelen (Broken Ridge)                               |                                                                                                                                                                                     | 0                                                 |                                                                                                                                                           | 0                     |                                                                                                                                                                                                     | 0.7032                                                                                                                                     | NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                                | RECALCULE A<br>L'Age Biblio                                                                                                                                                                               | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                               |                                                                                                                    | RECALCULE A<br>L'Age 14 Ma                                                                                                                                              | RECALCULE A<br>L'Age Biblio                                                                                                                                                                                                                           | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (RUS) measured recalculé<br>(RUS) measured recalculé<br>(RSV8051 initial recalculé<br>(RSVN01 measured recalculé<br>(SNNV01 measured recalculé<br>(SNNV01 initial recalculé<br>(SNNV01) initial recalculé | Age teri (L Ponthus)<br>(Rb:S) measured recalculé<br>(87 Sy/86Srl initial recalculé<br>(Rb:S) initial recalculé<br>(Sm/k4) milati recalculé<br>(143Wd/4Ad) initial recalculé<br>(Sm/k4) initial recalculé | 1420 Control of the second of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lanitude<br>Longitude<br>Alea Forreation (Ma)<br>Alea reference<br>Mat (com)<br>Mat (com)<br>St (com)<br>St (com)<br>St (com)<br>St (com)<br>St (com)<br>St (com)<br>St (com) | # (Olerrok et al., 2017 - n.)<br>Geochemistry Reference<br>Province<br>Samble Name<br>Samble Name<br>Rock Tope     | Age 14Ma (L. Ponthus)<br>(Rb/S/) measured recalculé<br>(Rb/S/) initial recalculé<br>(Rb/S/) initial recalculé<br>(Sm/Md) initial recalculé<br>(Sm/Md) initial recalculé | Age ref. (L.Ponthus)<br>(Rb:Us) measured recalcule<br>(875/86501 Initial recalcule<br>(870/14) measured recalcule<br>(501/14) measured recalcule<br>(501/14) measured recalcule<br>(1304/141/06) Initial recalcule<br>(1304/141/06) Initial recalcule | 147 Sm/144Ad<br>143 Nm/144Ad<br>143 Nm/144Ad<br>147 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | glocobranitary References<br>Provinces<br>Location<br>Sample Nume<br>Rock Yraw<br>Rock Yraw                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.037<br>0.775477<br>0.038<br>0.138<br>0.51280<br>0.138                                                                                                                                                   | 94.87<br>0.037<br>0.705430<br>0.037<br>0.138<br>0.138<br>0.138                                                                                                                                            | 0,65/2820<br>0,705480<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,2 | -322317<br>94.87<br>7.5<br>35<br>56<br>4890<br>02<br>2.3<br>1.3                                                                                                               | 53<br>[21]<br>ODP Los 163, Ste 1142<br>5 15-1142/CR112A<br>8 15-1142/CR112A                                        | 2                                                                                                                                                                       | 0.055<br>0.216<br>0.216                                                                                                                                                                                                                               | 0 2 16<br>0 10 55<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 88<br>Corrit Borken Rego<br>-D10-3_UNLEXCHED<br>Basel<br>31.23<br>10.3<br>11.23<br>10.3<br>11.23<br>10.3<br>11.23<br>10.3<br>11.23<br>10.3<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11.23<br>11 |
| 0.705444<br>0.025444<br>0.082<br>0.182<br>0.512630<br>0.182<br>0.182                                                                                                                                      | 94.87<br>0.031<br>0.705408<br>0.1031<br>0.1031<br>0.151253<br>0.162                                                                                                                                       | 0.6572847<br>0.7705450<br>16.508<br>16.508<br>16.508<br>16.508<br>0.01822<br>0.01845<br>0.01845<br>0.02845<br>0.02845<br>0.02845<br>0.02845<br>0.02845<br>0.02845<br>0.02845<br>0.0512<br>0.0512<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120<br>0.05120000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -32.2317<br>94.87<br>94.87<br>2.4<br>8.1<br>8.1<br>4.82.3<br>1.1                                                                                                              | 54<br>Keguiden (Broken Ridge)<br>COPLeg 183, Stef 11-2<br>s 183-1142AR1 2A, LEACHED<br>s 183-1142AR1 2A, LEACHED s | ž                                                                                                                                                                       | 95<br>0.034<br>0.181<br>0.181                                                                                                                                                                                                                         | 0 181<br>0 00<br>0 00<br>0 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60         Control Encicion Regal         Control Encicion Regal         Control Encicion Regal         Control Encicion         S314         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.705857<br>0.75857<br>0.289<br>0.183<br>0.183<br>0.183                                                                                                                                                   | 0.705547<br>0.705547<br>0.705547<br>0.269<br>0.269<br>0.51285<br>0.1255<br>0.132                                                                                                                          | 0.0512675<br>0.7205910<br>17.298<br>16.522<br>0.41256<br>0.41256<br>0.41256<br>0.41256<br>0.412<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.410<br>0.4100<br>0.4100<br>0.4100<br>0.410000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -32.2317<br>94.87<br>94.87<br>2.4<br>7.5<br>183.5<br>183.5<br>183.5<br>183.5<br>183.5<br>183.5<br>183.5<br>183.5<br>183.5<br>183.5<br>183.5                                   | 95<br>Kerguelen (Broken Ridge)<br>ODP Leg 185, Ste 1142<br>183-1142-09R3 51-54. LEACHED                            | 14                                                                                                                                                                      | 0.004<br>0.004<br>0.189<br>0.189                                                                                                                                                                                                                      | 0.189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 81<br>Karguelen (Botken R(ge))<br>Eastern Bocken R(ge)<br>a M-08-1_LEXC/HED<br>96 33<br>95 95<br>95 95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.133<br>0.705494<br>0.133<br>0.512551                                                                                                                                                                    | 16<br>0.133<br>0.70 <b>5480</b><br>0.133<br>0.512551                                                                                                                                                      | 0.70551<br>0.70551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (40][39]<br>17<br>369                                                                                                                                                         | 36 1<br>(40[36]<br>Kenguelen Archipelago<br>Cool<br>33 19<br>basat                                                 | 4                                                                                                                                                                       | 95<br>0.124<br>0.153<br>0.153                                                                                                                                                                                                                         | 0,153<br>0,00<br>0,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 82<br>Eastern Broken R(20)<br>s D& E-1A_UNLEACHED<br>30 & E-1A_UNLEACHED<br>30 & E-1A_UNLEACHED<br>30 & 30<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.416<br>0.705527<br>0.416<br>0.512461                                                                                                                                                                    | 20<br>0.416<br><b>0.705492</b><br>0.416<br>0.512461                                                                                                                                                       | 0.512441<br>0.70661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [40][39]<br>117<br>814                                                                                                                                                        | 351<br>(40][39]<br>Kerguelen Archpelago<br>Courbel Paninsula<br>3307<br>3307                                       | 0.056<br>0.70549<br>0.056<br>0.056<br>0.512617<br>0.136                                                                                                                 | 95.17<br>0.76545<br>0.765434<br>0.056<br>0.136<br>0.512544<br>0.136                                                                                                                                                                                   | 0.51254<br>0.512544<br>0.72644<br>0.72644<br>0.746<br>0.746<br>0.746<br>0.746<br>0.746<br>0.746<br>0.746<br>0.746<br>0.746<br>0.746<br>0.746<br>0.746<br>0.746<br>0.746<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.7 | 81<br>Kerganien (Broken Rege)<br>ODP kaj 163, Sen 141<br>813, 114,A2384,2<br>Basel V. Nalime<br>52,287<br>96,97<br>96,97<br>15,004<br>15,004<br>35,600<br>35,600<br>35,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.214<br>0.705237<br>0.214                                                                                                                                                                                | 20<br>0.214<br>0.705219<br>0.214                                                                                                                                                                          | 0.70 828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [40][39]<br>61<br>824                                                                                                                                                         | 352<br>Kergusten Archipetago<br>Courbert Prominsula<br>3308<br>basat                                               | 14<br>0.755619<br>0.054<br>0.054<br>0.054<br>0.0512652<br>0.155                                                                                                         | 95.17<br>0.70557<br>0.70557<br>0.156<br>0.156<br>0.156<br>0.150                                                                                                                                                                                       | 0.156<br>0.1524<br>0.054<br>0.0254<br>0.025<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 82<br>Kengualem (Ecolem Regar)<br>CDP Leg 153, Stel 141<br>9 (193, 1141, 1482)<br>19 (193, 1141, 1482)<br>19 (17, 1283)<br>19 (17, 1283)<br>19 (17, 1283)<br>10 (17, 1283)<br>10 (17, 1284)<br>10 (17, 1284)<br>10 (17, 1284)<br>11 (17, 1284)<br>11 (17, 1284)<br>13 (18, 100)<br>15 (1284)<br>15 (1284)<br>16 (1284)<br>16 (1284)<br>17 (1284)<br>17 (1284)<br>18 (1084)<br>19 (1284)<br>19 (1284)<br>10 (1284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.109<br>0.705508<br>0.109<br>0.114<br>0.512533<br>0.114                                                                                                                                                  | 20<br>0.109<br>0.705499<br>0.119<br>0.114<br>0.512528<br>0.114                                                                                                                                            | 0.512643<br>0.70653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1401 20<br>8.17<br>43.34<br>2.5<br>666                                                                                                                                        | 353<br>[40][39]<br>Kerguelen Archipelago<br>Courbel Peninsula<br>3310<br>gabbro                                    | 0.765<br>0.765479<br>0.055<br>0.055<br>0.171<br>0.51264<br>0.171                                                                                                        | 05.17<br>0.70545<br>0.055<br>0.171<br>0.512543<br>0.171                                                                                                                                                                                               | 0.171<br>0.412543<br>0.065<br>0.05<br>0.05<br>0.05<br>24.27<br>18.003<br>18.003<br>18.587<br>38.601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.70556<br>0.70556<br>0.625<br>0.512562                                                                                                                                                                   | 20<br>0.625<br><b>0.705533</b><br>0.625<br>0.512562<br>14                                                                                                                                                 | 0.512582<br>0.70571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [40][39]<br>143<br>662                                                                                                                                                        | 354<br>(40[]39]<br>Kerguelen Acchivolato<br>Courbet Peninsula<br>316<br>trachyte                                   | 14<br>0.7050<br>0.705432<br>0.000<br>0.1184<br>0.51263<br>0.184                                                                                                         | 95.17<br>0.705208<br>0.705288<br>0.184<br>0.512541<br>0.184                                                                                                                                                                                           | 0.164<br>0.712541<br>0.060<br>0.7053228<br>0.02<br>9.02<br>9.02<br>18.055<br>15.596<br>38.689<br>38.689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 84<br>Kesputen (Bober Ridge)<br>ODP Leg 193, Ster 141<br>193-1141/-1931, LEACHED<br>Basel Variant, Ster 128<br>1971 283<br>1971 2971 2971 2971 2971 2971 2971 2971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.773<br>0.705794<br>0.473<br>0.477<br>0.512407<br>0.092                                                                                                                                                  | 8.4<br>0.773<br>0.705794<br>0.473<br>0.052<br>0.512407<br>0.092                                                                                                                                           | 0.512412<br>0.70885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.4<br>(40)[39]<br>14.41<br>94.6<br>153<br>886                                                                                                                                | 355<br>Kerguelen Archipelago<br>Jeanne D'Arc Paninsula<br>3309                                                     | 4                                                                                                                                                                       | 95,17                                                                                                                                                                                                                                                 | 0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85<br>Kegguelen (Boken Rigge)<br>00P / teg 153, Sie 1/41<br>Beaut, EXO(FED<br>Beaut, Kawine<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.189<br>0.705717<br>0.189                                                                                                                                                                                | 8.4<br>0.189<br>0.705717<br>0.189                                                                                                                                                                         | 0.776574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 401389<br>31<br>474                                                                                                                                                           | 356<br>(40)[39]<br>Keguelen Archipelago<br>Jeanne D'Arc Penrinsula<br>baait                                        | 5                                                                                                                                                                       | 95,17                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8<br>00P - koj 152 00<br>00P - koj 153 00 er 144<br>Biasult Analine<br>30 2220<br>9 128<br>9 128<br>9 128<br>9 13 141/ 168<br>9 13 141/ 168<br>9 13 141/ 168<br>9 141/<br>15 10<br>15 10<br>38 573<br>38 573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                                     | RECALCULE A<br>L'Age Biblio                                                                                                                                                                    | CALCUL OLIEROOK 2017                                                                                                                                                            |                                                                                                                                               |                                                                          |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                                   | RECALCULE A<br>L'Age Biblio                                                                                                                                                                                                             | CALCUL OLIEROOK 2017                                                                                                                                                                                                                  |                                                                                                                                |                                                                                                 |                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Age 14Ma( L Ponthus)<br>(RbLS) measured resetuté<br>(875/8065/1 Initial recalcuté<br>(Sm/Nd) measured resetuté<br>(143/04/144/06) Initial resetuté<br>(Sm/Nd) resetuté<br>(Sm/Nd) resetuté<br>(Sm/Nd) resetuté | Age ref. (L. Pontha)<br>(Rb:S): Nessured reseluté<br>(87:Sr/8051 Initial recalcuté<br>(Sm/N) messured reseluté<br>(14:34:NH (St. Rb))<br>(Sm/N) reseluté<br>(Sm/N) reseluté<br>(Sm/N) reseluté | 1475mr1444<br>1475mr1444<br>1475Mr14444<br>1877k0855<br>1877k0855<br>1877k0855<br>1877k0245<br>2281/02456<br>2281/02456<br>2281/02456<br>2281/02456<br>2016/02456<br>2016/02456 | Th (born)<br>143 Nd/1 44 Nd measured<br>87S r/86Sr measured<br>20 Fb 1/20 44b measured<br>20 7P b/20 44b measured<br>20 8P b/20 4P b measured | Sm (born)<br>Nd (born)<br>Rb (born)<br>U (corn)<br>U (born)<br>Pb (born) | Longitude<br>Age Correction (Ma)<br>Age reference | # (Olerook et al. 2017 - n.)<br>Geochemistry Reference<br>Poroince<br>Location<br>Samole Name<br>Samole Name<br>Jackt Ynae<br>Jackt Vnae<br>Jackt Vnae<br>Jackt Vnae<br>Jackt Vnae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Age 14Ma( I, Ponhus)<br>(Rb:S) measured mealculé<br>(875-9865) Initial recelculé<br>(Sm/Nd) measured recelculé<br>(Sm/Nd) measured recelculé<br>(14304/144Nd) Initial recelculé<br>(Sm/Nd) Initial recelculé | Age ref. (L. Ponthia)<br>(Rb:S) measured recalculé<br>(87:Sr/86S)1 initial recalculé<br>(Sm/N0) measured recalculé<br>(Sm/N0) measured recalculé<br>(Sm/N0) initial recalculé<br>(Sm/N0) initial recalculé<br>(Sm/N0) initial recalculé | 1475/mr144/444<br>1438/441444/444<br>1438/441444/444<br>1878/858 britel<br>1878/858 britel<br>1878/858 britel<br>1878/858 britel<br>2580/02449<br>2580/02449 intial<br>2287/502449 intial<br>2287/502449 intial<br>2287/502449 intial | Th (com)<br>143Nd/144Nd measured<br>87578685r measured<br>206Pb/204Pb measured<br>207Pb/204Pb measured<br>208Pb/204Pb measured | Age reference Sn (ppm)<br>Age reference Sn (ppm)<br>R4 (ppm)<br>S1 (ppm)<br>U (ppm)<br>B4 (ppm) | # (Olierock et al. 2017 - n.)<br>Geochemistry Reference<br>Province<br>Location<br>Samble Name<br>Rock Tome<br>Rock Tome<br>Locatitude<br>Locatitude |
| 10<br>33.4.98<br><b>0.7/16243</b><br>33.503                                                                                                                                                                    | 10<br>33.4.98<br><b>0.7/16243</b><br>33.503                                                                                                                                                    | 33.47                                                                                                                                                                           | 0.71                                                                                                                                          | 130.8<br>11.3                                                            | 10                                                | 2699<br>Kergunden Archinologia<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunden<br>Kergunde | 8.4<br>0.511<br>0.511<br>0.511<br>0.124<br>0.51233<br>0.124                                                                                                                                                  | 8.4<br>0.511<br>0.511<br>0.511<br>0.511<br>0.124<br>0.124                                                                                                                                                                               |                                                                                                                                                                                                                                       | 0.512346<br>0.70594                                                                                                            | 8.4<br>[40][39]<br>7.91<br>3.8.62<br>2.71<br>15.35                                              | 357<br>Kerguelen Archio[139]<br>Jeanne D'Arc Pennsula<br>Jeanne D'Arc Pennsula<br>1318<br>trachyte                                                   |
| 10<br>32.950<br><b>0.705221</b><br>32.955                                                                                                                                                                      | 10<br>32.950<br>0.70 <b>52.21</b><br>32.955                                                                                                                                                    | 32.94                                                                                                                                                                           | 0.7098                                                                                                                                        | 129.8<br>11.4                                                            | 10                                                | 40139<br>Kergunden Archipelago<br>SRBIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14<br>0.705199<br>0.705199<br>0.408<br>0.512444                                                                                                                                                              | 15<br>0.705193<br>0.712444                                                                                                                                                                                                              |                                                                                                                                                                                                                                       | 0.512444<br>0.70528                                                                                                            | 404<br>57                                                                                       | (40139)<br>Kerguelen Acriptelago<br>Loranchef Parinsua<br>3311<br>trachyte                                                                           |
| 10<br>54.272<br>0.76283<br>54.280                                                                                                                                                                              | 10<br>54.272<br>0.76233<br>54.280                                                                                                                                                              | 54.29                                                                                                                                                                           | 0.714                                                                                                                                         | 133.1<br>7.1                                                             | 10                                                | 316<br>(40]381<br>Kenguelen Archelego<br>SRBC<br>2854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14<br>0.085<br>0.7056833<br>0.085                                                                                                                                                                            | 15<br>0.085<br>0.085<br>0.085                                                                                                                                                                                                           |                                                                                                                                                                                                                                       | 0.70565                                                                                                                        | 6-10<br>46<br>5                                                                                 | 359<br>(40)(30)<br>Korguelen Acchipelago<br>Loanchel Perimsula<br>3315<br>basante                                                                    |
| 10<br>120.248<br>0.704924<br>120.266                                                                                                                                                                           | 10<br>120.248<br>0.704924<br>120.286                                                                                                                                                           | 120.2                                                                                                                                                                           | 0.722                                                                                                                                         | 135.3<br>3.26                                                            | 10                                                | (40(38)<br>(40(38)<br>SRBC<br>2865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14<br>0.705128<br>0.113<br>0.113<br>0.1138<br>0.512698<br>0.138                                                                                                                                              | 16<br>0.712<br>0.725124<br>0.113<br>0.138<br>0.512697<br>0.138                                                                                                                                                                          |                                                                                                                                                                                                                                       | 0.512711<br>0.70515                                                                                                            | 16<br>28 44<br>540                                                                              | 360<br>(40[35])<br>Karguelen Achipelago<br>Mouril Blanc<br>3317<br>basat                                                                             |
| 10<br>13.2.618<br><b>0.706167</b><br>132.637                                                                                                                                                                   | 10<br>132.618<br><b>0.706167</b><br>132.637                                                                                                                                                    | 132.5                                                                                                                                                                           | 0.725                                                                                                                                         | 102.5<br>2.24                                                            | 10                                                | 318<br>(40[38]<br>Kerguelen Achbiedepo<br>SRBC<br>2299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10<br>1.768<br>0.705549<br>1.768                                                                                                                                                                             | 10<br>1.768<br>0.705549<br>1.768                                                                                                                                                                                                        | 1.77                                                                                                                                                                                                                                  | 0.7058                                                                                                                         | 10<br>180                                                                                       | (40[30]<br>Kerguelen Acthinelige<br>SNBIC<br>20 E 5<br>B                                                                                             |
| 10<br>127.946<br>0.705330<br>127.964                                                                                                                                                                           | 10<br>127.946<br>0.705330<br>127.964                                                                                                                                                           | 127.9                                                                                                                                                                           | 0.7237                                                                                                                                        | 104.2<br>2.36                                                            | 10                                                | (40[39]<br>Keguelen Accholeago<br>SRBIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.5<br>4.019<br>4.020                                                                                                                                                                                       | 11.5<br>4.019<br>4.020                                                                                                                                                                                                                  | 4 02                                                                                                                                                                                                                                  | 0.7064                                                                                                                         | 1 1.5<br>182<br>131                                                                             | (40128)<br>Kerguelen Accipelago<br>SRBIC<br>20 F 8<br>A                                                                                              |
| 10<br>210.106<br>0.703163<br>210.136                                                                                                                                                                           | 10<br>210.106<br>0.703163<br>210.136                                                                                                                                                           | 210.4                                                                                                                                                                           | 0.733                                                                                                                                         | 148.5<br>2.05                                                            | 10                                                | (40138)<br>(40138)<br>Kenguelen Acchpielen<br>SRBC<br>2666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.5<br>10.746<br>0.70548<br>10.748                                                                                                                                                                          | 11.5<br>10.746<br>10.748<br>10.748                                                                                                                                                                                                      | 10.74                                                                                                                                                                                                                                 | 0.7073                                                                                                                         | 11.5<br>208<br>56                                                                               | (40139)<br>Kerguelen Archipelago<br>SRBC<br>20 F 15<br>A                                                                                             |
| 10<br>207.722<br>0.703401<br>207.751                                                                                                                                                                           | 10<br>207.722<br>0.703401<br>207.751                                                                                                                                                           | 207.6                                                                                                                                                                           | 0.7329                                                                                                                                        | 148.1<br>2.04                                                            | 10                                                | (40)(321<br>Kerguelen Acchipiologio<br>SRBIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10<br>2.133<br>0.706197<br>2.133                                                                                                                                                                             | 10<br>2.133<br>0.706197<br>2.133                                                                                                                                                                                                        | ۵۵<br>۵۵                                                                                                                                                                                                                              | 0.7085                                                                                                                         | 10<br>58.1<br>78.8                                                                              | (40)[39]<br>Kerguelen Archipelago<br>STRIC<br>2657<br>B                                                                                              |
| 10<br>217.358<br>0.704833<br>217.389                                                                                                                                                                           | 10<br>217.358<br>0.704833<br>217.389                                                                                                                                                           | 2189                                                                                                                                                                            | 0.7357                                                                                                                                        | 140.1<br>1.87                                                            | 10                                                | 2698<br>Kegualen Achipulago<br>SRBIC<br>SRBIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10<br>9.668<br>9.669<br>9.669                                                                                                                                                                                | 10<br>9.668<br>9.669                                                                                                                                                                                                                    | 9.67                                                                                                                                                                                                                                  | 0,7069                                                                                                                         | 10<br>107.6<br>322.2                                                                            | (40)[99]<br>Kerguelen Archipelago<br>SRBC<br>2660                                                                                                    |
| 8.75<br>9.460<br><b>0.705724</b><br>9.462                                                                                                                                                                      | 8.75<br>9.460<br><b>0.705724</b><br>9.462                                                                                                                                                      | 9.4<br>8                                                                                                                                                                        | 0.7069                                                                                                                                        | 110.2<br>33.7                                                            | 8.75                                              | 323<br>H40[[39]<br>Kerguelen Actriptelen<br>Stellago<br>2878<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10<br>13.689<br>0.706056<br>13.691                                                                                                                                                                           | 10<br>13.689<br>0.706056<br>13.691                                                                                                                                                                                                      | 13.71                                                                                                                                                                                                                                 | 0.708                                                                                                                          | 10<br>151.4<br>32                                                                               | 313<br>[40][39]<br>Kerguelen Archipelago<br>SRBIC<br>2861                                                                                            |

| RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                                                                         | RECALCULE A<br>L'Age Biblio                                                                                                                                                          | CALCUL OLIEROOK 2017                                                                                                                                                         | ,                                                                                                                                           |                                             |                                                   |                                                                                                                               | RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                                                 | RECALCULE A<br>L'Age Biblio                                                                                                                                                                                                    | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                  |                                             |                                                   |                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Revent in the calcule     (RVSV) measured recalcule     (R7Sr86SS) initial recalcule     (R7Sr46SS) initial recalcule     (R3NU4) measured recalcule     (143Nd/14ANJ initial recalcule     (SmN4) measured recalcule     (SmN4) initial recalcule | Age eff. (L. Porthus)<br>(RUSO's measured recalculé<br>(RUSO's) Initial recalculé<br>(RUSO's) Initial recalculé<br>(143Md/144/a) Initial recalculé<br>(143Md/14/a) Initial recalculé | 147 Smr 1444 initial<br>148 Mar 1440 initial<br>875/1685 initial<br>875/1685 initial<br>228U/2049<br>228U/2049<br>228U/2049 nitial<br>228P2/2049 nitial<br>228P2/2049 nitial | Ph (topm)<br>143 Nd/1 44 Nd measured<br>276 Ph 20 4Ph measured<br>20 Ph 20 4Ph measured<br>20 2Ph 20 4Ph measured<br>20 8Ph 20 4Ph measured | Sm (bom)<br>Rb (pom)<br>Sr (pom)<br>U (pom) | Longitude<br>Age Correction (Ma)<br>Age reference | # (Olinsok et al., 2017 - n.)<br>Geochemisterv Reference<br>Province<br>Location<br>Samola kanne<br>Samola kanne<br>Janiculos | Age 14Ma (L. Ponthus)<br>(RUSO) measured recalculé<br>(875/8685) Initial recalculé<br>(871/8053) Initial recalculé<br>(871/94) initial recalculé<br>(143/94/141/96) Initial recalculé<br>(143/94/141/96) Initial recalculé | Age ref. (L-Ponthus)<br>(RUS25) massured recalculé<br>(87 Sr66S5) Initial recalculé<br>(87 Sr66S5) Initial recalculé<br>(87 Mol7 Massured construité<br>(14 Mol7 44 Noi Initial recalculé<br>(14 Mol7 44 Noi Initial recalculé | 147 Smr144 Heid<br>147 Smr144 Heid<br>875 V685 heid<br>238 U/204Pb<br>238 U/204Bb<br>238 U/20 | Tr buonn<br>Tr buonn<br>143 Nd/1 44 Nd massured<br>275 /2655 massured<br>20 Pb V204Pb massured<br>20 Pb V204Pb massured<br>20 Pb V204Pb massured | Sm (com)<br>Nd (com)<br>Sr (com)<br>U (com) | Longitude<br>Age Correction (Ma)<br>Age reference | # (Olierook et al. 2017 - n.)<br>Geochemistry Reference<br>Location<br>Sample Name<br>Rock Tvop<br>Latitude |
| 2.38.2.57<br>0.7057.32<br>2.38.2.84                                                                                                                                                                                                                | 8<br>238.257<br>0.705732<br>238.284                                                                                                                                                  | 239.5                                                                                                                                                                        | 0,7328                                                                                                                                      | 168.4<br>2.05                               | œ                                                 | Hol[[39]<br>Kerguelen Architelago<br>SRBC<br>2804                                                                             | 8.75<br>77.286<br>0.705097<br>77.296                                                                                                                                                                                       | 8.75<br>77.286<br>0.705097<br>77.296                                                                                                                                                                                           | 77.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.7147                                                                                                                                           | 130.8<br>4.9                                | 8.75                                              | 324<br>(Aorguelen Archipolago<br>SRRad<br>2680                                                              |
| 2.49.132<br>0.706097<br>2.49.160                                                                                                                                                                                                                   | 8<br>249,132<br>0.706097<br>249,160                                                                                                                                                  | 2 48 8<br>8                                                                                                                                                                  | 0.7344                                                                                                                                      | 175.2<br>2.04                               | œ                                                 | (40[[39]<br>Kerguelen Archivellage<br>SRBIC                                                                                   | 8.75<br>2.04.7.98<br>0.70 <b>825</b> 2<br>2.04.824                                                                                                                                                                         | 8.75<br>204.798<br>0.70 <b>5252</b><br>204.824                                                                                                                                                                                 | 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.7307                                                                                                                                           | 135.6<br>1.92                               | 8.75                                              | 325<br>[40][39]<br>Kerguelen Archipelago<br>SRBIC<br>2662                                                   |
| 262.51<br>0.703377<br>262.541                                                                                                                                                                                                                      | 8<br>262.51<br>0.703377<br>262.541                                                                                                                                                   | 261.8                                                                                                                                                                        | 0.7332                                                                                                                                      | 179.2<br>1.98                               | œ                                                 | (40[39]<br>Karguelen Archivelago<br>SRBC<br>2063                                                                              | 243.587<br>0.705332<br>243.817<br>0.712546<br>0.512546                                                                                                                                                                     | 8,75<br>2,43,887<br>0,705332<br>2,43,817<br>0,512546                                                                                                                                                                           | 243.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.512546<br>0.7356                                                                                                                               | 129.3<br>1.54                               | 8.75                                              | 326<br>[40][39]<br>Kenguelen Archipelago<br>2683                                                            |
| 257,285<br>0.704770<br>257,324                                                                                                                                                                                                                     | 8<br>257.295<br><b>0.704770</b><br>257.324                                                                                                                                           | 226.6                                                                                                                                                                        | 0.734                                                                                                                                       | 177.4<br>2                                  | œ                                                 | (40139)<br>Kerguelen Achteelage<br>SRB/C                                                                                      | 647.015<br>0.703529<br>547.083                                                                                                                                                                                             | 675<br>547.015<br>547.083<br>547.083                                                                                                                                                                                           | 544.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,7715                                                                                                                                           | 144.3<br>0.768                              | 8.75                                              | 327<br>[40][39]<br>Kerguelen Archipelago<br>SRBIC<br>2879                                                   |
| 257.882<br>0.703703<br>257.911                                                                                                                                                                                                                     | 8<br>257.882<br>0.703703<br>257.911                                                                                                                                                  | 256.9                                                                                                                                                                        | 0.733                                                                                                                                       | 179.6<br>2.02                               | œ                                                 | (40)(30)<br>(40)(30)<br>Kerguelen Achineiago<br>SRBIC                                                                         | 8<br>141.613<br>0.705512<br>141.629                                                                                                                                                                                        | 8<br>141.613<br><b>0.705512</b><br>141.629                                                                                                                                                                                     | 141.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.7216                                                                                                                                           | 161.3<br>3.3                                | œ                                                 | 328<br>[40][39]<br>Kerguelen Archipelago<br>SRBC<br>2684<br>D                                               |
| 77.573<br>07 <b>05687</b><br>77.582                                                                                                                                                                                                                | 8<br>77.573<br>77.582<br>77.582                                                                                                                                                      | 77.65                                                                                                                                                                        | 0.7145                                                                                                                                      | 183<br>6.83                                 | œ                                                 | (40139)<br>Kerguelen Acchaelago<br>SRBIC<br>ZG<br>G                                                                           | 895.339<br>0.701384<br>895.440                                                                                                                                                                                             | 8<br>895.339<br>895.440                                                                                                                                                                                                        | 897.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.8031                                                                                                                                           | 246.5<br>0.804                              | œ                                                 | 329<br>(40)[39]<br>Kerguelen Archipelago<br>2602                                                            |
| 76.949<br>0.706377<br>76.958                                                                                                                                                                                                                       | 76.949<br>0.708377<br>76.958                                                                                                                                                         | 76.96                                                                                                                                                                        | 0.7149                                                                                                                                      | 177.8<br>6.69                               | 7.8                                               | (40139)<br>Kerguelen Acchipalago<br>SRBIC<br>ZRDC<br>H7                                                                       | 8<br>211.438<br>0.705079<br>211.462                                                                                                                                                                                        | 8<br>211.438<br>0.705079<br>211.462                                                                                                                                                                                            | 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.7.291                                                                                                                                          | 286.6<br>3.93                               | 00                                                | 330<br>(40][39]<br>Kerguelen Archipelago<br>SRage<br>2603<br>E                                              |
| 78.118<br>0.706447<br>78.126                                                                                                                                                                                                                       | 78, 17.8<br>78, 118<br>0.706447<br>78, 128                                                                                                                                           | 78.11                                                                                                                                                                        | 0.7151                                                                                                                                      | 189.4<br>7.02                               | 7.8                                               | (40(13))<br>Kerguelen Archoellago<br>SRBC                                                                                     | 8<br>16.183<br>0.7.04660<br>18.195<br>0.5.12527<br>0.5.12527<br>0.147                                                                                                                                                      | 8<br>16.193<br>0.704660<br>16.195<br>0.147<br>0.512577<br>0.147                                                                                                                                                                | 16.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.512535<br>0.7085                                                                                                                               | 15.66<br>64.51<br>16.4                      | 00                                                | 331<br>(40][39]<br>Kerguelen Archipelago<br>SRBIC<br>2664<br>F                                              |
| 0.705580<br>0.000                                                                                                                                                                                                                                  | 0.705580<br>0.000<br>0.000                                                                                                                                                           | 783                                                                                                                                                                          | 0.70558                                                                                                                                     | 71                                          | 14                                                | (40)(342<br>(40)(39)<br>SRBC<br>SRBC<br>microgabbro                                                                           | 17.465<br>0.705516<br>17.467                                                                                                                                                                                               | 8<br>17.465<br>17.467<br>17.467                                                                                                                                                                                                | 17.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.7075                                                                                                                                           | 115.3<br>19.1                               | 00                                                | 332<br>(40)[39]<br>Archipelago<br>2662                                                                      |
| 0.000<br>0.707710<br>0.000<br>0.512549                                                                                                                                                                                                             | 14<br>0.000<br>0.707710<br>0.000<br>0.512549                                                                                                                                         | 728                                                                                                                                                                          | 0.512549                                                                                                                                    | 50                                          | 14                                                | 343<br>Kerguelen Archipelago<br>2818<br>gabbro                                                                                | 8<br>17.450<br>0.705518<br>17.452                                                                                                                                                                                          | 8<br>17.450<br><b>0.705518</b><br>17.452                                                                                                                                                                                       | 17.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.7075                                                                                                                                           | 115.2<br>19.1                               | 00                                                | 333<br>(40)[39]<br>Kerguelen Archipelago<br>SRBIC<br>SRBIC                                                  |

| RECALCULE A RECALCULE A LAge Biblio CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RECALCULE A<br>LAge 14 Ma LAge Biblio CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| f (Olerook et al., 2017 - n.)<br>Geochemister Reference<br>Province<br>Samob Name<br>Samob Name<br>Samob Name<br>Samob Name<br>Samob Name<br>Samob Name<br>Fock Tvas<br>Luthuse<br>Luthuse<br>Samob Name<br>Fock Tvas<br>Samob Name<br>Fock Tvas<br>Sa                                                                                                    | geochemistry Relevened     geochemistry Relevened     geochemistry Relevened     constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Kenguelen Archijelago<br>Mauni Fontaine<br>SURVA<br>Beset<br>Beset<br>14.2<br>14.2<br>14.2<br>14.2<br>15.5<br>14.2<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 344<br>Kengualem Architestago<br>dike<br>14<br>70<br>0.512499<br>0.7655<br>764<br>764<br>765<br>0.000<br>0.512499<br>0.7655<br>14<br>0.000<br>0.512499<br>0.7655<br>14<br>0.000<br>0.512499<br>0.7655<br>14<br>0.000<br>0.512499<br>14<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 159<br>Kengunéen Arch (H2)<br>(Muni Fontaine<br>Muni Fontaine<br>Bauat<br>Bauat<br>Bauat<br>Bauat<br>Bais<br>Bais<br>Bais<br>Bais<br>Bais<br>Bais<br>Bais<br>Bais                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Kerguden Archeelago<br>SREG<br>grambe<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 160<br>Kengunelen Archipelagi<br>Morurt Fontaine<br>a B7616 100<br>a B7616 100<br>Beauti<br>163<br>163<br>163<br>163<br>163<br>163<br>163<br>163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 123<br>Kergunisen Archi (42)<br>Style-still<br>BY96-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Style-still<br>Styl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 161<br>Kerguelein Archipelago<br>Mount Fortaine<br>s British<br>Basat<br>162<br>162<br>162<br>162<br>162<br>162<br>162<br>162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kengueleen Archipelaago<br>Mourt Kraitaen<br>Bry6-82<br>Basel<br>15.88<br>15.88<br>15.88<br>2.87<br>2.87<br>0.01273<br>0.704485<br>0.704485<br>0.040<br>0.0407<br>0.0177<br>0.0177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 142<br>Kerguelen Acciptelia<br>Montr-Fontshe<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4.15<br>4 | 153<br>Kergaleken Architeken<br>Maxim Fontialen<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bitten<br>Bi                                                                                                                                                 |
| 163<br>Kenguelen Archipeligi<br>World Fonaine<br>st 97 Fonaine<br>162<br>163<br>163<br>163<br>163<br>163<br>163<br>163<br>163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kaggulein Archiged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 165<br>Keggulen Archipelago<br>Not Poniso<br>Strivension<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Keguden Archip (42)<br>Mount Formine<br>Basait<br>1745<br>28<br>357<br>1745<br>414<br>414<br>414<br>414<br>414<br>414<br>414<br>414<br>414<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Hose         Hose           Meseguelen Archipoliska         Elawatt           Bawatt         Elawatt           Bawatt         Hose           Babatt         Hose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Keguden Archibelden<br>Mount Fondien<br>Bismon<br>Bismon<br>12,2<br>304,0<br>304,0<br>304,0<br>304,0<br>304,0<br>304,0<br>304,0<br>304,0<br>304,0<br>304,0<br>304,0<br>304,0<br>304,0<br>304,0<br>304,0<br>304,0<br>304,0<br>304,0<br>304,0<br>304,0<br>304,0<br>304,0<br>304,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>305,0<br>3 |
| Kenguelen Archipelago<br>Wang Lelen Archipelago<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochaine<br>s.Brochai                                                                                                                                                                            | 158<br>Kaggudein Archologiago<br>Mount Fondinio<br>BP06600<br>BP06600<br>BP06600<br>16.3<br>17.<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 137<br>Kenguelen Archigelago<br>s Brigozo<br>S Brigozo<br>S Brigozo<br>S Brigozo<br>S Brigozo<br>S Brigozo<br>S S S<br>S S<br>S S<br>S S<br>S S<br>S S<br>S S<br>S S<br>S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Kegguelen Arribelego<br>Mourt Fordina<br>Brote-<br>Base<br>Brote-<br>Base<br>Brote-<br>Base<br>Brote-<br>Base<br>Brote-<br>Base<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote-<br>Brote                                                                                                                                              |

| RECALCULE A<br>L'Age 14 Ma RECALCULE A<br>L'Age Biblio CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RECALCULE A LAge Bolio CALCULE A LAge Bolio CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14 Norf 44 Norf Advin measured<br>20 PC/2045 Printing<br>20 PC/2045 Prin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | # (Olivrook et al. 2017 - n.)<br>Geochematry Reference<br>Docation<br>Rampair Kann<br>Rampair Kann<br>Kannak<br>Lanituda<br>Lanituda<br>Aae reference<br>San Loomi<br>Bal Loomi | # (Olarook et al. 2017 - n.)<br>Geochemany Retrono<br>Particle<br>Rose Nom<br>Rose No<br>Age Orrected<br>Age orderence<br>Sin Loomi<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hallow<br>Hal                                                                                                                                                          |
| 0.512725<br>0.7204431<br>0.7204431<br>0.7204431<br>0.7204431<br>0.812726<br>0.614<br>0.812726<br>0.614<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472<br>1.8472                                                                                                                                                  | 150<br>Kerpuelen Archipelago<br>Mount Des Recentes<br>98 384<br>88 87<br>88 28<br>88 28<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 138<br>Kengapaten Archite He ZJ<br>Holourt Das Buchara<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta<br>Besta |
| 0.0513875<br>0.0704915<br>0.0704915<br>18334<br>18345<br>18345<br>0.0513646<br>0.0513646<br>0.012<br>0.012<br>0.012<br>0.012<br>0.014<br>0.0144<br>0.0144<br>0.0144<br>0.0144<br>0.0144<br>0.0144<br>0.0144<br>0.0144<br>0.0144<br>0.0144<br>0.0144<br>0.0144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 151<br>Kerguelen Archipeligo<br>Mount Des Ruches<br>S Brass<br>Bass<br>68,95<br>88,95<br>88,95<br>88,95<br>92<br>88,2<br>82,2<br>82,2<br>82,2<br>9,2<br>2,3<br>0,7<br>0,7<br>0,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 139<br>Korganation Archine 142<br>Monard Des Relations<br>Bergel<br>48.67<br>48.67<br>48.67<br>48.67<br>48.67<br>48.67<br>48.67<br>48.67<br>49.2<br>1.1<br>0.512664<br>15.518<br>15.518<br>15.518<br>15.518<br>15.518<br>15.518<br>15.518<br>16.201<br>18.203<br>15.518<br>16.201<br>18.203<br>14.41<br>0.1050<br>14.21<br>15.518<br>16.201<br>18.203<br>15.518<br>16.217<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147<br>0.1147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.512830<br>0.0512830<br>0.0105170<br>0.0105170<br>18.2547<br>18.2547<br>0.1528<br>0.15128<br>0.15128<br>0.05128<br>0.05128<br>0.05128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.0128<br>0.010                                                                                                                                                 | 147<br>Kerguelen Auchzeitago<br>Mount Des Rockers<br>Basalt / Basalt Transition<br>(88,8<br>18,2<br>18,3<br>18,3<br>18,3<br>10,3<br>10,3<br>10,3<br>10,3<br>10,3<br>10,3<br>10,3<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140<br>Korgunden Architel (42)<br>Mount Das Ricitado<br>Mount Das Ricitado<br>Basit<br>48.67<br>48.67<br>48.67<br>48.67<br>48.67<br>48.67<br>49.70<br>11.1<br>1.2<br>2.2<br>2.0<br>1.1<br>1.2<br>2.2<br>2.0<br>1.2<br>1.2<br>2.2<br>2.0<br>1.2<br>1.2<br>2.2<br>2.0<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.512381<br>0.705416<br>18.340<br>18.340<br>18.340<br>18.340<br>18.340<br>18.340<br>0.705456<br>0.1512<br>28.2<br>0.705456<br>0.1512<br>28.2<br>0.705456<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1512<br>0.1                                                                                                                                           | (42)(50)<br>Korguelen Archolespo<br>Mount Des Routes<br>Basalt / Basalt / Tereston<br>(82)<br>(82)<br>(82)<br>(82)<br>(82)<br>(82)<br>(82)<br>(82)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 141<br>141<br>Kegguselen Architel (42)<br>Mount Des Rischen<br>Bauer<br>148/56-38<br>149/56-38<br>161/5<br>162/2<br>162/2<br>162/2<br>162/2<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15<br>171.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.51272<br>0.51272<br>0.704725<br>0.704725<br>18.884<br>18.884<br>0.512886<br>0.512886<br>0.704744<br>0.029<br>0.129<br>0.029<br>0.150<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.0214<br>0.02140000000000000000000000000000000000                                                                                                                                                                                                                                                                              | 169<br>Kergatelen Archineterspo<br>Moord De La Tournetersp<br>Basel LA dade<br>70.5<br>[70]<br>[70]<br>[70]<br>31.7<br>31.7<br>33.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 142<br>142<br>Keggaaaline / Acristy (4/2)<br>Mount One Floridop<br>Mount One Floridop<br>Baset<br>-48.67<br>8.62<br>16.20<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.7704676<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.770476<br>0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.512715<br>0.704715<br>0.704715<br>18.824<br>18.824<br>0.512001<br>0.512001<br>0.704714<br>0.704714<br>0.704714<br>0.704714<br>0.704714<br>0.7147<br>0.714770<br>0.7147<br>0.714771<br>0.704716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (46)<br>Kegguelen Architoletago<br>Mount De La Tourneete<br>Basait, Tenselocot<br>70,5<br>(70)<br>(70)<br>(70)<br>(70)<br>(70)<br>(70)<br>(70)<br>(70)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 143<br>Korgunation / Activity<br>Mount Des Plantes<br>Basan<br>148/64-42<br>Basan<br>148/64-42<br>Basan<br>148/64-42<br>Basan<br>148/64-42<br>Basan<br>15.401<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>18.201<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401<br>19.401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.512725<br>0.512725<br>0.704747<br>18.884<br>0.5127012<br>0.5127012<br>0.704743<br>0.0114<br>0.704743<br>0.0114<br>0.704743<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114<br>0.0114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 171<br>Kegyusten Archizebelago<br>Moont De La Tournerte<br>Besatt Transidova<br>705<br>[70]<br>[70]<br>[70]<br>27.7<br>3.2<br>3.3<br>33.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 144<br>Keggaalaten Aceiste<br>Mount Das Piculas<br>Baset<br>Baset<br>48.67<br>88.6<br>28.5<br>28.5<br>28.5<br>28.5<br>28.5<br>28.5<br>28.5<br>28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.51272<br>0.51270<br>0.70480<br>18445<br>0.512876<br>0.512876<br>0.512876<br>0.704785<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.1210 | (12<br>Keguelen Archoelego<br>Mount De La Tournelle<br>Basait, Transford<br>705<br>(70)<br>(70)<br>(73)<br>312<br>342<br>3420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 145<br>Korgustern Archite (42)<br>Mount Des Russes<br>9 (9)-43 (das<br>9 (9)-43 (das<br>9 (9)-43 (das<br>9 (9)-43 (das<br>9 (9)-43 (das<br>9 (9)-43 (das<br>9 (9)-44 (das<br>9 (9)-44 (das<br>9 (10)-44 (das<br>9 (das)9 (das<br>9 (das)9 (das<br>9 (das)9 (da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.5 13 7.2<br>0.7 04 779<br>0.5 0.139<br>0.5 0.139<br>0.5 1035<br>0.7 04787<br>0.005<br>0.7 04787<br>0.005<br>0.7 04787<br>0.005<br>0.7 04787<br>0.005<br>0.7 04786<br>0.7 04786<br>0.7 04786<br>0.7 04786<br>0.5 15659<br>0.5 15659<br>0.5 15659<br>0.5 15659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 173<br>Kergueten Archivelago<br>Mount De La Tournente<br>Basait, Tarente Sat<br>705<br>705<br>170<br>80<br>80<br>389<br>389<br>389<br>389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 140<br>Morani Due Burge<br>Monani Due Burge<br>Borden<br>Basit<br>143<br>144<br>1556<br>143<br>143<br>143<br>143<br>143<br>143<br>143<br>143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5127.5<br>0.5                                                                                                                                                                                                                                                                                                                                           | 174<br>Kenyuden Anthreite<br>Mount De La Tournente<br>Basalt Transford<br>705<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 143<br>Kengupaken Anche Barg<br>Nount Das Russel<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.62<br>4.67<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.                                                                                                                                                                                                                                                                                                                                              |

Annexe n°15: Compilation des données isotopiques de roches liées à la présence du panache de Kerguelen, recalculées à 14 Ma (modifiée d'après Ollerook et al. 2017)

| RECALCULE<br>L'Age 14 M                                                                                                                                            | A RECALCULE A L'Age Biblio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RECALCULE A<br>L'Age 14 Ma RECALCULE A<br>L'Age Biblio C,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (877,865) initial real-ute<br>(877,865) initial real-ute<br>(RNS) initial real-ute<br>(SmN4) masure real-ute<br>(SmN4) initial real-ute<br>(SmN4) initial real-ute | Age ref. (L Penthas)<br>(RUS) measured readculé<br>(RUS) measured readculé<br>(RUS) measured readculé<br>(143Md744M6) mitial readculé<br>(143Md744M | Pi loonin<br>143/Mdr 44h maaured<br>875/852 maaured<br>2095/b2049 maaured<br>2095/b2049 maaured<br>147/Smr 144/d<br>148/Smr 144/d<br>147/Smr 144/d<br>148/Smr 144/d<br>147/Smr 147/Smr 144/d<br>147/Smr 147/Smr 144/d<br>147/Smr 147/Smr 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | # (Olevook et al. 2017 - n.)<br>Geochenstavy Reference<br>Location<br>Sample Name<br>Rock Toes<br>Location<br>Rock Toes<br>Location<br>Rock Toes<br>Location<br>Mar director Mal<br>Alar director<br>Sin (com)<br>Rockom<br>National<br>Si (com)<br>Si (com)<br>Si (com)<br>Si (com)<br>Si (com)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Age of L. Ponthal<br>Age of L. Ponthal<br>(FDS) measured reacture<br>(FDS) measured rea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43Nd/144Nd measured<br>2012726251 measured<br>2012720426 b measured<br>1415mr144H<br>1435mr144H<br>1435mr144H<br>1435mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436mr144H<br>1436 | # (Olivrook et al. 2017 - n)<br>Geochamistry Reference<br>Pression<br>Roach Yae<br>Roach Yae<br>Roach Yae<br>Lanitude<br>Lanitude<br>Lanitude<br>Lanitude<br>Mac Correction (Ma)<br>Age reference<br>Stationan<br>Bio (com)<br>Bio (com)<br>Bio (com)<br>Bio (com)<br>Di (com)<br>Th (com) |
| 0.704730<br>0.704733<br>0.136<br>0.142<br>0.512869<br>0.142                                                                                                        | 26<br>0.138<br>0.704730<br>0.138<br>0.142<br>0.142<br>0.142<br>0.142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.51712<br>0.704720<br>19.422<br>9.527<br>9.6527<br>9.6527<br>9.6527<br>0.142<br>0.149<br>0.144730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 185<br>Kregueien Archiveisp<br>Mourt De La Tournente<br>Stad-14<br>Basait, Transford (1988)<br>(19)<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28<br>0.704708<br>0.704708<br>0.1285<br>0.1285<br>0.1285<br>0.1285<br>0.1285<br>0.7185<br>0.7185<br>0.7185<br>0.7185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.017/04/200<br>0.017/200<br>0.012/200<br>0.012/200<br>0.012/200<br>0.012/200<br>0.012/2/200<br>0.012/2/200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 175<br>Kogguein Achtelsen<br>Mourt De La Tormese<br>Basel: / Acies<br>833<br>705<br>705<br>705<br>705<br>705<br>705<br>705<br>705<br>705<br>705                                                                                                                                            |
| 0.705140<br>0.716<br>0.116<br>0.5126<br>0.5126<br>0.128<br>0.128                                                                                                   | 0,125<br>0,705122<br>0,176<br>0,176<br>0,176<br>0,176<br>0,176<br>0,176<br>0,176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.4<br>0.0512881<br>0.705188<br>18.578<br>38.157<br>38.157<br>0.81187<br>0.510128<br>0.510128<br>0.706122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 251<br>Kerguseen Archipelago<br>Rawn Du Chatego<br>Tradvoleaalt<br>48,5<br>68,5<br>42,5<br>42,5<br>42,5<br>42,5<br>42,5<br>42,5<br>42,5<br>42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,000<br>0,70478<br>0,70478<br>0,015<br>0,015<br>0,015<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,016<br>0,0000000000                                                                                                   | 0.120420<br>0.01408<br>0.01208<br>0.01208<br>0.01208<br>0.01208<br>0.01208<br>0.01212(8<br>0.01212(8<br>0.01212(8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 178<br>Krapuskon Architel Hill<br>Mount De La Tourniero<br>Basalt Transford<br>705<br>20<br>21<br>21<br>32<br>3300<br>16                                                                                                                                                                   |
| 0.705144<br>0.705144<br>0.125<br>0.512836<br>0.125<br>0.125                                                                                                        | 0.125<br>0.785125<br>0.124<br>0.124<br>0.125<br>0.512627<br>0.125<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.1<br>0.512847<br>0.705186<br>19.520<br>9.125<br>0.125<br>0.125<br>0.126<br>0.126<br>0.126<br>0.126<br>0.126<br>0.126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 252<br>Kengueien Archipelago<br>Rawn Du Chulter<br>Trachrosatt<br>48:5<br>69:5<br>100<br>100<br>48:2<br>37:3<br>87:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26<br>0.704795<br>0.704795<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.704780<br>0.704780<br>0.1447<br>0.528747<br>0.518<br>0.704792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 177<br>Vergueiden Architekeise<br>Mount De La Tournese<br>193-403<br>284-03<br>285-03<br>285<br>101<br>285<br>286<br>3860<br>1.7<br>1.7                                                                                                                                                    |
| 0.706/139<br>0.245<br>0.245<br>0.5126<br>0.512632<br>0.126                                                                                                         | 0.25<br>0.705101<br>0.245<br>0.215<br>0.126<br>0.126<br>0.126<br>0.126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10,20,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,00,00<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000<br>10,000                                                                                                                                                                                                                                                                                                 | 253<br>Kerguelen Achipelago<br>Rawn Du Chatton<br>8717<br>Trachrossi<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26<br>0.704870<br>0.1084<br>0.1484<br>0.14843<br>0.14843<br>0.141<br>0.141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.014277<br>0.02427<br>15.823<br>0.14.825<br>0.141<br>0.141<br>0.01168<br>0.0064<br>0.704870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 178<br>Korpuleken Archipelle<br>Mouril De La Torreite<br>Baselt Torrate<br>26<br>[70]<br>27.4<br>27.4<br>337.0<br>22.2<br>22.2                                                                                                                                                             |
| 0.705252<br>0.228<br>0.228<br>0.124<br>0.512602<br>0.124                                                                                                           | 0.225<br>0.705216<br>0.228<br>0.228<br>0.228<br>0.124<br>0.124<br>0.12<br>0.124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.4<br>0.0512613<br>0.705287<br>15.658<br>35.669<br>35.0798<br>0.5083<br>0.705216<br>0.705216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 254<br>Kerguelen Archiptegoo<br>Ravin Du Charbos<br>98,5<br>98,5<br>98,5<br>98,5<br>98,5<br>98,5<br>98,5<br>98,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0047716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1779<br>Korganien Archingeleg<br>Mourt De La Touringeleg<br>Besalt Tomatica<br>70.5<br>26<br>[70]                                                                                                                                                                                          |
| 0.70516<br>0.171<br>0.171<br>0.122<br>0.512626<br>0.122                                                                                                            | 0,171<br>0,171<br>0,171<br>0,171<br>0,171<br>0,122<br>0,122<br>0,122<br>0,121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.3<br>0.0512657<br>0.7765207<br>15.8466<br>15.8466<br>3.9.0024<br>3.9.0024<br>0.6747<br>0.67477<br>0.67479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 285<br>Kerguelen Archiptago<br>Ravin Du Crharbon<br>Beaut Alkaline<br>48.5<br>48.5<br>48.5<br>42.3<br>42.3<br>42.3<br>42.5<br>42.5<br>42.5<br>42.5<br>42.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26<br>0.704686<br>0.704686<br>0.1051<br>0.14681<br>0.14681<br>0.14685<br>0.714<br>0.7141<br>0.141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 180<br>Koguelen Architelen<br>Mourt De La Tromete<br>Basel, Akaine / Basel<br>701<br>28<br>701<br>38.5<br>38.5<br>38.5<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                       |
| 0.705188<br>0.164<br>0.126<br>0.512627<br>0.126                                                                                                                    | 0.125<br>0.705173<br>0.104<br>0.1164<br>0.1168<br>0.1168<br>0.116<br>0.116<br>0.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.512.65<br>0.705221<br>15.550<br>15.550<br>15.550<br>0.501<br>0.501<br>0.501<br>0.501<br>0.501<br>0.501<br>0.501<br>0.501<br>0.705173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 286<br>Keguelen Archiptego<br>Ravin Du Charbos<br>8,231<br>Trachrossa<br>48,5<br>8,5<br>8,5<br>8,5<br>8,5<br>8,5<br>8,4<br>8,1<br>8,4<br>8,4<br>9,44,0<br>9,44,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26<br>0.704681<br>0.5081<br>0.5081<br>0.518705<br>0.518705<br>0.518705<br>0.518705<br>0.518715<br>0.518715<br>0.518715<br>0.518715<br>0.518715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0517230<br>3.6543<br>3.6543<br>0.146<br>0.51275<br>0.0051<br>0.704881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Korguelen Archinellen<br>Mourt De La Tourinede<br>System<br>awit, Trensteine<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                 |
| 0.7.05.228<br>0.208<br>0.116<br>0.512.591<br>0.116<br>0.116                                                                                                        | 25<br>0.705<br>0.705<br>0.208<br>0.2128<br>0.116<br>0.1288<br>0.116<br>0.1288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.4<br>0.5.12.602<br>0.7.05.2802<br>1.5.6412<br>1.5.6412<br>3.5.048<br>0.5.0386<br>0.5.0386<br>0.5.0386<br>0.5.0386<br>0.5.0386<br>0.7.09.225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 257<br>Kerguelen Achipelego<br>Ravin Du Charboo<br>-48,55<br>-48,55<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,7<br>-48,5<br>-48,7<br>-48,7<br>-48,7<br>-48,7<br>-48,7<br>-48,7<br>-48,7<br>-44,0<br>-744,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28<br>0.704681<br>0.5214<br>0.521881<br>0.12881<br>0.12881<br>0.12881<br>0.12881<br>0.12881<br>0.12881<br>0.12881<br>0.2214<br>0.2217<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2218<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.2219<br>0.                                                                                                                                                    | 0.047370<br>0.047370<br>0.04733<br>36.5270<br>36.5270<br>0.148<br>0.2311<br>0.704688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 182<br>Keguaten Acchorete<br>Mourt De La Tourneste<br>Baasut Akadne / Baas<br>705<br>80<br>170<br>83<br>84<br>84<br>83<br>223<br>225<br>25                                                                                                                                                 |
| 0.7,04.677<br>0.178<br>0.134<br>0.512632<br>0.134                                                                                                                  | 25<br>0.178<br>0.178<br>0.178<br>0.178<br>0.134<br>0.134<br>0.134<br>0.134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5 12644<br>0.704827<br>15.627<br>38.616<br>0.5 0.012<br>0.5 0.012<br>0.704829<br>0.704829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 288<br>Keguséen Archip (48)<br>Ravin DU Charbon<br>Bauat, Assaine<br>-48,55<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-48,5<br>-4 | 0.704728<br>0.704728<br>0.1074<br>0.1074<br>0.1479<br>0.146<br>0.714<br>0.714<br>0.7140<br>0.145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.04726<br>0.04726<br>0.04726<br>0.518670<br>0.518670<br>0.518670<br>0.0074<br>0.074728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 163<br>Korguelan Archigh Holl<br>Mount De La Tourneello<br>Mount De La Tourneello<br>183, 392<br>asalt, Tonnskroul / Jean<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                    |
| 0.705187<br>0.173<br>0.173<br>0.512822<br>0.141                                                                                                                    | 25<br>0.705162<br>0.705162<br>0.173<br>0.512812<br>0.141<br>0.141<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5.783<br>0.7.76623<br>17.6623<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.650<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.550<br>19.5500<br>19.5500<br>19.5500<br>19.5500<br>19.5500<br>19.5500<br>19.5500<br>19.5500<br>19.5500<br>19.5500<br>19.5500<br>19.5500<br>19.5500<br>19.5500<br>19.5500<br>19.55000<br>19.55000<br>19.55000<br>19.55000<br>19.5500000000000000000000000000000000000 | 259<br>Keguéén Arrippidego<br>Ravin Juane<br>Beatat, Avair<br>48,55<br>48,55<br>48,55<br>48,55<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>26,5<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.151<br>0.150<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.1510 | 0.704678<br>18.407<br>15.508<br>0.8707<br>0.812715<br>0.019<br>0.009<br>0.009<br>0.704675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 164<br>Kegupatan Archite<br>Man Du La Transmissi<br>Saudi Tannikowal<br>Jasadi Tannikowal<br>201<br>201<br>201<br>201<br>201<br>201<br>202<br>202<br>202<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                             |

| R                         | ECAL                                                          | .CUL<br>9 14 1                                             | .E A<br>Via                                        | REC.<br>L'A                                                                                | ALCULE<br>ge Biblio                                                                      | A CALCUL OLIEROOK 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                                                                                                                                                              |                                                              |                                                                                                              |                                                          | RECALCULE<br>L'Age 14 Ma                                                                                                                                                            | A RECALCULE A<br>L'Age Biblio                                                                                                                                                                                                 | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                          |                                                                                               |                                                                                                                                                                                       |
|---------------------------|---------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Sm/Nd) initial recalculé | (Sm/Nd) measured recalculé<br>(143Nd/144Nd) Initial recalculé | (87 Sr86Sr) initial recalculé<br>(Rb/Sr) initial recalculé | Age 14Ma (L.Ponthus)<br>(Rb/Sr) measured recalculé | (Sm/NO) measured recalcule<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | (Rb/Sr) measured recalculé<br>(87 Sr86Sr) initial recalculé<br>(Rb/Sr) initial recalculé | 143kpt/144kphtitial<br>87R-085r<br>87R-085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085r<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878/085<br>1878 | Pb (ppm)<br>Pb (ppm)<br>143Nd/144N Th toom)<br>143Nd/144N th measured<br>207E b/204Pb measured<br>207E b/204Pb measured<br>147Sm/144Nd<br>202E b/204Pb measured | Age reference<br>Sm (ppm)<br>Nd (ppm)<br>Sr (ppm)<br>U (ppm) | Location<br>Sample Name<br>Rock Type<br>Latitude<br>Longitude<br>Age Correction (Ma)                         | # (Olierook et al., 2017 - n.)<br>Geochemistry Reference | (RSS) measured recalculé<br>(875/858) Inhalar recalculé<br>(RSN/61 measured recalculé<br>(Sm/64 measured recalculé<br>(143/kd/144M6) Inhalar recalculé<br>(Sm/84) Inhalar recalculé | (Rb/S) massure reacuté<br>(Rb/S) massure reacuté<br>(Rb/S) initial realcuté<br>(Sm/Nd) metaine realcuté<br>(143Nd/14/Nd) initial realcuté<br>(Sm/Nd) initial realcuté<br>(Sm/Nd) initial realcuté<br>(Sm/Nd) initial realcuté | Vir Sim Valke<br>HSMRA ANN Briti<br>HSMRA ANN Briti<br>B770 ISS<br>B770 ISS<br>B7 | 143 Nd/1 44 Nd measured<br>875 //865 measured<br>2069 b/204Pb measured<br>2079 b/204Pb measured<br>2089 b/204Pb measured | Age reference Sm (bpm)<br>Nd (bpm)<br>Rb (dpm)<br>Sr (bpm)<br>U (bpm)<br>Pb (bpm)<br>Tb (cpm) | # (Oliarook et al. 2017 - n.)<br>Geochemistry Reference<br>Province<br>Location<br>Sample Name<br>Sample Name<br>Location<br>Latitude<br>Latitude<br>Latitude<br>Latitude<br>Latitude |
| 0.138                     | 0.138                                                         | 0.705061                                                   | 14<br>0.145                                        | 0.512597<br>0.5138                                                                         | 0.705039<br>0.745                                                                        | 0.512597<br>0.145<br>0.705039<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.512820<br>0.705090<br>0.138                                                                                                                                   | [70]<br>5.7<br>24.9<br>460.0                                 | Courbet Perinsua<br>Basalt, Alkalin<br>48,55<br>88,5                                                         | 206<br>[50]<br>Kerouelen Archinelano                     | 0.70284<br>0.705192<br>0.130<br>0.130<br>0.130<br>0.133                                                                                                                             | 0.705148<br>0.705148<br>0.284<br>0.130<br>0.512582<br>0.130<br>0.130                                                                                                                                                          | 0.51258<br>0.288<br>0.705148<br>0.705148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.512603<br>0.705249<br>18.441<br>15.561<br>39.059                                                                       | 488<br>7.7<br>404<br>402                                                                      | 260<br>[48]<br>Ravin Juane<br>Basalt, Mkatine<br>48.55<br>[85.5<br>25                                                                                                                 |
| 0.123                     | 0.123                                                         | 0.705008<br>0.110                                          | 0.110                                              | 0.512570<br>0.123                                                                          | 0.110<br>0.704991<br>0.110                                                               | 0.512870<br>0.110<br>0.704991<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.9<br>0.512590<br>0.705030<br>0.123                                                                                                                            | (70)<br>4.8<br>23.5<br>19.0<br>4.99.0                        | Jeanne D'Arc Perintersa<br>s K47<br>Basalt, Akaline<br>48.55<br>88.5                                         | 2 10<br>[50]<br>Kernulalan Arrhinelann                   | 0.72 (438)<br>0.72 (438)<br>0.156<br>0.128<br>0.128<br>0.123<br>0.123                                                                                                               | 0.70 0.195<br>0.704909<br>0.195<br>0.123<br>0.512810<br>0.123<br>14                                                                                                                                                           | 0.5125<br>0.125<br>0.195<br>0.704909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.512630<br>0.704978<br>18.258<br>15.515<br>38.645                                                                       | 848)<br>8551<br>868<br>868                                                                    | 261<br>[48]<br>Ravin Janne<br>8 682<br>Basante<br>48.55<br>68.5<br>25                                                                                                                 |
| 0.141                     | 0.141                                                         | 0.704862                                                   | 14<br>0.091                                        | 0.141<br>0.512707<br>0.141                                                                 | 0.704848<br>0.704848                                                                     | 0.512707<br>0.704848<br>16.44<br>0.124<br>18.313<br>18.313<br>15.538<br>25.715<br>25.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.6<br>2.0<br>0.5127.30<br>0.704880<br>18.337<br>18.539<br>18.539<br>38.813<br>0.141                                                                            | 770]<br>5.5<br>23.5<br>380.0<br>0.4                          | Central plateau<br>88-12<br>Basalt, Transtional<br>-48.55<br>68.5                                            | 249<br>[50]<br>Keroutelen Archinelaon                    |                                                                                                                                                                                     | 14                                                                                                                                                                                                                            | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.705260<br>18.4 18<br>15.5 31<br>38.978                                                                                 | [02]                                                                                          | 262<br>[48]<br>Rawn Jaune<br>Basatt Akkaine<br>48.55<br>22                                                                                                                            |
| 0.120                     | 0.120                                                         | 0.704830<br>0.000                                          | 14                                                 | 0.120<br>0.512730<br>0.120                                                                 | 0.704830<br>0.000                                                                        | 0.512730<br>0.704830<br>15.86<br>0.12<br>81.60<br>15.525<br>15.525<br>38.716<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.0<br>2.5<br>0.704330<br>18.467<br>16.528<br>38.817<br>0.120                                                                                                   | [70]<br>6.2<br>31.5<br>349.0<br>0.5                          | Central plateau<br>86-55<br>Basalt Transtional<br>-48.55<br>68.5<br>25                                       | 250<br>[50]<br>Kerrauelen Archinelann                    | 0.705042<br>0.042<br>0.122<br>0.122<br>0.122<br>0.122                                                                                                                               | 0.705007<br>0.705507<br>0.042<br>0.122<br>0.122<br>0.122<br>0.122                                                                                                                                                             | 0.042<br>0.705106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.512648<br>0.705122                                                                                                     | 11<br>54.5<br>12.0<br>824.0<br>0.0                                                            | 168<br>Kerguelen Archipelago<br>s MMSC480<br>Besat<br>49.55<br>68.5<br>25                                                                                                             |
| 0,108                     | 0.108                                                         | 0.705352                                                   | 14<br>0.139                                        | 0.512519<br>0.108                                                                          | 0.139<br>0.705323<br>0.139                                                               | 0.512529<br>0.7065350<br>17.41<br>0.13<br>82.23<br>16.255<br>16.5550<br>38.746<br>2.29<br>2.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.6<br>0.512540<br>0.7053800<br>18.334<br>15.552<br>38.607<br>0.108                                                                                             | [75]<br>6.9<br>38.7<br>33.0<br>886.0<br>1.0                  | Cuest Island<br>s 80-135<br>Basalt, Alkaline / Basalt<br>-48.55<br>68.5<br>29                                | [50][64]<br>Kerculalan Archinelan                        | 0.705.083<br>0.705.083<br>0.083<br>0.114<br>0.512887<br>0.114                                                                                                                       | 0.705122<br>0.705122<br>0.063<br>0.114<br>0.512657<br>0.114<br>0.114<br>0.026                                                                                                                                                 | Arra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.512637<br>0.705122                                                                                                     | 11.7<br>61.9<br>22.47<br>1038.9                                                               | (49) DEA<br>Kerguelen Archipelago<br>CRBC<br>Trachybasalt                                                                                                                             |
| 0.105                     | 0.105                                                         | 0.705579                                                   | 14<br>0.308                                        | 0.512480<br>0.105                                                                          | 0.308<br>0.705513<br>0.308                                                               | 0.51240<br>0.338<br>0.705574<br>14.87<br>0.11<br>70.60<br>18.199<br>15.543<br>38.525<br>38.525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.1<br>0.512500<br>0.705640<br>18.2545<br>38.9776<br>0.105                                                                                                      | [75]<br>58.0<br>74.0<br>696.0<br>1.9                         | Curest Island<br>S 80-71<br>Basalt, Alkaline / Basalt<br>-48.55<br>68.5<br>68.5                              | 287<br>[50][64]<br>Kerouelen Archinelano                 | 60.742<br>0.706553<br>50.742<br>0.116<br>0.512662<br>0.116                                                                                                                          | 50.742<br>0.706553<br>50.742<br>0.116<br>0.116<br>0.116<br>0.026                                                                                                                                                              | 0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.512622<br>0.706572                                                                                                     | 14.7<br>76.9<br>6.3                                                                           | (49) DEA<br>Kerguelen Archipelego<br>CRBC<br>MMA-515<br>Trachyte<br>0.026                                                                                                             |
| 0.140                     | 0.512647                                                      | 0.704697                                                   | 14<br>0.064                                        | 0.512633<br>0.140                                                                          | 0.064<br>0.704684<br>0.064                                                               | 0.512633<br>0.064<br>15.74<br>0.12<br>77.66<br>18.433<br>15.547<br>38.845<br>38.845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.6<br>0.512660<br>0.704710<br>18.504<br>15.550<br>38.987<br>0.140                                                                                              | [70]<br>19.5<br>406.0<br>0.4                                 | Loranctet Peninsua<br>Loranctet Peninsua<br>81-18<br>Basalt, Transitional / Basal<br>48.5<br>68.5<br>29      | 100<br>[50][64]<br>Kerouelen Archinelano                 | 19.223<br>0.706134<br>19.223<br>0.138<br>0.512662<br>0.138                                                                                                                          | 19.223<br>0.766134<br>19.223<br>0.138<br>0.512622<br>0.138<br>0.025                                                                                                                                                           | 0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.512622<br>0.708141                                                                                                     | 32.4<br>142<br>82.4<br>12.4                                                                   | (49) DEA<br>Kerguelen Archipelego<br>CRBC<br>Trachyte<br>Trachyte                                                                                                                     |
| 0.145                     | 0.145                                                         | 0.704286<br>0.072                                          | 14<br>0.072                                        | 0.145<br>0.512712<br>0.145                                                                 | 0.072<br>0.704270<br>0.072                                                               | 0.512712<br>0.7704270<br>14.58<br>0.11<br>35.62<br>16.336<br>15.355<br>38.340<br>38.340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.7<br>2.6<br>0.740<br>0.740<br>18.300<br>15.558<br>38.381<br>0.145                                                                                             | [70]<br>6.3<br>10.0<br>1.1<br>1.1                            | Loranchet Peninsua<br>Loranchet Peninsua<br>8 8-1-19<br>Basalt, Transitional / Basalt<br>48.55<br>88.5<br>29 | 101<br>[50][64]<br>Kerouslan Archinelan                  | 60.766<br>0.7.04786<br>60.770                                                                                                                                                       | 60.766<br><b>0.708802</b><br>6.0766<br>0.109<br>0.109<br>4.7                                                                                                                                                                  | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.708824                                                                                                                 | 11.7<br>56.8<br>300.3<br>14.3                                                                 | (49) DEA<br>Kerguelen Archipelego<br>CRBC<br>Rhyolite<br>Rhyolite                                                                                                                     |
| 0.130                     | 0.512608                                                      | 0.705050                                                   | 14<br>0.152                                        | 0.512599<br>0.130                                                                          | 0.152<br>0.705026<br>0.152                                                               | 0.51860<br>0.70602<br>17.02<br>0.12<br>0.12<br>90.39<br>15.562<br>38.600<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.9<br>0.51262<br>0.705080<br>18.444<br>15.665<br>39.007<br>0.130                                                                                               | [51]<br>5.2<br>19.0<br>382.0<br>0.5                          | Mount Du Chateau<br>9.77-211<br>Basalt, Alkaline / Basalt<br>-48.55<br>68.5<br>25                            | 263<br>[50][64]<br>Kerrupalan Archinelano                | 0.705164<br>0.393<br>0.125<br>0.125<br>0.125<br>0.125                                                                                                                               | 0.339<br>0.705101<br>0.939<br>0.125<br>0.125<br>0.125<br>0.125                                                                                                                                                                | A 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.512606<br>0.705164                                                                                                     | 17 2<br>83 2<br>61.56<br>189.61                                                               | 49) DEA<br>Kerguelen Accherelago<br>CCBBC<br>MMA-589<br>Svenite<br>4.7                                                                                                                |
| 0.083                     | 0.083<br>0.512582                                             | 0.705153<br>0.286                                          | 14<br>0.286                                        | 0.083<br>0.512574<br>0.083                                                                 | 0.286<br>0.705092<br>0.286                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.512590<br>0.705210                                                                                                                                            | 7.1<br>51.8<br>85.0<br>861.0                                 | Basalt alkali / Trachybasanite                                                                               | 288<br>[50][64]<br>Kercualen Archinelano                 | 0,704811<br>1,290<br>1,290                                                                                                                                                          | 1 2 90<br>0.70 50 67<br>1 2 90<br>14                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.705067                                                                                                                 | 79.85<br>179.1                                                                                | (49) DEA<br>Kerguelen Archipelago<br>Loranchet Peninsula<br>GR97-116<br>Rhyolite<br>0                                                                                                 |

| RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                                             | RECALCULE A<br>L'Age Biblio                                                                                                                                                                                                       | CALCUL OLIEROOK 2017 |                                                                                                                                                   |                                                                                                                                                                                | RECALCULE A<br>L'Age 14 Ma                                                                                                                                                     | RECALCULE A<br>L'Age Biblio                                                                                                                                                                                                              | CALCUL OLIEROOK 2017                                                                                                                                                             |                                                                                                                                            |                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Age 14Ma( L Ponthus)<br>(FbLS) measured recalculé<br>(87 S/86S/1 initial recalculé<br>(Sm/Nd) measured recalculé<br>(Sm/Nd) measured recalculé<br>(143Nu/1/44Nd) initial recalculé<br>(143Nu/1/44Nd) initial recalculé | Age ref. (L. Porthus)<br>(RDS) neasured recalculé<br>(RDS) neasured recalculé<br>(RDS) inflat recalculé<br>(RDS) inflat recalculé<br>(SRN/Nd) neasuret recalculé<br>(14.SRN/Nd) neasuret recalculé<br>(SRN/Nd) neasuret recalculé | 1475mr1444           | Sin (com)<br>Nel (com)<br>Si (com)<br>Si (com)<br>Pi (com)<br>Pi (com)<br>143 Nd/1 44Nd mesured<br>2019/22/34/bb mesured<br>2019/22/34/bb mesured | # (Olierook et al., 2017 - n.)<br>Geochemistry Reference<br>Province<br>Sambé Name<br>Rock Tros<br>Rock Tros<br>Rock Tros<br>Londitot<br>Aue Correction (Ma)<br>Aue Correction | Age 14/40 (. Ponthus)<br>(Rb:(S) neasured recalculé<br>(875/8551 initial recalculé<br>(SnN/01 measured recalculé<br>(143/40/143/1016) recalculé<br>(143/40/143/1016) recalculé | Age ref. (L Porthus)<br>(RDS) nonesured recalculé<br>(RDS) nonesured recalculé<br>(RDS) influit recalculé<br>(RDS) influit recalculé<br>(NSM/N antesimet recalculé<br>(143MC/144NC) influit recalculé<br>(143MC/144NC) influit recalculé | 1475/m144/H4<br>1438/H4/144/H4<br>1438/H4/144/H4<br>1878/08/S http:<br>1878/08/S http:<br>258/U204P<br>228/U204P<br>228/U204P nitial<br>228/P5/204P nitial<br>228/P5/204P nitial | 143Nd/1 44Nd mesured<br>87Sr/86Sr measured<br>206Fb/204Pb measured<br>207Pb/204Pb measured<br>207Pb/204Pb measured<br>208Pb/204Pb measured | # (Olerock et al. 2017 - h)<br>Geochemistry Reference<br>Provine<br>Resmolt Name<br>Resmolt Name<br>Resmolt Name<br>Autor Correction (Ma)<br>Alea Correction (Ma)<br>Alea reference<br>Nationan<br>Nationan<br>Nationan<br>Stiopan<br>Stiopan<br>Polician |
| 14                                                                                                                                                                                                                     | 25                                                                                                                                                                                                                                |                      | 18.453<br>19.562<br>30.061                                                                                                                        | 2.38<br>Kreguelen Archipelago<br>Mount Croceter<br>Basit, CAraine<br>48.56<br>225<br>1701                                                                                      | 14<br>0.149<br>0.512708<br>0.149                                                                                                                                               | 29<br>0.149<br>0.512854<br>0.149                                                                                                                                                                                                         |                                                                                                                                                                                  | 0.512722<br>0.704643                                                                                                                       | 280<br>Kergurelen Architestep<br>Mount Baltens<br>Basalt alfwal / Trachrebatente<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                      |
| ž                                                                                                                                                                                                                      | 25                                                                                                                                                                                                                                |                      | 18.453<br>15.562<br>39.064                                                                                                                        | 237<br>(Kerguelein Archipeliago<br>Mount Crocker<br>Basel, Kaline<br>Basel, Kaline<br>685<br>701                                                                               | 14<br>0.142<br>0.512782<br>0.142                                                                                                                                               | 0.142<br>0.512795<br>0.142                                                                                                                                                                                                               |                                                                                                                                                                                  | 0.512795<br>0.704655                                                                                                                       | 280<br>Konguelen Archeulop<br>Nuogeruges Names - Crop<br>6201<br>52<br>22.0                                                                                                                                                                               |
| 4                                                                                                                                                                                                                      | 8                                                                                                                                                                                                                                 |                      | 18.4.53<br>16.5.65                                                                                                                                | 2.38<br>Kenguelen Achipelago<br>Mount Occoer<br>Basal, Celab.<br>48.55<br>25<br>(70)                                                                                           | 14<br>0.145<br>0.145<br>0.145                                                                                                                                                  | 0.145<br>0.52253<br>0.145                                                                                                                                                                                                                |                                                                                                                                                                                  | 0.512753<br>0.704692                                                                                                                       | 2:01<br>Konguelen Archingelige<br>Nungeruges Searchs - Corp<br>62.77<br>8.6<br>36.6                                                                                                                                                                       |
| 4                                                                                                                                                                                                                      | 25                                                                                                                                                                                                                                |                      | 18 44 8<br>36 568                                                                                                                                 | 239<br>Kenguéen Achi (58)<br>Mont Crozer<br>8 058-117<br>Basit Main<br>48.5<br>6<br>25<br>[70]                                                                                 | 14<br>0.70422<br>0.002<br>0.002                                                                                                                                                | 25<br>0.774 <b>2</b> 19<br>0.002<br>0.002<br>0.166<br>0.166                                                                                                                                                                              | 0.166<br>0.002<br>0.704219<br>12.41<br>0.09<br>0.00                                                                                                                              | 0.704220<br>18.174<br>15.570<br>38.181                                                                                                     | 245<br>Karguelen Archipellap<br>Mount Tazael<br>9 Molaki Tazael<br>9 Molaki<br>9 Molaki<br>9 Molaki<br>9 Molaki<br>9 Molaki<br>9 Molaki<br>10 1<br>0 1<br>0 1<br>11 2<br>0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0                 |
| 2<br>4                                                                                                                                                                                                                 | 25                                                                                                                                                                                                                                |                      | 18.492<br>19.573<br>39.123                                                                                                                        | 240<br>Kerguelen Archiptelap<br>Mount Coccle<br>Basil / Artime<br>48,5<br>25<br>770                                                                                            | 14<br>0.000<br>0.704670<br>0.000<br>0.221<br>0.512760<br>0.221                                                                                                                 | 25<br>0.000<br>0.704670<br>0.000<br>0.0221<br>0.512744<br>0.221                                                                                                                                                                          | 0.5212744<br>0.0000<br>0.704670<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                          | 0.512780<br>0.704670<br>18.125<br>15.528<br>38.626                                                                                         | 246<br>Kergaslen Acrigango<br>Sultanoid<br>Gabroo harado<br>48.55<br>(70)<br>25<br>(71)<br>25<br>(72)<br>209.0<br>209.0<br>0.2                                                                                                                            |
| 14                                                                                                                                                                                                                     | 25                                                                                                                                                                                                                                |                      | 18.406<br>18.72<br>38.112                                                                                                                         | 241<br>Kerguelen Acritypisego<br>Mount Coccie<br>Basait, Akima<br>48,5<br>25<br>[70]                                                                                           | 14<br>0.012<br>0.704248<br>0.012<br>0.512659<br>0.229                                                                                                                          | 25<br>0.704246<br>0.0012<br>0.012<br>0.512643<br>0.229<br>0.229                                                                                                                                                                          | 0.551243<br>0.012<br>0.012<br>0.704246<br>0.704246<br>0.011<br>0.011<br>0.011<br>0.001                                                                                           | 0.512880<br>0.704250<br>18.184<br>15.532<br>38.464                                                                                         | 247<br>Korgusten Achtipelego<br>Bolten and<br>Geberen in 2228<br>Geberen in 228<br>(201)<br>221<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24                                                                             |
| ž                                                                                                                                                                                                                      | 25                                                                                                                                                                                                                                |                      | 18.493<br>18.573<br>38.109                                                                                                                        | 242<br>Kerguelen Archipelago<br>Montri Croze<br>S089-202<br>Basilt / Arline<br>48.5<br>25<br>(701)                                                                             | 14<br>0.000<br>0.512840<br>0.000                                                                                                                                               | 25<br>0.000<br>0.512840<br>0.000                                                                                                                                                                                                         | 0.5000<br>0.512840                                                                                                                                                               | 0.512840<br>0.704320                                                                                                                       | 248<br>Kerguelen Architelise<br>s HG-archite<br>s HG-archite<br>-48:55<br>(70)<br>0.1                                                                                                                                                                     |
| 74                                                                                                                                                                                                                     | 25                                                                                                                                                                                                                                |                      | 18.498<br>18.574<br>39.177                                                                                                                        | 243<br>Kerguelen Archipelago<br>Montri Croze<br>SB32-202<br>Basalt / Aralis<br>- 48,55<br>- 25<br>- 25<br>- 1701                                                               | 4                                                                                                                                                                              | 25                                                                                                                                                                                                                                       |                                                                                                                                                                                  | 18,480<br>15,566<br>39,129                                                                                                                 | 233<br>Korgueten Archivelago<br>Kusic orac<br>Basel, Arkain<br>48, 55<br>25<br>[70]                                                                                                                                                                       |
| 4                                                                                                                                                                                                                      | 25                                                                                                                                                                                                                                |                      | 0.512621<br>0.512621<br>18.65280<br>18.65284<br>39.5574                                                                                           | 80(0)59<br>Keguelen Arvingelago<br>Mount Coste<br>Basalt / Asia<br>- 48 55<br>- 25<br>- 25<br>- 770                                                                            | 4                                                                                                                                                                              | 25                                                                                                                                                                                                                                       |                                                                                                                                                                                  | 18.446<br>15.561<br>39.059                                                                                                                 | 234<br>Kerg uslen Achte (89)<br>Mont coare<br>as the are<br>set of a set<br>as the set<br>as the set<br>as the set<br>(70)                                                                                                                                |
| 14                                                                                                                                                                                                                     | 28                                                                                                                                                                                                                                |                      | 0.512670<br>0.705260<br>19.452<br>15.549<br>39.058                                                                                                | 167<br>Kerguelen Archipelago<br>Kerguelen Archipelago<br>Stocial-10<br>Baset<br>-18<br>89.5<br>-20<br>700                                                                      | 14                                                                                                                                                                             | Ŋ                                                                                                                                                                                                                                        |                                                                                                                                                                                  | 18.449<br>15.561<br>39.060                                                                                                                 | 2.36<br>Kergusen Architesteg<br>Boottic courter<br>Bestell, Adi 55<br>265<br>265<br>270]                                                                                                                                                                  |

358
| RECALCULE A<br>L'Age 14 Ma                                                                                                                                                         | RECALCULE A                                                                                                                                                                         | CALCUL                                                                                                   | DLIEROOK 201                                                                     | 7                                                                                                                                           |                                                                       |                                                                           |                                                                      | RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                             | RECALCULE A<br>L'Age Biblio                                                                                                                                                                                                                      | CALCUL OLIEROOK 20                                                                                                                                                                    | 17                                                                                                                               |                                                                     |                                                            |                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Ace 1414 (L Ponthus)<br>(Rb (S) measured recalculé<br>(875 y Rb (S) initial recalculé<br>(Sm/Nd) measured recalculé<br>(1414/1414Ma Initial recalculé<br>(Sm/Nd) initial recalculé | (RUSS) measured receiculé<br>(875/8654) initial recalculé<br>(RUS) Initial recalculé<br>(3m/Nd) measured recalculé<br>(443Md/ 44/Nd) initial recalculé<br>(Sm/Nd) Initial recalculé | 232Th/204Pb<br>205Pb/204Pb initial<br>207Pb/204Pb initial<br>208Pb/204Pb initial<br>Age ref. (L.Ponthus) | 143 Ndh 44 Initial<br>87R-bleSr<br>878/186Sr Initial<br>238U/204Pb<br>235U/204Pb | 143.Nd/i 44.Nd masured<br>875.r865 measured<br>20.69420.495 measured<br>20.79420.495 measured<br>20.79420.495 measured<br>4.175 cont/14.4M4 | Sm (born)<br>Nd (born)<br>R5 (bpm)<br>S7 (bpm)<br>U (bpm)<br>P5 (bpm) | Samole Name<br>Rock Tvoa<br>Latitude<br>Lonstitude<br>Aue Correction (Ma) | # (Olierook et al., 2017 - n.)<br>Geochemistry Reference<br>Province | Age 1414(L Ponthus)<br>(R2US) measured recalculé<br>(875/865(L initial recalculé<br>(R3US) initial recalculé<br>(SmNd) mitial recalculé<br>(143Nd/144Nd) initial recalculé<br>(SmNd) initial recalculé | Age etc. (L-Ponthus)<br>(RUSS) measured recalculé<br>(RUSS) Initial recalculé<br>( <b>873</b> 665) Initial recalculé<br>( <b>13Md/14Md)</b> measured recalculé<br>( <b>13Md/14Md)</b> Initial recalculé<br>( <b>13Md/14Md)</b> Initial recalculé | 43.Wd/ 44.Wd initial<br>6712;085;r<br>8725;085;r<br>8725;085;r<br>2235;U204;Pb<br>2227;1V204;Pb<br>2227;1V204;Pb<br>2227;Pb204;Pb mital<br>2017;Pb204;Pb mital<br>2017;Pb204;Pb mital | 143Nd/14ANd measured<br>875/865r measured<br>207Pb/20APb measured<br>207Pb/20APb measured<br>208Pb/204Pb measured<br>147Sm/144Nd | Nd (som)<br>Rb (som)<br>Sr (spm)<br>U (spm)<br>Pb (spm)<br>Th (spm) | Lonsitude<br>Age Correction (Ma)<br>Age reference Sm (ppm) | # (Olerook et al. 2017 - n.)<br>Geochemistry Reference<br>Province<br>Location<br>Sample Name<br>Rock Type<br>Latitude |
| 0.754<br>0.756925<br>0.154<br>0.155<br>0.153<br>0.512618<br>0.153                                                                                                                  | 0.154<br>0.705003<br>0.154<br>0.153<br>0.153<br>0.153<br>0.153                                                                                                                      | 101.25<br>18.437<br>15.551<br>38.970<br>24.25                                                            | 0.512608<br>0.154<br>0.705004<br>20.15<br>0.15                                   | 0.7<br>0.512632<br>0.705056<br>15.512<br>15.555<br>30.090<br>0.152                                                                          | 12<br>775<br>915<br>05<br>05                                          | s MPC99-34<br>Wehntle<br>-49.71 146<br>70.080074<br>24.25<br>24.25        | 267<br>(67)<br>Kerguelen Archipelago<br>Val Gabro Plutonic Suite     | 14                                                                                                                                                                                                     | 8                                                                                                                                                                                                                                                |                                                                                                                                                                                       | 0.704070<br>1704070<br>18.483<br>15.521<br>38.693                                                                                |                                                                     | 68.5<br>29<br>[70]                                         | 117<br>[63]<br>Kerguelen Archipelago<br>Mount Bureau<br>sk (c4-1<br>Basalt<br>-48.55                                   |
| 0.130<br>0.705114<br>0.130<br>0.130<br>0.143<br>0.143                                                                                                                              | 0.130<br>0.705095<br>0.130<br>0.143<br>0.143<br>0.143                                                                                                                               | 70.83<br>18.443<br>15.534<br>38.966<br>24.25                                                             | 0.512604<br>0.130<br>0.705096<br>12.16<br>0.09                                   | 0.5<br>0.51826<br>0.705140<br>18.488<br>15.536<br>0.1450<br>0.1450                                                                          | 1.7<br>7.3<br>7.2<br>0.1<br>0.6                                       | s MPC99-38<br>Wehnte<br>-49.71146<br>70.080074<br>24.25<br>[87]           | 268<br>Kerguelen Archipelago<br>Val Gabbo Plutonic Sulle             | 14                                                                                                                                                                                                     | 8                                                                                                                                                                                                                                                |                                                                                                                                                                                       | 0.512807<br>0.703980<br>18.399<br>15.524<br>38.473                                                                               |                                                                     | 68.5<br>29<br>[70]                                         | 98<br>Kerguelen Archipelago<br>Foch<br>s KG6-2<br>Basatt<br>48.55                                                      |
| 0.168<br>0.705027<br>0.168<br>0.147<br>0.572622<br>0.147                                                                                                                           | 0.765<br>0.705002<br>0.148<br>0.147<br>0.512612<br>0.147                                                                                                                            | 93.14<br>18.392<br>15.538<br>38.899<br>24.25                                                             | 0.512812<br>0.168<br>0.705003<br>19.22<br>0.14                                   | 0.512635<br>0.705060<br>18.464<br>15.541<br>39.010<br>0.142                                                                                 | 32<br>32<br>13.1<br>2280<br>1.0                                       | S MP C99-36<br>Clinopyroxentile, Olivine<br>70.080074<br>24.25<br>1671    | 269<br>[67]<br>Kerguelen Archipelago<br>Val Gabtro Plutonic Sulte    | 14<br>0.052<br>0.70 <b>5250</b><br>0.052                                                                                                                                                               | 0.052<br>0.7052<br>0.705242<br>0.052                                                                                                                                                                                                             | 0.052<br>0.708242<br>15.10<br>0.11<br>0.00                                                                                                                                            | 0.705260<br>18.377<br>15.546<br>38.805                                                                                           | 9.8<br>546.0<br>0.3<br>1.1                                          | 68.5<br>24.25<br>[67]                                      | 266<br>[75]<br>Val Gabtro Plutonic Sulte<br>Val Gabtro Plutonic Sulte<br>Isbto, Clinopyroxe ne-Oliwine<br>-48.55       |
| 0.7026<br>0.70272<br>0.70272<br>0.126<br>0.156<br>0.156<br>0.156                                                                                                                   | 0.7765208<br>0.7765208<br>0.026<br>0.156<br>0.159<br>0.159                                                                                                                          | 23.95<br>18.418<br>15.530<br>38.952<br>24.25                                                             | 0.512591<br>0.026<br>0.705208<br>4.41<br>0.03                                    | 0.512616<br>0.705217<br>18.435<br>15.531<br>38.980<br>0.155                                                                                 | 1.5<br>5.8<br>0.0<br>0.6                                              | s MPC99-40<br>Clinopyroxentle. Olivine<br>70.080742<br>2425<br>1671       | 270<br>[67]<br>Kerguelen Archipelago<br>Val Gabho Plubnic Sulle      | 14<br>0.7652<br>0.052<br>0.052                                                                                                                                                                         | 24.25<br>0.052<br>0.7052<br>0.052                                                                                                                                                                                                                |                                                                                                                                                                                       | 0.70526                                                                                                                          | 5.9.8<br>545                                                        | 24.25                                                      | [75]<br>Kerguelen Archipel apo<br>Val Gabbro Plutonic Suite<br>K92<br>aabbro                                           |
| 0.072<br>0.775548<br>0.072<br>0.072<br>0.141<br>0.512567<br>0.141                                                                                                                  | 0.072<br>0.705337<br>0.072<br>0.072<br>0.141<br>0.512558<br>0.141                                                                                                                   | 87.3.3<br>18.290<br>15.534<br>38.826<br>24.25                                                            | 0.51255<br>0.702<br>0.705337<br>15.58<br>0.11                                    | 0.512580<br>0.705382<br>18.348<br>15.557<br>38.530<br>0.441                                                                                 | 3.3<br>14.0<br>14.0<br>0.0<br>1.3                                     | s MPC99-46<br>Gabbro<br>-49.729124<br>70.075181<br>24.25<br>[67]          | 271<br>(67)<br>Kerguelen Archipelago<br>Val Gaboro Palkonic Suite    | 0.049<br>0.794980<br>0.049                                                                                                                                                                             | 24.25<br>0.049<br>0.704953<br>0.049                                                                                                                                                                                                              |                                                                                                                                                                                       | 0.70497                                                                                                                          | 11.5<br>678                                                         | 24.25                                                      | [75]<br>Kerguelen Archipelago<br>Val Gabbro Piutonic Suite<br>K94<br>gabbro                                            |
| 0.114<br>0.705261<br>0.114<br>0.114<br>0.113<br>0.5112555<br>0.133                                                                                                                 | 0.7154<br>0.705245<br>0.114<br>0.133<br>0.512546<br>0.133                                                                                                                           | 62.53<br>18.379<br>15.54 1<br>38.896<br>24.25                                                            | 0.512546<br>0.705245<br>0.705245<br>8.78<br>0.06                                 | 2.6<br>0.512567<br>0.705284<br>18.412<br>15.543<br>38.570<br>0.133                                                                          | 52<br>23.7<br>23.0<br>586.0<br>2.7                                    | s MPC99-60<br>Gabbro<br>-49.7 1636 1<br>70.077 74 9<br>24.25<br>1671      | 272<br>[67]<br>Kerguelen Archipelago<br>Val Gabro Putonic Sulte      | 14<br>0.090<br>0.706282<br>0.090<br>0.51286                                                                                                                                                            | 24.25<br>0.030<br>0.706289<br>0.030<br>0.51286                                                                                                                                                                                                   |                                                                                                                                                                                       | 0.51286<br>0.7063                                                                                                                | 6.5<br>208                                                          | 24.25                                                      | [75]<br>Kerguelen Archipelago<br>Val Gabbro Putonic Suite<br>82.247<br>peridotte                                       |
| 0.705225<br>0.705225<br>0.222<br>0.222<br>0.222<br>0.1155<br>0.512569<br>0.1155                                                                                                    | 0.705192<br>0.705192<br>0.222<br>0.135<br>0.135                                                                                                                                     | 83.03<br>18.397<br>15.529<br>38.891<br>24.25                                                             | 0.512560<br>0.222<br>0.705193<br>13.81<br>0.10                                   | 3.6<br>0.512581<br>0.705259<br>18.449<br>15.531<br>38.590<br>0.135                                                                          | 7.5<br>33.7<br>466.0<br>2.8                                           | s MPC99-51<br>Gabbro<br>-49.72067<br>70.07524<br>24.25<br>[67]            | 273<br>(67)<br>Val Gaboro Putonic Sulte                              | 14<br>0.70518<br>0.548<br>0.548                                                                                                                                                                        | 24.25<br>0.548<br>0.705101<br>0.548                                                                                                                                                                                                              |                                                                                                                                                                                       | 0.70529                                                                                                                          | 78<br>412                                                           | 24.25                                                      | [75]<br>Kerguelen Archipelago<br>Val Gabbro Plutonic Suite<br>78.08<br>monzonite                                       |
| 0.705188<br>0.705188<br>0.222<br>0.222<br>0.143<br>0.512576<br>0.133                                                                                                               | 0.705<br>0.705<br>0.722<br>0.725<br>0.123<br>0.512<br>567<br>0.133                                                                                                                  | 82.42<br>18.272<br>15.501<br>38.732<br>24.25                                                             | 0.512567<br>0.222<br>0.705156<br>15.80<br>0.12                                   | 0.512588<br>0.705222<br>18.331<br>15.504<br>38.830<br>0.133                                                                                 | 8.8<br>39.9<br>531.0<br>3.4<br>3.4                                    | s MPC99-24<br>Gabbro<br>-49.7 10217<br>70.079229<br>24.25<br>[67]         | 274<br>[67]<br>Kerguelen Archipelago<br>Val Gabbro Plutonis Suite    | 14<br>0.823<br>0.828<br>0.823                                                                                                                                                                          | 24.25<br>0.823<br>0.8207<br>0.823                                                                                                                                                                                                                |                                                                                                                                                                                       | 0.70619                                                                                                                          | 101<br>355                                                          | 24.25                                                      | [75]<br>Kerguelen Archipelago<br>Val Gabbro Plutonic Sulte<br>78,13<br>Gz microsvenite                                 |
| 0.718205<br>0.215<br>0.215<br>0.215<br>0.215<br>0.512574<br>0.512574                                                                                                               | 0.215<br>0.705174<br>0.215<br>0.132<br>0.512565<br>0.133                                                                                                                            | 107.22<br>18.288<br>15.536<br>38.783<br>24.25                                                            | 0.512565<br>0.215<br>0.705175<br>18.40<br>0.14                                   | 4 2<br>0.512586<br>0.705248<br>18.367<br>15.539<br>38.910<br>0.132                                                                          | 84<br>84<br>383<br>383<br>527.0<br>2.6                                | s MPC99-25<br>Gabtro<br>-49.7 10217<br>70.079229<br>24.25<br>Int          | 275<br>(871)<br>Kerguelen Achipelago<br>Val Gabbro Plutonic Suite    | 14<br>1.290<br>0.705323<br>1.291                                                                                                                                                                       | 24.25<br>1.290<br>0.706136<br>1.291                                                                                                                                                                                                              |                                                                                                                                                                                       | 0.70558                                                                                                                          | 124<br>278                                                          | 24.25                                                      | [75]<br>Kerguelen Archipelago<br>Val Gabbro Plutoric Suite<br>78.06<br>Oz microsvenite                                 |
| 14<br>0.335<br>0.705509<br>0.335<br>0.122<br>0.5125<br>0.52<br>0.122<br>0.122                                                                                                      | 0.335<br>0.705461<br>0.325<br>0.122<br>0.512571<br>0.122                                                                                                                            | 24,25                                                                                                    | 0.6705                                                                           | 0.51259<br>0.706576                                                                                                                         | 8.8<br>43.7<br>688.0                                                  | MPC99-47<br>Felsic rock<br>24.25                                          | 276<br>[67]<br>Kerguelen Archipelago<br>Val Gabbro Plutonic Suite    | 0.705247<br>0.705247<br>0.067                                                                                                                                                                          | 24.25<br>0.067<br>0.067                                                                                                                                                                                                                          |                                                                                                                                                                                       | 0.51266<br>0.70526                                                                                                               | 11.5<br>495                                                         | 24.25                                                      | [75] [50]<br>Kerguelen Archipelago<br>Val Gabbro Plutonic Suite<br>K90<br>cabbro                                       |

| RECALCULE A<br>L'Age 14 Ma                                                                                                                                                   | RECALCULE A<br>L'Age Biblio                                                                                                                                                                      | ALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                    |                                                                                                                                      |                                                                                                                          | RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                           | RECALCULE A<br>L'Age Biblio                                                                                                                                                                        | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Age 14Mar (L'Portins)<br>(RDS) nessurei recalculé<br>(87 SR851 hithail recalculé<br>(SmNd) metalione cesculé<br>(14.3Md/14.Nd) initial recalculé<br>(SmNd) initial recalculé | 2026/P2/CHP initial<br>Area ref. (L. Porthus)<br>(EUS/) measured recalcule<br>(178/8651 Initial recalcule<br>(EUS/) Initial recalcule<br>(SmN40) measured recalcule<br>(SmN40) Initial recalcule | 142 Sur/1444<br>143 Sur/1444<br>143 Sur/1444<br>145 Sur/144<br>147 Sur/144<br>147 Sur/144<br>258 U/244<br>258 U/244<br>258 U/244<br>258 U/244<br>258 Sur/144<br>258 Sur/144<br>258 Sur/1444<br>258 Sur/1 | Th (com)<br>143/Nd/144/Nd measured<br>8/75/865/measured<br>20/6Fb/204Pb measured<br>20/7Fb/204Pb measured<br>20/7Fb/204Pb measured | Londitude<br>Acte Correction (Ma)<br>Acte of erence Sin (com)<br>N4 (com)<br>Si (com)<br>Si (com)<br>U (com)<br>Pi (com)<br>Pi (com) | # (Oliarook et al. 2017 - n.)<br>Geochemistry Reference<br>Province<br>Lucation<br>Samole Name<br>Samole Name<br>Jahlude | Age 14Ma (I. Pontus)<br>(EUS) mesunot receluté<br>(87 Sr85S1 Inhiai recalcuté<br>(SmVkt) mesunot recalcuté<br>(143Md/144Md) Inhiai recalcuté<br>(SmVkt) mesunot recalcuté<br>(SmVkt) milai recalcuté | Age (rd. (L. Ponthus)<br>(RDS (n. neasured recalculé<br>(RDS (n. neasured recalculé<br>(RDA) natial recalculé<br>(Sm/Nd) initial recalculé<br>(143Md/144Nd) initial recalculé<br>(Sm/Nd) recalculé | 1475 mr 1444<br>1438/dr 1444 http:<br>1478/dr 1444 http:<br>1878/dr 1444 http:<br>1878/dr 1444 http:<br>1878/dr 1444 http:<br>2380/dr 1444 http: | Frontismin<br>143Nd/14Nd measured<br>87Sr/86Sr measured<br>20Fb/204Pb measured<br>207Fb/204Pb measured<br>208Fb/204Pb measured | # (Olerook et al. 2017 - n.)<br>Geochemistry Reference<br>Province<br>Samue Name<br>Samue Name<br>Samue Name<br>Samue Correction (Ma)<br>Lastitude<br>Lastitude<br>Lastitude<br>Sam (com)<br>Naticom)<br>Naticom)<br>Sam (com)<br>Sam (com)<br>Sa (com)<br>Sa (com)<br>Sa (com)<br>V (com)<br>V (com)<br>V (com)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0,190<br>0,190<br>0,190<br>0,190<br>0,190<br>0,190<br>0,190<br>0,196                                                                                                         | 29<br>0,704912<br>0,135<br>0,135<br>0,52244<br>0,138<br>0,138                                                                                                                                    | 0.136<br>0.512846<br>0.190<br>0.704912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.6<br>0.512872<br>0.704990                                                                                                        | 88-5<br>1703<br>113.0<br>2.13.0<br>2.13.0<br>0.2<br>0.2                                                                              | 130<br>168]<br>Shied Stage<br>s Bik/4947<br>Tholeite<br>- 180                                                            | 14<br>0.9313<br>0.76500<br>0.9313<br>0.9313<br>0.9313<br>0.1723<br>0.1723                                                                                                                            | 0.913<br>0.705177<br>0.913<br>0.913<br>0.123<br>0.512601<br>0.123                                                                                                                                  | 0.1234<br>0.9161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.512821<br>0.705491                                                                                                           | 277<br>Kerguelen Archipelago<br>Val Gabrane Suite<br>MPC90-estant<br>Felice nock<br>24.25<br>9.1<br>44.8<br>101<br>320.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.043<br>0.744912<br>0.704912<br>0.43<br>0.43<br>0.43<br>0.43<br>0.43<br>0.43<br>0.43<br>0.43                                                                                | 29<br>0.043<br>0.7704902<br>0.043<br>0.043<br>0.043<br>0.134<br>0.134                                                                                                                            | 0.5126430<br>0.043<br>0.704902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.7<br>0.512865<br>0.704920                                                                                                        | 6855<br>1700<br>153<br>153<br>2710<br>2710                                                                                           | 131<br>[58]<br>Shied State<br>s Bi/stot<br>Tholeite<br>Tholeite                                                          | 1610<br>0.726442<br>0.726442<br>0.1210<br>0.510200<br>0.510200                                                                                                                                       | 24.25<br>1.619<br>0.705206<br>0.120<br>0.512597<br>0.120                                                                                                                                           | 0.1199<br>1.6157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.512816<br>0.705764                                                                                                           | 278<br>Kergu elen Archipelago<br>Val Gaboo Pintone Suite<br>Felais rock<br>24.25<br>10.4<br>28.3<br>302.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14<br>0.724<br>0.724746<br>0.023<br>0.158<br>0.158<br>0.158                                                                                                                  | 0.704741<br>0.704741<br>0.0223<br>0.023<br>0.023<br>0.023<br>0.158<br>0.158                                                                                                                      | 0.168<br>0.6127168<br>0.022<br>0.023<br>0.704741                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5<br>0.512778<br>0.704750                                                                                                        | 8815<br>20<br>1701<br>12.6<br>3.6<br>3.6<br>3.6<br>3.6<br>3.6<br>3.6<br>5.0                                                          | 132<br>[68]<br>Kenguelen Archipelago<br>Shield Stage<br>s Bukka88n<br>Tholeite<br>Bab                                    | 4                                                                                                                                                                                                    | 24,25                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.475<br>15.551<br>39.040                                                                                                     | 276<br>Kanguden Archipel apo<br>Val Gaboro Fluronc Sulte<br>s MP026-1<br>Gaboro<br>-4972007<br>70.07534<br>2(57)<br>[67]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 14<br>0.079<br>0.079<br>0.079<br>0.141<br>0.512777<br>0.141                                                                                                                  | 29<br>0.079<br>0.075<br>0.075<br>0.075<br>0.075<br>0.075<br>0.141<br>0.141                                                                                                                       | 0.512763<br>0.079<br>0.704657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1<br>0.512790<br>0.704590<br>18.112<br>15.481<br>38.280                                                                          | 6855<br>728<br>729<br>729<br>729<br>729<br>729<br>729<br>729<br>729<br>729<br>729                                                    | 133<br>[68]<br>Shiel Gage<br>s Biolean<br>a Bholean<br>Basat, Arkaine<br>49.5                                            | 14                                                                                                                                                                                                   | 24 25                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.368<br>15.537<br>38.930                                                                                                     | 277<br>Keirguelen Archipelago<br>Val Geborge Salte<br>s.MPC/92.24<br>4.9 T0277<br>7.0079228<br>21.25<br>21.25<br>[67]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.056<br>0.704389<br>0.057<br>0.057<br>0.131<br>0.512815<br>0.131                                                                                                            | 29<br>0.704377<br>0.055<br>0.131<br>0.512802<br>0.131<br>0.512802<br>0.131                                                                                                                       | 0.512.380<br>0.026<br>0.006<br>0.704377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.4<br>0.512827<br>0.704400<br>18.313<br>15.592<br>38.4572                                                                         | 68.5<br>[70]<br>3.6.7<br>15.0<br>0.3                                                                                                 | 13.4<br>[68]<br>Kerguelen Archipelapo<br>S'Neid Stage<br>s BN/75059<br>Basalt Alkaline<br>49.55                          | 14                                                                                                                                                                                                   | 24.25                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.389<br>15.563<br>39.000                                                                                                     | 278<br>Kerguelen Archipelego<br>Val Gaboro Sutte<br>s MPC2924<br>49 7-Gaboro<br>-49 7-Gaboro<br>-49 7-Gaboro<br>-49 7-Gaboro<br>-1019225<br>-20125<br>-20125<br>-20125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.103<br>0.103<br>0.103                                                                                                                                                      | 29<br>0.041<br>0.041<br>0.041<br>0.103<br>0.103<br>0.103                                                                                                                                         | 0.512.1808<br>0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.512.828<br>18.088<br>15.504<br>38.289                                                                                            | 68.5<br>1701<br>51.0<br>15.0<br>975.0<br>1.1                                                                                         | 135<br>(68)<br>Shied Stage<br>Shied Stage<br>s Blok4866<br>Basalt Alvaline<br>44.55                                      | 14                                                                                                                                                                                                   | 24.25                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.378<br>15.545<br>38.940                                                                                                     | 279<br>Kegyuelen Archipelego<br>val Gaboro Sute<br>s M/CPS 28<br>43 70070<br>43 70072<br>20 29<br>20 29<br>20 29<br>20 29<br>20 21<br>20 20 21<br>20 20 21<br>20 20 20<br>20 20 20<br>20 20 20<br>20 20 20<br>20 20<br>2 |
| 0.053<br>0.704380<br>0.053                                                                                                                                                   | 29<br>0,70428<br>0,063                                                                                                                                                                           | 0.053<br>0.701248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.512824<br>0.704270                                                                                                               | 66.5<br>[70]<br>19.0<br>1044.0                                                                                                       | 136<br>[68]<br>Shied Stage<br>Shied Stage<br>s Bhirts 779<br>Basalt Alfaline<br>48.56                                    | 14                                                                                                                                                                                                   | 24.25                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.385<br>15.555<br>38.970                                                                                                     | 280<br>Kerguseian Archipelago<br>Val Gaboro Plutonic Suite<br>s M/C-92,25<br>48,710,017<br>70,019225<br>[67]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.13<br>0.705367<br>0.187<br>0.115<br>0.512886<br>0.115                                                                                                                      | 0.13<br>0.187<br>0.187<br>0.51215<br>0.51215<br>0.51215<br>0.115                                                                                                                                 | 0.512586<br>0.70527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.512586<br>0.705267                                                                                                               | 0.13<br>10.4<br>54.6<br>62.3<br>985                                                                                                  | Kerguelen Archipelego<br>Mount Ross<br>99                                                                                | 0.765.564<br>0.765.564<br>0.8569<br>0.102<br>0.512822<br>0.512832<br>0.102                                                                                                                           | 0.254<br>0.705410<br>0.254<br>0.254<br>0.102<br>0.512541                                                                                                                                           | 0.5/102<br>0.5254<br>0.705374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.1<br>0.512541<br>0.705410<br>18.098<br>18.502<br>38.710                                                                      | 295<br>Kerguelen Archpelago<br>s BM1967/P805<br>9 B3841,-VAarline<br>Baselt,-VAarline<br>68.5<br>[74]<br>9.1<br>5.1<br>5.2<br>776.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.15<br>0.015<br>0.015125<br>0.015125<br>0.183<br>0.512582<br>0.123                                                                                                          | 0.15<br>0.183<br>0.183<br>0.183<br>0.123<br>0.123<br>0.123                                                                                                                                       | 0.512582<br>0.70512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.512582<br>0.076125                                                                                                               | 0.15<br>14<br>89.1<br>89.2<br>88.2                                                                                                   | Kerguelen Archipelago<br>Mount Ross<br>39                                                                                | 14<br>0.227<br>0.765625<br>0.227<br>0.104<br>0.512448<br>0.512448                                                                                                                                    | 0.277<br>0.705680<br>0.277<br>0.104<br>0.512498<br>0.104                                                                                                                                           | 0.512.401<br>0.712.491<br>0.705641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.2<br>0.512498<br>0.705680<br>18.080<br>15.537<br>38.884                                                                      | 206<br>Kenguulen Achpelago<br>s BM75500<br>Baselt, Adarine<br>68.5<br>[74]<br>25.5<br>32.0<br>48.0<br>0.7<br>0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.182<br>0.109<br>0.512656<br>0.109                                                                                                                                          | 0.152<br>0.109<br>0.512626<br>0.109                                                                                                                                                              | 0.512626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.512626<br>0.075234                                                                                                               | 0.152<br>11<br>61.2                                                                                                                  | Kerguelen Archipelago<br>Mount Ross<br>38                                                                                | 14<br>0.2.45<br>0.705931<br>0.245<br>0.109<br>0.512497<br>0.512497<br>0.109                                                                                                                          | 0.245<br>0.705980<br>0.245<br>0.109<br>0.512507<br>0.109                                                                                                                                           | 0.108<br>0.512500<br>0.245<br>0.705945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.3<br>0.512507<br>0.705980                                                                                                    | 297<br>Kegualen A.krispalen<br>K.kegualen A.krispalen<br>Basir, A.krispalen<br>K.a.krisp<br>Basir, A.krispalen<br>Basir, A.krisp<br>Basir, A.krispalen<br>Basir, A.krispal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| RECAI                                                                                      | LCULE /<br>e 14 Ma                                                                        | A 1                                              | RECAL<br>L'Age                                                | CULE A                                                                                     | CALCUL OLIERO                                                                                                                                             | OOK 2017                                                           |                                                                                                                                            |                                  |                                                   |                                                                                                                           | RECALCULE<br>L'Age 14 Ma                                                                                                                             | A                                                  | RECALCULE A                                                                                                                                            | CALCUL OLIEROOK                                                                                                                            | 2017                                   |                                                                                                                                      |                                                              |                                                   |                                                                                                                                     |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| (Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | (Rb/Sr) measured recalculé<br>(87 Sr/86Sr) initial recalculé<br>(Rb/Sr) initial recalculé | (SmNd) initial recalculé<br>Age 14Ma (L.Ponthus) | (Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé | (Rb/Sr) measured recalculé<br>(Rb/Sr) measured recalculé<br>(87 Sr/86Sr) initial recalculé | 229U/XAHP<br>229U/XAHP<br>225U/XAHP<br>225U/XAHP<br>222U/XAHP<br>222TP/224Pb initial<br>227PP/224Pb initial<br>227PP/244Pb initial<br>227PP/244Pb initial | 147 Sm/144Nd<br>143 Nd/1 44Nd initial<br>87R b/88Sr<br>978 c/88 Sr | U (com)<br>Pb (com)<br>Th (com)<br>143Nd/14Nd masured<br>875/885/masured<br>266Pb204Pb masured<br>277Pb204Pb masured<br>277Pb204Pb masured | Sm (ppm)<br>Rb (ppm)<br>Sr (ppm) | Longitude<br>Age Correction (Ma)<br>Age reference | # (Olerook et al., 2017 - n.)<br>Geochemistry Reference<br>Province<br>Location<br>Samole Name<br>Samole Name<br>Latitude | (EUS) measured recalculé<br>(BT)SR620 hindla recalculé<br>(Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | (Sm/Nd) Initial recalcule<br>Age 14 Ma (L.Ponthus) | (Rb/S) measured recalculé<br>(875/8654) initial recalculé<br>(Rb/S) initial recalculé<br>(Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé | BYRU085: http:<br>875/085: http:<br>238U/24Pb<br>238U/24Pb<br>238U/24Pb<br>237Fb/204Pb initial<br>2019/204Pb initial<br>2019/204Pb initial | 147 Sm/144Nd<br>143 Nd/1 44 Nd initial | Th (bpm)<br>143 Nd/1 44Nd measured<br>875 r/86SF measured<br>20Fb 2204Pb measured<br>20 Pb 2204Pb measured<br>20 8Pb 2204Pb measured | Sm (spom)<br>Nd (spom)<br>Sr (spom)<br>U (spom)<br>Pb (spom) | Longitude<br>Age Correction (Ma)<br>Age reference | # (Olerook et al. 2017 - n.)<br>Geochemistry Reference<br>Province<br>Location<br>Samole Name<br>Rock Trope<br>Latitude<br>Latitude |
| 0,106<br>0.512555<br>0,106                                                                 | 13.312<br>0.075438<br>13.312                                                              | 0.106                                            | 0.106                                                         | 13.312                                                                                     | 0.00                                                                                                                                                      | 0.512555                                                           | 0.512555<br>0.075482                                                                                                                       | 11.6<br>66.2<br>128<br>26.1      | 0.235                                             | Kergueien Archipelago<br>Mount Ross<br>98                                                                                 | 0.245<br>0.075232<br>0.245<br>0.110<br>0.512586<br>0.110                                                                                             | 0.167                                              | 0.245<br>0.245<br>0.110<br>0.512586                                                                                                                    | 0.70523                                                                                                                                    | 0.512586                               | 0.512586<br>0.075233                                                                                                                 | 864<br>864                                                   | 0,167                                             | [83]<br>Kerguelen Archipelago<br>Mount Ross<br>48                                                                                   |
| 0.109<br>0.512562<br>0.109                                                                 | 0.075370<br>2.407                                                                         | 0.109                                            | 0.109                                                         | 2,407                                                                                      | 0.000                                                                                                                                                     | 0.512562                                                           | 0.512562<br>0.075378                                                                                                                       | 13.6<br>75.8<br>133              | 0.235                                             | 183)<br>Kerguelen Archipellago<br>Mount Ross<br>131                                                                       | 0.211<br>0.075200<br>0.211<br>0.112<br>0.12274<br>0.12574                                                                                            | 0.21                                               | 0.211<br>0.211<br>0.112<br>0.512574                                                                                                                    | 0.7052                                                                                                                                     | 0.512574                               | 0.512574<br>0.075201                                                                                                                 | 914<br>915<br>949                                            | 0.21                                              | [83]<br>Kerguelen Archipelago<br>Mount Ross<br>130                                                                                  |
| 0.098<br>0.512580<br>0.098                                                                 | 0.075191<br>2.009                                                                         | 0.098                                            | 0.098<br>0.512580                                             | 2.009                                                                                      | 0.000                                                                                                                                                     | 0.51258                                                            | 0.51258<br>0.075198                                                                                                                        | 9.98<br>61.7<br>140.6<br>190     | 0.235                                             | Kerguelen Archipelago<br>Mount Ross                                                                                       | 0.113<br>0.512573<br>0.113                                                                                                                           | 0.235                                              | 0.113                                                                                                                                                  | 365 C C                                                                                                                                    | 0.512573                               | 0.512573<br>0.078243                                                                                                                 | 63.4<br>83.4                                                 | 0.235                                             | [83]<br>Kerguelen Archipelago<br>Mount Ross<br>64                                                                                   |
| 0.111<br>0.512546<br>0.111                                                                 | 117.866<br>0.075597<br>117.866                                                            | 0.111<br>0.235                                   | 0.111                                                         | 117.866<br>117.866                                                                         | 0.338                                                                                                                                                     | 0.512546                                                           | 0.512546<br>0.07599                                                                                                                        | 18.4<br>165<br>3.8               | 0.235                                             | Kerguelen Archipelago<br>Mount Ross<br>106                                                                                | 0.199<br>0.075214<br>0.199<br>0.115<br>0.512565<br>0.115                                                                                             | 0.235                                              | 0.199<br>0.199<br>0.199<br>0.115<br>0.115<br>0.512565                                                                                                  | 0.70821                                                                                                                                    | 0.512565                               | 0.512565<br>0.075215                                                                                                                 | 11.6<br>60.8<br>71.2<br>971                                  | 0.235                                             | [83]<br>Kerguelen Archipelago<br>Mount Ross<br>97                                                                                   |
| 0.113<br>0.512571<br>0.113                                                                 |                                                                                           | 0.113<br>0.251                                   | 0.113<br>0.512571                                             | 50.600 T                                                                                   | 0.051                                                                                                                                                     | 0.512571                                                           | 0.512571<br>0.075249                                                                                                                       | 13.5<br>72.3                     | 0.251                                             | Kergueten Archipelago<br>Mount Ross<br>61                                                                                 | 0.165<br>0.075155<br>0.180<br>0.120<br>0.512567<br>0.120                                                                                             | 0.120                                              | 0.165<br>0.165<br>0.125<br>0.12567                                                                                                                     | 0.70516                                                                                                                                    | 0.512567                               | 0.512567<br>0.075156                                                                                                                 | 10.9<br>54.3<br>1056                                         | 0.235                                             | [83]<br>Kerguelen Archipelago<br>Mount Ross<br>57                                                                                   |
| 0.104<br>0.512542<br>0.104                                                                 | 28.792<br>0.076338<br>28.792                                                              | 0.104                                            | 0.104                                                         | 28.792<br>28.792                                                                           | 0                                                                                                                                                         | 0.512542                                                           | 0.512542<br>0.076493                                                                                                                       | 14.8<br>86<br>16.5               | 0.38                                              | Kerguelen Archipelago<br>Mount Ross<br>108                                                                                | 0.174<br>0.075171<br>0.174<br>0.173<br>0.113<br>0.512576<br>0.113                                                                                    | 0.113                                              | 0.174<br>0.174<br>0.174<br>0.113<br>0.512576                                                                                                           | 0.70617                                                                                                                                    | 0.512576                               | 0.512576<br>0.075172                                                                                                                 | 10.8<br>57.9<br>63.5<br>993                                  | 0.235                                             | [83]<br>Kerguelen Archipelago<br>Mount Ross<br>54                                                                                   |
| 0.097<br>0.512535<br>0.097                                                                 |                                                                                           | 0.097                                            | 0.097<br>0.512535                                             | 557                                                                                        | 0 64                                                                                                                                                      | 0.512535                                                           | 0.512535<br>0.076788                                                                                                                       | 19.6<br>122                      | 0.64                                              | Keguelen Archipelago<br>Mount Ross<br>112                                                                                 | 0.325<br>0.375207<br>0.325<br>0.110<br>0.512564<br>0.110                                                                                             | 0.235                                              | 0.325<br>0.325<br>0.325<br>0.110<br>0.512564                                                                                                           | 0.70821                                                                                                                                    | 0.512564                               | 0.512564<br>0.075208                                                                                                                 | 11.6<br>63.6<br>88<br>736                                    | 0.235                                             | [83]<br>Kerguelen Archipelago<br>Mount Ross<br>142                                                                                  |
| 0.100<br>0.512502<br>0.100                                                                 | 77.914<br>0.075396<br>77.915                                                              | 0.100<br>1.02                                    | 0.512502                                                      | 77.914                                                                                     | 1 02                                                                                                                                                      | 0.512503                                                           | 0.512503<br>0.076525                                                                                                                       | 16.1<br>97<br>22.1<br>7.7        | 1.02                                              | Keguelen Archipelago<br>Mount Ross<br>143                                                                                 | 0.075133<br>0.424<br>0.424<br>0.109<br>0.512567<br>0.109                                                                                             | 0.235                                              | 0.424<br>0.424<br>0.424<br>0.109<br><b>0.512567</b>                                                                                                    | 0.70613                                                                                                                                    | 0.512567                               | 0.512567<br>0.075134                                                                                                                 | 11<br>61.1<br>114<br>729                                     | 0.235                                             | [83]<br>Kerguelen Archipelago<br>Mount Ross<br>144                                                                                  |
| 0.123<br>0.512662<br>0.123                                                                 |                                                                                           | 0.123<br>14                                      | 0.123<br>0.512657                                             |                                                                                            | 14.48<br>0.11<br>83.92<br>15.442<br>38.777<br>49.0                                                                                                        | 0.512657                                                           | 0.4<br>16<br>0.512673<br>0.704803<br>18.346<br>18.344<br>38.840                                                                            | 17 .5<br>17                      | 18 83<br>5. 69                                    | 285<br>[83]<br>Mourt Ross<br>s 145<br>Gabbro<br>-49.58                                                                    | 0.964<br>0.075176<br>0.964<br>0.113<br>0.512587<br>0.113                                                                                             | 0.235                                              | 0.964<br>0.964<br>0.113<br>0.512587                                                                                                                    | 0.70518                                                                                                                                    | 0.512587                               | 0.512587<br>0.075179                                                                                                                 | 74.5<br>74.5<br>142.5<br>400                                 | 0.235                                             | [83]<br>Kerguelen Archipelago<br>Mount Ross<br>107                                                                                  |
| 0.122<br>0.512603<br>0.122                                                                 | 0.141<br>0.704971<br>0.141                                                                | 0.122                                            | 0.122<br>0.512597                                             | 0.141<br>0.704957<br>0.141                                                                 | 18.86<br>0.14<br>90.14<br>18.315<br>15.544<br>38.861<br>38.861                                                                                            | 0.512596<br>0.141                                                  | 0.8<br>2.8<br>3.9<br>0.5128 14<br>0.704993<br>15.380<br>15.380<br>15.890<br>38.990                                                         | 8.1<br>40.1<br>756.0             | 69.5<br>21<br>[83]                                | 283<br>(Kerguelen Archiviolago<br>Mount Ross<br>s 128<br>Trachrousat<br>-49.58                                            | 0.07533<br>3.271<br>3.271<br>0.102<br>0.512590<br>0.102<br>0.102                                                                                     | 0.235                                              | 3.271<br>3.271<br>3.271<br>0.102<br>0.512550                                                                                                           | 0.70533                                                                                                                                    | 0.51255                                | 0.51255<br>0.075344                                                                                                                  | 12.7<br>75<br>138.6<br>115                                   | 0.235                                             | (83)<br>Kerguelen Archipelago<br>Mount Ross<br>44                                                                                   |

| RECALCULE<br>L'Age 14 Ma                                                                                                                                                                   | A RECALCULE A<br>L'Age Biblio                                                                                                                                                                                                                                      | CALCUL OLIEROOK 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                       | RECALCULE A<br>L'Age 14 Ma RECALCULE A<br>L'Age Biblio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CALCUL OLIEROOK 2017                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (TSVR507 Instant or coacute<br>(BTSVR5051 Instant or coacute<br>(SmN40) Instant or coacute<br>(T43Ndf144Nd) Instant or coacute<br>(SmN40) Instant or coacute<br>(SmN40) Instant or coacute | Aver trist, it, routinos)<br>(PRXS) measured recalculé<br>(PRXS) measured recalculé<br>(SmN4) measured recalculé<br>(143Md AL-Donab India Tecalculé<br>(143Md AL-Donab India Tecalculé<br>Aver 14Md IL-Donab India Tecalculé<br>Aver 14Md IL-Donab India Tecalculé | Handler Hindler<br>Browner Aude Hindle<br>Browner Aude Hindle<br>Browner Handler<br>Browner Handler<br>Browner<br>Browner Handler<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browner<br>Browne | All Company of Annual A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | # (Dikrock et al. 2017 - n.)<br>Geochemister Reference<br>Province<br>Samole Kinne<br>Rock Trose<br>Rock Trose<br>Rock Trose<br>Aug Collore-Linh (Ma)<br>Aug reference<br>Aug reference<br>Seri (com) | Aver ref. (L. Purchus)<br>(RUSS) measured recelcula<br>(Sam(RUSS) measur | 147 Sm (444)<br>143 Not (444)<br>143 Not (444)<br>875/065 h thai<br>258/U2049<br>228/U2049<br>228/U2049 h thai<br>208/P2049 h thai<br>208/P2049 h thai<br>208/P2049 h thai<br>208/P2049 h thai | # ( Disrock et al. 2017 - n)<br>Geochemistry Netronos<br>Location<br>Samab Mane<br>Rock Trae<br>Rock Trac<br>Rock                                                                                                                                                                                                                                                                                |
| 0.705675<br>132.518<br>132.518<br>0.094<br>0.512604<br>0.094                                                                                                                               | 132.50<br>0.705675<br>132.518<br>0.094<br>0.512604<br>0.512604<br>0.99                                                                                                                                                                                             | n 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 454<br>453<br>9.6<br>0.72261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UNS<br>(Kenguelein Archipeligo<br>Mount Belrac<br>Prinoriale<br>9                                                                                                                                     | 21<br>0.61337<br>0.1337<br>0.137<br>14<br>0.137<br>0.137<br>0.137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.512571<br>15.23<br>0.11<br>68.78<br>15.347<br>15.545<br>15.545<br>39.928                                                                                                                     | 2.24<br>(Kengjudeen Archipelage<br>Mcunit Pata<br>Gasho<br>49.85<br>(19.5<br>22.1<br>22.1<br>2.5<br>0.5<br>15.55<br>(19.54)<br>0.5<br>15.55<br>(19.54)<br>15.55<br>(19.54)<br>15.55<br>(19.54)<br>15.55<br>(19.54)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55<br>(19.55)<br>15.55 |
| 0.723847<br>0.723847<br>0.102<br>0.102<br>0.512504<br>0.102                                                                                                                                | 0.723847<br>0.723847<br>0.105<br>0.102<br>0.512504<br>0.102<br>0.102<br>9                                                                                                                                                                                          | 0.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 69 3<br>40 8<br>1125<br>0.51251<br>0.772366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UMS<br>(74)<br>Kompusien Archipelago<br>Romarch Periorisa<br>Basante<br>Basante<br>9                                                                                                                  | 0.7155<br>0.7155<br>0.7155<br>0.7155<br>0.7155<br>0.7155<br>0.7155<br>0.7155<br>0.7155<br>0.7155<br>0.7155<br>0.7155<br>0.7155<br>0.7155<br>0.7155<br>0.7155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.512600<br>0.102<br>0.70517<br>18.21<br>18.21<br>84.03<br>18.077<br>18.500<br>18.500<br>28.500                                                                                                | 3.00<br>Kengudein Arch pellago<br>Maan It Rass<br>49.05<br>49.45<br>80.5<br>81.2<br>40.4<br>40.4<br>40.4<br>40.4<br>40.4<br>40.4<br>40.4<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.705735<br>0.705735<br>0.195<br>0.512484<br>0.105                                                                                                                                         | 0.70196<br>0.70196<br>0.196<br>0.196<br>0.195<br>0.512484<br>0.105<br>9                                                                                                                                                                                            | 0.196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 97.7<br>86.4<br>127.4<br>0.512.49<br>0.70576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UMS<br>Kengusen Achtelago<br>Ronarch Perinta<br>Basante<br>9                                                                                                                                          | 0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.512607<br>0.512607<br>2.1.26<br>0.16<br>80.10<br>17.944<br>15.944<br>15.948<br>15.948                                                                                                        | 2,82<br>Karguelen Archivellage<br>Karguelen S.<br>Salton<br>4,9,58<br>80,5<br>80,5<br>80,5<br>1,4<br>1,4<br>1,4<br>1,4<br>1,4<br>1,4<br>1,4<br>1,5<br>2,6<br>2,6<br>2,6<br>2,6<br>3,8<br>3,8<br>3,30<br>3,30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.72581<br>0.72589<br>2.352<br>0.088<br>0.512555<br>0.068                                                                                                                                  | 0.772.351<br>2.352<br>2.352<br>0.0512855<br>0.068<br>0.068<br>9                                                                                                                                                                                                    | o 23<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66.3<br>165<br>2013<br>0.51256<br>0.770599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UMS<br>Kenguelen Archotelago<br>Ronarch Peninsia<br>Phonole<br>9                                                                                                                                      | 24.3<br>0.117<br>0.5128013<br>0.117<br>14<br>0.5128117<br>0.5128117<br>0.117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.512804<br>13.95<br>0.10<br>64.37<br>18.275<br>15.544<br>38.824                                                                                                                               | 285<br>Kenguelen Architelleg<br>Kourik Reps<br>Subtro<br>49.58<br>848<br>848<br>848<br>848<br>1.2<br>1.2<br>1.2<br>5.4<br>0.0<br>85.4<br>0.0<br>1.2<br>5.4<br>5.4<br>5.4<br>0.0<br>1.2<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4<br>5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.723<br>0.705176<br>0.723<br>0.5126<br>0.512639<br>0.125                                                                                                                                  | 0.705094<br>0.755094<br>0.723<br>0.723<br>0.723<br>0.723<br>0.725<br>0.125<br>0.125                                                                                                                                                                                | 072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ег<br>91<br>364<br>0.10252<br>0.70532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LKS<br>[74]<br>Kerguelen Architoelago<br>Goary taland<br>LVJKr(13)<br>Trachvie<br>22                                                                                                                  | 0,76545<br>0,76545<br>0,7850<br>0,78546<br>0,052466<br>0,752646<br>0,75265<br>7,526<br>7,5265<br>0,0665<br>0,0665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.9                                                                                                                                                                                            | UNS<br>Kerganian Archifeada<br>Jeanne D'Ac Beninsala<br>Phonelia<br>Phonelia<br>220<br>225<br>225<br>225<br>225<br>225<br>225<br>225<br>225<br>225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.712.274<br>0.707060<br>12.276<br>0.108<br>0.512600<br>0.108<br>0.108                                                                                                                     | 12.274<br>0.725665<br>12.278<br>0.108<br>0.512595<br>0.108<br>0.108                                                                                                                                                                                                | 12.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LKS<br>(74)<br>Jeanne D'Are Feniniau<br>LVLK/127<br>Trachvie<br>22                                                                                                                                    | 0.76577<br>0.76577<br>0.5286<br>0.52860<br>0.52860<br>0.52860<br>0.5286<br>0.5377<br>5.517<br>5.517<br>5.517<br>5.517<br>5.005<br>0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , сл<br>со                                                                                                                                                                                     | UNS<br>Kegyalén Architelado<br>Jean e D'Ac Peninsula<br>Phonoite<br>9<br>7.77<br>197<br>197<br>98<br>98<br>0.01251<br>0.70512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.706943<br>11.355<br>0.118<br>0.512639<br>0.118<br>0.118                                                                                                                                  | 11.352<br>0.706653<br>17.356<br>0.118<br>0.512633<br>0.118<br>0.118                                                                                                                                                                                                | 92 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53<br>102<br>26<br>0.7092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LMS<br>Kerguelen Archinelago<br>Jeanne D'Arc Fenninelu<br>LVLK1272<br>Trachvie<br>22<br>115                                                                                                           | 0.705471<br>0.705471<br>0.228<br>0.512614<br>0.512614<br>0.228<br>0.228<br>0.228<br>0.228<br>0.228<br>0.228<br>0.228<br>0.228<br>0.228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.229                                                                                                                                                                                          | UNS<br>Kerggulern Architelelage<br>Mcant Rade<br>LVL(K00<br>Technice<br>11<br>68<br>118<br>1494<br>1494<br>0.7055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.7049<br>0.70490<br>0.149<br>0.132<br>0.512738<br>0.132                                                                                                                                   | 0.704917<br>0.704917<br>0.149<br>0.132<br>0.513728<br>0.132<br>0.132                                                                                                                                                                                               | 0.512728<br>0.149<br>0.704917<br>0.17<br>0.17<br>102.93<br>18.511<br>15.574<br>15.574<br>15.574<br>15.574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 305<br>264<br>694<br>0<br>2.3<br>2.3<br>2.3<br>0.5<br>42760<br>0.7<br>64770<br>0.7<br>64770<br>0.7<br>64770<br>0.7<br>15<br>5770<br>3.9<br>27.0<br>3.9<br>27.0<br>3.9<br>27.0<br>3.9<br>27.0<br>3.9<br>2.5<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Kergusien Archipelaago<br>Gaary Island<br>Basalt Avaaline<br>-46.05<br>24.05<br>170.0<br>6.7<br>6.7                                                                                                   | 0.70529<br>0.70539<br>0.228<br>0.51250<br>0.51250<br>0.102<br>0.228<br>0.251<br>0.251<br>0.51250<br>0.102<br>0.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.228                                                                                                                                                                                          | UNK<br>Kergguler in Architelikage<br>Monart Rouge<br>LVL(KS<br>14.9<br>88<br>14.9<br>88<br>1153<br>1153<br>0.01564<br>0.701662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.7251<br>0.726136<br>0.221<br>0.135<br>0.512688<br>0.135                                                                                                                                  | 0.221<br>0.705102<br>0.221<br>0.221<br>0.512878<br>0.512878<br>0.135                                                                                                                                                                                               | 0.512676<br>0.72017<br>0.700102<br>21.05<br>100.25<br>100.25<br>100.25<br>15.562<br>38.962<br>24.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31 5<br>32 5<br>419 0<br>0 5 12 70<br>0 7 16 16 16<br>0 7 16 16 16<br>1 1 5 66 1<br>1 5 | 17-1<br>Kenpuelen Achtyloga<br>Jeanne D'Arc Peninsua<br>K.L.K.Y108<br>Basalt, Achtylog<br>Basalt, Achtylog<br>Basalt, Achtylog<br>17-0<br>7-0<br>7-0                                                  | 0.7 2535<br>0.7 2535<br>0.7 2535<br>0.5 12555<br>0.7 2535<br>0.7 2535<br>0.7 2535<br>0.7 2535<br>0.7 2535<br>0.5 12555<br>0.051<br>0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.36                                                                                                                                                                                           | UMS<br>Kerguwen Accipelago<br>Mount Rage<br>Phonole<br>6,76<br>46,6<br>192<br>235<br>0.70569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.77652<br>0.77652<br>0.149<br>0.137<br>0.512607<br>0.137                                                                                                                                  | 0.149<br>0.705207<br>0.145<br>0.145<br>0.145<br>0.137<br>0.512598<br>0.137<br>0.512598<br>0.137<br>14                                                                                                                                                              | 0.512590<br>0.7459<br>0.765207<br>2.087<br>0.145<br>2.087<br>0.15<br>18.297<br>15.555<br>38.907<br>15.555<br>38.907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28.2<br>21.0<br>4.07.0<br>2.4<br>2.4<br>2.4<br>2.4<br>3.7<br>0.7.052.60<br>0.7.052.60<br>0.7.052.60<br>1.5.50<br>38.030<br>0.137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [74]<br>Jagne DAc Perinsula<br>Basalt, Aktine<br>Basalt, Aktine<br>24.8<br>25.8<br>21.8<br>21.8<br>21.8<br>21.8<br>21.8<br>21.8<br>21.8<br>21                                                         | 0,7005<br>0,7005<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.167                                                                                                                                                                                          | UNS<br>Keepueden Architelege<br>Mount Bestern<br>Basean te<br>Basean                                                                                                                                                                                                                                                                         |

| RECALCULE A<br>L'Age 14 Ma                                                                                                                                                    | RECALCULE A<br>L'Age Biblio                                                                                                                                                                                             | CALCUL OLIEROOK 2017                                                                                                                                                                                                                          |                                                                                                                                                  |                                                                      |                                  |                                                                                                             | RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                                                                              | RECALCULE A<br>L'Age Biblio                                                                                                                                                                                            | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                    |                                                                     |                                                   |                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| (RDS) massured recalcule<br>(RDS) massured recalcule<br>(RTSR650, Initial recalcule<br>(SmN4) masured recalcule<br>(143Kd/44Kd) Initial recalcule<br>(SmN4) Initial recalcule | Age eff. (L. Ponthus)<br>(RUS/9) measured recalculé<br>(STS/8686) Initial recalculé<br>(STS/8686) Initial recalculé<br>(1438/df 44/dd Initial recalculé<br>(1438/df 44/dd Initial recalculé<br>(SmN4) Initial recalculé | 147 Smr 1446 https:<br>475 Mgr 1446 https:<br>475 Mgr 1446 https:<br>475 Mgr 1446 https:<br>475 Mgr 1446 https:<br>274 U204 Pb<br>274 U204 Pb<br>274 U204 Pb<br>274 U204 Pb<br>274 Pb 274 Pb ntml<br>274 Pb 274 Pb ntml<br>274 Pb 274 Pb ntml | Pb (conn)<br>143Ndr Ad-MC Th (con)<br>205P/2040 Consumed<br>205P/2040 Consumed<br>206P/2040 Consumed<br>207P/2040 Consumed<br>207P/2040 Consumed | Ader transmission<br>Sm (cosm)<br>Nd (cosm)<br>Sr (cosm)<br>U (cosm) | Longitude<br>Age Correction (Ma) | # (Olianok et al., 2017 - n.)<br>Geochamistry Reference<br>Province<br>Location<br>Sameh Name<br>Sameh Name | Age 14Mar (L. Fornhus)<br>(RSUS) measured recalculé<br>( <b>875/8656)</b> Initial recalculé<br>( <b>875/8656)</b> Initial recalculé<br>( <b>143/kd/44/kd)</b> Initial recalculé<br>( <b>143/kd/44/kd)</b> Initial recalculé<br>(SmNd) Initial recalculé | Age etc. (L. Ponthus)<br>(RCVS) measured recalculé<br>(STS/R65A) initial recalculé<br>(STN/NC) measured recalculé<br>(STN/NC) measured recalculé<br>(143Nd/144Nd) initial recalculé<br>(143Nd/144Nd) initial recalculé | 417 San't AtAld<br>418 San't Anni Iniai<br>8175 (1985)<br>8175 (1985)<br>8175 (1985)<br>8175 (1985)<br>8175 (1985)<br>8175 (1985)<br>2181 (1984)<br>2281 | 143 Nd/1 44 Nd mesured<br>87S r/86Sr measured<br>206PU204Pb measured<br>207PU204Pb measured<br>208PU204Pb measured | Sm (bom)<br>Nd (bom)<br>Rb (bom)<br>Sr (bom)<br>U (bom)<br>Eb (bom) | Longitude<br>Age Correction (Ma)<br>Age reference | # (Olierook et al. 2017 - n.)<br>Geochemistry Reference<br>Province<br>Location<br>Sambe Name<br>Rock Type<br>Latitude |
| 0.252<br>0.705520<br>0.252                                                                                                                                                    | 0.212<br>0.705520<br>0.222<br>14                                                                                                                                                                                        | :                                                                                                                                                                                                                                             | 0.70557                                                                                                                                          | 69<br>7 91                                                           | 14                               | Kerguelen Archipslago<br>Ouest Island<br>monzonabbro                                                        | 0.171<br>0.705236<br>0.171<br>0.173<br>0.512708<br>0.131                                                                                                                                                                                                | 24.8<br>0.171<br>0.705210<br>0.171<br>0.131<br>0.512699<br>0.131                                                                                                                                                       | 0.171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.51272<br>0.70527                                                                                                 | 5.04<br>23.2<br>4.05                                                | 24.8                                              | [74]<br>Kerguelen Archipelago<br>Mount Rouge<br>LVLK88<br>Basalt                                                       |
| 85.185<br>0.707244<br>86.205<br>0.51256                                                                                                                                       | 86,188<br>0.707244<br>88,205<br>0.51256                                                                                                                                                                                 |                                                                                                                                                                                                                                               | 0.51256<br>0.72438                                                                                                                               | 229<br>7.7                                                           | 14                               | Kerguelen Archipelago<br>Ouesi telago<br>0.0 102<br>granite (azište)                                        | 14<br>0.785153<br>0.184<br>0.184<br>0.185<br>0.185<br>0.135                                                                                                                                                                                             | 24.8<br>0.184<br>0.184<br>0.184<br>0.135<br>0.512828<br>0.135<br>0.135                                                                                                                                                 | 0.184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.51265<br>0.70519                                                                                                 | 6.34<br>28.5<br>30<br>471                                           | 24.8                                              | [74]<br>Kerguelen Archipelago<br>Mount Rouge<br>LVLK87<br>Basalt                                                       |
| 32.006<br>0.706877<br>32.012                                                                                                                                                  | 14<br>32.006<br>0.705877<br>32.012                                                                                                                                                                                      | :                                                                                                                                                                                                                                             | 0.71224                                                                                                                                          | 251<br>22.7                                                          | 14                               | (75)<br>Kerguelen Archipelago<br>Ouest Island<br>80.99<br>alkali crante                                     | 0.285<br>0.285<br>0.705053<br>0.1285<br>0.1380<br>0.512608<br>0.130                                                                                                                                                                                     | 0.24.8<br>0.285<br>0.705010<br>0.286<br>0.130<br>0.1329<br>0.1329<br>0.130                                                                                                                                             | 0 285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.51262<br>0.70511                                                                                                 | 599<br>599                                                          | 24.8                                              | [74]<br>Kerguelen Archipel ago<br>Jeanne D'Arc Peninsula<br>LVLK132<br>Basalt                                          |
| 16.795<br>0.706131<br>16.798                                                                                                                                                  | 14<br>16.795<br>0.706131<br>16.798                                                                                                                                                                                      | :                                                                                                                                                                                                                                             | 0.70547                                                                                                                                          | 213<br>36.7                                                          | 14                               | (75)<br>Kerguelen Archipelan<br>Oust Island<br>Dust Island<br>miarolitic sverth                             | 0.114<br>0.198<br>0.705161<br>0.198<br>0.128<br>0.128<br>0.128                                                                                                                                                                                          | 0,198<br>0,705130<br>0,198<br>0,198<br>0,198<br>0,198<br>0,198<br>0,128<br>0,128                                                                                                                                       | 0.198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.51266<br>0.7052                                                                                                  | 5.4<br>25.5<br>26<br>380                                            | 24.8                                              | Kerguelen Archipelago<br>Ronarch Peninsula<br>LVLK70<br>Basait                                                         |
| 24,753<br>0.765949<br>24,758                                                                                                                                                  | 24.753<br>0.705949<br>24.758                                                                                                                                                                                            |                                                                                                                                                                                                                                               | 0.71087                                                                                                                                          | 260<br>30,4                                                          | 14                               | (75)<br>Kerguelen Acchipelago<br>Ouest biand<br>Bornhvrite microsverille                                    | 0.063<br>0.704758<br>0.063                                                                                                                                                                                                                              | 15<br>0.063<br>0.704787<br>0.063                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.70477                                                                                                            | 6.1<br>281                                                          | <br>Ch                                            | (75)<br>Kerguelen Archipelago<br>Anse du Jardín<br>81.28<br>microgabbro                                                |
| 1.247<br>0705382<br>1.248                                                                                                                                                     | 1.247<br>1.247<br>1.248<br>1.248                                                                                                                                                                                        |                                                                                                                                                                                                                                               | 0.70563                                                                                                                                          | 185<br>429                                                           | 14                               | (75)<br>Kerguelen Accharge<br>Ouest bland<br>Svente                                                         | 14<br>0.053<br>0.704479<br>0.053                                                                                                                                                                                                                        | 15<br>0.053<br>0.7 <b>04479</b><br>0.053                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.70449                                                                                                            | 477 1                                                               | 10                                                | [75]<br>Kerguelen Acchipelago<br>Anse du Jardin<br>81.25<br>pombwritic microalabiro                                    |
| 0.056<br>0.708759<br>0.056<br>0.056<br>0.056<br>0.056<br>0.096                                                                                                                | 14<br>0.056<br>0.705759<br>0.056<br>0.512826<br>0.512826<br>0.512826                                                                                                                                                    |                                                                                                                                                                                                                                               | 0.512835<br>0.70577                                                                                                                              | 10.76<br>67.69<br>23<br>1187                                         | 14                               | [40][39]<br>Kerguelen Archipelago<br>Ouest Island<br>2621<br>gabbro                                         | 14<br>0.075<br>0.075<br>0.075                                                                                                                                                                                                                           | 15<br>0.075<br>0.075<br>0.075                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.70451                                                                                                            | 12.1<br>466                                                         | 1<br>Ju                                           | [75]<br>Kargueten Archipetago<br>Anse du Jardin<br>81.962<br>por phyritic microgabbro                                  |
| 0.705587<br>0.705587<br>0.118<br>0.138<br>0.512466<br>0.138                                                                                                                   | 14<br>0.705587<br>0.138<br>0.512466<br>0.138                                                                                                                                                                            | :                                                                                                                                                                                                                                             | 0.512479<br>0.70559                                                                                                                              | 1-001-00<br>6.49<br>28.41<br>9<br>1480                               | 14                               | (40)[36]<br>Kerguelen Archipelago<br>Ouest land<br>2 Island<br>gabbro                                       | 0.102<br>0.102<br>0.102<br>0.512520                                                                                                                                                                                                                     | 0.102<br>0.102<br>0.102<br>0.512520                                                                                                                                                                                    | 0.102<br>0 <b>705440</b><br>19.63<br>0.14<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5.12.520<br>0.7.05440<br>18.373<br>15.564<br>38.910                                                              | 37.7<br>1066.0<br>1.0<br>3.2                                        | 00<br>14-1<br>7                                   | 308<br>[75]<br>Cuest Island<br>S 802.5<br>Gabbro, Biofile<br>Gabbro, Biofile                                           |
| 0.774<br>0.708615<br>0.074                                                                                                                                                    | 0.705615<br>0.074<br>0.074                                                                                                                                                                                              | 2                                                                                                                                                                                                                                             | 0,70563                                                                                                                                          | 1090                                                                 | 14                               | 346<br>(40)(39)<br>Kerguelen Architelago<br>Ouest Leand<br>Rabbro                                           | 0.144<br>0.705511<br>0.144                                                                                                                                                                                                                              | 0.144<br>0.708511<br>0.144                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.70554                                                                                                            | 52<br>1045                                                          | 14                                                | [7:5]<br>Kerguelen Archipelago<br>Ouest Island<br>80.121<br>gabbro                                                     |
| 0.082<br>0.70 <b>5574</b><br>0.082<br>0.512448                                                                                                                                | 14<br>0.082<br>0.705574<br>0.082<br>0.512448<br>14                                                                                                                                                                      |                                                                                                                                                                                                                                               | 0.512448<br>0.70559                                                                                                                              | 1238                                                                 | 14                               | 40][34]<br>Kerguelen Archipelago<br>Ouest Island<br>2824<br>gabbro                                          | 14<br>0.399<br>0.7056319<br>0.399                                                                                                                                                                                                                       | 14<br>0.399<br>0.705631<br>0.399                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.70571                                                                                                            | 645                                                                 | 14                                                | (75)<br>Kerguelen Archipelago<br>Ouest Island<br>80.76<br>monzodabbro                                                  |

|                                                                                                                 | REC.<br>L'A                                                                                    | ALCULE<br>.ge 14 Ma                                                                                                     | A                    | RECALCUL<br>L'Age Bibl                                                                                                                                         | .E A<br>lio                                        | CALCUL OLIEROOK 2017                                                                                                                                                                    |                                                                                                                    |                                                                     |                                                   |                                                                                                 |                                                          | REC/                                                                                       | ALCULE A<br>ge 14 Ma                                                                                           | RECA<br>L'Aç                                                                               | LCULE A<br>ge Biblio                                                                                              | CALCUL OLIEROOK 2017                       |                                                                                                                     |                                                                     |                                                               |                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| A LUCK AND A | (311/14), inteasured recarcure<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | (Rb/Sr) measured recalculé<br>(87 Sr/86S/t initial recalculé<br>(Rb/Sr)/this recalculé<br>/Sm/bl/t measuring/ recalculé | Age 14Ma (L.Ponthus) | (87Sr/86Sr) initial recalculé<br>(Rb/Sr) initial recalculé<br>(Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé<br>(143Nd/144Nd) initial recalculé | Age ref. (L.Ponthus)<br>(Rb/Sr) measured recalculé | 1475mr1444<br>1438/dr44440<br>1438/dr44440<br>1478/dr85 brital<br>2578/02819<br>2581/02419<br>2281/02419<br>2281/02419<br>2281/02419 brital<br>2287/b20419 brital<br>2287/b20419 brital | 143Nd/1 44Nd measured<br>87Sr66Sr measured<br>206Fb/204Pb measured<br>207Fb/204Pb measured<br>207Pb/204Pb measured | Nd (com)<br>Nd (com)<br>Sr (com)<br>U (com)<br>Pb (com)<br>Th (com) | Longitude<br>Age Correction (Ma)<br>Age reference | Province<br>Location<br>Sample Name<br>Rock Type<br>Latitude                                    | # (Olierook et al., 2017 - n.)<br>Geochemistry Reference | (Sm/Nd) measured recaicule<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | Age 14Ma (L.Ponthus)<br>(Rb/Sr) measured recalculé<br>(875x86Sh initial recalculé<br>(Rb/Sr) initial recalculé | (Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | Age ref. (L. Ponthus)<br>(Rb/Sr) measured recalculé<br>(87.9/86Sn) initial recalculé<br>(Rb/Sr) initial recalculé | 1475/m14444                                | 143Nd/1 44Nd measured<br>87Srf86Sr measured<br>206Fb/204Pb measured<br>207Fb/204Pb measured<br>208Fb/204Pb measured | Nd (com)<br>Rb (com)<br>Sr (com)<br>U (com)<br>Tb (com)<br>Tb (com) | Longitude<br>Age Correction (Ma)<br>Age reference<br>Sm (ppm) | # (Olierook et al. 2017 - n.)<br>Geochemistry Reference<br>Province<br>Location<br>Samble Name<br>Rock Troe<br>Latitude |
|                                                                                                                 |                                                                                                | 0.591<br>0.705251<br>0.591                                                                                              | 13                   | 0.705251<br>0.591                                                                                                                                              | 13<br>0.591                                        |                                                                                                                                                                                         | 0,70536                                                                                                            | 138<br>675                                                          | 13                                                | Kerguelen Archipelago<br>Mount Ballons<br>78.69<br>morzonite                                    | 18                                                       |                                                                                            | 14<br>0.134<br>0.705833<br>0.134                                                                               |                                                                                            | 14<br>0.134<br>0.70 <b>5833</b>                                                                                   |                                            | 0.70586                                                                                                             | 820                                                                 | 14<br>[40][39]                                                | 40[39]<br>Kerguelen Archipelago<br>Ouest Island<br>2625<br>gabbro                                                       |
|                                                                                                                 | 0.51258                                                                                        | 0.119<br>0.705268<br>0.119                                                                                              | 13                   | <b>0.705268</b><br>0.119<br>0.51258                                                                                                                            | 13<br>0.119                                        |                                                                                                                                                                                         | 0.51258<br>0.70529                                                                                                 | 36.3<br>884                                                         | 13                                                | Kerguelen Archipelago<br>Mount Ballons<br>78.69c<br>amphibolite (cumulath                       | [75]                                                     | 0.512630                                                                                   | 14<br>0.130<br>0.705114<br>0.130                                                                               | 0.512630                                                                                   | 20<br>0.130<br><b>0.705103</b><br>0.130                                                                           | 0.130<br>0.705140<br>17.57<br>0.13<br>0.00 | 0.512830<br>0.705140<br>18.496<br>15.549<br>39.042                                                                  | 33.9<br>755.0<br>1.0<br>3.5                                         | 68.5<br>-                                                     | 309<br>Kerguelen Archipelago<br>Montagnes Vertes<br>s 77 25<br>Gabbro<br>-48.55                                         |
|                                                                                                                 | 0.512610                                                                                       | 0.040<br>0.705372<br>0.040                                                                                              | 14                   | 0.705369<br>0.040<br>0.512810                                                                                                                                  | 0.040                                              | 0.040<br>0.705380<br>6.63<br>0.00<br>0.00                                                                                                                                               | 0.512610<br>0.705380<br>18.354<br>15.580<br>38.912                                                                 | 7.3<br>522.0<br>0.2<br>1.8                                          | 68.5<br>20                                        | Kergu-elen Archipelago<br>Mount Mamelles<br>s 77.103C<br>abbro, Clinopyroxene-Olivine<br>-48.55 | 310                                                      |                                                                                            | 14<br>0.131<br>0.705004<br>0.131                                                                               |                                                                                            | 20<br>0.131<br><b>0.704993</b><br>0.131                                                                           |                                            | 0.70503                                                                                                             | 28.8<br>6'36                                                        | 20                                                            | Kerguelen Archipelago<br>Montaones Vertes<br>77.9<br>cabbro                                                             |
|                                                                                                                 |                                                                                                | 0.053<br>0.70 <b>5490</b><br>0.053                                                                                      | 14                   | 0.705485<br>0.053                                                                                                                                              | 20<br>0.053                                        |                                                                                                                                                                                         | 0,7055                                                                                                             | 10.6<br>584                                                         | 20                                                | Kerguelen Archipelago<br>Mount Mamelles<br>77.112<br>cabbro                                     | [75]                                                     |                                                                                            | 14<br>0.232<br>0.704874<br>0.232                                                                               |                                                                                            | 20<br>0.232<br><b>0.704854</b><br>0.232                                                                           |                                            | 0.70492                                                                                                             | 462<br>462                                                          | 20                                                            | (75)<br>Kerguelen Archipel ago<br>Montarnes Vertes<br>77.18<br>monzocabbro                                              |
|                                                                                                                 |                                                                                                | 4.813<br>0.706033<br>4.814                                                                                              | 14                   | 0.705623<br>4.814                                                                                                                                              | 20<br>4.813                                        |                                                                                                                                                                                         | 0.70699                                                                                                            | 183<br>110                                                          | 20                                                | Kergueten Archipelago<br>Mount Mamelles<br>77.116<br>Oz svenite                                 | [75]                                                     |                                                                                            | 14<br>0.183<br><b>0.705114</b><br>0.183                                                                        |                                                                                            | 20<br>0.183<br>0.705098<br>0.183                                                                                  |                                            | 0.70515                                                                                                             | 47.6<br>751                                                         | 20                                                            | (75)<br>Kerguelen Archipelago<br>Montaanss Vertes<br>77.38<br>monzoabbro                                                |
|                                                                                                                 | 0.512570                                                                                       | 0.240<br>0.705073<br>0.240                                                                                              | 13.7                 | <b>0.705073</b><br>0.240<br>0.512 <i>5</i> 70                                                                                                                  | 13.7<br>0.240                                      | 0.756120<br>2018<br>0.156<br>0.156<br>0.00                                                                                                                                              | 0.512570<br>0.705120<br>18.317<br>15.530<br>38.806                                                                 | 68.0<br>821.0<br>1.5<br>4.5                                         | 68.5<br>13.7                                      | Kerguelen Archipelago<br>Societe de Geographie<br>Sabbro, Biotite<br>-48.55                     | 311                                                      |                                                                                            | 14<br>0.705182<br>0.340                                                                                        |                                                                                            | 20<br>0.705153<br>0.340                                                                                           |                                            | 0.70525                                                                                                             | 79<br>672                                                           | 20                                                            | [75]<br>Kerguelen Archipelago<br>Montaanes Vertes<br>77.6<br>svenite                                                    |
|                                                                                                                 |                                                                                                | 0.705078<br>0.217                                                                                                       | 13.7                 | 0.705078<br>0.217                                                                                                                                              | 13.7<br>0.217                                      |                                                                                                                                                                                         | 0.70512                                                                                                            | 90 8<br>8                                                           | 13.7                                              | Kerguelen Archipelago<br>Societe de Geographie<br>81.86                                         | [75]                                                     | 0.51256                                                                                    | 13<br>0.133<br>0.705106<br>0.133                                                                               | 0.51256                                                                                    | 13<br>0.133<br>0.133                                                                                              |                                            | 0.51256<br>0.70513                                                                                                  | 55.2<br>1204                                                        | 1<br>3                                                        | (75)<br>Kerguelen Archipelago<br>Mount Ballons<br>78,34<br>amphiboille                                                  |
|                                                                                                                 | 0.51261                                                                                        | 1.080<br>0.704880<br>1.080                                                                                              | 13.7                 | <b>0.704880</b><br>1.080<br>0.51261                                                                                                                            | 13.7<br>1.080                                      |                                                                                                                                                                                         | 0.51261<br>0.70509                                                                                                 | 490                                                                 | 13.7                                              | Kerguelen Archipelago<br>Societe de Geographie<br>82.26                                         | [75]                                                     |                                                                                            | 13<br>102.204<br>0.703821<br>102.223                                                                           |                                                                                            | 13<br>102.204<br>102.223                                                                                          |                                            | 0.72269                                                                                                             | 194<br>5.5                                                          | 13                                                            | (75)<br>Kerguelen Archipelago<br>Mount Ballons<br>78.49c<br>Ne svenite                                                  |
|                                                                                                                 |                                                                                                | 1.415<br>0.705185<br>1.415                                                                                              | 13.7                 | 0.705185<br>1.415                                                                                                                                              | 13.7<br>1.415                                      |                                                                                                                                                                                         | 0.70546                                                                                                            | 134<br>274                                                          | 13.7                                              | Kerguelen Archipelago<br>Societe de Geographie<br>81.84                                         | [75]                                                     |                                                                                            | 13<br>0.918<br>0.708290<br>0.918                                                                               |                                                                                            | 13<br>0.705290<br>0.918                                                                                           |                                            | 0.70546                                                                                                             | 140<br>441                                                          | 13                                                            | 175<br>Kerguelen Archipelago<br>Mount Ballons<br>78.57<br>microsvenite                                                  |
|                                                                                                                 |                                                                                                | 0.705068<br>1.808<br>1.808                                                                                              | 13.7                 | <b>0.705068</b><br>1.808                                                                                                                                       | 13.7<br>1.808                                      |                                                                                                                                                                                         | 0.70542                                                                                                            | 175<br>280                                                          | 13.7                                              | Kerguelen Archipelago<br>Societe de Geographie<br>81.83                                         | [75]                                                     |                                                                                            | 13<br>3.028<br><b>0.705471</b><br>3.029                                                                        |                                                                                            | 13<br>3.028<br><b>0.705471</b><br>3.029                                                                           |                                            | 0.70603                                                                                                             | 179<br>171                                                          | 13                                                            | (75)<br>Kerguelen Archipelago<br>Mount Ballons<br>78.66<br>Ne svenite                                                   |

| RECALCULE A<br>L'Age 14 Ma                                                                                                                                                        | RECALCULE A<br>L'Age Biblio                                                                                                                                                                          | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                            |                                                                                                     |                                                                                                                                         | RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                           | RECALCULE A<br>L'Age Biblio                                                                                                                                                                                                                      | CALCUL OLIEROOK 2017                                                                                                                                                                |                                                                                                                                  |                                                          |                                                               |                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| (Rb/S) measured recalculé<br>(875/885N initial recalculé<br>(Rt/S) initial recalculé<br>(Sm/Nc) measured recalculé<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nc) mitial recalculé | Age teri, Li-Ponthus)<br>(REXS: Neasured recalculé<br>(REXS: Nintail recalculé<br>(RENVAI) measured recalculé<br>(14340/1440A) initial recalculé<br>(14340/1440A) initial recalculé<br>(14340/1440A) | Harver Have India<br>Harver Have India<br>1972/1982 India<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020/2014<br>2020 | U Johnni<br>U Johni<br>Pri Gomi<br>Th Johni<br>143/kd/141kd measured<br>2069-b2049b measured<br>2079-b2049b measured<br>2079-b2049b measured | Longitude<br>Age Correction (Ma)<br>Age reference<br>Sm (topm)<br>Nd (topm)<br>Rb (ppm)<br>Sc (com) | # (Olerook et al., 2017 - n.)<br>Geochemstry Reference<br>Province<br>Location<br>Samole Name<br>Samole Name<br>Lacter Yose<br>Latitude | Age 14Ma (L Ponhus)<br>(RDS) neasured recalculé<br>(RDS) nitial recalculé<br>(RDMA) neasured recalculé<br>(143Md/14Ma) nitial recalculé<br>(143Md/14Ma) nitial recalculé<br>(SmNd) initial recalculé | Age ref. (L Ponthia)<br>(RDS) measured recelculé<br>(RDS) hittil celculé<br>(RDS) hittil celculé | 1475/mr14444<br>1438/dr14444<br>1438/dr14444<br>1878/0855 brital<br>1878/0855 brital<br>2580/02456<br>2580/02456<br>2580/02456 brital<br>2087/b020459 brital<br>2087/b020459 brital | ro rusum<br>143Nd/14ANd measured<br>875/86Sr measured<br>201P.b/204Pb measured<br>201P.b/204Pb measured<br>201P.b/204Pb measured | Sm (opm)<br>Nd (opm)<br>Sr (opm)<br>U (opm)<br>Bb (oppm) | Latitude<br>Longitude<br>Age Correction (Ma)<br>Age reference | # (Olierook et al., 2017 - n.)<br>Geochemistry Reference<br>Province<br>Location<br>Lacation<br>Rock Tove |
| 0.71 2388<br>21.757                                                                                                                                                               | 13.7<br>21785<br>21757<br>21757<br>21757<br>3.7                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.7.1662                                                                                                                                     | 13.7<br>205                                                                                         | [75]<br>Kerguelen Archinelapo<br>Solorete de Geographie<br>81.54                                                                        | 13.7<br>1404<br>0.705067<br>1404                                                                                                                                                                     | 13.7<br>1.404<br>0.705867<br>1.404                                                                                                                                                                                                               |                                                                                                                                                                                     | 0.70534                                                                                                                          | 132<br>272                                               | 13.7                                                          | [75]<br>Kerguelen Archipelago<br>Sordete de Geographie<br>82.2.15                                         |
| 45.925<br>45.93 <b>95</b><br>45.934                                                                                                                                               | 45.955<br>0.705395<br>45.934<br>3.7                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 071433                                                                                                                                       | 13.7<br>148                                                                                         | [75]<br>Kenguéen Archipeliago<br>Societe de Geographie<br>81.55                                                                         | 13.7<br>0.617<br>0.50500<br>0.617                                                                                                                                                                    | 13.7<br>0.617<br>0.617<br>0.617                                                                                                                                                                                                                  |                                                                                                                                                                                     | 0.70562                                                                                                                          | 80<br>375                                                | 13.7                                                          | [75]<br>Kerguelen Archipelago<br>Societe de Geographe<br>CN7                                              |
| 0.704557<br>30.653                                                                                                                                                                | 0.704557<br>30.653<br>30.653<br>30.653<br>13.7                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 071052                                                                                                                                       | 13.7<br>221                                                                                         | [75]<br>Kerguelen Archivelago<br>Socielle de Geographie<br>81.59                                                                        | 13.7<br>0.808<br><b>0.704973</b><br>0.809                                                                                                                                                            | 13.7<br>0.808<br>0.809<br>0.809                                                                                                                                                                                                                  |                                                                                                                                                                                     | 0.70513                                                                                                                          | 83<br>2.97                                               | 13.7                                                          | [75]<br>Kerguelen Archipelago<br>Societe de Geographe<br>81.51                                            |
| 14.337<br><b>0.705431</b><br>14.340<br>0.5126                                                                                                                                     | 14.337<br>0.705431<br>14.340<br>0.5126<br>13.7                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5126                                                                                                                                       | 13.7<br>72.5                                                                                        | [75]<br>Kerguelen Archinelapo<br>Socielle de Geographie<br>82.289                                                                       | 13.7<br>100.024<br>0.731160<br>100.043                                                                                                                                                               | 13.7<br>100.024<br>0.731180<br>100.043                                                                                                                                                                                                           |                                                                                                                                                                                     | 0.75084                                                                                                                          | 168<br>4.88                                              | 13.7                                                          | [75]<br>Kerguelen Archipelago<br>Societe de Geographie<br>CN9                                             |
| 0.709447<br>388.768                                                                                                                                                               | 13.7<br>388.662<br>0.709447<br>388.788                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.78897                                                                                                                                      | 13.7<br>420                                                                                         | [75]<br>Kerguelen Acchipelago<br>Socielle de Geographie<br>81 89                                                                        | 13.7<br>18.398<br>0.705010<br>18.402                                                                                                                                                                 | 13.7<br>18.398<br><b>0.705010</b><br>18.402                                                                                                                                                                                                      |                                                                                                                                                                                     | 0.70859                                                                                                                          | 110<br>17.3                                              | 13.7                                                          | [75]<br>Kerguelen Archipelago<br>Societe de Geographie<br>CN10                                            |
| 67.896<br>0.708950<br>67.909                                                                                                                                                      | 13.7<br>67.886<br>67.809<br>67.909                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.72216                                                                                                                                      | 13.7<br>273                                                                                         | (75)<br>Kerquelen Achtpelago<br>Societe de Geographie<br>81 93                                                                          | 13.7<br>25.213<br><b>0.704895</b><br>25.218                                                                                                                                                          | 13.7<br>25.213<br><b>0.704895</b><br>25.218                                                                                                                                                                                                      |                                                                                                                                                                                     | 0.7098                                                                                                                           | 13.4<br>15.38                                            | 13.7                                                          | [75]<br>Kerguelen Archipelago<br>Societe de Geographie<br>CN42                                            |
| 38.611<br>0.730908<br>38.618                                                                                                                                                      | 38.613.7<br>0.730.908<br>38.618<br>13.7                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.73642                                                                                                                                      | 405                                                                                                 | (75)<br>Kerquelen Achtpelago<br>Societe de Geographie<br>81 97                                                                          | 10.252<br>0.705145<br>10.254                                                                                                                                                                         | 13.7<br>10.252<br><b>0.705145</b><br>10.254                                                                                                                                                                                                      |                                                                                                                                                                                     | 0.70714                                                                                                                          | 118<br>33.3                                              | 13.7                                                          | [75]<br>Kerguelen Archipeleago<br>Societe de Geographie<br>CN44                                           |
| 6.4 394<br>6.7.05072<br>6.4.406<br>0.51282                                                                                                                                        | 64.334<br>67.705072<br>64.406<br>0.51262<br>13.7                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.51282<br>0.7176                                                                                                                            | 13.7<br>199                                                                                         | [75]<br>Kerguelen Archipelago<br>Societe de Geographie<br>82.249                                                                        | 13.7<br>1.288<br>0.704999<br>1.288<br>0.51284                                                                                                                                                        | 13.7<br>1.288<br>0.704999<br>1.288<br>0.51264                                                                                                                                                                                                    |                                                                                                                                                                                     | 0.51264<br>0.70525                                                                                                               | 110<br>247                                               | 13.7                                                          | [75]<br>Kerguelen Archipelago<br>Societe de Geographie<br>81.5                                            |
| 0.705377<br>0.705377<br>0.068                                                                                                                                                     | 0.068<br>0.705377<br>0.068                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.70539                                                                                                                                      | - 13.7<br>- 6.8                                                                                     | [75]<br>Keguelen Archipelago<br>Societe de Geographie<br>8162                                                                           | 13.7<br>5.639<br>0.705033<br>5.640                                                                                                                                                                   | 13.7<br>5.639<br>5.640<br>5.640                                                                                                                                                                                                                  |                                                                                                                                                                                     | 0.70613                                                                                                                          | 115<br>59                                                | 13.7                                                          | [75]<br>Kerguelen Archipelego<br>Sociele de Geographie<br>81.52                                           |
|                                                                                                                                                                                   | 254<br>0.703880<br>14                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.512878<br>0.703880                                                                                                                         | 88.5<br>77 01                                                                                       | 96<br>[76]<br>Kerguelen Archipelago<br>5 KG2-1<br>Basatt<br>-48.55                                                                      | 13.7<br>233.476<br>0.699855<br>233.521                                                                                                                                                               | 13.7                                                                                                                                                                                                                                             |                                                                                                                                                                                     | 0.74528                                                                                                                          | 201<br>2.5                                               | 13.7                                                          | [75]<br>Kerguelen Archipelago<br>Societe de Geographie<br>81.53                                           |

| RE                                                           | CALC<br>'Age 1                                          | ULE A<br>4 Ma                                                                        | REC/                                                                                       | ALCULE A<br>ge Biblio                                                                     | C/                                           | ALCUL OL                                                                        | IEROOK                                          | 2017                                |                                                                                                                       |                                                         |                                       |                                              |                                       |                                                                      | RECAI                                                                                      | CULE A<br>14 Ma                                                                                                     | RECA<br>L'Ag                                                                               | LCULE A<br>e Biblio                                                                                               | CALCUL OL                                                                                                                 | IEROOK 2017                                                                       |                                                                                                                      |                                                             |                                                                                           |                                                                                 |
|--------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------|----------------------------------------------|---------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| (143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | (Rb/Sr) initial recalculé<br>(Sm/Nd) measured recalculé | Age 14Ma (L.Ponthus)<br>(Rb/Sr) measured recalculé<br>(87 Sr/86Sr) initial recalculé | (Sm/NG) measured recalcule<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | (Rb/Sr) measured recalculé<br>(87 Sr/86Sr) initial recalculé<br>(Rb/Sr) initial recalculé | 208Pb/204Pb initial<br>Age ref. (L. Ponthus) | 235 U/204 Pb<br>232 Th/204 Pb<br>206 Pb/204 Pb Initial<br>207 Pb/204 Pb Initial | 87R b/86Sr<br>87Sr/86Sr initial<br>238 U/204 Pb | 147 Sm/144Nd<br>143Nd/144Nd initial | 143 Nd/1 44 Nd measured<br>87Sr/86Sr measured<br>206Pb/204Pb measured<br>207Pb/204Pb measured<br>208Pb/204Pb measured | Sr (ppm)<br>Sr (ppm)<br>V (ppm)<br>Pb (ppm)<br>Th (ppm) | Age reference<br>Sm (ppm)<br>Nd (ppm) | Latitude<br>Longitude<br>Age Correction (Ma) | Location<br>Sample Name<br>Rock Type  | # (Olierook et al., 2017 - n.)<br>Geochemistrv Reference<br>Province | (Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | Age 14 Ma (L. Ponthus)<br>(Rb/Sr) measured recalculé<br>(87 Sr/86Sr) initial recalculé<br>(Rb/Sr) initial recalculé | (Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | Age rer. (L. POTITURS)<br>(Rb/Sr) measured recalculé<br>(875/86S1) initial recalculé<br>(Rb/Sr) initial recalculé | 235 U/244 Pb<br>232 Th/204 Pb<br>206 Pb/204 Pb<br>207 Pb/204 Pb initial<br>208 Pb/204 Pb initial<br>208 Pb/204 Pb initial | 14/Sm1144Nd<br>143Nd/144Nd initial<br>87Rv86Sr<br>87Sr/86Sr initial<br>238U/204Pb | 143 Nd/1 44 Nd mesured<br>875 r/86Sr mesured<br>206P L/324Pb mesured<br>207P L/304Pb mesured<br>208P L/204Pb mesured | Sm (bom)<br>Nd (bom)<br>Sr (bom)<br>U (bom)<br>Eb (bom)     | Samble Name<br>Rock Tvoe<br>Latitude<br>Longitude<br>Age Correction (Ma)<br>Age reference | # (Olerook et al., 2017 - n.)<br>Geochemistry Reference<br>Province<br>Location |
| 0.142                                                        | 0.075                                                   | 14<br>0.075<br><b>0.704787</b>                                                       | 0.142<br>0.512681<br>0.142                                                                 | 0.75<br>0.704774<br>0.075                                                                 | 38.771                                       | 0.10<br>73.95<br>18.351<br>15.540                                               | 0.704774<br>13.11                               | 0.142<br>0.512681                   | 0.512705<br>0.704802<br>15.542<br>38.866                                                                              | 33100<br>1.6<br>1.6                                     | [70]<br>4.7<br>20.1                   | -48.55<br>                                   | Mount Capitole<br>s 93471<br>Basalt   | 189<br>[78]<br>Kerguelen Archipelago                                 |                                                                                            | 14                                                                                                                  |                                                                                            | 0.705320                                                                                                          | 3                                                                                                                         |                                                                                   | 0.512831<br>0.705320                                                                                                 |                                                             | Basalt<br>Basalt<br>-48.55<br>68.5<br>[70]                                                | 97<br>[76]<br>Kerguelen Archipelago<br>Foch                                     |
| 0.512691<br>0.145                                            | 0.046                                                   | 14<br>0.046<br><b>0.704763</b>                                                       | 0.512679<br>0.512679                                                                       | 0.046<br>0.704755<br>0.046                                                                | 38,840                                       | 78.49<br>18.43<br>15.552                                                        | 0.046<br>0.704755<br>9.69                       | 0.145<br>0.512679                   | 0.512704<br>0.704772<br>15.554<br>38.941                                                                              | 389 c<br>1.2<br>1.3                                     | 1701<br>4.2                           | -48.55<br>68.5<br>226                        | Mount Capitole<br>s 93-472<br>Basalt  | 190<br>[78]<br>Kerguelen Archipelago                                 |                                                                                            | 14                                                                                                                  |                                                                                            | 0.705300                                                                                                          | 3                                                                                                                         |                                                                                   | 0.512641<br>0.705300                                                                                                 |                                                             | s KGF-3<br>Basalt<br>-48.55<br>68.5<br>(70)                                               | 99<br>[76]<br>Kerguelen Archipelago<br>Foch Island                              |
| 0.512673                                                     | 0.057                                                   | 14<br>0.057<br>0.704902                                                              | 0.142<br>0.512662<br>0.142                                                                 | 0.057<br>0.704892<br>0.057                                                                | 38.762<br>26                                 | 0.13<br>87.87<br>18.321                                                         | 0.057<br>0.704892<br>18.25                      | 0.142<br>0.512662                   | 0.512886<br>0.704913<br>15.545<br>38.875                                                                              | 323.0<br>0.6<br>3.0                                     | [70]<br>30.1                          | -48.55<br>68.5<br>26                         | Mount Capitole<br>s 93-476<br>Basalt  | 191<br>[78]<br>Kerguelen Archipelago                                 |                                                                                            | 4                                                                                                                   |                                                                                            | 250<br>0.705310                                                                                                   | - An                                                                                                                      |                                                                                   | 0.512645<br>0.705310                                                                                                 |                                                             | s KG8-4<br>Basati<br>-48.55<br>                                                           | 211<br>[76]<br>Kerguelen Archipelago<br>Kerguelen Archipelago                   |
| 0.512/04                                                     | 0.079<br>0.146                                          | 14<br>0.079<br><b>0.704767</b>                                                       | 0.512692<br>0.5146                                                                         | 0.079<br>0.704754<br>0.079                                                                | 38.807<br>26                                 | 0.11<br>84.66<br>15.548                                                         | 0.079<br>0.704754<br>15.3.1                     | 0.146                               | 0.512717<br>0.704783<br>18.472<br>15.551<br>38.916                                                                    | 323.0<br>0.6<br>3.0                                     | [70]<br>33.0                          | -48.55<br>68.55                              | Mount Capitole<br>s 93-479<br>Basalt  | 192<br>[78]<br>Kerguelen Archipelago                                 |                                                                                            | -<br>4                                                                                                              |                                                                                            | 0.705320                                                                                                          | 2                                                                                                                         |                                                                                   | 0.512631<br>0.705320                                                                                                 |                                                             | s KG/14-3<br>Basait<br>-48.55<br>88.5<br>25<br>[70]                                       | 212<br>[76]<br>Kerguelen Archipelago<br>Kerguelen Archipelago                   |
| 0.512714<br>0.148                                            | 0.052                                                   | 14<br>0.052<br><b>0.704706</b>                                                       | 0.148<br>0.512703<br>0.148                                                                 | 0.052<br>0.704697<br>0.052                                                                | 38,769<br>26                                 | 0.11<br>83.17<br>18.396                                                         | 0.052<br>0.704697<br>14.96                      | 0.148<br>0.512703                   | 0.512728<br>0.704716<br>15.549<br>38.876                                                                              | 297.0<br>2.2<br>2.8                                     | [70]<br>7.8<br>31.8                   | -48.55<br>68.5                               | Mount Capitole<br>s 93-482<br>Basalt  | 193<br>[78]<br>Kerguelen Archipelago                                 |                                                                                            | - 4                                                                                                                 |                                                                                            | 0.705380                                                                                                          | 2                                                                                                                         |                                                                                   | 0.512685<br>0.705380                                                                                                 |                                                             | Basalt<br>Basalt<br>-48.55<br>68.5<br>25<br>[70]                                          | 213<br>[76]<br>Kerguelen Archipelago<br>Kerguelen Archipelago                   |
| 0.512701<br>0.146                                            | 0.118<br>0.146                                          | 14<br>0.118<br><b>0.704753</b>                                                       | 0.146<br>0.512689<br>0.146                                                                 | 0.118<br>0.704733<br>0.118                                                                | 38,786                                       | 0.73<br>87.77<br>18.369<br>15.549                                               | 0.704733<br>17.17                               | 0.146<br>0.512689                   | 0.512714<br>0.704776<br>15.439<br>15.552<br>38.899                                                                    | 347.0<br>0.7<br>3.3                                     | [70]<br>9.0<br>37.2                   | -48.55<br>68.5                               | Mount Capitole<br>s 93-483<br>Basalt  | 194<br>[78]<br>Kerguelen Archipelago                                 |                                                                                            | 4                                                                                                                   |                                                                                            | 0.705310                                                                                                          | 2 n                                                                                                                       |                                                                                   | 0.512657<br>0.705310                                                                                                 |                                                             | s (560<br>Basalt<br>-48.55<br>25<br>[70]                                                  | 214<br>[76]<br>Kerguelen Archipelago<br>Kerguelen Archipelago                   |
| 0.512681<br>0.147                                            | 0.039<br>0.147                                          | 14<br>0.705038                                                                       | 0.512669<br>0.5147                                                                         | 0.705032<br>0.039                                                                         | 38.699                                       | 0.72<br>86.221<br>18.312                                                        | 0.705032<br>16.01                               | 0.512669                            | 0.512694<br>0.705046<br>15.551<br>38.810                                                                              | 3440<br>0.5<br>2.7                                      | [70]<br>7.2<br>2.9.4                  | -48.55<br>68.5                               | Mount Capitole<br>s 93-490<br>Basalt  | 195<br>[78]<br>Kerguelen Archipelago                                 |                                                                                            | 14                                                                                                                  |                                                                                            | 0.705210                                                                                                          | 2 c                                                                                                                       |                                                                                   | 0.512671<br>0.705210                                                                                                 |                                                             | s IS81<br>Basalt<br>-48.55<br>25<br>[70]                                                  | 215<br>[76]<br>Kerguelen Archipelago<br>Kerguelen Archipelago                   |
| 0.512709<br>0.147                                            | 0.108                                                   | 14<br>0.108<br>0.704749                                                              | 0.512697<br>0.512697<br>0.147                                                              | 0.704730<br>0.108                                                                         | 38.756                                       | 0.14<br>87.38<br>15.552                                                         | 0.704730<br>19.54                               | 0.512697                            | 0.512722<br>0.704770<br>18.462<br>38.888                                                                              | 340.0<br>0.6<br>2.6                                     | [70]<br>6.9<br>28.5                   | -48.55<br>68.5                               | Mount Capitole<br>s 93-495<br>Basalt  | 196<br>[78]<br>Kerguelen Archipelago                                 | 0.512672<br>0.512672                                                                       | 14<br>0.704824<br>0.056                                                                                             | 0.512661<br>0.512661<br>0.140                                                              | 20<br>0.056<br>0.704814<br>0.056                                                                                  | 0.10<br>83.20<br>18.386<br>15.549<br>38.863                                                                               | 0.512661<br>0.512661<br>0.704814<br>14.12                                         | 0.512685<br>0.704835<br>18.442<br>15.551<br>38.970                                                                   | 410.0<br>0.3<br>1.4                                         | s 33-459<br>Basait<br>-48.55<br>88.5<br>[70]                                              | 186<br>[78]<br>Kerguelen Archipelago<br>Mount Capibole                          |
| 0.512693<br>0.145                                            | 0.176                                                   | 14<br>0.176<br>0.704806                                                              | 0.145<br>0.512681<br>0.145                                                                 | 0.176<br>0.704776<br>0.176                                                                | 38.747                                       | 0.13<br>79.04<br>18.347<br>15.537                                               | 0.704776<br>18.01                               | 0.512681                            | 0.512708<br>0.704841<br>15.541<br>38.849                                                                              | 322<br>0.8<br>3.4                                       | 35.0<br>35.0                          | -48.55<br>68.5                               | Mount Capitole<br>s 93-50 7<br>Basalt | 197<br>[78]<br>Kerguelen Archipelago                                 | 0.512954<br>0.512954<br>0.144                                                              | 0.074<br>0.074<br>0.074                                                                                             | 0.144<br>0.512942<br>0.144                                                                 | 20<br>0.074<br>0.704805<br>0.074                                                                                  | 0.10<br>76.43<br>18.341<br>38.784<br>38.784                                                                               | 0.512942<br>0.074<br>0.704805                                                     | 0.5.12.867<br>0.7.04.832<br>1.8.387<br>15.540<br>38.882                                                              | 33<br>184<br>03<br>184<br>194<br>194<br>194                 | s 93.463<br>-48.55<br>-48.55<br>26<br>[70]                                                | 187<br>[78]<br>Kerguelen Archipelago<br>Mount Capitole                          |
| 0.145                                                        | 0.079                                                   | 14<br>0.079<br><b>0.704774</b>                                                       | 0.145<br>0.512692<br>0.145                                                                 | 0.079<br>0.704761<br>0.079                                                                | 38.771                                       | 0.13<br>85.02<br>15.539                                                         | 0.079<br>0.704761<br>17.44                      | 0.145<br>0.512692                   | 0.512717<br>0.704790<br>18.438<br>15.542<br>38.880                                                                    | 327.0<br>0.6<br>2.8                                     | [70]<br>8.7<br>27.9                   | -48.55<br>68.5<br>26                         | Mount Capitole<br>s 93-512<br>Basalt  | 198<br>[78]<br>Kerguelen Archipelago                                 | 0.145<br>0.512680<br>0.145                                                                 | 14<br>0.082<br>0.7 <b>04812</b><br>0.082                                                                            | 0.145<br>0.512668<br>0.145                                                                 | 20<br>0.082<br>0.704798<br>0.082                                                                                  | 0.12<br>78.83<br>18.356<br>15.540<br>38.792                                                                               | 0.512668<br>0.512668<br>0.082<br>0.704798<br>15.71                                | 0.512693<br>0.704828<br>18.419<br>15.543<br>38.894                                                                   | 17 - 2<br>9 9<br>0 3<br>17<br>17<br>17<br>17<br>2<br>9<br>9 | s 33-445<br>Basait<br>-48.55<br>68.5<br>26<br>[70]                                        | 188<br>[78]<br>Kerguelen Archipelago<br>Mount Capitole                          |

| RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                              | RECALCULE A<br>L'Age Biblio                                                                                                                                                                                                                             | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RECALCULE A<br>L'Age 14 Ma L'Age Biblio CALCUL OLIEROOK 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Age (Malt (Porthus)<br>(RSS) measure recalcule<br>(875/8655) Initial recalcule<br>(SWN5) measured recalcule<br>(SWN5) measured recalcule<br>(113Md/144Md) Initial recalcule<br>(SmN4) Initial recalcule | Ade rer. ( vormus)<br>(RUS:) measured recalculé<br>( <i>87Sr</i> &SS1 initial recalculé<br>( <i>87NVI</i> ) initial recalculé<br>( <i>87NVI</i> ) initial recalculé<br>( <i>13NU1</i> 44NU) initial recalculé<br>( <i>13NU1</i> 44NU) initial recalculé | 14 SMD 14444 Initial<br>14 SMD 14444 Initial<br>18 Displays Initial<br>18 Displays Initial<br>18 Displays Initial<br>20 Displays Initial<br>20 Displays Initial<br>20 Displays Initial<br>20 Displays Initial<br>20 Displays Initial<br>20 Displays Initial | # (Olknock et al. 2017 - n.)     Geochemistry Reference     Smock Trans     Kann     Smock Trans     Latitude     Latitude     Latitude     Latitude     Latitude     Smock Trans     Kann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Grit Vession     Grit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | # (Oliencok et al., 2017 - n.)<br>Geochemistry Reinrenco<br>Preterior<br>Startin Nume<br>Rosch Num<br>Rosch Nu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0,112<br>0,704389<br>0,7044389<br>0,112<br>0,114<br>0,51 <i>2757</i><br>0,144                                                                                                                           | 0.712<br>0.74385<br>0.74386<br>0.112<br>0.144<br>0.512743<br>0.512743                                                                                                                                                                                   | 0.512744<br>0.7142<br>0.70436<br>2.647<br>0.18<br>143.22<br>18.100<br>15.472<br>15.472<br>15.472                                                                                                                                                            | 108<br>Kerguelen Archonerag<br>s. KontiBureau<br>MontiBureau<br>s. Gritikansi<br>Baselt, Tremetional<br>48.5<br>68.5<br>710<br>52<br>10.5<br>2110<br>52<br>10.5<br>2110<br>52<br>10.5<br>2110<br>52<br>10.5<br>2110<br>0.4<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2170<br>0.5<br>2<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>0.5<br>270<br>20 | 0.704408<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 199<br>Kengusten Arch Jonese<br>Maran Cranster<br>Status<br>Bealt<br>48,55<br>68,5<br>70<br>0,512867<br>0,704808<br>0,704808<br>18,419<br>18,542<br>39,852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.18<br>0.704054<br>0.081<br>0.153<br>0.512795<br>0.153                                                                                                                                                 | 0.704037<br>0.704037<br>0.061<br>0.153<br>0.152780<br>0.1580                                                                                                                                                                                            | 0.512780<br>0.081<br>0.704037<br>16.00<br>7.6.94<br>7.6.94<br>18.535<br>18.535<br>18.535<br>18.535<br>18.535                                                                                                                                                | 100<br>Kerguelen Archipeleg<br>Kourt Eusp<br>Basst Transitional<br>48.5<br>89.0<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .26<br>0.704878<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200<br>Kergueisen Architeko<br>Mont Cestelo<br>Basel<br>Basel<br>Basel<br>14.856<br>85.5<br>20<br>0.0512880<br>0.704875<br>0.704875<br>0.704875<br>19.424<br>19.544<br>19.544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14<br>0.705167<br>0.185<br>0.136<br>0.136<br>0.512607<br>0.136                                                                                                                                          | 0.705128<br>0.705128<br>0.1383<br>0.512593<br>0.1383                                                                                                                                                                                                    | 0.512293<br>0.183<br>0.705128<br>0.705128<br>14.60<br>14.60<br>15.524<br>15.524<br>38.625                                                                                                                                                                   | 110<br>Kensuleen Achteria<br>Solkeraa<br>Beeral<br>Beeral<br>Beeral<br>Beeral<br>1701<br>22.8<br>380<br>0.6128<br>19.5<br>22.8<br>380<br>0.6128<br>19.5<br>22.8<br>380<br>0.6128<br>19.5<br>22.8<br>380<br>0.6128<br>19.5<br>22.8<br>38.0<br>0.6128<br>19.5<br>22.8<br>38.0<br>0.6128<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.708039<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 201<br>[20]<br>[20]<br>[20]<br>[20]<br>[20]<br>[20]<br>[20]<br>[20]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 14<br>0.048<br>0.046<br>0.046<br>0.012<br>0.132<br>0.132                                                                                                                                                | 0.048<br>0.705017<br>0.048<br>0.132<br>0.132<br>0.132                                                                                                                                                                                                   | 0.512571<br>0.048<br>0.7765017<br>10.11<br>0.07<br>244.73<br>18.307<br>15.540<br>38.559                                                                                                                                                                     | 111<br>Karguelein Acchiel (78)<br>S. Guitzeeau<br>S. Guitzeeau<br>S. Baseal<br>Baseal, Transitional<br>68.5<br>(70)<br>7.70)<br>7.70)<br>7.70<br>3.7.1<br>6.1<br>6.1<br>6.1<br>6.1<br>6.2<br>0.0<br>0.51293<br>0.051293<br>0.051293<br>0.051293<br>15.542<br>28.562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26<br>0.70480 3<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 202<br>Konguelen Archivell<br>Bodurt Capele<br>1924/12<br>49.5<br>26<br>[70]<br>0.011206<br>0.011206<br>0.01403<br>116445<br>11645<br>11645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.114<br>0.705159<br>0.705159<br>0.512<br>0.512619<br>0.112                                                                                                                                             | 0,162<br>0,705124<br>0,162<br>0,162<br>0,132<br>0,132                                                                                                                                                                                                   | 0.512606<br>0.162<br>0.705120<br>12.47<br>12.47<br>12.47<br>18.075<br>18.057<br>38.558                                                                                                                                                                      | 112<br>Kerguslein Achipologi<br>Sourd Bureau<br>SOMCS Bussell<br>Basell, Transitional<br>Basell, Transitional<br>12,7<br>12,7<br>12,7<br>12,7<br>12,7<br>12,7<br>12,7<br>12,7<br>12,7<br>12,7<br>12,7<br>12,7<br>12,7<br>12,7<br>12,7<br>12,7<br>12,7<br>12,7<br>12,7<br>12,7<br>12,7<br>13,7<br>12,7<br>13,7<br>14,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>15,7<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.7066<br>0.7066<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.52<br>14.5 | 102<br>Kergunalan Archistoff<br>Maurit Storesa<br>Maurit Storesa<br>Basalt Tarastica<br>29<br>(70)<br>35.4<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>38.0<br>0.5<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14<br>0.032<br>0.705805<br>0.002<br>0.511<br>0.511<br>0.513<br>0.151                                                                                                                                    | 0.032<br>0.705498<br>0.032<br>0.151<br>0.512548<br>0.151                                                                                                                                                                                                | 0.512548<br>0.7165498<br>0.7165498<br>0.7165498<br>1075<br>1075<br>115734<br>18.177<br>15.534<br>38.714                                                                                                                                                     | 118<br>Keguler Architelag<br>som Sum Surau<br>som Surau<br>som Surau<br>som Surau<br>som Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Surau<br>Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.70377<br>0.70377<br>11.12<br>11.12<br>11.12<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18.15<br>18 | Nergusian Architytel<br>Magnation Architytel<br>Magnation<br>Basalt Tarentian<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 14<br>0.704077<br>0.704077<br>0.0807<br>0.1159<br>0.1159<br>0.1159                                                                                                                                      | 0.087<br>0.704058<br>0.087<br>0.139<br>0.512761                                                                                                                                                                                                         | 0.512761<br>0.087<br>0.704058<br>0.314<br>0.31<br>0.31<br>0.31<br>18.337<br>18.352<br>15.552<br>38.715                                                                                                                                                      | 110<br>Keguleri Achtpolique<br>sOMR2.esu<br>salt, Transitional (Basat<br>68.5<br>170)<br>11.2<br>374.2<br>11.2<br>11.2<br>11.2<br>11.2<br>11.2<br>11.2<br>11.2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.7053<br>0.7053<br>0.7053<br>0.1173<br>0.1173<br>0.1273<br>0.1282<br>0.1275<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.1282<br>0.                                                                                                                                                 | 104<br>Kergualan Archinello<br>Maurit Storello<br>Basalt Tarrafice<br>29<br>[770]<br>27.2<br>32.3<br>343.0<br>943.0<br>0.5<br>18.33<br>15.546<br>39.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 14<br>0.704583<br>0.704583<br>0.018<br>0.0179<br>0.512759<br>0.179                                                                                                                                      | 0.704580<br>0.704580<br>0.018<br>0.512741<br>0.179                                                                                                                                                                                                      | 0.512741<br>0.704580<br>0.704580<br>0.049<br>0.00<br>0.00<br>0.225<br>18.225<br>15.491<br>38.445                                                                                                                                                            | 121<br>Kerguden Achtholeko<br>Kovit Bureau<br>s CM02<br>48<br>68.5<br>71<br>13<br>220<br>0<br>3<br>14<br>220<br>0<br>3<br>14<br>220<br>0<br>3<br>14<br>220<br>0<br>3<br>15<br>20<br>14<br>3<br>220<br>0<br>3<br>14<br>14<br>220<br>0<br>3<br>15<br>20<br>14<br>3<br>220<br>0<br>3<br>15<br>12<br>13<br>14<br>14<br>220<br>0<br>3<br>15<br>12<br>13<br>14<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.7 0434<br>0.7 0434<br>0.7 0434<br>0.7 0434<br>0.7 0434<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 105<br>Karguutan Accherges<br>Kargut Bundlago<br>Kargut Bundlago<br>Basali, Transford<br>20<br>12<br>12<br>12<br>12<br>12<br>13<br>12<br>15<br>15<br>15<br>0<br>0<br>5<br>12<br>16<br>0<br>0<br>5<br>12<br>16<br>0<br>0<br>5<br>12<br>20<br>16<br>0<br>0<br>5<br>12<br>20<br>16<br>0<br>0<br>5<br>12<br>20<br>16<br>0<br>0<br>5<br>12<br>20<br>0<br>5<br>12<br>0<br>16<br>20<br>0<br>16<br>20<br>0<br>16<br>20<br>0<br>16<br>20<br>0<br>16<br>20<br>0<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>20<br>16<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |
| 14<br>0.227<br>0.705086<br>0.237<br>0.237<br>0.237<br>0.237<br>0.244<br>0.518614<br>0.144                                                                                                               | 0.237<br>0.705036<br>0.237<br>0.144<br>0.512600<br>0.144                                                                                                                                                                                                | 0.513600<br>0.237<br>0.706035<br>14.96<br>14.96<br>15.90<br>15.90<br>38.681<br>38.681                                                                                                                                                                       | 122<br>Keguelen Arbigslag<br>Schrötzen<br>Baselt, Transfonst<br>Baselt, Transfonst<br>82,5<br>82,7<br>80,7<br>80,7<br>80,7<br>80,7<br>80,7<br>80,7<br>80,7<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.144<br>0.705222<br>2.200<br>0.144<br>0.144<br>1.8272<br>1.8272<br>1.8272<br>0.146<br>0.70522<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.14    | 100<br>Korguelen Aerite fr<br>Mount Suree<br>Basalt Transford<br>100<br>172<br>172<br>172<br>172<br>172<br>172<br>172<br>172<br>172<br>172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14<br>0.70525<br>0.182<br>0.182<br>0.182<br>0.133<br>0.51256<br>0.133                                                                                                                                   | 0.182<br>0.705213<br>0.182<br>0.182<br>0.512552<br>0.133                                                                                                                                                                                                | 0.51252<br>0.702412<br>0.702412<br>0.000<br>0.000<br>7.8.33<br>18.527<br>15.527<br>15.525<br>15.525                                                                                                                                                         | 123<br>Keguden Actholises<br>s. (3405.0)<br>asalt. Tarnstional / Basat<br>98.5<br>20.5<br>20.5<br>20.5<br>20.5<br>20.5<br>20.5<br>20.5<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.766<br>0.7665<br>0.7665<br>0.7665<br>0.7665<br>0.7675<br>0.7675<br>0.7675<br>0.7675<br>0.7675<br>0.7675<br>0.7675<br>0.7675<br>0.7675<br>0.7675<br>0.7675<br>0.7675<br>0.7675<br>0.7675<br>0.7675<br>0.7675<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7655<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.7555<br>0.75550<br>0.75550<br>0.75550<br>0.75550<br>0.75550000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 107<br>108<br>8 Kerguadan Archice 199<br>8 GA023 S<br>40 Karata<br>48,56<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| RECALCULE<br>L'Age 14 Ma                                                                                                                                  | A RECALCULE A<br>L'Age Biblio                                                                                                                                                          | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RECALCULE A<br>L'Age 14 Ma<br>L'Age Biblio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| (FOIS7) Initial recalcule<br>(875/868/61) Initial recalcule<br>(SmN4) Initial recalcule<br>(SmN40) Initial recalcule<br>(143/40/144/40) Initial recalcule | (Bb/S) measured recalculé<br>(Bb/S) initial recalculé<br>(Sm/Nd) measured recalculé<br>(143/M/14/Nd) measured recalculé<br>(143/M/14/Nd) measured<br>recalculé<br>Ade 14/Ma (L-Domina) | VA_SIN_VALVA INTA<br>HANNA FANG INTA<br>HANNA FANG INTA<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REPROSES<br>REP | # (Clanock et al., 2017 - n)<br>Deschmistry Reinnos<br>Sanab Kinne<br>Reck Tries<br>Latitude<br>Latitude<br>Latitude<br>Sana Correction (Ma)<br>Ale Correction (Ma)<br>Ale correction (Ma)<br>Bio Loom)<br>Bio Lo                                                                                                                                                                                                                                                                                                                                                                                                                              | Geochamitra Reference<br>Province<br>Samob Nam<br>Samob Nam<br>Samob Nam<br>Samob Nam<br>Rock Tvas<br>Adv Gorricchan<br>Adv Gorricchan<br>Samob Nam<br>Rock Tvas<br>Adv Gorricchan<br>Samob Nam<br>Rock Tvas<br>Samob Nam<br>Rock Tvas<br>Samob Nam<br>Rock Tvas<br>Samob Nam<br>Rock Tvas<br>Samob Nam<br>Rock Tvas<br>Samob Nam<br>Rock Tvas<br>Rock Tvas                                                                                                                                                                  | # (Olierook et al 2017 - n.) |
| 0.70508<br>0.705008<br>0.088<br>0.140<br>0.512598<br>0.140                                                                                                | 0.085<br>0.705068<br>0.088<br>0.140<br>0.512582<br>0.141<br>14                                                                                                                         | 0.610268<br>0.70508<br>0.70508<br>14.02<br>10.210<br>10.210<br>15.275<br>15.578<br>15.578<br>15.578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 127<br>Kennulein Archite<br>199<br>Kennulein Carbite<br>Schutz Jahr<br>Basalt Transitional / Saut<br>190<br>191<br>191<br>191<br>191<br>191<br>191<br>191<br>191<br>191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Krepulein Archiveligo<br>Konsteinen<br>s. (Konsteinen<br>s. (Konstei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 124                          |
| 0.704508<br>0.7264508<br>0.039<br>0.163<br>0.5127.00<br>0.163                                                                                             | 0.033<br>0.704500<br>0.039<br>0.163<br>0.163<br>0.185<br>0.185<br>0.185<br>14                                                                                                          | 0.512684<br>0.039<br>0.724500<br>16.43<br>156.21<br>156.21<br>156.21<br>15.28<br>15.428<br>34.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 128<br>Kepusien Achter [79]<br>Martin Rabolitiko<br>Kepusien (Jasat<br>685<br>685<br>100<br>110<br>214<br>02<br>214<br>02<br>214<br>02<br>02<br>02<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715<br>0.512715                                                                                                                                                                                                                                                                                                                            | Kenpulein A (chipeliaga)<br>Mont Bureau<br>South Characteria<br>Basat<br>Basat<br>Tanas 1000<br>125<br>125<br>125<br>125<br>125<br>125<br>125<br>125<br>125<br>125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120                          |
| 0,705238<br>0,276<br>0,276<br>0,276<br>0,131<br>0,512561<br>0,131                                                                                         | 0.276<br>0.705179<br>0.236<br>0.131<br>0.512248<br>0.131<br>0.131                                                                                                                      | 0.51254<br>0.7126<br>0.705179<br>16.32<br>0.12<br>8.5.07<br>18.108<br>15.57<br>15.578<br>38.818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 123<br>Korgusten Architel [79]<br>Mount Recolution<br>Basati, Tarar Bonz, J.<br>Basati, J.<br>Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kenguelen Archibelfago<br>Mount Bureau<br>Mount Bureau<br>(9492-34)<br>29<br>10.7<br>47.5<br>33.5<br>0.705114<br>0.1382<br>0.3127<br>20<br>0.705114<br>20<br>0.705114<br>0.705114<br>0.705114<br>0.705114<br>0.705114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120                          |
| 0.705188<br>0.129<br>0.120<br>0.120<br>0.512623<br>0.512623                                                                                               | 0.725<br>0.705168<br>0.129<br>0.120<br>0.512614<br>0.120<br>14                                                                                                                         | 0.512814<br>0.129<br>0.705168<br>0.20518<br>0.21<br>0.21<br>0.21<br>123.55<br>18.337<br>18.545<br>15.545<br>38.541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 203<br>Kenpuden Achipelagi<br>Central Plateou. Armao<br>Basalt. Availine<br>99.7<br>101<br>201<br>201<br>201<br>201<br>201<br>201<br>201<br>201<br>201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vergueten Achtipelige<br>Mourt Rescultere<br>s C.1042-149<br>Bask 1, Transformat<br>(2015)<br>2015<br>2015<br>2015<br>2015<br>2015<br>2015<br>2015<br>2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 113                          |
| 0.178<br>0.705182<br>0.178<br>0.135<br>0.512594<br>0.135                                                                                                  | 0.705154<br>0.705154<br>0.178<br>0.135<br>0.512884<br>0.135<br>14                                                                                                                      | 0.512803<br>0.0178<br>0.002214<br>12.61<br>0.00<br>61.91<br>18.481<br>18.481<br>18.546<br>2.5101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 301<br>Kerguelen Australia<br>Austerf et al. a<br>Pictra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra<br>Berra | Korgusten Acchyptige<br>Monu Rathopaten<br>Status<br>Basati Tanchida<br>Basati Tanchida<br>Basati Tanchida<br>Basati Tanchida<br>Basati Tanchida<br>Status<br>Basati Tanchida<br>Status<br>Basati Tanchida<br>Status<br>Basati Tanchida<br>Status<br>Basati Tanchida<br>Status<br>Basati Tanchida<br>Status<br>Basati Basati<br>Basati<br>Basati Basati<br>Basati Basati Basati<br>Basati Basati<br>Basati Basati Basati<br>Basati Basati Basati<br>Basati Basati<br>Basati Basati Basati<br>Basati Basati Basati<br>Basati Basati Basati Basati<br>Basati Basati Basati Basati<br>Basati Basati Basati Basati Basati<br>Basati Basati Basati Basati Basati Basati Basati<br>Basati Basati Basati Basati Basati Basati Basati Basati<br>Basati Basati B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 114                          |
| 0.765226<br>0.083<br>0.123<br>0.512577<br>0.512577<br>0.512577                                                                                            | 0.708213<br>07.06213<br>0.083<br>0.123<br>0.123<br>0.123<br>14                                                                                                                         | 0.510.1123<br>0.715.867<br>0.705.242<br>0.15<br>101.59<br>18.335<br>15.547<br>18.545<br>15.547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 302<br>(Kerguesen Avela jose<br>Autor et Autor<br>Bastell Valence<br>Bastell Valence<br>164<br>17.1<br>17.1<br>10<br>10.5<br>12.86<br>15.447<br>15.457<br>38.660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Kerguelen Archipeligi<br>Kerguelen Archipeligi<br>Mont Raboulliere<br>s. GKR2:86<br>s. GKR2:86<br>Basell: Transford<br>6.5<br>700<br>8.5<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.572<br>16.5                                                                                                                                                                                                                                                                    | 115                          |
| 0.705213<br>0.705213<br>0.095<br>0.129<br>0.512593<br>0.129                                                                                               | 0.705198<br>0.705198<br>0.065<br>0.129<br>0.1284<br>0.1284<br>0.1284<br>14                                                                                                             | 0.512804<br>0.7065<br>0.705281<br>15.72<br>0.1.2<br>0.1.2<br>0.1.2<br>0.1.2<br>0.1.2<br>0.1.2<br>0.1.2<br>0.1.2<br>0.1.2<br>0.1.2<br>0.1.2<br>0.1.2<br>0.1.2<br>0.1.2<br>0.1.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 303<br>Autoria Accineta<br>Autoria Sile<br>Porte<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kegueten Archipeligo<br>Monthe Carlson<br>Bassin Transform<br>205<br>21<br>21<br>22<br>21<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>22<br>23<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 116                          |
| 0.705216<br>0.705216<br>0.155<br>0.125<br>0.512575<br>0.126                                                                                               | 0.705192<br>0.705192<br>0.155<br>0.1286<br>0.1286<br>0.1286<br>0.1286<br>14                                                                                                            | 0.51286<br>0.155<br>0.70224<br>28.34<br>0.21<br>117.12<br>18.455<br>15.455<br>15.455<br>15.455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 304<br>Senguelen Acchinesato<br>Auszert (SLB37<br>Basall, Adairee<br>17,1<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2<br>17,2                                                                                                                                                                                                                                                                                                                                                     | Kenguelen Archipelign<br>Monteller<br>Baust, Transform<br>Baust, Transform<br>13.6<br>65.6<br>22.2<br>0.706287<br>0.706287<br>0.706287<br>0.706287<br>0.706287<br>0.706287<br>0.126<br>0.155<br>0.055<br>0.055<br>0.055<br>0.055<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.058<br>0.0588<br>0.0588<br>0.0588<br>0.0588<br>0.0588<br>0.0588<br>0.0588<br>0.0588<br>0.0588<br>0.0588<br>0.0588<br>0.0588<br>0.0588<br>0.0588<br>0.0588<br>0.05888<br>0.05888<br>0.05888<br>0.058888<br>0.058888<br>0.05888888<br>0.058888888888 | 117                          |
| 0.718<br>0.705264<br>0.118<br>0.119<br>0.512570<br>0.512570                                                                                               | 0.705265<br>0.705265<br>0.118<br>0.119<br>0.513562<br>0.119<br>14                                                                                                                      | 0.51250<br>0.51250<br>0.118<br>0.70505<br>0.15<br>90.28<br>18.446<br>15.556<br>15.556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 305<br>Keguusien Archystel<br>(601)<br>Basalt Acaline<br>Basalt Acaline<br>(606)<br>174<br>175<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Kerguelen Archipeligi<br>Kerguelen Archipeligi<br>Schlassell, Transibiola<br>Basalt, Transibiola<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,53<br>18,55<br>18,55<br>18,55<br>18,55<br>18,55<br>18,55<br>18,55<br>18,55<br>18,55<br>18,55<br>18,55<br>18,55<br>18,55<br>18,55<br>18,55<br>18,55<br>18,55<br>18,55<br>18,55<br>18,55<br>18,55<br>18,55<br>18,55<br>18,55<br>1                                                                                                                                                                                                | 125                          |
|                                                                                                                                                           | 14                                                                                                                                                                                     | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 219<br>Kesuken Architeckel<br>Kasuken Architeckel<br>Basel Turaelona<br>6,629<br>6,68<br>7,01<br>18,400<br>18,545<br>18,545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Keguaden Archive (79)<br>Keguaden Archive (79)<br>Montrabuellee<br>schlaz-ta-<br>Basell, Transford (78)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)<br>(77)                                                                                                     | 126                          |

| RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                                      | RE<br>L                                                      | ECALO                                                   | CULE A<br>Biblio                                                                   | CALCUL OLIEROOK 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                                                             |                                  |                                                   |                                                                                                                                 | RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                                                        | REC                                                          | CALCULE A<br>Age Biblio                                                                                                                         | CALCUL OLIEROOK 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                 |                                                                                           |                                                   |                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Age 14Ma (L Ponthus)<br>(REUS) measured recalculé<br>(875/885/1 initial recalculé<br>(RUS)/initial recalculé<br>(SMV4) measured recalculé<br>(143Md/144Ma) initial recalculé<br>(143Md/144Ma) initial recalculé | (143Nd/144Nd) initial recalcule<br>(Sm/Nd) initial recalculé | (Rb/Sr) Initial recalcule<br>(Sm/Nd) measured recalcule | Age rer. (L.Ponnus)<br>(Rb/Sr) measured recalculé<br>(87Sr/86Sn) initial recalculé | 14344/1444hitiai<br>8775085i<br>8776085i<br>8769085i<br>8769085i<br>22610204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>222170204Pb<br>2221704004040404040404040404040404040404040 | U Grann)<br>U Grann)<br>Th Grann<br>143Ndri 141Ndr measured<br>205F2204P measured<br>207F2204P measured<br>207F2204P measured | Sm (bpm)<br>Nd (bpm)<br>Rb (bpm) | Longitude<br>Age Correction (Ma)<br>Age reference | # (Olierook et al., 2017 - n.)<br>Geochemister Reference<br>Londines<br>Sanaboutine<br>Sanaboutine<br>Sanaboutines<br>Latinches | (RUS) measured recalcule<br>(RUS) measured recalcule<br>(RTS/8686) Initial recalcule<br>(RTS/8686) Initial recalcule<br>(RTS/86/74/Wd) measured recalcule<br>(14/3/6/74/Wd) Initial recalcule<br>(14/3/6/74/Wd) Initial recalcule | (143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | Age ref. (L.Ponthus)<br>(Rb/Sr) measured recalculé<br>(Rf Sr/86Sn) initial recalculé<br>(Rb/Sr) initial recalculé<br>(Sm/Nd) measured recalculé | 143Aud/14444hitiai<br>877Ev855<br>287Ev855<br>287Ev824<br>287Ev824Pb<br>2227Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb<br>2027Ev8244Pb | 143NQ/144Nd measured<br>875/8657 measured<br>206Pb/204Pb measured<br>207Pb/204Pb measured<br>208Pb/204Pb measured | San (apam)<br>Ned (apam)<br>SF (apam)<br>Sf (apam)<br>Pb (apam)<br>Pb (apam)<br>Th (apam) | Longitude<br>Age Correction (Ma)<br>Age reference | # (Olierook et al., 2017 - n.)<br>Geochemistry Reference<br>Province<br>Location<br>Sample Name<br>Sample Name<br>Kack Two<br>Latitude |
| 74                                                                                                                                                                                                              | 0.137                                                        | 0.086                                                   | 0.086                                                                              | 0.5127<br>0.5022<br>0.704753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.498<br>0.49<br>1.17<br>2.17<br>2.17                                                                                         | 6.42<br>24.8<br>11.7             | 26                                                | Kegulen Archologo<br>Trois ménestres<br>Basalt                                                                                  | 0.196<br>0.705194<br>0.196<br>0.129<br>0.126<br>0.126                                                                                                                                                                             | 0.512632<br>0.129                                            | 25<br>0,196<br>0, <b>705163</b><br>0,196<br>0,129                                                                                               | 0.51263<br>0.705166<br>22.00<br>10.334<br>10.334<br>18.323<br>18.3254<br>38.821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01,2003<br>0.705233<br>18.405<br>38.945<br>0.129                                                                | 56<br>275<br>4080<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.    | 70.06<br>25<br>[70]                               | 264<br>(8)<br>Kerguelen Archipelago<br>Mount Trapeze<br>s AG99-182<br>Basalt, Transitional<br>-49.3                                    |
| 74                                                                                                                                                                                                              | 0.137                                                        | 0.062                                                   | 0.062                                                                              | 0.5127<br>0.0667<br>0.704745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01466<br>1.155                                                                                                                | 8.8<br>34.1<br>8.39              | 26                                                | Kegulén Archipelago<br>Trois ménestres<br>Basalt                                                                                | 0.196<br>0.705194<br>0.196<br>0.129<br>0.126<br>0.126                                                                                                                                                                             | 0.512632<br>0.129                                            | 25<br>0,196<br>0, <b>705163</b><br>0,196<br>0,129                                                                                               | 0 : 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.112653<br>0.705233<br>0.1287                                                                                    | 4 06<br>5 8                                                                               | 25                                                | Kerguelen Archipelago<br>Courbet Peninsula<br>AG89-182                                                                                 |
| 74                                                                                                                                                                                                              | 0.142                                                        | 0.034                                                   | 0.034                                                                              | 0.5/27/4<br>0.704736<br>0.704736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1617<br>0.1617                                                                                                              | 7.6<br>28.5<br>4.43              | 26                                                | Kerguelen Archipelago<br>Trois méndetels<br>Basait                                                                              | 0.7111<br>0.705194<br>0.1111<br>0.149<br>0.1512632<br>0.149                                                                                                                                                                       | 0.512622<br>0.149                                            | 25<br>0.111<br>0.705177<br>0.111<br>0.149                                                                                                       | 0.512822<br>0.111<br>0.705177<br>18.70<br>10.14<br>10.247<br>18.241<br>18.241<br>18.241<br>18.242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.512.046<br>0.7052.046<br>18.314<br>15.529<br>38.753<br>0.1493                                                   | 42<br>11.1<br>1800<br>10.3<br>1.0<br>1.0                                                  | 69.89<br>25<br>[70]                               | 204<br>(8)<br>Kerguelen Achipelago<br>Ravin chatornýjaune<br>s.AG9-125<br>Basalt, Transtional<br>-49.35                                |
| 4                                                                                                                                                                                                               | 0.140                                                        | 0.010                                                   | 0.010                                                                              | 0.512706<br>0.011<br>0.704654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1460<br>0.1461                                                                                                              | 7.5<br>28.5<br>1.46              | 26                                                | Kerguelen Archippe<br>Baset<br>Trois mémeterels<br>Baset                                                                        | 0.145<br>0.705193<br>0.145<br>0.146<br>0.12617<br>0.140                                                                                                                                                                           | 0.512607<br>0.140                                            | 25<br>0.145<br>0.145<br>0.145<br>0.140                                                                                                          | 0.512807<br>0.705171<br>18.78<br>0.145<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.15<br>15.527<br>15.527<br>38.655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01/2020<br>0.705/22<br>18.289<br>15.531<br>38.767<br>0.140                                                      | 3.5<br>15.1<br>12.3<br>2.46.0<br>1.0<br>1.4                                               | 69.89<br>25<br>[70]                               | 205<br>(Rerguelen Achipelago<br>Ravin charboriyaune<br>s AG39-126<br>Portite<br>-49 35                                                 |
| 4                                                                                                                                                                                                               | 0.138                                                        | 0.067                                                   | 0.067                                                                              | 0.512713<br>0.7704661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 1574<br>0 11 13 13 14 19 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15                                                    | 7.5<br>28.8<br>9                 | 26                                                | Kerguelen Acchipelago<br>Trois ménestres<br>Basalt                                                                              | 0.131<br>0.705187<br>0.131<br>0.131<br>0.147<br>0.512642<br>0.147                                                                                                                                                                 | 0.512631<br>0.147                                            | 25<br>0.705166<br>0.131<br>0.131<br>0.147                                                                                                       | 0.131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.512655<br>0.705213<br>0.4464                                                                                    | 18.1<br>18.1<br>265                                                                       | 25                                                | Karguelen Achipelago<br>Ravin charboriyane<br>AG99-123                                                                                 |
| -<br>4                                                                                                                                                                                                          | 0.138                                                        | 0.041<br>0.138                                          | 0.041                                                                              | 0.512712<br>0.0443<br>0.704666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1571<br>0.129<br>0.129<br>0.1271                                                                                            | 7.9<br>30.4<br>5.5               | 26                                                | Keguelen Archipelago<br>Tros menastres<br>Basalt                                                                                | 0.705091<br>0.705091<br>0.168<br>0.136<br>0.512616<br>0.136                                                                                                                                                                       | 0.512606<br>0.136                                            | 25<br>0.168<br>0.168<br>0.168<br>0.188                                                                                                          | 0.168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.512628<br>0.705124<br>0.4355                                                                                    | 5.2<br>20.9<br>359                                                                        | 25                                                | Kerguelen Achipelago<br>Rawn chatoorijaune<br>AG99-122                                                                                 |
| 4                                                                                                                                                                                                               |                                                              |                                                         | 20                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               |                                  | 26                                                | Keguelen Acchipelago<br>Trois möntestrels<br>ICSN-27 teol<br>Basalt                                                             | 0.705062<br>0.705062<br>0.139<br>0.124<br>0.512645<br>0.124                                                                                                                                                                       | 0.512636<br>0.124                                            | 25<br>0.139<br>0.139<br>0.139<br>0.124                                                                                                          | 0.139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.512666<br>0.70509                                                                                               | 7.3<br>26.7<br>549                                                                        | 25                                                | Karguelen Achipelago<br>Ravin charboriyame<br>AG99-124                                                                                 |
| 4                                                                                                                                                                                                               | 0.139                                                        | 0.007                                                   | 0.007                                                                              | 0.512705<br>0.0073<br>0.704685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.457<br>2.68<br>2.68<br>2.68                                                                                                 | 7.8<br>29.9<br>0.9               | 26                                                | Keguelen Archoelego<br>Trois ménestres<br>Basalt                                                                                | Ŧ                                                                                                                                                                                                                                 | 0.136                                                        | 0.065<br>0.136                                                                                                                                  | 0.51/269<br>0.0669<br>0.704781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4848                                                                                                            | 8.4<br>3.2.8<br>8.45<br>3.51<br>1.57<br>2.98                                              | 26                                                | Kerguelen Archipelago<br>Trois ménestrels<br>K2M-1-1<br>Basalt                                                                         |
| 4                                                                                                                                                                                                               | 0.138                                                        | 0.041                                                   | 0.041                                                                              | 0.54706<br>0.0445<br>0.704727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.58<br>1.23<br>2.55<br>2.157                                                                                                 | 7.13<br>27.4<br>5.5              | 26                                                | Keguelen Archipelago<br>Trois ménestres<br>Basalt                                                                               | Ŧ                                                                                                                                                                                                                                 | 0.134                                                        | 0.048<br>0.048<br>0.134                                                                                                                         | 0.512688<br>0.0515<br>0.704838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 15.98                                                                                                           | 364<br>6.2<br>354<br>183<br>3.61                                                          | 26                                                | Kerguelen Archipelego<br>Trois ménestres<br>K2M-3<br>Basalt                                                                            |
| 14                                                                                                                                                                                                              | 0.140                                                        | 0.043                                                   | 0.043                                                                              | 0.0462<br>0.704665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5<br>0.5<br>1.33<br>2.79<br>0.01144                                                                                         | 8<br>30.4<br>5.8                 | 26                                                | Kerguelen Archipolago<br>Trois ménestres<br>K2M-26<br>Basat                                                                     | ī                                                                                                                                                                                                                                 | 0.135                                                        | 26<br>0.053<br>0.135                                                                                                                            | 0.512687<br>0.0574<br>0.704767                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 9782                                                                                                            | 9.4<br>37.1<br>3.88<br>0.8<br>1.86<br>3.52                                                | 26                                                | Xdiop<br>Kerguelen Archipelago<br>Trois ménestreis<br>K2M-5<br>Basalt                                                                  |

| REC<br>L'A                                                   | ALCU                                                                                 | ILE A<br>Ma                                        | REC.<br>L'A                                                                                | ALCU<br>ge Bil                                            | LE A<br>blio                                       | CAL                                            | .CUL                                | OLIER                        | оок                             | 2017                                   |                                                                      |                                               |                      |              |                      |                                      |                    |                                              |                                                      |                                                          | RECA<br>L'Ag                                                                               | LCULE<br>je 14 Ma                                                                         | a                    | RECA<br>L'Aç                                                  | ALCU<br>ge Bit                                               | LE A<br>blio                                       | CALCUL O                                                                         | LIERO                    | OOK 201                                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |                      |              |                                  |               |                       |                                      |                                                                     |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|------------------------------------------------|-------------------------------------|------------------------------|---------------------------------|----------------------------------------|----------------------------------------------------------------------|-----------------------------------------------|----------------------|--------------|----------------------|--------------------------------------|--------------------|----------------------------------------------|------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------|--------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------|--------------|----------------------------------|---------------|-----------------------|--------------------------------------|---------------------------------------------------------------------|
| (143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | (Rb/Sr) initial recalcule<br>(Rb/Sr) initial recalculé<br>(Sm/Nd) measured recalculé | Age 14Ma (L.Ponthus)<br>(Rb/Sr) measured recalculé | (Sm/Nd) measured recarcule<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | (87578657) Initial recalcule<br>(Rb/Sr) initial recalculé | Age ref. (L.Ponthus)<br>(Rb/Sr) measured recalculé | 207 Pb/204 Pb initial<br>208 Pb/204 Pb initial | 232 Th/204Pb<br>206Pb/204Pb initial | 238 U/204 Pb<br>235 U/204 Pb | 87R b/86Sr<br>87Sr/86Sr initial | 147 Sm/144Nd<br>143 Nd/1 44 Nd initial | 206Pb/204Pb measured<br>207Pb/204Pb measured<br>208Pb/204Pb measured | 143 Nd/1 44 Nd measured<br>87Sr/86Sr measured | Pb (ppm)<br>Th (ppm) | Sr (ppm)     | Sm (ppm)<br>Nd (ppm) | Age Correction (Ma)<br>Age reference | Longitude          | Sample Name<br>Rock Type                     | Province<br>Location                                 | # (Olierook et al., 2017 - n.)<br>Geochemistry Reference | (Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | (R0/Sr) measured recalcule<br>(87 Sr/86Sr) initial recalculé<br>(Rb/Sr) initial recalculé | Age 14Ma (L.Ponthus) | (Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé | (87 Sr/86S r) initial recalcule<br>(Rb/Sr) initial recalcule | Age ref. (L.Ponthus)<br>(Rb/Sr) measured recalculé | 232Th/204Pb<br>236Pb/204Pb initial<br>207Pb/204Pb initial<br>207Pb/204Pb initial | 238U/204Pb<br>238U/204Pb | 143 Nd/144Nd initial<br>87Rb/86Sr<br>87Rb/86Sr | 206Pb/204Pb measured<br>207Pb/204Pb measured<br>208Pb/204Pb measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 143Nd/1 44Nd measured<br>87Sr/86Sr measured | Pb (ppm)<br>Th (ppm) | Sr (ppm)     | Sm (bpm)<br>Nd (bpm)<br>Rb (bpm) | Age reference | Latitude<br>Longitude | Location<br>Sample Name<br>Rock Type | # (Olierook et al. 2017 - n.)<br>Geochemistry Reference<br>Province |
| 0.512399<br>0.144                                            | 0.050                                                                                | 0.050<br>0.752                                     | 0.144<br>0.512318<br>0.144                                                                 | 0.050                                                     | 0.050                                              | 15.444<br>37.648                               | 43.27                               | 0.04                         | 0.050                           | 0.144                                  | 17.427<br>15.448<br>37.863                                           | 0.512412<br>0.705738                          | 2.4<br>1.6           | 253.0        | 4.6<br>4.4           | Duncan 2002                          | -54.8114<br>76.794 | s 120-747C-14R-1,31-35<br>Tholeiite / Basalt | Kerguelen Plateau (Central)<br>ODP Leg 120, Site 747 | 316                                                      |                                                                                            |                                                                                           | 0.139<br>14          | 0.139                                                         | 0.016                                                        | 26<br>0.016                                        |                                                                                  | 0.704000                 | 0.5127 19<br>0.0169                            | 0 L 10 0 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                             | 1.32                 | 380          | 1.47<br>28.5<br>2.72             | 20            | 2                     | K2M-29<br>Basalt                     | Xdiop<br>Kerguelen Archipelago<br>Trrvis ménestrels                 |
| 0.512410<br>0.141                                            | 0.108                                                                                | 0.108<br>0.7067.50                                 | 0.141<br>0.512331<br>0.141                                                                 | 0.109                                                     | 0.108                                              | 15.455<br>37.695                               | 37.49<br>17.386                     | 0.04                         | 0.108                           | 0.141                                  | 17.463<br>15.459<br>37.881                                           | 0.512423                                      | 3.0<br>1.8           | 275.0        | 5.3<br>22.9          | 100<br>Duncan 2002                   | -54.8114<br>76.794 | s 120-747C-13R-3.24-28<br>Tholeiite          | Kerguelen Plateau (Central)<br>ODP Leg 120, Site 747 | 317                                                      |                                                                                            |                                                                                           | 0.130<br>14          | 0.138                                                         | 0.037                                                        | 26<br>0.037                                        |                                                                                  | 0.104002                 | 0.512709                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             | 1.37                 | 347          | 7.8<br>30.1<br>4.81              | 20            | ž                     | K2M-35<br>Basalt                     | Xdiop<br>Kerguelen Archipelago<br>Trnis ménestrels                  |
| 0.512423<br>0.134                                            | 0.201                                                                                | 0.201<br>0.705846                                  | 0.134<br>0.512347<br>0.134                                                                 | 0.201                                                     | 0.201                                              | 15.519<br>37.933                               | 36.57<br>17.579                     | 4.93                         | 0.201                           | 0.134                                  | 17.696<br>15.523<br>38.114                                           | 0.512435                                      | 1.7<br>1.0           | 259.0        | 14.9<br>18.0         | 100<br>Duncan 2002                   | -54.8114<br>76.794 | s 120-747C-16R-2,53-59<br>Tholeiite          | Kerguelen Plateau (Central)<br>ODP Leg 120, Site 747 | 318                                                      |                                                                                            |                                                                                           | 0.137<br>14          | 0.137                                                         | 0.045                                                        | 26<br>0.045                                        |                                                                                  | 0.10401.0                | 0.512698                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             | 1.39                 | 0.54         | 5.89                             | 20            | 2                     | K2M-39<br>Basalt                     | Xdiop<br>Kerguelen Archipelago<br>Trnis ménestrels                  |
| 0.512424<br>0.136                                            | 0.118                                                                                | 0.118<br>0.718                                     | 0.512347<br>0.136                                                                          | 0.705074                                                  | 0.118                                              | 15.498<br>37.932                               | 32.21<br>17.627                     | 5.24                         | 0.118                           | 0.136                                  | 17.709<br>15.502<br>38.092                                           | 0.512436<br>0.705742                          | 2.2                  | 243.0<br>0.2 | 4.0<br>17.9          | Duncan 2002                          | -54.8114<br>76.794 | s 120-747C-15R-2.134-139<br>Tholeiite        | Kerguelen Plateau (Central)<br>ODP Leg 120, Sile 747 | 320                                                      |                                                                                            |                                                                                           | 0.130<br>14          | 0.136                                                         | 0.013                                                        | 26<br>0.013                                        |                                                                                  | 0.104108                 | 0.12443                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             | 1.57                 | 0.53         | 7.8<br>30.56<br>1.7              | 20            | 36                    | K2M-49<br>Basalt                     | Xdiop<br>Kerguelen Archipelago<br>Trois ménestrels                  |
| 0.512431                                                     | 0.028                                                                                | 0.028<br>0.028                                     | 0.141<br>0.512352<br>0.141                                                                 | 0.028                                                     | 0.028                                              | 15.514<br>37.903                               | 38.42<br>17.497                     | 6.17                         | 0.028                           | 0.141                                  | 17.594<br>15.519<br>38.094                                           | 0.512444                                      | 1.9<br>1.2           | 274.0        | 15.3<br>3 R          | Tuncan 2002                          | -54.8114<br>76.794 | s 120-747C-16R-5,17-21<br>Tholeiite          | Kerguelen Plateau (Central)<br>ODP Leg 120, Site 747 | 321                                                      |                                                                                            |                                                                                           | 0.100                | 0.138                                                         | 0.009                                                        | 26<br>0.009                                        |                                                                                  | 0.700124                 | 0.512647                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             | 1.43                 | 0.5          | 7.1<br>27.33<br>1.28             | 02            | ac                    | K2M-50<br>Basalt                     | Xdiop<br>Kerguelen Archipelago<br>Trois ménestrels                  |
| 0.512437                                                     | 0.121                                                                                | 0.121                                              | 0.1144<br>0.512356<br>0.144                                                                | 0,121                                                     | 0.121                                              | 15.432<br>37.668                               | 31.80                               | 9.18                         | 0.121                           | 0.144                                  | 17.421<br>15.439<br>37.826                                           | 0.512450<br>0.705552                          | 3.3<br>1.7           | 271.0        | 21.0                 | Duncan 2002                          | -54.8114<br>76.794 | s 120-747C-11R-1,0-5<br>Tholeitle            | Kerguelen Plateau (Central)<br>ODP Leg 120, Site 747 | 323                                                      |                                                                                            |                                                                                           | 0.137<br>14          | 0.137                                                         | 0.048                                                        | 26<br>0.048                                        |                                                                                  | 0.1 040 1 0              | 0.512698<br>0.512698<br>0.704740               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             | 1.45                 | 0.56         | 7.6<br>29.5<br>6                 | 20            | 36                    | K2M-52<br>Basalt                     | Xdiop<br>Kerguelen Archipelago<br>Trnis ménestrels                  |
| 0.512442                                                     | 0.253                                                                                | 0.252<br>0.252                                     | 0.512366<br>0.135                                                                          | 0.253                                                     | 0.252                                              | 15.512<br>37.974                               | 31.21<br>17.574                     | 4.63                         | 0.252                           | 0.135                                  | 17.647<br>15.516<br>38.129                                           | 0.512454 0.705828                             | 2.3<br>1.1           | 220.0        | 17.5<br>10.2         | Duncan 2002                          | -54.8114<br>76.794 | s 120-747C-15R-1,15-19<br>Tholeiite / Basalt | Kerguelen Plateau (Central)<br>ODP Leg 120, Site 747 | 325                                                      |                                                                                            |                                                                                           | 14                   |                                                               |                                                              | 26                                                 |                                                                                  |                          |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                      |              |                                  | 02            | 96                    | K2M-52 dupl<br>Basalt                | Xdiop<br>Kerguelen Archipelago<br>Trois ménestrels                  |
| 0.512444                                                     | 0.029                                                                                | 0.029<br>0.029                                     | 0.512361<br>0.147                                                                          | 0.029                                                     | 0.029                                              | 15.383<br>37.551                               | 34.77<br>17.262                     | 6.22<br>0.05                 | 0.029                           | 0.146                                  | 17.360<br>15.388<br>37.723                                           | 0.512457                                      | 2.2<br>1.2           | 252.0        | 4.1<br>16.8<br>2.6   | Tou<br>Duncan 2002                   | -54.8114<br>76.794 | s 120-747C-12R-4,53-56<br>Tholeiite / Basalt | Kerguelen Plateau (Central)<br>ODP Leg 120, Site 747 | 326                                                      |                                                                                            |                                                                                           | 0. Ioo<br>14         | 0.136                                                         | 0.056                                                        | 26<br>0.056                                        |                                                                                  | 0.2 04 204               | 0.512684<br>0.512684                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             | 1.52                 | 352          | 7.7<br>7.26                      | 20            | 2                     | K2M-56<br>Basalt                     | Xdiop<br>Kerguelen Archipelago<br>Trnis ménestrels                  |
|                                                              |                                                                                      | 14                                                 |                                                                                            |                                                           | 100                                                | 444                                            |                                     |                              |                                 |                                        |                                                                      | 0.512470                                      |                      |              |                      | 100<br>Duncan 2002                   | -54.8114<br>76.794 | s 120-747C-14R-2.27-31<br>Tholeiite          | Kerguelen Plateau (Central)<br>ODP Leg 120, Site 747 | 327                                                      |                                                                                            |                                                                                           | 0.137                | 0.137                                                         | 0.068                                                        | 26<br>0.068                                        |                                                                                  | 70 1900 110              | 0.512686                                       | 2 h h 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             | 1.58                 | 325          | 8.7<br>8.2<br>8.2                | 20            | 8                     | K2M-57<br>Basalt                     | Xdiop<br>Kerguelen Archipelago<br>Trois ménestrels                  |
| 0.512482                                                     | 0.349                                                                                | 0.349                                              | 0.132<br>0.512408<br>0.132                                                                 | 0.350                                                     | 0.349                                              | 15.409<br>37.583                               | 49.43<br>17.296                     | 6.55<br>0.05                 | 0.349                           | 0.132                                  | 17.399<br>15.414<br>37.828                                           | 0.512494<br>0.705639                          | 2.8<br>2.2           | 203.0        | 5,4<br>24,6<br>24.5  | Duncan 2002                          | -54.8114<br>76.794 | s 120-747C-14R-2 27-31<br>Tholeiite          | Kerguelen Plateau (Central)<br>ODP Leg 120, Site 747 | 328                                                      |                                                                                            |                                                                                           | 0.130<br>14          | 0.138                                                         | 0.150                                                        | 26<br>0.150                                        |                                                                                  | 0.1 040 11               | 0.512877<br>0.512877<br>0.1616                 | D http://www.communication.com/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/communication/ |                                             | 1.37                 | 0.57<br>0.57 | 7.5<br>28.8<br>18.6              | 20            | 8                     | K2M-59<br>Basalt                     | Xdiop<br>Kerguelen Archipelago<br>Trnis ménestrels                  |

| RECALCULE A<br>L'Age 14 Ma<br>L'Age Biblio<br>CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  | RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                                       | RECALCULE A<br>L'Age Biblio                                                                                                                                                                                            | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Age Correction (Ma)<br>Age reference<br>Sin form)<br>Hit form                                                                                                                                                                                                                                                                                                                                                                                                                 | # (Olierook et al. 2017 - n.)<br>Geochemistry Reference<br>Province<br>Location<br>Samble Name<br>Rock Toxe<br>Rock Toxe<br>Lutitude<br>Lutitude | Age 14AB (L-Ponthus)<br>(Rickic) massured resolutio<br>(875x86Sh Initial resolutio<br>(825x1) Initial resolutio<br>(825x1) Initial resolutio<br>(143Ad/14ANB Initial resolutio<br>(143Ad/14ANB Initial resolutio | Age ref. (L-Ponthus)<br>(RUSC) massured recalculé<br>(875/86S01 Initial recalculé<br>(875/86S01 Initial recalculé<br>(1476/101 measured cealculé<br>(1474/141/061 Initial recalculé<br>(1474/141/061 Initial recalculé | 147 Sm/1444<br>143 Wur/1440 billia<br>174 Sm/1440 billia<br>1775 Vol35: http:<br>1775 Vol35: http:<br>1775 Vol45: http:<br>2775 Vol45: htt | Sin Gosmi<br>Nd Gosmi<br>Sir Gosmi<br>U Gosmi<br>U Gosmi<br>Th Gosmi<br>143Ndri 44Nd massured<br>208FV22845 massured<br>208FV2245 massured<br>208FV2245 massured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | # (Olemonk et al. 2017 - n.)<br>Geochemistry Reference<br>Province<br>Succision<br>Row, Ne Name<br>Row, Ne Name<br>Row, Ne Name<br>Row, Ne Name<br>And Correction (Ma)<br>Alan (of vences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 100<br>101<br>102<br>102<br>103<br>104<br>105<br>105<br>105<br>105<br>105<br>105<br>105<br>105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 335<br>(21)<br>Kergueten Plateau (Cerrita)<br>ODP Leg 183, Sie 1138<br>\$ 183-1138A-98R3.2_LEACHED<br>\$ 35517<br>75,5917<br>75,5917             | 4                                                                                                                                                                                                                | 100                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.512410<br>0.756866<br>17.608<br>15.608<br>96.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 315<br>(25)<br>Kerguelen Pialeau (Central)<br>00P-teg 120 Site 47<br>s 120-747C-16R-2 81-84<br>5-8114<br>78-794<br>100<br>(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 190<br>191<br>2216<br>2216<br>2216<br>2216<br>2216<br>2216<br>2216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 338<br>Kergusten Pateau (2211<br>COP Log 163, Site 113<br>00P Log 163, Site 113<br>165-11384-8873 (A. LEX-OFED<br>53.5617<br>75.9717<br>75.9717  | 14                                                                                                                                                                                                               | 100                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.512435<br>0.705508<br>17.466<br>37.5461<br>37.547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 319<br>(Regueien Pieteau (Central)<br>ODP Leg 120, Site 747<br>s 120.747C-127-445-45<br>5-4.8114<br>78.794<br>100<br>(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 337<br>Kegusten Parteau (Certrat)<br>ODP Log 18, Ste 118<br>5 163-1134-04653_LEX-HE<br>5 363/17<br>75.97/1<br>75.97/1                            | 14                                                                                                                                                                                                               | 108                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.512445<br>0.705600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 322<br>Kerguelen Parteau (Central)<br>00P Leg 120, Sie 747<br>s 120-747 C-12R-2;123-124<br>Tholelle<br>-54,8114<br>-78,784<br>100<br>(41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 312<br>Kenguelen Pateau (Cettal)<br>MD49. Directore 8<br>Basel (Transitional<br>-50.37<br>74.817                                                 | 4                                                                                                                                                                                                                | 100                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.512462<br>0.70885<br>18.275<br>15.643<br><del>38.464</del> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32.4<br>(25)<br>(27)<br>2007-Leg 120, Ste 7.7<br>5 (20)-747C-569.226-57<br>Tholeille<br>5-44.814<br>76.794<br>(10)<br>(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| HIO<br>HIO<br>BIS 277<br>BIS 27 | 314<br>(Kenguelen Planeau (Certra)<br>MCH4, Droctore 8<br>5 DR0005<br>Basell Transitional<br>-50.37<br>7.4817                                    | 14<br>0.206<br>0.706759<br>0.206<br>0.137<br>0.512595<br>0.137                                                                                                                                                   | 100<br>0.206<br>0.206<br>0.207<br>0.207<br>0.51259<br>0.137<br>0.137                                                                                                                                                   | 0.51251<br>0.512519<br>0.706507<br>11.6507<br>19.01<br>17.781<br>17.781<br>15.449<br>38.062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.2<br>11.2<br>11.2<br>11.2<br>11.2<br>11.1<br>1.1<br>1.1<br>1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 329<br>(Cerpuelen Plateau (Central)<br>ODP Lega 163, Stei 1138<br>183-11364-74R1, 4_LCO/HED<br>-335177<br>759717<br>100<br>[9]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.                                                                                                                                                                                         | 513<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)                                                                        | 14<br>0.013<br>0.704777<br>0.013<br>0.159<br>0.512617<br>0.159                                                                                                                                                   | 0.013<br>0.704762<br>0.013<br>0.013<br>0.51258<br>0.51258                                                                                                                                                              | 0.159<br>0.013<br>7.75<br>0.06<br>43.79<br>17.941<br>17.941<br>17.941<br>15.445<br>38.145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.5<br>17.3<br>17.5<br>10.2<br>10.2<br>17.1<br>1.1<br>10.051052<br>16.0630<br>16.0630<br>16.0630<br>16.0630<br>16.0630<br>16.0630<br>16.0630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 330<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(Contral)<br>(C |
| 108<br>108<br>100<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>11223<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 342<br>Kerguelen Parleau (Ean Bank)<br>ODP Log 185 Sile 1137<br>s 183-1137A-38-2.107-10<br>-66 833<br>-66 833<br>-66 8433                        | 14<br>0.057<br>0.704709<br>0.057<br>0.514<br>0.51262<br>0.154                                                                                                                                                    | 0.067<br>0.704837<br>0.057<br>0.154<br>0.153<br>0.153                                                                                                                                                                  | 0.154<br>0.087<br>0.10<br>0.10<br>64.25<br>17.542<br>15.502<br>38.162<br>38.162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.7<br>26.4<br>159.4<br>0.5<br>2.2<br>0.512834<br>0.704220<br>0.512834<br>0.704220<br>15.1512<br>15.1512<br>3.9.482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 331<br>(211)<br>ODP Leg 183 Sile 1139<br>s 185-1139-66932<br>Tholeile<br>-53-5517<br>75.9717<br>100<br>[9]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 341<br>Keguelen Plateau (Ean Bank)<br>o DPL eg 183, Sile 1157<br>s 183-1137x-384-34-49<br>s 683-30<br>-96.833<br>68.0533                         | 14<br>0.027<br>0.704705<br>0.027<br>0.152<br>0.512624<br>0.152                                                                                                                                                   | 100<br>0.704672<br>0.027<br>0.152<br>0.512538<br>0.153                                                                                                                                                                 | 0.152<br>0.027<br>10.57<br>0.08<br>49.48<br>17.537<br>15.545<br>15.545<br>38.145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.1<br>32.2<br>20<br>217.9<br>0.6<br>0.51258<br>0.76470<br>0.76470<br>18.169<br>18.169<br>3.569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 332<br>(2011)<br>332<br>(2011)<br>300 Leg 103 Sile 134<br>3153-1133-48013, A<br>535177<br>75.9717<br>100<br>(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 108<br>110<br>100<br>1100<br>1100<br>1100<br>1100<br>1100<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 943<br>[14]<br>COPL egi 163, Sise 1137<br>5 163, 1137A-38A-3.00-9<br>5 8, 3045000<br>-59, 8233<br>69, 9233                                       | 14<br>0.70476<br>0.121<br>0.121<br>0.154<br>0.512638<br>0.154                                                                                                                                                    | 100<br>0.121<br>0.704629<br>0.121<br>0.121<br>0.12551<br>0.154                                                                                                                                                         | 0.154<br>0.121<br>11.30<br>0.08<br>49.37<br>17.973<br>15.488<br>38.1589<br>38.1589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54<br>212<br>2037<br>2037<br>204<br>20<br>15<br>15<br>0512682<br>0512682<br>0512682<br>0512682<br>0512682<br>0512682<br>0512682<br>0512682<br>0512682<br>0512682<br>051682<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>15407<br>154 | 333<br>(211)<br>Karguelen Plateau (Central)<br>ODU Leg 163, Sub 1138<br>5,3 /s 163-1138-4465 PECE3<br>5,3 /s 163-1138-4465 PECE3<br>5,3 /f 103-1138-5465<br>Thorefore / Suster<br>75.9717<br>100<br>[9]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>01100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>01000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>0000<br>000<br>000<br>000<br>0000<br>0000<br>000<br>0000<br>0000<br>0000<br>00                                                                                                     | 345<br>Kergusten Plateau (Ean Bank)<br>ODP Leg 153, Sile 1137<br>5 153-1137A-334-4, 126-129<br>7 Tachree<br>- 66.633                             | 14<br>0.007<br>0.704609<br>0.007<br>0.20<br>0.20<br>0.220                                                                                                                                                        | 100<br>0.704660<br>0.2007<br>0.25420<br>0.5125420<br>0.2200                                                                                                                                                            | 0.220<br>0.513540<br>0.007<br>0.007<br>5.585<br>0.04<br>0.04<br>17.907<br>15.494<br>15.494<br>15.494<br>15.494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1:1<br>2:45<br>0:1<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:515864<br>0:51586464<br>0:51586464<br>0:51586464<br>0:51586464<br>0:51586464<br>0:5158646464<br>0:5                                                                                                                                                                                                                                                                                                                                                    | 334<br>(Certral)<br>Kerguelen Plateau (Certral)<br>ODP Leg 183 Ste 1138<br>0DP Leg 183 Ste 1138<br>Thotelle<br>-53.5617<br>75.59171<br>100<br>(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| R                         | ECAL<br>L'Age              | CULE<br>14 Ma                                                | A                      | RECA<br>L'Ag                                                  | LCULE<br>ge Biblio                                                                        | A                    | CALCU                                                                   | IL OLI                    | EROC                            | K 2017                                                | 7                    |                                                                           |                                 |                                  |                                                  |                                                      |                                                                                                     |                                | RECA<br>L'Ag                                                                               | LCULE A<br>e 14 Ma                                                                                                  | REC<br>L'A                      | ALCULE A                                                                                                                                      | CALCUL                                                                  | . OLIERO                                      | DOK 2017                                                         |                                                                                                                                     |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |
|---------------------------|----------------------------|--------------------------------------------------------------|------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------|---------------------------|---------------------------------|-------------------------------------------------------|----------------------|---------------------------------------------------------------------------|---------------------------------|----------------------------------|--------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| (Sm/Nd) initial recalculé | (Sm/Nd) measured recalculé | (Rb/Sr) measured recalculé<br>(87 Sr/86Sr) initial recalculé | Age 14 Ma (L. Ponthus) | (Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé | (Rb/Sr) measured recalculé<br>(87 Sr/86Sr) initial recalculé<br>(Rb/Sr) initial recalculé | Age ref. (L.Ponthus) | 206 Pb/204 Pb initial<br>207 Pb/204 Pb initial<br>208 Pb/204 Pb initial | 235U/204Pb<br>232Th/204Pb | 87Sr/86Sr initial<br>238U/204Pb | 147 Stiv 14400<br>143 Nd/144 Nd initial<br>87R b/86Sr | 208Pb/204Pb measured | 143 Nd/1 44 Nd measured<br>87S r/86S r measured<br>206 Pb/204 Pb measured | U (ppm)<br>Pb (ppm)<br>Th (ppm) | Nd (ppm)<br>Rb (ppm)<br>Sr (ppm) | Age Correction (Ma)<br>Age reference<br>Sm (ppm) | Rock Tvne<br>Latitude<br>Longitude                   | Geochemistry Reference<br>Province<br>Location<br>Sample Name                                       | # (Olierook et al., 2017 - n.) | (Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | Auer Himar L. Provinsus<br>(Rb/Sr) measured recalculé<br>(87 Sr86Sh i hitial recalculé<br>(Rb/Sr) initial recalculé | (143Nd/144Nd) initial recalculé | Age ref. (L.Ponthus)<br>(Rb/Sr) measured recalculé<br>(675/86Sr) initial recalculé<br>(Rb/Sr) initial recalculé<br>(Sm/Nd) measured recalculé | 206 PP/204 Pb Initial<br>207 Pb/204 Pb Initial<br>208 Pb/204 Pb Initial | 238 U/204 Pb<br>235 U/204 Pb<br>237 Th/204 Pb | 14/S/11/14ANG<br>143 Nd/144 Nd initial<br>87Rb/86Sr<br>97Rb/86Sr | Th (born)<br>143 Nd/144Nd measured<br>2757.8657 measured<br>207P b/204Pb measured<br>207P b/204Pb measured<br>208P b/204Pb measured | Nd (com)<br>Rb (com)<br>Sr (com)<br>U (com)<br>U (com) | Geochemistry Reference<br>Province<br>Lucation<br>Samole Name<br>Frack Trode<br>Lanitude<br>Lanitude<br>Lanitude<br>Aue Correction (Ma)<br>Are reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | # (Olierook et al. 2017 - n.) |
| 0.113                     | 0.113                      | 0.413<br>0.706796                                            | 0.113<br>14            | 0.113<br>0.512298                                             | 0.413<br>0.706244<br>0.414                                                                | 108                  | 18.070<br>15.670<br>38.787                                              | 0.07<br>50.39             | 9.96                            | 0.413                                                 | 39.054               | 0.512378<br>0.706878<br>18.237                                            | 1.9<br>12.0<br>9.3              | 70.0<br>490.0                    | 100<br>[9]<br>15.0                               | Phonotephrite<br>-56.8333<br>68.0933                 | [14]<br>Kerguelen Plateau (Elan Bank)<br>ODP Leg 183, Site 1137<br>s 183-1137A-36R-1,27-32 s 1      | 355                            | 0.105<br>0.512254<br>0.105                                                                 | 17.764<br>0.735225<br>17.768                                                                                        | 0.512190<br>0.105<br>0.105      | 108<br>17.764<br>0.711493<br>17.792<br>0.105                                                                                                  | 18.4.85<br>15.8.15<br>39.432                                            | 7.31<br>0.05<br>64.22                         | 0.512191<br>17.764<br>0.717745                                   | 34.0<br>0.512264<br>0.738757<br>18.608<br>15.821<br>39.773                                                                          | 98.0<br>202.0<br>33.0<br>35.0                          | Kerguelen Plateau (Elan Bank)<br>COP Leg 183, Sile 1137<br>s 183-1137A-33R-5,20-26<br>-56.8333<br>8100<br>8103<br>101<br>111<br>1111<br>1111<br>1111<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 349                           |
|                           |                            |                                                              | 14                     |                                                               |                                                                                           | 108                  |                                                                         |                           |                                 |                                                       | 38,699               | 0.512363<br>0.706814<br>18.085                                            |                                 |                                  | [6]                                              | Phonotephrite<br>-56,8333<br>68,0933                 | [14]<br>Kerguelen Plateau (Elan Bank)<br>ODP Leg 183, Site 1137<br>83-1137 A-36R-1,27-32_LEACHED    | 354                            | 0.105<br>0.512246<br>0.105                                                                 | 0.712658<br>1.930<br>1.930                                                                                          | 0.512182<br>0.105<br>0.105      | 108<br>0.710080<br>1.933<br>0.105                                                                                                             |                                                                         |                                               | 0.512183<br>1,930                                                | 19.0<br>0.512266<br>0.713042<br>18.504<br>15.844<br>39.874                                                                          | 750<br>750<br>146.0<br>219.0<br>2.6                    | Kerguelen Plateau (Ean 5ak)<br>ODP Leg 133, Sile 1137<br>s 133-1137A-33R-57-9<br>-56 833<br>68 0033<br>100<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 347                           |
| 0.117                     | 0.117                      | 0.194<br>0.706382                                            | U.117<br>14            | 0.117<br>0.512299                                             | 0.194<br>0.706123<br>0.195                                                                | 108                  | 18.024<br>15.657<br>38.664                                              | 0.09<br>56.00             | 12.57                           | 0.194                                                 | 38.961               | 0.512382<br>0.706421<br>18.235                                            | 1.6<br>8.0<br>6.9               | 640.0                            | 100                                              | Tephrite<br>-56.8333<br>68.0933                      | [14]<br>Kerguelen Plateau (Elan Bank)<br>ODP Leg 183, Site 1137<br>s 183-1137 A-36R-2,127-136 183-1 | 357                            | 0.100<br><b>0.512236</b><br>0.100                                                          | 15.573<br>0.731479<br>15.576                                                                                        | 0.512175<br>0.100<br>14         | 108<br>15.573<br>0.710674<br>15.597<br>0.100                                                                                                  | 18.478<br>15.822<br>39.403                                              | 6.62<br>0.05<br>79.83                         | 0.512175<br>15.573<br>0.710895                                   | 0.51 23.5<br>0.734575<br>18.589<br>15.827<br>39.827                                                                                 | 204.0<br>38.0<br>38.0<br>229.0                         | Kergueten Piateau (Elan Bark)<br>ODP Leg 183, Silse 1137<br>s 183-1137A-SIRvolte<br>-56.8333<br>66.0833<br>(18)<br>(19)<br>(19)<br>(19)<br>(19)<br>(19)<br>(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 344                           |
|                           |                            |                                                              | 14                     |                                                               |                                                                                           | 108                  |                                                                         |                           |                                 |                                                       | 38,670               | 0.512378<br>0.706328<br>15.110                                            |                                 |                                  | [6]<br>901                                       | Tephrite<br>-56.8333<br>68.0933                      | [14]<br>Kerguelen Plateau (Elan Bank)<br>ODP Leg 183, Site 1137<br>1137A-36R-2,127-136_LEACHED      | 356                            | 0.114<br>0.512254<br>0.114                                                                 | 0.713175<br>2.205                                                                                                   | 0.512183<br>0.114<br>14         | 108<br>2.205<br>2.205<br>2.208<br>2.208<br>0.114                                                                                              | 18.431<br>15.824<br>39.518                                              | 823<br>0.06                                   | 0.512184<br>2.205<br>740260                                      | 19.0<br>0.512284<br>0.713613<br>18.561<br>15.831<br>39.836                                                                          | 74.0<br>74.0<br>147.0<br>147.0<br>2.7<br>21.0          | Kerguelen Pateau (Elan Bark)<br>ODP Leg 43, Ste 1137<br>s 183-1137A472.0.11<br>-66.833<br>66.033<br>(18)<br>(18)<br>(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 348                           |
| 0.148                     | 0.148                      |                                                              | 0.140<br>14            | 0.512449                                                      |                                                                                           | 108                  |                                                                         |                           |                                 | 0.142                                                 | 38.592               | 0.512553<br>0.705012<br>18.018                                            | 2.1                             | 25.7                             | 100<br>[9]                                       | Tholeine<br>-56.8.333<br>68.0933                     | [15]<br>Kerguelen Plateau (Elan Bank)<br>ODP Leg 183, Site 1137<br>s 183-1137A-24R-2,10-11          | Upper                          | 0.095<br>0.512258<br>0.095                                                                 | 16,180<br>0.728989<br>16,183                                                                                        | 0.512200<br>0.096<br>14         | 108<br>0.707373<br>16.205<br>0.005                                                                                                            |                                                                         |                                               | 0.51200<br>16.180<br>0.707603                                    | 34.0<br>0.512267<br>0.732206<br>18.576<br>15.819<br>39.780                                                                          | 95.0<br>212.0<br>2.5                                   | Keguelen Plateau (Elan Bark)<br>ODP Leg 193<br>s 183-1137A-3R-2,111-113<br>s 183-1137A-3R-2,111-113<br>s 183-1137A-3R-2,111-113<br>s 183-1137A-3R-2,111-113<br>s 183-1137A-3R-2,111-113<br>s 183-1137A-3R-2,111-113<br>s 183-1137A-3R-2,111-1137<br>s 183-1137<br>s 183-1137                                                                                                                                                                                                                                                                                                                                                    | 351                           |
|                           |                            | 0.063                                                        | 14                     |                                                               | 0.063<br>0.704971<br>0.063                                                                | 108                  |                                                                         |                           | 0.704972                        | 0.063                                                 | 38,550               | 0.512550<br>0.705068<br>17.989                                            |                                 | 12.0<br>549.0                    | [6]                                              | Basalt<br>-56.8333<br>68.0933                        | [30]<br>Kerguelen Plateau (Elan Bank)<br>ODP Leg 183, Site 1137<br>s 183-1137A-25R-1,106-108        | Upper                          | 0.103<br><b>0.512244</b><br>0.103                                                          | Ŧ                                                                                                                   | 0.512103<br>0.103<br>0.103      | 108<br>57.749<br>57.838<br>0.103                                                                                                              | 18.464<br>15.824<br>39.415                                              | 8.2.1<br>0.06                                 | 0.512181<br>57.750                                               | 36.0<br>0.512253<br>18.602<br>15.831<br>39.921                                                                                      | 106.0<br>193.0<br>9.0<br>3.2<br>25.0                   | Keguelen Prateau (Elan Bank)<br>ODP Leg 193, Stet 1137<br>s 183-1137A-34-4,127-130<br>-66.833<br>-68.8033<br>-108<br>-108<br>-108<br>-108<br>-108<br>-108<br>-108<br>-108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 346                           |
| 0.138                     | 0.138                      | 0.032<br>0.704999                                            | U. 130<br>14           | 0.512469                                                      | 0.032<br>0.704955<br>0.032                                                                | 108                  |                                                                         |                           | 0.704956                        | 0.512470<br>0.032                                     | 38,567               | 0.512566<br>0.705005<br>15.009                                            | 2.9                             | 28.8<br>6.0<br>536.0             | 100<br>[9]                                       | Basalt, Transitional / Basalt<br>-56.8333<br>68.0933 | [15]<br>Kerguelen Plateau (Elan Bank)<br>ODP Leg 183, Site 1137<br>s 183-1137A-25R-1,64-72          | Upper                          | 0.096<br>0.512258<br>0.096                                                                 | 14.007<br>0.729964<br>14.010                                                                                        | 0.512199<br>0.096<br>14         | 108<br>14.007<br>14.027<br>14.028<br>0.006                                                                                                    | 18.482<br>15.823<br>39.371                                              | 6.18<br>0.05<br>82.08                         | 0.51200<br>14.007                                                | 36.0<br>0.512287<br>0.732749<br>18.586<br>15.828<br>39.807                                                                          | 107.0<br>198.0<br>41.0<br>2.8<br>29.0                  | Kegueien Prateau (Elan Bank)<br>ODP Leg 193, Site 1137<br>s 183-1137A-3R-4,86-91<br>-66,833<br>80,093<br>108<br>108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 350                           |
| 0.136                     | 0.136                      | 0.046<br>0.704958                                            | U. 100<br>14           | 0.512463                                                      | 0.046<br>0.704897<br>0.046                                                                | 108                  |                                                                         |                           | 0.704897                        | 0.512464<br>0.046                                     | 38.551               | 0.512559<br>0.704967<br>17.993                                            | 2.4                             | 28.4<br>8.5<br>537.0             | 106<br>6.4                                       | Basalt, Transitional<br>-56.8333<br>68.0933          | [15]<br>Kerguelen Plateau (Elan Bank)<br>ODP Leg 183, Site 1137<br>s 183-1137A-25R-2,119-126        | Upper                          | 0.111<br>0.512273<br>0.111                                                                 | 2,937<br>2,937<br>2,938                                                                                             | 0.51205<br>0.111<br>14          | 108<br>0.709195<br>2.942<br>0.111                                                                                                             | 18.419<br>15.804<br>39.374                                              | 5.55<br>0.04                                  | 2.937                                                            | 20.0<br>0.512283<br>0.713703<br>18.512<br>15.809<br>39.678                                                                          | 82.0<br>139.0<br>137.0<br>23.0                         | Keguelen Flateau (Elan Bank)<br>OPF Leg 183, Sila 1137<br>s 183-1137A-3364, 1103-<br>conglomerate<br>68,033<br>108<br>108<br>108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 353                           |
| 0.142                     | 0.142                      | 0.065<br>0.705053                                            | U. 142<br>14           | 0.142<br>0.512449                                             | 0.065<br>0.704965<br>0.066                                                                | 108                  |                                                                         |                           | 0.704966                        | 0.512450<br>0.065                                     | 38.625               | 0.705066<br>18.018<br>15.625                                              | 22                              | 20.7<br>12.0<br>530.0            | 61<br>[6]                                        | Basalt, Transitional<br>-56.8333<br>68.0933          | [15]<br>Kerguelen Plateau (Elan Bank)<br>ODP Leg 183, Site 1137<br>s 183-1137A-25R-2,46-53          | Upper                          | 0.113<br>0.511820<br>0.113                                                                 | 4.696<br>0.783112<br>4.697                                                                                          | 0.51750<br>0.113                | 108<br>0.776838<br>4.703<br>0.113                                                                                                             | 18.250<br>15.789<br>40.135                                              | 4.69<br>0.03                                  | 4.696                                                            | 0.511330<br>0.784046<br>18.329<br>15.783<br>40.469                                                                                  | 64.0<br>174.0<br>186.0<br>2.7<br>37.0                  | Keguelen Parteau (Etan Bank)<br>ODP Leg 183.58 r 1137<br>s 183-1137A-38R-2,40-49<br>cmss<br>e8 8033<br>108<br>109<br>109<br>109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 340                           |
| 0.139                     | 0.512570                   | 0.066<br>0.704974                                            | 0.1.39<br>14           | 0.139<br>0.512485                                             | 0.066<br>0.704886<br>0.066                                                                | 108                  |                                                                         |                           | 0.704887                        | 0.139<br>0.512486<br>0.066                            | 38.575               | 0.512583<br>0.704987<br>17.989                                            | 2.3                             | 27.9<br>12.2<br>536.0            | 100<br>[9]<br>6.4                                | Basalt, Transitional<br>-56.8333<br>68.0933          | [15]<br>Kerguelen Plateau (Elan Bank)<br>ODP Leg 183, Site 1137<br>s 183-1137 A-25R-7,90-98         | Upper                          | 0.117<br>0.511817<br>0.117                                                                 | 5.171<br>0.784580<br>5.172                                                                                          | 0.511745                        | 108<br>5,171<br><b>0,777672</b><br>5,179<br>0,117                                                                                             |                                                                         |                                               | 5.171                                                            | 38.0<br>0.511828<br>0.78508<br>18.504<br>15.792<br>40.412                                                                           | 67.0<br>188.0<br>106.0<br>3.0                          | [14]<br>Kergueen Plateau (Elan Bairi)<br>5 (18)-1137A-35R2-244-46<br>Gress<br>-66.0333<br>108<br>[19]<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.0333<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-66.033<br>-6 | 338                           |

| RECALCULE A<br>L'Age 14 Ma RECALCULE A<br>L'Age Biblio CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RECALCULE A<br>L'Age 14 Ma RECALCULE A<br>L'Age Biblio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2026/P2/CHP Initial<br>Are of (LP-ontha)<br>(R1SS) measured readoute<br>(R1SS) measured readoute<br>(R1SS) (R1S) (R1S)<br>(R1SS) (R1S) (R1S)<br>(R1SS) (R1S) (R1S)<br>(R1SS) (R1S) (R1S)<br>(R1SS) (R1S) (R1S)<br>(R1SS) (R1S) (R1S)<br>(R1SS) (R1S)<br>(R1SS) (R1S)<br>(R1SS) (R1S)<br>(R1SS) (R1S)<br>(R1SS) (R1S)<br>(R1SS) (R1S)<br>(R1SS) (R1S)<br>(R1SS) (R1S)<br>(R1SS)<br>(R1SS) (R1S)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS)<br>(R1SS | The beam in the be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | # (Olenook et al., 2017 - n.)<br>Geochmistry Reference<br>Province<br>Location<br>Sanob Name<br>Rock Trae<br>Latitude<br>Latitude<br>Latitude<br>Aae Correction (Ma)<br>Aae reference<br>Sm foom<br>Rofoom<br>Rofoom<br>Notionn<br>Notionn<br>Notionn<br>Notionn<br>Notionn<br>Notionn<br>Notionn<br>Notionn<br>Notionn<br>Notionn<br>Notionn<br>Notionn<br>Notionn<br>Notionn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Age ref (L. Denthas)<br>(RUS) measured resolution<br>(RUS) measured resoluti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1475-bir 1441d<br>1478-bir 1441d<br>1478-bir 1441d<br>1478-bir 1478<br>1878-bir 1478<br>1878-bir 1478<br>1878-bir 1478<br>1878-bir 1478<br>1878-bir 1478<br>1878-bir 1478-bir 1478<br>1878-bir 1478-bir 1478<br>1878-bir 1478-bir | # (Olevook et al. 2017 - n.)<br>Geochmiatry Reference<br>Lucation<br>Sambe Name<br>Rock Trae<br>Rock Trae<br>Stribent<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit<br>Thiomit                                                                                                                                                                                                  |
| 108<br>0.04/12<br>0.04/12<br>0.04<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.55.271<br>0.120466<br>0.120466<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.146<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.156<br>0.1 | Upper<br>Vergueien Pauleau (Ean Taivi)<br>OOP Log 153, Sile 1137<br>s 153, 1137, A264, 6133<br>Baselt, Transitional<br>Baselt, Transitional<br>66,0033<br>(9)<br>(9)<br>(9)<br>(12,7<br>(12,7)<br>(12,7)<br>(12,7)<br>(12,7)<br>(12,7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 107<br>0.77<br>0.77<br>0.67<br>0.72<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.77<br>0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.144<br>0.072<br>0.704890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Upper<br>Vergueiere Flank auf Gan Reining<br>OPD-Log 185 A.<br>st 155-1177,268-1,31-42<br>Basel, Threation/ 1864<br>68.0033<br>68.0033<br>68.0033<br>68.0033<br>68.0033<br>68.0033<br>68.0033<br>68.0033<br>68.003<br>69.003<br>69.003<br>69.003<br>69.003<br>69.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.003<br>60.00                                                                                        |
| 108<br>0.004411<br>0.004611<br>0.142046<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140<br>0.140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.51.26.5<br>0.77.46.79<br>15.669<br>9.669<br>0.1140<br>0.51.2467<br>0.51.2467<br>0.51.2467<br>0.51.2467<br>0.51.2467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Upper<br>Verguelen Praleau (Ean Ean)<br>OPE Juoy 150, Ste 1137<br>8 : 153 : 1137, ASLE : 1147<br>Basealt, Tamaforal (Basalt<br>68:003<br>98:003<br>99:00<br>99:00<br>99:00<br>99:00<br>99:00<br>98:00<br>99:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:00<br>90:000 | 0.110<br>0.110<br>0.110<br>0.110<br>0.110<br>0.110<br>0.110<br>0.110<br>0.110<br>0.110<br>0.110<br>0.110<br>0.110<br>0.110<br>0.110<br>0.110<br>0.110<br>0.110<br>0.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,137<br>0,512454<br>0,115<br>0,704917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Upper<br>Kegunéen Flamau II-Ein Farén<br>ODE-Leg 153: Se 1477<br>s 153-1137,AGR-2,17-23<br>Basiat T-reselton<br>Basiat T-reselton<br>Basiat T-reselton<br>10<br>710<br>710<br>710<br>710<br>710<br>710<br>710<br>710<br>710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 108<br>0.157243<br>0.159<br>0.159<br>14<br>0.150<br>0.150<br>0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.55/2424<br>0.57/2424<br>0.15/2425<br>0.15/2426<br>0.15/2426<br>0.15/2426<br>0.15/2426<br>0.15/2426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lower<br>Kergueien Prateau, (Ean 1814)<br>ODP-Uord 163, Ster 1137,<br>s 145 1137, X5 43, G143<br>Basal ("Trensitional<br>Basal ("Trensitional<br>68 003<br>68 003<br>68 003<br>61 00<br>61 01<br>61 02<br>61    | 0 108<br>0 108<br>0 108<br>0 108<br>14<br>0 108<br>14<br>0 108<br>14<br>0 108<br>14<br>10<br>108<br>14<br>108<br>108<br>108<br>108<br>108<br>108<br>108<br>108<br>108<br>108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.095<br>0.704 <b>930</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ubper<br>Kergusken Fakesu, IEan Band<br>s 143-1137/s-248-5,5-7<br>Band<br>143-1137/s-248-5,5-7<br>Band<br>143-1137/s-248-5,5-7<br>15<br>531.0<br>11287<br>0.131287<br>0.131287<br>0.131287<br>0.131287<br>0.131287<br>0.131287<br>0.131287<br>0.131287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 000<br>000<br>000000<br>00000<br>0000<br>0000<br>0000<br>0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.51204<br>17.050<br>16.637<br>38.767<br>38.767<br>0.022<br>0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lower<br>Gregueien Pateur, [Lin Jank]<br>ODP Level 103, Ster 1177<br>a 182, 1177A-1826-133, 96<br>Batel<br>-66, 6233<br>(109<br>[9]<br>[9]<br>[9]<br>[5]<br>[9]<br>[5]<br>[5]<br>[5]<br>[5]<br>[5]<br>[5]<br>[5]<br>[5]<br>[5]<br>[5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0:142<br>0.512466<br>0.069<br>0.704770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Upper<br>Kerganiyan Fanana, (Ean Taniya)<br>C (DP Les 163, Sarah<br>Sarah (Ean Taniya)<br>Basal, Transford (Basal<br>Basal, Transford (Basal<br>Basal, Transford (Basal<br>Basal, Transford (Basal<br>Basal, Transford (Basal<br>Basal, Transford (Basal<br>Basal, Transford (Basal<br>Basal)<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal<br>Basal |
| 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                      | 0.551,460<br>0.75560<br>17,5674<br>15,661<br>0.1556<br>0.512401<br>0.512401<br>0.512401<br>0.512401<br>0.512401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lower<br>(15)<br>Kenzuelen Pateau (Eim Bark)<br>s. 183-1137-2844-71-77<br>Basal<br>Basal, Transitional / Basal<br>Basal, Transitional / Basal<br>(50,003)<br>(50,003)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)<br>(51,004)\\(51,004)\\(51,004)\\(51,004)\\(51,0                                                                                                                                                                                                                                                                                                                                       | 108<br>0.704756<br>0.704756<br>0.8512477<br>0.6512477<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.145<br>0.1450 | 0.145<br>0.512478<br>0.0617<br>0.704788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Upper<br>Kerguelen Prageau (Elles Sark)<br>ODP-Lag 163, Ster 1177,<br>8, 152-1177, 2618, 3122-128<br>Bauel, Transitioned<br>Bauel, Transitioned<br>108<br>21, 1<br>21, 1<br>22, 1<br>160, 0<br>532, 0<br>532, 0<br>160,                                                                                            |
| 0.100<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.512,46<br>0.02774<br>15,004<br>15,062<br>33,003<br>0.139<br>0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lower<br>(15)<br>Kenzuelen Pareau (Eim Bank)<br>s 182-1137-264-1101-10<br>Basalt Tennational<br>Basalt Tennational<br>(80.003<br>10<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0083<br>0704845<br>0083<br>0083<br>0083<br>0704825<br>0704825<br>0083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.063<br>0.7 04846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Upper<br>Kerguwen Pagaar (Eas Sav)<br>009 rug 13, Site 137,<br>8 183-1137A-284-30-<br>68 0833<br>108<br>108<br>108<br>108<br>108<br>108<br>108<br>108<br>108<br>108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5.12463<br>0.77660<br>1.7.661<br>15.667<br>39.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lower<br>Kerguelen Pateau (Elen Bark)<br>5 132-1327.4421.44.16<br>Basal: Tamailore<br>Basal: Tamailore<br>108<br>108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.00400000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.142<br>0.512478<br>0.004774                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Upper<br>Kennuelsen Falenau (Elen Barlo)<br>ODP Leg 183, Start 137<br>Basel, Transford<br>Basel, Transford<br>(56,003)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.512488<br>0.700509<br>17.5643<br>38.890<br>0.009<br>0.709964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lower<br>(20)<br>Keguwén Plateau (Elan Bank)<br>or Leg 183, Sile 1137<br>s 183-1137A-4062,116-121<br>Basah<br>- 66 3333<br>108<br>[9]<br>[11.7<br>11.7<br>491.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0050<br>0.70480<br>0.0050<br>0.0051<br>0.0051<br>0.140<br>0.0050<br>0.704840<br>0.0050<br>0.704840<br>0.0050<br>0.704840<br>0.0050<br>0.704840<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.0051<br>0.00510000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.140<br>0.512448<br>0.069<br>0.704840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Upper<br>Opp Leg 193, Site 1137,<br>9 002 Leg 193, Site 1137,<br>9 082 1137, S116, S510<br>Basel 1 Translood / Basel<br>108<br>113<br>114<br>114<br>114<br>114<br>115<br>115<br>115<br>115<br>115<br>115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.148<br>0.148<br>0.148<br>0.148<br>0.148<br>0.148<br>0.148<br>0.148<br>0.148<br>0.148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 87<br>0.512.85<br>17.0526<br>17.6686<br>39.144<br>0.145<br>0.225<br>0.225<br>0.705900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lower<br>(13)<br>Kergusien Plataau (Elan Bank)<br>s 135-1137-Ad03-317-124<br>Basalt, Transitional / Basalt<br>Basalt, Transitional / Basalt<br>(13)<br>(13)<br>(13)<br>(13)<br>(14)<br>(14)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15)<br>(15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.43<br>0.5176<br>0.02468<br>0.704846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Upper<br>Upper<br>CDP Lug (Elan Barl)<br>CDP Lug (53, 36) 167<br>Basit, 157,A18,355,90<br>60,933<br>61,95<br>108<br>108<br>108<br>108<br>108<br>108<br>108<br>108<br>108<br>108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 14 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.512273<br>0.7163<br>18437<br>18790<br>39770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lover<br>100<br>Krezusien Patasu (Elan Bario)<br>5 1051173/4161128-100<br>-06.8333<br>108<br>[9]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,042<br>0,704638<br>0,042<br>0,042<br>0,042<br>0,042<br>0,042<br>0,042<br>0,042<br>0,042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.042<br>0.704839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Upper<br>Corputation Failure and<br>Corputation Failure and<br>Corputation failure and<br>statistical and the<br>statistical and the<br>statisti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

|                           | RECA<br>L'Ag                                                  | LCUL<br>e 14 I                                              | .E A<br>Ma                                         | RI                                | ECAL<br>L'Age              | CULE /<br>Biblio                                                                          | ^                    | CALCUL OLI                                                                                     | EROO                            | K 2017                               |                                              |                                            |                                                 |                     |                      |                                      |                           |                                                                                                       |                                                          | RECA<br>L'Ag                                                                               | LCULE<br>je 14 Ma                                                                         | A RE                                                                                  | ECALO                                                   | CULE A<br>Biblio                                                                     | CALCUL OLIEROOK 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                |                                                         |                                                                                         |                                                                                                                                        |
|---------------------------|---------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|-----------------------------------|----------------------------|-------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------------|-------------------------------------------------|---------------------|----------------------|--------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| (Sm/Nd) initial recalcule | (Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé | (87 Sr/86Sr) initial recalculé<br>(Rb/Sr) initial recalculé | Age 14Ma (L.Ponthus)<br>(Rb/Sr) measured recalculé | (14-3N07) 44N0) Initial recalculé | (Sm/Nd) measured recalcule | (Rb/Sr) measured recalculé<br>(87 Sr/86Sr) initial recalculé<br>(Rb/Sr) initial recalculé | Age ref. (L.Ponthus) | 235U/204Pb<br>232Th/204Pb<br>206Pb/204Pb initial<br>207Pb/204Pb initial<br>207Pb/204Pb initial | 875r/86Sr initial<br>238U/204Pb | 147 Sm/144Nd<br>143 Nd/144Nd initial | 207Pb/204Pb measured<br>208Pb/204Pb measured | 87Sr/86Sr measured<br>206Pb/204Pb measured | Pb (ppm)<br>Th (ppm)<br>143 Nd/1 44 Nd moasurod | Sr (ppm)<br>U (ppm) | Sm (ppm)<br>Nd (ppm) | Age Correction (Ma)<br>Age reference | Rock Type<br>Latitude     | Province ergu<br>Location (D10<br>Sample Name                                                         | # (Olierook et al., 2017 - n.)<br>Geochemistry Reference | (Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | (Rb/Sr) measured recalculé<br>(87 Sr/86Sr) initial recalculé<br>(Rb/Sr) initial recalculé | (14.5N0/144N0) Initial recalculé<br>(Sm/Nd) Initial recalculé<br>Age 14Ma (L.Ponthus) | (Rb/Sr) initial recalculé<br>(Sm/Nd) measured recalculé | Age ref. (L.Ponthus)<br>(Rb/Sr) measured recalculé<br>(87 Sr/86Sr) initial recalculé | 12(back/ackinitia)<br>grzcussy,<br>grzcussy,<br>grzcussy,<br>grzcuszy,<br>grzcuszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>zzeruszy,<br>ze | 143 Nd/1 44Nd moasured<br>975 x/865r measured<br>206 P L/20.4Pb measured<br>207 P L/20.4Pb measured<br>208 P L/20.4Pb measured | Nd (com)<br>Rb (com)<br>Sr (com)<br>U (com)<br>Th (com) | Rock Type<br>Lantitude<br>Longitude<br>Age Correction (Ma)<br>Age reference<br>Sm (pom) | # (Olierook et al 2017 - n.)<br>Geochemistry Reference<br>Province<br>Location<br>Samble Name                                          |
| 0.140                     | 0.140<br>0.512945                                             | 0.703124<br>0.089                                           | 1.63<br>0.089                                      | 0.140                             | 0.140                      | 0.089<br>0.703124<br>0.089                                                                | 1.63                 |                                                                                                | 0.703125                        | 0.140                                | 15.678<br>39.315                             | 0.703126<br>19.669                         | 0.512946                                        | 577.0               | 47 B                 | 1.63<br>[29]                         | Basalt<br>-51.52          | eren Plateau (Miocene seamounts) ergue<br>9, Dredge 4 (Unnamed Seamount) (ID10<br>s D4-33             | 401                                                      | 0.142<br>0.512448<br>0.142                                                                 | 0.056<br>0.706016<br>0.056                                                                | 0.142<br>14                                                                           | 0.056                                                   | 108<br>0.705942                                                                      | 0.572362<br>0.056<br>0.705942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.512461<br>0.706027<br>17.969<br>15.665<br>39.059                                                                             | 26 /6<br>9 /3<br>2 7                                    | Basalt, Transitional / Basalt<br>68.0933<br>108<br>[9]<br>6.2<br>6.2                    | Lower<br>[15]<br>Kerguelen Plateau (Elan Bank)<br>ODP Leg 183, Site 1137<br>s 183-1137A-41R-1,3-10                                     |
| 0.118                     | 0.118<br>0.512595                                             | 0.705602<br>0.116                                           | 14<br>0.116                                        | 0.118                             | 0.118                      | 0.116<br>0.705590<br>0.116                                                                | 21.2                 |                                                                                                | 0.705595                        | 0.118<br>0.512592                    | 15.517<br>38.634                             | 0.705625<br>18.214                         | 0.512606                                        | 842.0               | 11.6<br>59.6         | 21.2<br>[29]                         | Basalt, Olivine<br>-51.52 | 9, Dredge 5 (Unnamed Seamounts) ergu<br>s D5-44A<br>s D5-44A                                          | 393                                                      | 0.136<br>0.512500<br>0.136                                                                 |                                                                                           | 0.124 IO<br>0.136<br>14                                                               | 0.136                                                   | 108                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.512512<br>0.705650<br>18.011<br>15.654<br>38.946                                                                             | 29,9                                                    | Tholeille<br>-56.69333<br>68.0933<br>108<br>[9]<br>6.7                                  | Lower<br>[15]<br>Kerguelen Plateau (Elan Bank)<br>ODP Leg 183, Site 1137<br>s 183-1137/A45R-3,57-63                                    |
| 0.117                     | 0.117                                                         | 0.705636<br>0.110                                           | 0.110                                              | 0.117                             | 0.117                      | 0.110<br>0.705625<br>0.110                                                                | 21.2                 |                                                                                                |                                 | 0.117                                | 15.527<br>38.658                             | 0.705658<br>18.208                         | 6.7                                             | 907.0               | 13.4<br>69.4         | / 1.13<br>[29]                       | Basalt, Olivine<br>-51.52 | <ol> <li>Dredge 5 (Unnamed Seamounts) (D100<br/>s D5-44B</li> </ol>                                   | 394<br>[29]                                              | 0.141<br>0.512530<br>0.141                                                                 | 0.083<br>0.705616<br>0.083                                                                | 0.3124444<br>0.141<br>14                                                              | 0.083                                                   | 108<br>0.705505                                                                      | 0.083<br>0.705507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.512543<br>0.705633<br>18.006<br>15.5446<br>38.876                                                                            | 28.9<br>494.0<br>27                                     | Basalt, Transitional / Basalt<br>-56.8333<br>-108<br>                                   | Lower<br>[15]<br>Kerguelen Plateau (Elan Bank)<br>ODP Leg 183, Site 1137<br>s 183-1137/A-46R-151-56                                    |
| 0.121                     | 0.121<br>0.512571                                             | 0.705624<br>0.152                                           | 14<br>0.152                                        | 0.121                             | 0.121                      | 0.152<br>0.705610<br>0.152                                                                | 20.4                 |                                                                                                | 0.705617                        | 0.121<br>0.512569<br>0.152           | 15.511<br>38.576                             | 0.705654<br>18.179                         | 0.512582                                        | 882.0               | 12.4<br>62.0         | 20.4<br>[29]                         | Basalt, Olivine<br>-51.52 | ien Hateau (Miocene Seamounts) ergue<br>, Dredge 5 (Unnamed Seamount) 1D109<br>s D5-42                | 395<br>[29]                                              | 0.142<br>0.512533<br>0.142                                                                 | 0.120<br>0.705704<br>0.120                                                                | 0.312443<br>0.143<br>14                                                               | 0.121                                                   | 108<br>0.705543                                                                      | 0.512446<br>0.120<br>0.705545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.512546<br>0.705728<br>18016<br>15.662<br>38.931                                                                              | 29.3<br>47.8.0<br>3.0                                   | Basalt, Transitional<br>68.0033<br>108<br>[9]<br>6.9<br>[9]                             | Lower<br>[15]<br>Kerguelen Plateau (Elan Bank)<br>ODP Leg 183, Sile 1137<br>s 183-1137X-46R-2,7-15                                     |
|                           |                                                               |                                                             | 14                                                 |                                   |                            |                                                                                           | 21.2                 |                                                                                                |                                 |                                      | 15.524<br>38.662                             | 0.705676<br>18.197                         |                                                 |                     |                      | 21.2<br>[29]                         | Basalt, Olivine<br>-51.52 | en Hateau (Miccere Seamounts) erguei<br>, Dredge 5 (Unnamed Seamount) 1D109<br>s D5-44B               | 396<br>[29]                                              |                                                                                            | 0.111<br>0.705664<br>0.111                                                                | 14                                                                                    | 0,111                                                   | 108<br>0.705516                                                                      | 0,705518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.512543<br>0.705686<br>18.015<br>15.654<br>38.910                                                                             | 18.7<br>489.0                                           | Basalt<br>-56.8333<br>68.0933<br>10.8<br>[9]                                            | Lower<br>[30]<br>Kerguelen Plateau (Elan Bank)<br>ODP Leg 183, Sile 1137<br>s 183-1137A-46R-2,92-95                                    |
| 0.126                     | 0.126<br>0.512535                                             | 0.705644<br>0.186                                           | 14<br>0.186                                        | 0.126                             | 0.126                      | 0.186<br>0.705626<br>0.186                                                                | 20.7                 |                                                                                                | 0.705631                        | 0.126<br>0.512531                    | 15.538<br>38.265                             | 0.705681<br>17.872                         | 0.512547                                        | 415.0               | 5.2<br>24.9          | 20.7<br>[29]                         | -51.02                    | en Hateau (Miocene Seamounts) erguei<br>Dredge 6 (Unnamed Seamount) 1D109<br>s D6-88                  | 391                                                      | 0.149<br>0.512527<br>0.149                                                                 | 0.123<br>0.705656<br>0.123                                                                | 0.312430<br>0.149<br>14                                                               | 0.123                                                   | 108<br>0.705492                                                                      | 0.6512437<br>0.123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.512541<br>0.705680<br>18.911<br>15.658<br>38.915                                                                             | 297<br>4550<br>20                                       | Basalt, Transilional<br>68.0933<br>108<br>[9]<br>7.3<br>7.3                             | Lower<br>[15]<br>Kerguelen Plateau (Elan Bank)<br>ODP Leg 183, Site 1137<br>s 183-1137A-46R-3, 12-18                                   |
|                           |                                                               |                                                             | 14                                                 |                                   |                            |                                                                                           | 20.7                 |                                                                                                |                                 |                                      | 15.531<br>38.266                             | 0.705703                                   |                                                 |                     |                      | 20.7<br>[29]                         | Picrite<br>-51.02         | en Hareau (Mocene Seamounts) ergue<br>, Dredge 6 (Unnamed Seamount) 1D109<br>s D6-88                  | 392                                                      | 0.142<br>0.512542<br>0.142                                                                 | 0.067<br>0.705016<br>0.067                                                                | 0.314493<br>0.142<br>14                                                               | 0.142                                                   | 108<br>0.704926                                                                      | 0.512456<br>0.067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.512555<br>0.705029<br>17.997<br>15.617<br>38.617                                                                             | 24.6<br>529.0<br>29.0                                   | Basalt, Transitional<br>-56,8333<br>68,0633<br>108<br>[8]<br>[8]<br>[5]                 | Lower<br>[15]<br>Kerguelen Plateau (Elan Bank)<br>ODP Leg 183, Site 1137<br>s 183-1137A-46R-1,143-146                                  |
| 0.120                     | 0.120<br>0.512522                                             | 0.705647<br>0.180                                           | 14<br>0.180                                        | 0.120                             | 0.120                      | 0.180<br>0.705630<br>0.180                                                                | 20.7                 |                                                                                                | 0.705645                        | 0.120                                | 15.540<br>38.274                             | 0.705683<br>17.874                         | 0.5.12533                                       | 409.0               | 26.2<br>26.2         | 20.7<br>[29]                         | -51.02                    | en Hateau (Miccene Seamounts) ergueien Hate<br>, Dredge 6 (Unnamed Seamount) 10109, Dredge<br>s D6-87 | 397                                                      |                                                                                            |                                                                                           | 14                                                                                    |                                                         | 108                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.511828<br>0.786608<br>18.296<br>15.769<br>40.330                                                                             |                                                         | Gneiss, Garmel-Botitle<br>- 56.8333<br>68.0033<br>108<br>[9]                            | 339<br>[30][14]<br>Kerguelen Plateau (Elan Bank) erguelen Plate<br>ODP Leg 183, Sile 1137 (D109, Dredge<br>s 183-1137/A:35R-2,44-4     |
| 0.125                     | 0.5125<br>0.512515                                            | 0.705663<br>0.182                                           | 14<br>0.182                                        | 0.125                             | 0.125                      | 0.182<br>0.705645<br>0.182                                                                | 20.7                 |                                                                                                | 0.705663                        | 0.5125<br>0.512515                   | 15.541<br>38.278                             | 0.705699<br>17.876                         | 2.4                                             | 406.0               | 5.1<br>24.8          | 20.7<br>[29]                         | -51.02                    | 34 (Miocene Seamounts) ergueien Plate<br>9 6 (Unnamed Seamount) 1D109, Dredge<br>s D6-89              | 398                                                      |                                                                                            | 0.200<br>0.705902<br>0.200                                                                | 14                                                                                    | 0.200                                                   | 21.9<br>0.705880                                                                     | 0.705882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.512525<br>0.705942<br>18.451<br>15.551<br>39.009                                                                             | 45.7<br>660.0                                           | Basait<br>-51.52<br>71.15<br>21.9<br>[29]                                               | 390<br>[29]<br>aau (Miocene Seamount) s grueien Plates<br>a 4 (Unnamed Seamount) 10109, Dredge<br>a 4 (Unnamed Seamount) 10109, Dredge |
| 0.118                     | 0.118<br>0.512532                                             | 0.705660<br>0.173                                           | 14<br>0.173                                        | 0.118                             | 0.118                      | 0.173<br>0.705643<br>0.173                                                                | 20.7                 |                                                                                                |                                 | 0.118                                | 15.536<br>38.266                             | 0.705694<br>17.875                         | 0.512543                                        | 422.0               | 5.3<br>27.0<br>26.3  | 20.7<br>[29]                         | Picrite<br>-51.02         | au (Miocene Seamounts)<br>6 (Unnamed Seamount)<br>s D6-85                                             | 299<br>129                                               |                                                                                            |                                                                                           | 1.63                                                                                  |                                                         | 1.63                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.512842<br>0.703100<br>19.677<br>15.686<br>39.347                                                                             |                                                         | Basalt<br>-51.52<br>71.15<br>1.63<br>[29]                                               | 400<br>[29]<br>u (Miocene Seamounts)<br>4 (Unnamed Seamount)<br>s D4-33                                                                |

| RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                                    | RECALCULE A<br>L'Age Biblio CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RECALCULE A<br>L'Age 14 Ma L'Age Biblio CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Age 14Ma (L'Porthus)<br>(RD/S7) measured recalculé<br>(875/856) initial recalculé<br>(RD/S7) initial recalculé<br>(Sm/Vd) measured recalculé<br>(143/Nd/141Ma) initial recalculé<br>(Sm/Vd) initial recalculé | 117 Sm (444 http:<br>113 Sm (444 http:<br>BTX:058 r http:<br>BTX:058 r http:<br>2250 U24Pb<br>2250 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | # (Olarook et al. 2017 - n.)<br>Ceacilemistry Reteriories<br>Samob Name<br>Rock Traes<br>Latitude<br>Latitude<br>Latitude<br>Age ofference<br>Samobal<br>Age ofference<br>Samobal<br>Age ofference<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samobal<br>Samo                                                                                                                                                                                                                                                                      | 147 Sm/144ki<br>143 Sm/144ki<br>143 Sm/144ki<br>143 Sm/144ki<br>143 Sm/144ki<br>143 Sm/144ki<br>157 britisi<br>157 britisi<br>158 Sm Amesund reaciould<br>157 britisi<br>158 Sm Amesund reaciould<br>157 britisi<br>158 Sm Amesund reaciould<br>158 Sm Amesund reaciould                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Generative Reference Province Generative Reference Location Sample Name Rock Trae Location Rock Trae Locatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 14<br>0.705795<br>0.705795<br>0.1259<br>0.12515<br>0.1271                                                                                                                                                     | 0.5124727<br>0.5124727<br>0.725544<br>0.725544<br>0.205544<br>0.205<br>1.12.8126<br>0.2052470<br>0.1272<br>0.1272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.28<br>Verputer Patera (SM 1919)<br>COPL 103A-421 (SM 1919)<br>s (ST 103A-421 (SM 1914)<br>r Trachvardelle, Basafic (Basafic (B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.51250<br>0.51250<br>0.51250<br>0.51250<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.15    | 45<br>Kergaelan Franceus (Scutterin)<br>or Ligg 183, Sta 173<br>183, 183, 184, 183<br>183, 183, 184, 183, 184, 183, 183, 183, 183, 183, 183, 183, 183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 14<br>0.245<br>0.245<br>0.245                                                                                                                                                                                 | 0.242<br>1.352<br>1.352<br>1.352<br>1.1520<br>1.1520<br>1.1520<br>1.1520<br>1.1520<br>1.1520<br>1.1520<br>1.1520<br>1.1520<br>1.1520<br>1.1520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.2520<br>1.25200<br>1.25200<br>1.25200<br>1.25200<br>1.25200<br>1.25200<br>1.25200<br>1.25200<br>1.25200<br>1.25200<br>1.25200                                                                                                                                                                                                                                                                                                                                                                               | 423<br>Krigguelen Parkens (Suff Back)<br>OPP 1004 (St. Ster 11:0)<br>St. 11:004 (St. Ster 11:0)<br>St. 11:004 (St. St. 11:0)<br>St. 11:004 (St. St. 11:0)<br>St. 11:004 (St. 11:004 (St. 11:0)<br>St. 11:004 (St. 11:004 (St. 11:004 (St. 11:0)<br>St. 11:004 (St. 11:004 (St. 11:004 (St. 11:0)<br>St. 11:004 (St. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.61243<br>0.61243<br>0.70468<br>0.70468<br>0.70468<br>0.70468<br>0.70468<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.70678<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.7078<br>0.70780<br>0.70780<br>0.70780<br>0.70780<br>0.70780<br>0.70780<br>0.70780000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4271<br>Kerputer Pateau (Schrift<br>ODP Log 153, Ster fram<br>3183-1136, 1260-tE<br>508/17<br>18<br>18<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14<br>11.077<br>0.719270<br>0.11.080<br>0.1300<br>0.512218<br>0.1300                                                                                                                                          | 0 0510<br>0 0500<br>0 0500000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 430<br>Kenpulein Pateau (SMF 18/41)<br>s 102-1130-4704 (19/11)<br>s 102-1130-4704 (19/11)<br>1102-1130-4704 (19/11)<br>83<br>112-1130-4704 (19/11)<br>83<br>112-1130-1102<br>112-1130-1102<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1130<br>112-1                                                                                                                                                                                                                                                                                                                                                          | 0.512747<br>0.512747<br>0.5128600<br>0.7008600<br>0.7008600<br>0.7008600<br>0.7008600<br>0.7008600<br>0.777<br>0.7068600<br>0.777<br>0.7068600<br>0.1777<br>0.778600<br>0.1777<br>0.777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.778600<br>0.1777<br>0.0778600<br>0.1777<br>0.0778600<br>0.1777<br>0.0777<br>0.07770<br>0.07770<br>0.07770<br>0.07770<br>0.07770<br>0.07770<br>0.07770<br>0.07770<br>0.07770<br>0.07770<br>0.07770<br>0.077700<br>0.077700000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 243<br>Kergudean Pateau (Scattern)<br>00P (voj 18. Staten)<br>s 183-1194-1823_LEX-(16<br>-30.607)<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4                                                                                                                                                                                                             | 69.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4,11<br>Kensuelen Piteenu (Skif Bare)<br>0.09 - ung 143, Skif Bare)<br>8, 183-1130-A5761,137-134<br>80,31<br>83,94<br>83,94<br>83,94<br>83,94<br>83,94<br>83,94<br>84,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,94<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85,95<br>85             | 1,66<br>2,911<br>15,875<br>15,682<br>15,862<br>15,962<br>119<br>119<br>0,000<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 457<br>Kerguden Parleau (Scuttern)<br>ODP von 163, Ste 1136<br>182-1136A-1682.2./LEACHED<br>28.6835<br>17.066<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| r<br>A                                                                                                                                                                                                        | 68 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 422<br>Kenzulaion Plateou (Skif Bariel)<br>s 163-1136-5481,138<br>Sec. 1536-5481,138<br>Sec. 1536-5481,138<br>Sec. 153<br>Sec. 15                                                                                                                                                                                                                                                                                                                                                    | 68.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 422<br>Kerguelen Plateau (Ski Elain)<br>ODP Log 183, Sile 1139<br>s 183-1136/7383,00-111<br>Tachwie<br>6034<br>8234<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8235<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>8234<br>823<br>823<br>823<br>823<br>823<br>823<br>823<br>823<br>823<br>823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4                                                                                                                                                                                                             | 69.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 433<br>Kenzulakan Pitateaa (Satri Eare)<br>s 193-1130A-6281-2<br>-50.195<br>63.94<br>68.39<br>(B)<br>(C)<br>(C)<br>(C)<br>(C)<br>(C)<br>(C)<br>(C)<br>(C)<br>(C)<br>(C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.128<br>0.121<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.702<br>0.7020 | 423<br>(Kerguden P lateau (Skiff [14])<br>00P - tog 153, Skie 1139<br>s 182, 1139, 4628,274-79<br>Trachwendeskie Baadic<br>6334<br>6334<br>6334<br>633<br>633<br>633<br>633<br>633<br>633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 14<br>0.138<br>0.512531<br>0.138                                                                                                                                                                              | 0.512482<br>0.512482<br>86.650<br>1.512482<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5125<br>1.5 | 4,24<br>Kenzuseen Plaasen (Saff Band)<br>2029 Lee 133, Star 139<br>8 185-1136-6774,127-134<br>80,318<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,185<br>-50,1                                                                                                                                                                                                                                                                | 68.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 424<br>(Kerguelen Plateau (Skrif 191)<br>00P - tog 153, Sile 1139<br>182-1134, 6683,16519<br>7 Tachwardette, Basalic<br>6234<br>8234<br>823<br>823<br>823<br>823<br>823<br>823<br>823<br>823<br>823<br>823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14<br>0.242<br>0.706889<br>0.242<br>0.242<br>0.242<br>0.128<br>0.128<br>0.128                                                                                                                                 | 0.128<br>0.121<br>0.706542<br>0.706542<br>0.706542<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.2012<br>0.201 | 435<br>Konzuleen Piteenu (Skrif Barriel)<br>zu 123-123-66423-110<br>s 123-123-66423-110<br>Trachybaselt<br>109<br>813-123-6642-10<br>813-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>810-12<br>81                                                                                                                                                          | 0,128<br>0,128<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218<br>0,218  | 425<br>(Rerguelen Prateau (Skiff Eank)<br>00P - Log 153, Sile 1139<br>134, 1130-6692, 105-109<br>53, 34, 1130-6692, 105-109<br>53, 34, 1130-6692, 301<br>63, 341<br>643, 341<br>643, 341<br>653, 341<br>654, 341<br>655, 351<br>655, 351, 351, 351, 351, 351, 351, 351, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4                                                                                                                                                                                                             | 83 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 438<br>Kergaolen Plateau (Self Tarris)<br>S 185-1130-6281-2<br>-50.165<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>83.94<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.95<br>84.9 | 0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.1120<br>0.11200<br>0.11200<br>0.11200<br>0.11200<br>0.11200<br>0.11200<br>0.11200<br>0.11200<br>0.11200<br>0.1120000000000                                                                                                                                                                                                                                                                                                                                                                                                                                       | 426<br>(Kerguelen Frateura) (Skiff Flank)<br>500P Leg 183, Skie 1139<br>5183, 1139, 46987, 15-19<br>50, 185<br>53, 30, 185<br>53, 30, 185<br>55, 30, 55<br>55, 55,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14                                                                                                                                                                                                            | 8<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 437<br>Korganiko Pitubau (Setti Bario)<br>2 (32-103) Advati 1-<br>3 (32-103) Advati 1-<br>30,34<br>(33)<br>(33)<br>(33)<br>(33)<br>(33)<br>(33)<br>(33)<br>(3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.128<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 427<br>Kerguelen Prateau (Sett Ent)<br>5 (18)-1130-6444 (10)-115<br>5 (18)-1130-6444 (10)-115<br>7 Trachhostail / Isaadi<br>8 (3)<br>8 (3) |

| RECAL<br>L'Age                                                                             | LCULE A<br>e 14 Ma                                                                                             | RECALCULE A<br>L'Age Biblio                                                                                                                                                                                                                                            | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                                     | RECALCULE A<br>L'Age Biblio                                                                                                                                                                                     | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Sm/Nd) measured recalculé<br>(143Nd/144Nd) Initial recalculé<br>(Sm/Nd) Initial recalculé | Ace 14Ma (L.Ponthus)<br>(Rb/St) measured recalculé<br>(875/866A initial recalculé<br>(Rb/Sr) initial recalculé | Age ref. (L.Porthus)<br>(RUS/S) measured recalculé<br>( <b>87S/86S6) Initial recalculé</b><br>( <b>87S/86S7) Initial recalculé</b><br>( <b>143/6/1/41/6) Initial recalculé</b><br>( <b>143/6/1/41/6) Initial recalculé</b><br>( <b>143/6/1/41/6) Initial recalculé</b> | 147 Sm1444d http:<br>143 Sm1444d http:<br>147 Mol 444d http:<br>157 Mol 55 http:<br>258 U/204 Pb<br>258 D/204 P | Partisetter of April 44 (1997)<br>Partisetter of April 44 (1997) | # (Olenook et al., 2017 - n.)<br>Geochemistary Reference<br>Larounce<br>Roak Yoan<br>Roak Yoan<br>Laritude<br>Laritude<br>Laritude<br>Laritude<br>Laritude<br>Laritude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Age 14Ma (L. Ponthus)<br>(RD:S) massured recalculé<br>(87 Sr/86Sr) initial recalculé<br>(SmVch massured recalculé<br>(SmVch massured recalculé<br>(143Nd/144Nd) initial recalculé<br>(Sm/Ad) initial recalculé | Age of (I. Ponthus)<br>(67 Sredisch Initial recalculé<br>(78 VSR) initial recalculé<br>(Sm/Nd) measured recalculé<br>(143 Md/144/10 initial recalculé<br>(Sm/Nd) initial recalculé<br>(Sm/Nd) initial recalculé | 1475/m144/htta<br>1436/m144/htta<br>1436/m144/htta<br>1876/b65/mhta<br>1876/b65/mhta<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2250/024/Pb<br>2050/024/Pb<br>2050/024/Pb<br>2050/024/Pb<br>2050/024/Pb<br>2050/024/Pb<br>2050/024/Pb<br>2050/024/Pb<br>2050/024/Pb<br>2050/024/Pb<br>2050/024/Pb<br>2050/024/Pb<br>2050/024/Pb<br>2050/024/Pb<br>2050/024/Pb<br>2050/024/Pb<br>2050/024/Pb<br>2050/024/Pb<br>2050/024/Pb<br>2050/024/Pb<br>2050/024/Pb<br>2050/024/Pb<br>2050/024/Pb<br>2050/024/Pb<br>2050/024/Pb<br>2050/024/Pb<br>2050/                                                                                                                                                                                                                                                                                                                                                                                  | # f Ollerook et al. 2017 - n.)<br>Geschenster<br>Location<br>Sanubi Mane<br>Rock Tree<br>Rock Tree<br>Ro                                                                                                                                              |
|                                                                                            | 14                                                                                                             | 89.<br>23                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.710758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 448<br>Korgueler Petersu (Suff Fill)<br>183-1130A-62R12.71_L6C/HTE 83-1<br>Rovente<br>50.168<br>63.94<br>83.3<br>193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14<br>4243<br>0.709639<br>0.1224<br>0.1229<br>0.512547<br>0.129                                                                                                                                                | 68.3<br>4.243<br>0.726366<br>4.247<br>0.129<br>0.51250<br>0.129<br>0.129                                                                                                                                        | 0 1 1 22<br>4 2 43<br>3 35<br>17 5 5 1 2<br>17 5 5 1 2<br>38 0 7 4<br>38 0 7 4<br>38 0 7 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 43<br>Kroguelen Fellenau (Staff Enk)<br>OOP Lug 183, Stafe 113<br>183, 1139A-7184,40-9<br>8<br>183, 1139A-7184,40-9<br>83, 9<br>1020<br>1020<br>1020<br>1020<br>1020<br>1020<br>1020<br>102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                            | 14                                                                                                             | 8                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.728904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 449<br>Kegupelan Parana (Suf 119)<br>Kogupelan (Suf 119)<br>(36A-57R1 127 134 LEACHATE<br>-50.16<br>63.9<br>(63.9<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63.9)<br>(63. | 14<br>34 655<br>0.754032<br>34.666<br>0.1260<br>0.512549<br>0.120                                                                                                                                              | 68.3<br>34.659<br>0.727292<br>34.693<br>34.693<br>0.512506<br>0.120                                                                                                                                             | 0.51220<br>34.659<br>10.54<br>0.234<br>0.234<br>17.75540<br>15.540<br>15.540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Keguelon Parenau (Skill Savo)<br>Scope Log 152, Skill Savo)<br>s 153-1136,72782,25-5<br>s 153-1136,72782,25-5<br>63,94<br>83,3<br>177,0<br>177,0<br>2,6<br>177,70<br>177,70<br>177,70<br>15,5<br>15,5<br>15,5<br>15,5<br>15,5<br>15,5<br>15,5<br>15,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                            | 14                                                                                                             | 86<br>3                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.91886<br>17.874<br>15.510<br>98.231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 450<br>Kenuesen Pateau (Skr F [15])<br>Statute (15)<br>s 163-1130.4574.127-134<br>-50.165<br>-50.165<br>-63.94<br>(63.34<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(63.34)<br>(6                                                                                                       | 14<br>0.183<br>0.512556<br>0.183                                                                                                                                                                               | 68.3<br>81.662<br>81.731<br>0.183<br>0.512491<br>0.183                                                                                                                                                          | 0.51283<br>0.512849<br>1.652<br>1.96285<br>0.195<br>0.195<br>0.195<br>17.4584<br>15.514<br>15.514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Kerpusken Patewa (Ski Elavi)<br>Kerpusken Patewa (Ski Elavi)<br>s 183-1139A-6261(27<br>-80.165<br>-80.165<br>-80.165<br>-80.165<br>-80.165<br>-80.165<br>-80.165<br>-80.165<br>-80.165<br>-80.177<br>-17.711<br>-17.711<br>-17.711<br>-15.54<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.655<br>-30.6555<br>-30.655     |
|                                                                                            | 14                                                                                                             | 68<br>3                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.01517.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 451<br>Kenucien Plateau (SMI 1 15)<br>8 182-1130A5/11159<br>8 182-1130A5/11159<br>-50.165<br>63.94<br>88.3<br>91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14<br>37.652<br>0.759505<br>0.759505<br>0.119<br>0.512575<br>0.119                                                                                                                                             | 68.3<br>7.750.45<br>0.730.456<br>37.689<br>0.119<br>0.51253<br>0.119                                                                                                                                            | 37 652<br>37 652<br>16.20<br>0.12<br>49.03<br>17.73<br>17.73<br>15.54<br>17.73<br>15.54<br>17.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Kenjueken Piekees (SME 1849)<br>ODP Log 163, Sier 1139<br>a 163-1130A61762,30-97<br>- 50-185<br>- 62-19<br>- 62-19<br>- 62-19<br>- 62-19<br>- 62-19<br>- 78-19<br>- |
|                                                                                            | 14                                                                                                             | 68.3<br>28.245<br>2.6271<br>0.097                                                                                                                                                                                                                                      | 26.245<br>9.61<br>0.07<br>63.94<br>17.624<br>15.549<br>15.549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24110<br>115.0<br>11.8<br>2.1<br>13.2<br>13.2<br>17.727<br>15.554<br>17.727<br>15.554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 422<br>Kenzuleen Plateau (SMT 8 119)<br>8 183-1133 100-111<br>9 183-1133A7313-100-111<br>-50 185<br>-50 185<br>-50 185<br>-50 185<br>-50 185<br>-50 185<br>-51 183A7313-100-111<br>-51 183A<br>-51 183A<br>-                                                                                                                                                                                              | 14<br>0.185<br>0.512577<br>0.185                                                                                                                                                                               | 68.3<br>70.943<br>70.912<br>0.512512<br>0.185<br>0.185                                                                                                                                                          | 70.843<br>70.843<br>13.14<br>10.53<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.752<br>17.7 | Kenjuden Plateau (SM 5145<br>ODP Jug 162, Ser 139<br>s 162-1130A-5111, 15<br>s 182-1130A-5111, 15<br>s 182-1130A-5111, 15<br>s 18<br>s 18<br>s 18<br>s 18<br>s 18<br>s 18<br>s 18<br>s 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                            | 14                                                                                                             | 68.3                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17.756<br>15.756<br>38.442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 43<br>Kenusien Plateau (Skill B 11)<br>s 165-1130-7272.25-5<br>-50.165<br>-50.165<br>83.94<br>88.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14<br>32.701<br>0.769309<br>0.2.708<br>0.2.708<br>0.512610<br>0.512610<br>0.123                                                                                                                                | 68.3<br>3.2.701<br>0.744.080<br>3.2.733<br>3.2.733<br>0.51256<br>0.123                                                                                                                                          | 0.123<br>0.51256<br>0.741080<br>11.480<br>0.01<br>50.61<br>17.775<br>50.61<br>17.775<br>14.556<br>14.556<br>14.556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Kenjuden Plateau (Sett Bave)<br>ODP Leg 163, Stat 139<br>9 (SDP Leg 163, Stat 139<br>9 (SD-143, Stat 139<br>1 (SD-143, Stat 139)<br>1 (SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.215<br>0.513005<br>0.215                                                                 | 14<br>0.703423<br>0.729                                                                                        | 34<br>0.029<br>0.703415<br>0.029<br>0.512877<br>0.215                                                                                                                                                                                                                  | 0.515<br>0.629<br>0.629<br>0.629<br>0.08<br>0.08<br>50.36<br>50.36<br>50.36<br>15.49<br>36.219<br>36.219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.5<br>130.0<br>0.1<br>0.5<br>130.0<br>0.5<br>130.0<br>0.7<br>15.20<br>15.20<br>15.20<br>15.20<br>2<br>38.450<br>2<br>38.450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 402<br>(Korguelan Palasa) (NcH164)<br>0021-403-153 (Staf 1-14)<br>8 153-1140/ASR-6-51-49<br>Theelite / Basit / Theelite<br>40.26<br>Theelite / Basit / Theelite<br>84.4917<br>84.19<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14<br>0.380<br>0.705756<br>0.380<br>0.512619<br>0.124                                                                                                                                                          | 68.3<br>0.7643<br>0.7643<br>0.381<br>0.381<br>0.51254<br>0.124                                                                                                                                                  | 0.5124<br>0.51257<br>0.380<br>0.705463<br>0.00<br>3.472<br>17.419<br>15.499<br>15.499<br>15.499<br>15.499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 444<br>Kenjusien Plateau (Sett Fahre)<br>002 Log 163, Sief 153<br>9 (15) 1130A-6462.76.87<br>Trachyanidetti Basaff<br>63.3<br>12 8<br>13 8<br>14 40.0<br>0.3<br>0.5<br>1.5<br>0.5<br>1.7<br>0.5<br>1.7<br>0.5<br>1.7<br>0.5<br>1.7<br>0.5<br>1.7<br>0.5<br>1.5<br>0.5<br>1.7<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>1.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                            | 14<br>0.793<br>0.794                                                                                           | 34<br>0.193<br>0.703341<br>0.194                                                                                                                                                                                                                                       | 0.703341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.5<br>(42.0<br>0.7(344)<br>0.7(344)<br>15.55(<br>15.55)<br>38.280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 403<br>Korguelan Pakau (Nc1164)<br>000 Los 163, 50, 51, 164<br>1640, 2681, 7, 164<br>Thoelite / Basel Thoelite<br>-40, 26<br>176, 164<br>164, 164<br>164, 164<br>164<br>164<br>193<br>193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14<br>0.786<br>0.706447<br>0.788<br>0.129<br>0.512751<br>0.129                                                                                                                                                 | 68.3<br>0.705839<br>0.78839<br>0.785<br>0.785<br>0.725<br>0.129                                                                                                                                                 | 0.5129<br>0.512705<br>0.788<br>4.50<br>0.05<br>0.03<br>0.05<br>17.515<br>17.515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 445<br>Kerguuden Prateniu (Sett Tahin)<br>0000 Log 163, Si at 133<br>a 193,139,4,274,35,41<br>Trachosaan<br>118<br>129<br>129<br>129<br>129<br>129<br>129<br>129<br>129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                            | 14<br>0.703397<br>0.018                                                                                        | 34<br>0.70398<br>0.018<br>0.018                                                                                                                                                                                                                                        | 0.7 03.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8<br>1200<br>0.513013<br>0.713401<br>15.552<br>15.552<br>36.360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 404<br>(Gg) John Paysan (No.11), 81<br>ODD Log 163, 51, 81<br>1140A/27R-20-45<br>Theelile / Rasal: Theelite<br>-40.25<br>(84.917<br>84.917<br>(91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14<br>0.328<br>0.705790<br>0.329                                                                                                                                                                               | 68.3<br>0.705328<br>0.329<br>0.329<br>0.110<br>0.110                                                                                                                                                            | 0.110<br>0.328<br>0.525<br>0.52<br>0.52<br>0.52<br>0.52<br>17.417<br>17.417<br>17.417<br>17.417<br>17.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 440<br>Kernaneken Framena (Sett Tanio)<br>0.002 Log 153, 53 ka 1130<br>5 (13), 130, 4441, 127, 135<br>10, 130, 4441, 127, 135<br>50, 34<br>50, 34<br>50, 3<br>43, 0<br>50, 4<br>50, 3<br>43, 0<br>17, 50, 1<br>15, 50, 1<br>38, 641<br>38, 641<br>50, 1<br>50, 1<br>50                                                                                                                                                                                                |
|                                                                                            | 14<br>0.022<br>0.703384<br>0.022                                                                               | 0.022<br>0.703377<br>0.022                                                                                                                                                                                                                                             | 0.022<br>0.703377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10<br>132.0<br>0.513008<br>0.703588<br>0.703588<br>18.5540<br>18.5540<br>18.5540<br>18.5540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 405<br>Korgusten Pareau (korfinen)<br>002-ver 153, Ste 1140<br>s 153, 1140, 285, 202-02<br>Tholeite / Basatt Tholeite<br>65,497<br>(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                | . 88<br>20                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 447<br>Kerganian Prawau (Self Bani)<br>0.00P-0e9.183, Set 139<br>9.183-1138A-6442.78-6<br>-20.186<br>63.94<br>83.9<br>[9]<br>[9]<br>[9]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| RECALCULE A<br>L'Age 14 Ma L'Age B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ULE A CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                                    | RECALCULE A<br>L'Age Biblio                                                                                                                                                                                                        | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                  |                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Constant and a second and a second | (EXSec)     (1 - Portun)     (2 - Sec)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Adde Correction (Ma)<br>Adde Correction (Ma)<br>Mater efficiency<br>Strippin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopin<br>Fictopi                                                                                                                                                                                                                                                                                                                                                            | # (Olencole et al. 2017 - n.)<br>Geochemistry Reference<br>Province<br>Sambe Name<br>Rock Trobo<br>Rock Trobo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Age 1414.( Ponthus)<br>(Rb:S) measured recalculé<br>(875/865/1 initial recalculé<br>(875/865/1 initial recalculé<br>(SmN4) measured recalculé<br>(143/0/141/0/181al recalculé<br>(143/0/141/0/181al recalculé | Age ref. (L. Ponthas)<br>(bb:S): nneasured recalculé<br>(87:57:865/n1nkla1 recalculé<br>(87:87:805/n1nkla1 recalculé<br>(97:87:80): Inkla1 recalculé<br>(14:340/n4:14:04): Inkla1 recalculé<br>(41:340/n4:14:04): Inkla1 recalculé | 1475m14444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sactoremented<br>Sign (com)<br>Rd (com)<br>Si (com)<br>Si (com)<br>Pi (com)<br>Pi (com)<br>r431Nd/r44Nd measured<br>20/Pi 2/204/b measured<br>20/Pi 2/204/b measured<br>20/Pi 2/204/b measured                   | # Clarook et al. 2017 - n.)<br>Geochemistry Reference<br>Location<br>Samba Name<br>Rock To Samba Name<br>Rock To Samba Name<br>Rock To Samba Name<br>Action (Ma)<br>Ale Correction (Ma)<br>Ale Correction (Ma) |
| 0.019<br>0.219<br>0.2210<br>0.22405<br>0.22405<br>0.2240<br>0.019<br>0.019<br>0.210<br>0.210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.000.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.120.0<br>19.100.000.0000000000000000000000000                                                                                                                                                                                                                                                    | 900000<br>91<br>91<br>91<br>91<br>91<br>91<br>91<br>91<br>91<br>91<br>91<br>91<br>91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.16<br>Kegualen Piataai (Korthen)<br>OOP Log 153, Sile 1140<br>5.152, Sile 1140, 323, Sile 1140, 323, 516, 24<br>7.150 (Sile / Baset Trobellik<br>Tholeille / Baset Trobellik<br>4.66 (Sile - 4.66 (Sile - 4 | 14<br>0.069<br>0.704267<br>0.069<br>0.163<br>0.512814<br>0.152814                                                                                                                                             | 34<br>0.704248<br>0.704248<br>0.069<br>0.163<br>0.512793<br>0.153                                                                                                                                                                  | 0.183<br>0.51 <b>2793</b><br>0.068<br>0.70 <b>4248</b><br>15.37<br>10.11<br>70.21<br>18.483<br>15.571<br>38.782<br>38.782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55<br>2014<br>2262<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52                                                                                                                 | 406<br>[84]<br>COP Leg 183, Sile 1140<br>5 165,1140,0154,157-61<br>Tholeille / Basati, Tholeille<br>- 46,26<br>68,4917<br>[9]                                                                                  |
| 0.013<br>0.201<br>0.201<br>0.21204<br>0.2201<br>14<br>0.201<br>0.201<br>0.201<br>0.201<br>0.201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.615/2000<br>1.2000<br>1.2000<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.00000<br>5.00000<br>5.00000<br>5.00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0000000<br>19<br>19<br>10<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 417<br>Keguséen Pilaeau (Korthern)<br>ODP Leg 153, Sile 1140<br>5 (153-1140A;94:6-53-29<br>Tholeille / Basalt, Tholeille<br>Face 45 20<br>6 4 6 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14<br>0.121<br>0.704233<br>0.121                                                                                                                                                                              | 34<br>0.121<br>0.724199<br>0.121                                                                                                                                                                                                   | 0.704199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10<br>10<br>2590<br>0.5128<br>0.7028<br>0.7028<br>10<br>528<br>16<br>5564<br>38.870                                                                                                                              | 407<br>[84]<br>Kerguelen Plateau (Northern)<br>9 193-11404 ST - 153-57<br>Thoteilte / Basalt, Thoteilte<br>46.28<br>94<br>94<br>94                                                                             |
| 0.031<br>14<br>0.031<br>0.703693<br>0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6000.0<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00000<br>(8)<br>1.5<br>1.380<br>0.512842<br>0.703765<br>0.703765<br>0.703765<br>0.703765<br>0.512842<br>0.703765<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.512842<br>0.5128442<br>0.5128442<br>0.5128442<br>0.5128442<br>0.5128442<br>0.5128444444                                                                                                                                                                                                                                                                                                                                                | 418<br>Kergusien Paleau (Kortiern)<br>ODP Leg 158 Sile 1140<br>5 (85:140A/SR-450-52<br>Tholeilte / Basat, T-folgiet<br>e 4:07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14<br>0.037<br>0.770422<br>0.154<br>0.154<br>0.1580<br>0.150                                                                                                                                                  | 34<br>0.7 <b>704218</b><br>0.154<br>0.154<br>0.154<br>0.154                                                                                                                                                                        | 0.51276<br>0.51276<br>0.0230<br>0.704218<br>16.16<br>0.12<br>73.77<br>18.425<br>15.551<br>39.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52<br>52<br>27<br>22<br>22<br>22<br>22<br>22<br>10<br>4<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                            | 408<br>(84)<br>Kerguelen Plateau (Northern)<br>ODP Leg 183, Sile 1140<br>s 183-1140A-SIR-165-106<br>Tholeille / Basalt, Tholeille<br>46.28<br>94<br>94                                                         |
| 0.016<br>0.2311<br>0.211<br>0.211<br>0.211<br>0.211<br>0.211<br>0.211<br>0.211<br>0.211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.512301<br>0.70040<br>0.70040<br>0.000<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.00700000000                                                                                                                                                                                                                                                                                                                                                                          | 900-191<br>31<br>31<br>32<br>31<br>31<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 419<br>Kerpuleen Pieteau (Northern)<br>ODP Leg 183 Ste 1140<br>a 183-140A-3613-357-118<br>Tholeite / Basal, Tholeite<br>Basatz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14<br>0.0075<br>0.72 <b>0451</b><br>0.075<br>0.51269<br>0.5154                                                                                                                                                | 34<br>0.0075<br>0.72 <b>0439</b><br>0.075<br>0.5124<br>0.154                                                                                                                                                                       | 0.5127.4<br>0.5127.4<br>0.075<br>0.770.4430<br>18.830<br>0.14<br>81.97<br>18.490<br>15.571<br>38.837                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 - 4<br>29 - 4<br>25 - 6<br>25 - 6<br>25 - 6<br>2 - 4<br>2 - 4<br>0.512783<br>0.512783<br>0.512783<br>0.512783<br>0.724466<br>0.724466<br>0.724466<br>0.7556<br>18.5506<br>18.5576<br>38.6770                   | 409<br>Kerguelen Plateau (Northern)<br>s 183-11400-5182-20-24<br>Tholeille / Basalt, Tholeille<br>-46.26<br>88.411<br>-31<br>-68.491<br>-31<br>-31                                                             |
| 0.243<br>0.243<br>0.743<br>0.743<br>0.743<br>0.243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.243<br>0.703649<br>0.703649<br>0.703649<br>0.703649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 600-014<br>11<br>11.5<br>137.0<br>0.0512507<br>0.0702766<br>18.447<br>18.447<br>18.45561<br>18.475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 420<br>(84)<br>Kerguseen Paesas (Northern)<br>0DE Leg 183, Ster 1440<br>1340,378-3-104-108<br>Tholesite / Basatt Tholesite<br>Tholesite / Basatt Tholesite<br>es 4077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14<br>0.043<br>0.704402<br>0.043                                                                                                                                                                              | 34<br>0.043<br>0.704330<br>0.043                                                                                                                                                                                                   | 0.043<br>0.704390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9<br>39<br>282 20<br>282 20<br>282 20<br>27<br>28 20<br>18 20<br>18 20<br>18 20<br>18 20<br>18 20<br>19<br>18 20<br>19<br>19<br>20<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 410<br>[64]<br>Kerguelen Plateau (Northern)<br>s. 183-140-0.224-1-55-21<br>183-140-0.224-1-55-21<br>Tholeille / Basalt Tholeille<br>-46.26<br>68.4517<br>34<br>[3]                                             |
| 0.001<br>0.2013<br>0.2014<br>0.2015<br>0.2015<br>0.2015<br>0.2015<br>0.2015<br>0.2015<br>0.2015<br>0.2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,51286<br>0,72085<br>0,72085<br>0,75085<br>0,75085<br>0,75085<br>0,75085<br>0,720863<br>0,720863<br>0,720863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00-23<br>34<br>31<br>31<br>31<br>32<br>31<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 421<br>(84)<br>Kergusen Palaau (Northern)<br>ODP Leg 163, Ster 140<br>5 163-140A/378-422-42<br>Tholesile / Basalt Tojesile<br>6 407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14<br>0.085<br>0.704452<br>0.087<br>0.156<br>0.156                                                                                                                                                            | 34<br>0.0087<br>0.704427<br>0.087<br>0.156<br>0.512756<br>0.1156                                                                                                                                                                   | 0.51276<br>0.51276<br>0.087<br>1531<br>0.11<br>68.75<br>18.527<br>18.527<br>18.523<br>38.563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 284<br>284<br>284<br>051278<br>051278<br>051278<br>051278<br>18608<br>18608<br>18608<br>38000                                                                                                                    | 411<br>Kerguelen Plateau (Northern)<br>s 183-1140-A254-1-126-130<br>Tholeille / Basalt, Tholeille<br>Basalt, Tholeille<br>88,4917<br>31<br>81                                                                  |
| 0.115<br>0.1262<br>0.1262<br>0.1262<br>0.115<br>0.115<br>0.115<br>0.115<br>0.115<br>0.115<br>0.115<br>0.115<br>0.115<br>0.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0511980<br>0.0115<br>0.0015<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Winitechurch 1992<br>111<br>111<br>2280<br>1281<br>1280<br>1280<br>1280<br>1280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 482<br>(111<br>Kerguteen Plateau (Southern)<br>ODP Lea 120 Site 749<br>S 207:452-158-4,364-0<br>Thole (Basat<br>7472<br>74075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14<br>0.050<br>0.704416<br>0.050<br>0.159<br>0.159<br>0.159                                                                                                                                                   | 34<br>0.704.002<br>0.050<br>0.159<br>0.512750<br>0.159<br>0.159                                                                                                                                                                    | 0.512769<br>0.512769<br>0.704020<br>18.94<br>19.44<br>79.66<br>18.516<br>15.586<br>38.886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7,4<br>2,8<br>4,5<br>0,6<br>1,9<br>1,5<br>2,3<br>0,5,42,78<br>0,7,04426<br>1,8,640<br>1,8,659<br>3,90,020<br>3,90,020                                                                                            | 412<br>Kerguelen Plateau (Northern)<br>s 163-1140/s2R2-45-90<br>Tholeille / Baselt, Tholeille<br>68.4917<br>31                                                                                                 |
| 0.187<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.100.00<br>110<br>110<br>000<br>000<br>1281<br>1281<br>000<br>000<br>000<br>000<br>0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Whitechurch 1992<br>113<br>113<br>2150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12100<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150<br>12150 | 483<br>[11]<br>Keguléan Pateau (Scuthern)<br>ODP Leg 120 Ste 749<br>5 127-142-1285-767-9<br>Thole-66, 1742<br>74-07-85-772<br>74-075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14<br>0.155<br>0.155<br>0.213<br>0.213<br>0.51225<br>0.213                                                                                                                                                    | 34<br>0.155<br>0.155<br>0.155<br>0.212<br>0.512<br>0.512<br>0.213<br>0.213                                                                                                                                                         | 0.5128<br>0.5128<br>0.145<br>0.703700<br>89.66<br>0.4<br>88.34<br>18.824<br>18.824<br>15.569<br>38.675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.1<br>7.0<br>1310<br>0.6<br>0.512945<br>0.732945<br>0.73275<br>0.732945<br>0.73275<br>18.5804<br>18.5804<br>18.5804<br>38.710                                                                                   | 413<br>Kerguelen Piateau (Northern)<br>ODP Leg 163, Site 1140<br>s 163,1140,32R-40-6<br>Tholeille / Basalt, Tholeilic<br>                                                                                      |
| 0.182<br>0.182<br>0.182<br>0.182<br>0.182<br>0.182<br>0.2059<br>0.2059<br>0.188<br>0.188<br>0.188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21960-20<br>1011<br>110<br>111<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-281<br>121-                                                                                                                                                                                                                                                                                                                                                                                                                                  | Whiteshuch 1992<br>136<br>236<br>236<br>236<br>236<br>236<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>237<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 494<br>[11]<br>Kerguden Piateau (Seuffren)<br>ODP Log (20, Sile, 749<br>5, 120-7462-(56)-1222.9<br>Thole-se, 1222.9<br>Thole-se, 1272<br>7 source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14<br>0.380<br>0.7027 05<br>0.390<br>0.2036<br>0.51293<br>0.206                                                                                                                                               | 34<br>0.706892<br>0.330<br>0.330<br>0.512204<br>0.206                                                                                                                                                                              | 0.512206<br>0.5320<br>0.705832<br>0.705852<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.847<br>0.852<br>0.847<br>0.847<br>0.847<br>0.852<br>0.847<br>0.852<br>0.852<br>0.852<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0. | 3.1<br>3.1<br>14.5<br>127.0<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0                                                                                                                  | 414<br>Kerguelen Pateau (Northern)<br>s 153-1140A-351-1120-2<br>Tholeille / Basalt, Tholeilte<br>-49.26<br>864-91<br>34                                                                                        |
| 0.033<br>0.203<br>0.203<br>0.203<br>0.203<br>0.203<br>0.203<br>0.203<br>0.203<br>0.203<br>0.203<br>0.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,517200<br>0,717200<br>0,7151<br>0,715<br>17,707<br>15,472<br>15,472<br>15,472<br>15,472<br>15,472<br>15,472<br>15,472<br>15,472<br>15,472<br>15,472<br>15,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472<br>16,472 | Whitechurch 1912<br>5<br>2.7<br>2.37<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 485<br>[11]<br>Kergusten Piataau (Scuthern)<br>ODP Log 120, Ster, 74<br>\$120-746C-456-52027<br>541712<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14<br>0.007<br>0.007<br>0.007                                                                                                                                                                                 | 34<br>0.007<br>0.70 <b>5726</b><br>0.007                                                                                                                                                                                           | 0,007<br>0,703726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17<br>0.5<br>128.0<br>0.5<br>128.0<br>0.7<br>0.7<br>0.7<br>18.38<br>18.589<br>18.589<br>18.589<br>18.589<br>18.589<br>18.589                                                                                     | 415<br>Kerguelen Plateau (Northern)<br>0.09 Lug 183, Sile 1140<br>s 183,1140,03.78,278–81<br>Tholeille / Basati, Tholeillo<br>Tholeille / Basati, Tholeillo<br>84,917<br>34                                    |

| RECALCULE A<br>L'Age 14 Ma RECALCULE A<br>L'Age Biblio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RECALCULE A<br>L'Age 14 Ma L'Age Biblio CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| to Start And Initial     to Start And Initial     Second Start     Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | # (Olianok et al., 2017 - n.)<br>Geochamistry Reference<br>Droxino<br>Samubi kann<br>Samubi kann<br>Samub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 142/Bort-144bd<br>142/Bort-144bd<br>142/Bort-144bd<br>142/Bort-144bd<br>142/Bort-144bd<br>142/Bort-144bd<br>142/Bort-144bd<br>142/Bort-144bd<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>142/Bort-142<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Globrook et al. 2017 - n.)     Geochimistry Reference     Province     Location     Sampis Hame     Rock Trans     Location     Sampis Hame     Since Trans     Since Tra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.272<br>0.072<br>8.72<br>0.072<br>0.72<br>0.72<br>0.72<br>0.72<br>0.72<br>0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Kergaelen Prateau (Southrith)           ODP Legaelen Prateau (Southrith)           ODP Legaelen Prateau (Southrith)           St 20:7508 148-32 Ste 750           s 120:7508 148-32 Ste 750           112           112           113           114           115           113           114           115           117           118           119           113           113           114           115           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1 </td <td>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026<br/>0.026</td> <td>488<br/>Kergaelan Pratabau (Southerran<br/>00P kag 120, Star 740<br/>120, 7462, 729, 120, 120<br/>48, 1712<br/>48, 1712<br/>48, 1712<br/>72, 1405<br/>72, 1405<br/>72, 1405<br/>72, 1405<br/>72, 1405<br/>73, 1405<br/>74, 1405</td> | 0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026<br>0.026 | 488<br>Kergaelan Pratabau (Southerran<br>00P kag 120, Star 740<br>120, 7462, 729, 120, 120<br>48, 1712<br>48, 1712<br>48, 1712<br>72, 1405<br>72, 1405<br>72, 1405<br>72, 1405<br>72, 1405<br>73, 1405<br>74, 1405                                                                                                                                                                                                                                                                                                                                                                |
| 0.6171/25<br>0.700/05<br>0.700/05<br>0.65<br>0.65<br>17.422<br>0.65<br>17.422<br>0.65<br>0.712<br>0.65<br>0.712<br>0.65<br>0.712<br>0.65<br>0.712<br>0.65<br>0.712<br>0.05<br>0.725<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 82<br>4 82<br>4 82<br>4 92<br>4 92<br>5 0 20 5 km 5 50<br>5 1 20 750 25 km 5 50<br>5 1 20 750 25 km 5 50<br>5 7 75 22<br>5 7 75 25<br>5 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 487<br>Kenguelen Pateau (Scuthen)<br>ODP Leg 120, Still 748<br>120746C-19R-6, 90-66<br>-95.777<br>74-4075<br>74-4075<br>Whitechurch 1952<br>0.512205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.61/02/20<br>0.70/04/20<br>0.70/04/20<br>0.70/04/20<br>0.70/04/20<br>11/2<br>0.70/04/27<br>0.70/04/2<br>0.22/2<br>0.70/04/2<br>0.22/2<br>0.00/27<br>0.70/04/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2<br>0.02/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 463<br>1111<br>Kerguelen Pateau (Southern)<br>s 120-750: 48750<br>s 120-750: 48750<br>f 120-750: 48750<br>f 120-750: 49750<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59<br>112-59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.197<br>0.512759<br>0.030<br>5.14<br>2.01<br>10<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.030<br>0.0300<br>0.0300<br>0.0300<br>0.0300<br>0.0300000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kergueten Pateau (Scuthern)<br>ODP Les 120, Sulte 749<br>8 120, 740-128, 3556<br>Thorefue / Staat<br>8 120, 740-128, 3556<br>Wither / Staat<br>8 2<br>2 2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.512224<br>0.2724<br>0.27346<br>1.2446<br>1.244<br>1.244<br>1.244<br>0.25<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.225<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.2246<br>0.224<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244<br>0.244 | 464<br>(Fill)<br>Kenpuelen Pateau (Southern)<br>s 120-7664-561-103-108<br>8 122-7664-561-103-108<br>8 1236<br>112<br>8 1236<br>112<br>14<br>14<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.001<br>0.001<br>0.006<br>0.703543<br>8.87<br>8.87<br>8.87<br>8.87<br>8.87<br>8.87<br>8.87<br>8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Kerpuelen Pateau (Southern)<br>00P Les 120, Ste 74<br>120, Ste 74120, Ste 74<br>120, Ste 74<br>120, Ste 74120, Ste 74<br>120, Ste 74140, Ste 74<br>120, Ste 74140, Ste 74<br>120, Ste 74140, Ste 74<br>120, Ste 74140, Ste 74<br>140, Ste 74140, Ste 74140, Ste 74<br>140, Ste 74140, S                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.5112220<br>0.704855<br>0.704855<br>140455<br>140455<br>140455<br>154412<br>0.257<br>0.704855<br>0.704855<br>0.226<br>0.227<br>0.226<br>0.227<br>0.226<br>0.227<br>0.226<br>0.227<br>0.226<br>0.226<br>0.226<br>0.226<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.027<br>0.00       | 465<br>(Finite Conternational Conternation of Conternation C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110<br>0.704237<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 460<br>Kerguden Parkau (Southern)<br>00P Leg 120 Sub 719<br>s 120 7490-1972 - 355<br>77 490-1972 - 355<br>10 4075<br>10 4075<br>100 |
| 112<br>0705012<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 460<br>(225)<br>(225)<br>(2000 kot 10.0<br>(2000 kot 10.0<br>(2000 kot 20.0<br>(2000 kot 20.0)<br>(2000 ko                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000<br>110<br>0.000<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 441<br>Kergueken Plateau (Southern)<br>OOP Lea 120, Site 749<br>s 120-7496-1974-100<br>-887172<br>70-4075<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.705300<br>0.200<br>0.705300<br>0.705300<br>0.156<br>0.156<br>0.156<br>0.166<br>0.7053000<br>0.7053000<br>0.7053000<br>0.2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46<br>Kerguelen Pateau (Southern)<br>s 120-750-1773,26-30 et<br>-57,772<br>112,255<br>112<br>211<br>7.3<br>162,0<br>172,0<br>112,255<br>112<br>211<br>7.3<br>152,0<br>0,705,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,703,506<br>0,200,506<br>0,200,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 400<br>Kerguden Plateau (Southern)<br>00P Leg 20, Ste 740<br>9 120-746-1687,707-109<br>5-87772<br>76 4075<br>10<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.100<br>0.009<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.000<br>0.100<br>0.000<br>0.100<br>0.000<br>0.100<br>0.000<br>0.100<br>0.000<br>0.100<br>0.000<br>0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 472<br>Krsgurien Pieteau (Southern)<br>19-736C-119-736C-384,140-144<br>42.766<br>112<br>14-77<br>14-7<br>14-7<br>14-7<br>14-7<br>14-7<br>14-7<br>14-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1155<br>0.000<br>0.700501<br>0.110<br>0.115<br>0.115<br>0.115<br>0.115<br>0.000<br>0.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 491<br>Korgusten Pitetau (Southern)<br>0DP Leg 120 Site 74<br>120-746C-687-75-7<br>75-4075<br>70-405<br>10<br>10<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 112<br>0702210<br>0702210<br>051200<br>0512007<br>0140<br>0140<br>0700010<br>0210<br>070010<br>0210<br>0210<br>0210<br>021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 473<br>Kerguden Pateau (Scuthern)<br>119.736C-34R-303 (EAOHED<br>42.708<br>21.787<br>21.2<br>21.2<br>21.2<br>21.2<br>21.2<br>21.2<br>21.2<br>21.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.173<br>0.000<br>0.704268<br>0.100<br>0.724268<br>0.173<br>0.173<br>0.173<br>0.173<br>0.173<br>0.173<br>0.173<br>0.000<br>0.173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 422<br>Korgusten Pitebau (Sourtern)<br>ODP Leg 120, Ste 740<br>120, 7480-148-144-148<br>-82, 7172<br>-78-44716<br>-190<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-286.0<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-288<br>-170-2                                                                      |
| 0.142<br>0.120<br>0.142<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.147<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 474<br>Kargudeen Prateur (Southern)<br>119-736C-58R-2414-14.<br>Thodes<br>28-785<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.212<br>0.212<br>0.212<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.122<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Kergudeen Praeeu (Sourtern)<br>00P test 20, Star 26<br>00P test 20, Star 26<br>17506tr 178, 33, 32<br>17506tr 178, 33, 32<br>17506tr 178, 33, 32<br>17506tr 178, 33, 32<br>1750<br>1750<br>1750, 33<br>1750, 35<br>1750, 3                                                                                                                                                                                                                                                                                                                                                                    |

| RECALCULE A<br>L'Age 14 Ma RECALCULE A<br>L'Age Biblio CALCUL OLIEROO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPSr65 initial     Security in the     Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lucition<br>Lucition<br>And Forderence<br>And Courselon (Ma)<br>And Forderence<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material<br>Material                                                                                                                                                                                                                                                                                                                                             | Ave 1 Mar (L Ponthus)<br>(RUS7) measured recalcule<br>(RUS7) measured recalcule<br>(13/3/m41/measured recalcule<br>(13/3/m14/m1/m1/m1/m1/m1/m1/m1/m1/m1/m1/m1/m1/m1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to construct the last of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Geocher # Cláncole et al. 2017 - n.)<br>Geocheriatry Reference<br>Location<br>Sample Name<br>Rock Trans<br>Location<br>Rock Trans<br>Rock Tra                                                                                                                                                                                                                                                                                                                                 |
| 0,70,438<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.51258<br>0.51270<br>0.1026<br>0.1026<br>0.1026<br>0.1026<br>0.1026<br>0.102<br>0.102<br>0.102<br>0.102<br>0.102<br>0.012<br>0.012<br>0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4<br>0.188<br>0.709800<br>0.189<br>0.1900<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.158<br>0.158<br>0.158<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.188<br>0.1888<br>0.188<br>0.1888<br>0.1888<br>0.1888<br>0.1888<br>0.1888<br>0.1880    | 112<br>0.709548<br>0.709548<br>0.188<br>0.57212<br>0.151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Kerguelen Prateur (Scort Ferri<br>19, 7380-398-1-794 (LSA) Ferri<br>19, 7380-398-1-794 (LSA) Ferri<br>19, 7380-398-1-794 (LSA) Ferri<br>10, 10, 10, 10, 10, 10, 10, 10, 10, 10,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 128<br>0.77.287<br>0.27.287<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Avdesse<br>1-(3,6,8)<br>1-(3,6,9)<br>1-(3,6,9)<br>1-(3,6,7)<br>1-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7)<br>2-(3,7                                                                                                                                                                                                                                                   | 0.14<br>0.386<br>0.709/31<br>0.377204<br>0.151<br>0.471204<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.151<br>0.15    | 112<br>0.709396<br>0.51210<br>0.51210<br>0.1511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 476<br>Kerguelen Pratseu (Scatterin)<br>00P-tog 119, Star 78<br>577805-386-51721_LEAOHED<br>842.708<br>842.708<br>141<br>5.2<br>273<br>274<br>273<br>273<br>273<br>273<br>273<br>273<br>273<br>273<br>273<br>273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0,712885<br>1128<br>0,71438<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51456<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,51466<br>0,514666<br>0,514666<br>0,514666<br>0,5146666<br>0,514666666666666666666666666666666666666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1100ellis<br>1100ellis<br>1100ellis<br>1281<br>1281<br>1281<br>1518<br>1518<br>1518<br>1518<br>1518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.114     0.709195     0.122     0.125     0.125     0.125     0.12214     0.155     0.155     0.155     0.155     0.165     0.165     0.165     0.165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 112<br>0,709020<br>0,128<br>0,128<br>0,1214<br>0,115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 477<br>Keguelen Pateau (Souftern)<br>00P-Leg 119. Ste 78<br>100P-Leg 119. Ste 78<br>102708<br>402708<br>113<br>103<br>103<br>103<br>103<br>103<br>103<br>103<br>103<br>103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.7203881<br>0.7212<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0.121<br>0 | 1.102816<br>1102.916<br>12.2.916<br>12.2.916<br>12.3.9<br>0.1.2.916<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.5.0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 114<br>0.001<br>0.799710<br>0.010<br>0.101<br>0.512214<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0.155<br>0. | 112<br>0.70860<br>0.100<br>0.101<br>0.101<br>0.101<br>0.101<br>0.1015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 478<br>Grapaten Pattaau (S.cultern)<br>80:344:-148-92_LEACHED<br>Theelite<br>82:2709<br>82:1795<br>82:1795<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5<br>10:5                                                                                                                                                                                                                        |
| 128<br>0.70198<br>0.70198<br>0.2200<br>0.2200<br>0.2260<br>0.2260<br>0.2260<br>0.2260<br>0.2260<br>0.2260<br>0.2260<br>0.2260<br>0.2260<br>0.2260<br>0.2260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/22.04<br>11/22.04<br>11/22.04<br>12.8<br>12.8<br>14.6<br>14.6<br>14.6<br>14.6<br>14.6<br>14.6<br>14.6<br>14.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14<br>408<br>409<br>409<br>400<br>400<br>400<br>400<br>400<br>400<br>400<br>400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 473<br>erguden Pideau (Southern)<br>ODP Leg 120, Ste 74<br>Baadt Alwaine<br>Baadt Alwaine<br>Baadt Alwaine<br>Baadt Alwaine<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 128<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.2000<br>0.2000<br>0.2000<br>0.200000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1. Totellie<br>1. 102.95<br>1. 12.0.95<br>1. 12.9<br>0. 1. 12.9<br>0. 1. 12.9<br>1. 1. 10<br>1. 1. 10<br>1. | 0.466<br>0.704067<br>0.466<br>0.466<br>0.466<br>0.466<br>0.465<br>0.465<br>0.465<br>0.465<br>0.465<br>0.465<br>0.465<br>0.465<br>0.465<br>0.465<br>0.465<br>0.465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.466<br>9.50<br>10.77<br>17.370<br>14.450<br>31.4450<br>31.450<br>31.450<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75<br>1 | 487<br>487<br>487<br>487<br>497<br>497<br>497<br>497<br>497<br>497<br>497<br>49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 970<br>970<br>970<br>970<br>970<br>970<br>970<br>970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.1100818<br>1.102818<br>1.10281<br>1.1281<br>1.128<br>1.13.3<br>0.2<br>0.5.12942<br>0.7043<br>1.5.510<br>0.5.12942<br>0.7043<br>1.5.510<br>0.169<br>0.199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.400<br>0.705065<br>0.400<br>0.400<br>0.400<br>0.400<br>0.400<br>0.400<br>0.400<br>0.400<br>0.400<br>0.400<br>0.400<br>0.400<br>0.400<br>0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.480<br>0.704.430<br>0.704.430<br>0.704.430<br>0.704.430<br>0.440<br>0.440<br>0.440<br>#DN/00<br>#DN/00<br>#DN/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 460<br>MD4, Surfager 1<br>MD4, Desge 5<br>Basati, Transferoat<br>76,917<br>H1<br>28,7<br>(13,1<br>0,1<br>28,7<br>(13,1<br>0,1<br>0,1<br>0,1<br>0,1<br>0,512790<br>0,1<br>0,512790<br>0,1<br>0,512790<br>0,1<br>0,512790<br>0,1<br>0,512790<br>0,1<br>15,506<br>16,506<br>16,506<br>16,506<br>16,506<br>16,506<br>16,507<br>16,507<br>16,507<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517<br>17,517 |
| 0.7 05 826<br>0.7 05 826<br>0.7 05 826<br>0.7 05 826<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120<br>0.1200<br>0.1200<br>0.1200<br>0.120000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1100818<br>1100818<br>1010815<br>1010815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>101815<br>10181                                                                                                                                    | 0.067<br>0.704223<br>0.067<br>0.067<br>0.067<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.087<br>0.744134<br>0.004<br>0.004<br>16.053<br>16.554<br>36.277<br>36.277<br>0.067<br>110<br>0.704134<br>0.067<br>410/001<br>#DI/V01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 471<br>Kenguréén Pitekau (Skuthern)<br>MD48, Drespe<br>Basalt, Transferan<br>78, 807<br>10,0<br>301,5<br>0,1<br>10,0<br>0,512710<br>0,51270<br>15,579<br>38,277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1100008<br>110108<br>110109<br>1281<br>1281<br>128<br>128<br>128<br>128<br>128<br>2.4<br>17.800<br>15.600<br>15.600<br>15.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14<br>0.705976<br>0.15976<br>0.1546<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1146<br>0.1                                                                                                                                                 | 0,170<br>0,531<br>0,551<br>0,705,551<br>0,705,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,5510<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,551<br>0,5    | Kargueken Palasau (Sauth En)<br>a MO48 Desbe 2<br>MO48 Desbe 2<br>MO48 Desbe 2<br>77.0<br>197.3<br>22.1<br>22.1<br>22.1<br>22.1<br>22.1<br>22.1<br>22.1<br>22.1<br>22.1<br>22.1<br>22.1<br>22.1<br>22.1<br>22.1<br>22.1<br>22.1<br>22.1<br>22.1<br>22.1<br>22.1<br>22.1<br>22.1<br>22.1<br>22.1<br>22.1<br>22.1<br>23.8<br>0<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.7100082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.710082<br>0.71008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11 Alberte<br>14 22.86<br>11 128<br>00erook.20 77<br>13 5.8<br>13 5.8<br>2.7<br>15 5.9<br>15 5.9<br>16 5.9<br>38 4 77<br>16 4 7<br>16 2 4<br>16 5.9<br>38 4 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4<br>0.152<br>0.152<br>0.152<br>0.152<br>0.152<br>0.152<br>0.152<br>504<br>805<br>12.040 flyeration<br>8.61.55-12.7_1.E.62;HE0<br>90500 12.040 flyeration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.192<br>0.192<br>0.192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48<br>(F)<br>MO45, Dresps<br>MO45, Dresps<br>MO48, Dresps<br>MO48, Dresps<br>107<br>79, 63<br>117<br>117<br>117<br>117<br>117<br>117<br>117<br>117<br>117<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| RECALC<br>L'Age 1                                                                                                       | ULE A<br>4 Ma                                                                       | RECALCULE A<br>L'Age Biblio                                                                                                                                                                         | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                                                                                                             | CULE A<br>Biblio CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Rb/Sr) initial recalculé<br>(Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | Age 14Ma (L.Ponthus)<br>(Rb/Sr) measured recalculé<br>(87Sr/86Sr) initial recalculé | Age ers. (L-Porthus)<br>(RDS/S) measured recalculé<br>(RDS/S) measured recalculé<br>(RDS/S) initial recalculé<br>(Sm/Nd) measured recalculé<br>(Sm/Nd) mitial recalculé<br>(Sm/Nd) mitial recalculé | 1475 mr 144 http:<br>143 Mort 44 http:<br>157 br 1555<br>157 br 1555<br>157 br 1555<br>157 br 1555<br>157 br 1555<br>1555 br 1555 br 1555<br>1555 br 1555 br 155 | Sin (conn)<br>Sin (conn)<br>R4 (conn)<br>S (conn)<br>S (conn)<br>T (S)Nd/r 44Nd meaured<br>206/F2/S/R5S meaured<br>206/F2/S/R5S meaured<br>206/F2/S/R5S meaured | # (Olerook et al. 2017 - n.)<br>Devorinee<br>Province<br>Samole Name<br>Rock Troe<br>Rock Troe<br>Rock Troe<br>Aue Carrockio (Ma)<br>Aue Carrockio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CSmN40 measured reaction     CSmN40 measured reaction     CSmN40 measured reaction     CSmN40 measured reaction     CSSN40 measured reaction     CSSN40 measured reaction     CSN404 measured reaction     CSN404 measured     CSN404 measured     CSN404 measured     CSN404 measured | 147 Smr144hd<br>143 Mort 44kd<br>143 Mort 44kd<br>187 boss<br>287 boss<br>287 boss<br>287 boss<br>282 bos                                                                                                                                                                                                                                                                                                                                                       | # (Olarook et al. 2017 - n)<br>Geochemiary Reterence<br>Lucation<br>Sambe Name<br>Bock Yea<br>Rock                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                         | 14                                                                                  | ğ                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5128229<br>18.080<br>38.5561                                                                                                                                  | 523<br>Ninetyesst Ridge<br>DSDP edg 22, Ste 276<br>5, 11652, 277<br>1, 4572<br>50, 200<br>81<br>81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.178<br>0.178<br>0.178<br>0.441<br>0.710943<br>0.441<br>0.710943<br>0.441<br>0.411<br>0.178<br>0.512179<br>0.512179                                                                                                                                                                   | 0.0178<br>0.0178<br>0.019879<br>0.019879<br>1.22<br>0.0411<br>0.0411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 498<br>Dredge 12 (Nethwatten 5 Schreidy<br>7 / s EL55-127_UNLEXCHED L5512.8 / s<br>32.85<br>110.81<br>110.81<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>113.9<br>11 |
|                                                                                                                         | 14                                                                                  | g                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18.132<br>15.541<br>38.669                                                                                                                                      | 520<br>DSDP Log 22, Sile 24<br>1464-381<br>14972<br>90 290<br>81<br>81<br>81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.183<br>0.186<br>0.186<br>0.186<br>0.316<br>0.316<br>0.710207<br>0.3183<br>0.183<br>0.183                                                                                                                                                                                             | 0.5120<br>0.5120<br>0.3166<br>0.7096995<br>122<br>0.3165<br>0.2126<br>0.3155<br>0.3155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nuburinistis Politica<br>172 (Nethinstein Scholler)<br>EL65-128 (ULE Co-Tell<br>Throading<br>Clienced 2012<br>142.7<br>142.7<br>142.7<br>142.7<br>3.1<br>0.012120<br>0.01220<br>17.0220<br>15.620<br>33.510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                         | 14                                                                                  | 4<br>6                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.512873<br>18.709<br>15.552<br>38.549                                                                                                                          | 552<br>DSDP Lag 25<br>5.58 z23<br>5.25324-1<br>Basil: Over<br>5.4576<br>40<br>41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5182<br>0.1182<br>14<br>14<br>0.134<br>0.134<br>0.51182<br>0.134                                                                                                                                                                                                                     | 0.154<br>0.259<br>0.259<br>0.259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 403<br>bite 264 (Subtradiation Section<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHISC<br>SUSPREHI                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                         | 14                                                                                  | 4<br>2                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0. 51 278 7<br>15. 708<br>15. 508<br>30. 659                                                                                                                    | 553<br>Ninevyeart R(d)<br>DSDP Log 26, 5ie 223<br>s 11404-580C<br>Basel Colwine<br>-24,678<br>49<br>41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.51257<br>0.153<br>0.153<br>14<br>0.705442<br>0.705442<br>0.042<br>0.042<br>0.153<br>0.153<br>0.155                                                                                                                                                                                   | 0.5125<br>0.512541<br>0.512541<br>0.525<br>0.525<br>0.525<br>0.525<br>0.525<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555<br>0.555 | 510<br>510<br>DSDP Log 22.5 in 216<br>221637-280 / 4 2221637<br>6221637-280 / 4 2221637<br>6221637-280 / 4 2221637<br>6221637<br>620 / 4 2221637<br>621<br>621<br>1637<br>163<br>163<br>163<br>163<br>163<br>163<br>1636<br>1536<br>1536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                         | 14                                                                                  | ŝ                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.512789<br>0.70460<br>18.600<br>18.601<br>38.601                                                                                                               | 560<br>Minetyessal (Rdge<br>DSD PLed 25, Star 25, Star<br>1066-31-1<br>5 1066-31-1<br>87, 80-6<br>87, | 0.168<br>0.512653<br>0.168<br>0.165<br>0.165<br>0.165<br>0.165<br>0.168<br>0.168                                                                                                                                                                                                       | 0.812563<br>0.721263<br>0.70 0.155<br>0.16<br>127.741<br>15.575<br>36.526<br>0.81<br>0.756475<br>0.756475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 531<br>167<br>167<br>167<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                         | 14                                                                                  | 3                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.512785<br>18.079<br>15.511<br>38.663                                                                                                                          | 570<br>Ninetyeast Ridge<br>DSDP log 25, Sta 224<br>\$ 1069-38: 1<br>\$ 069-38: 1<br>\$ 20.069<br>87.865<br>87.865<br>37<br>[81]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.212<br>0.212<br>14<br>0.0085<br>0.00758<br>0.00758<br>0.00758<br>0.00759<br>0.0212                                                                                                                                                                                                   | 0.213<br>0.005<br>0.005<br>0.05<br>0.05<br>18.560<br>18.560<br>38.700<br>38.700<br>38.700<br>0.49<br>0.49<br>0.49<br>0.49<br>0.49<br>0.49<br>0.49<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 554<br>Ninetywasi Ridga<br>DSD Leg 25 Ste 253<br>9 26-254<br>9 26-254-25<br>9 26-254-25<br>9 26-254-2<br>14<br>4<br>14<br>14<br>15 903<br>16 503<br>38 700<br>38 700<br>15 503<br>38 700<br>38 700<br>39 700<br>30 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                         | 14                                                                                  | 40                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 93828<br>0.774180<br>0.774180<br>19.516<br>3.8212                                                                                                               | 555<br>ODP Log 121, Ster 756C<br>17127-101N-2<br>77554<br>67, 525<br>45<br>(81)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.51277<br>0.764<br>0.764<br>1.74<br>0.764<br>0.704489<br>0.704489<br>0.764<br>0.512742<br>0.764                                                                                                                                                                                       | 0.5124<br>0.51271<br>0.0023<br>0.704.42<br>11.51<br>0.000<br>11.51<br>0.000<br>17.593<br>38.593<br>38.593<br>38.593<br>38.593<br>38.593<br>38.593<br>39.004<br>39.004<br>39.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>30.004<br>300                                                                                                                                              | 571<br>Ninetynati FRdya<br>1-10860 / 5243-116860<br>8-2043-116860<br>8-2069<br>8-2069<br>16.0<br>16.0<br>16.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                         | 14                                                                                  | ð                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.704.170<br>18.754<br>15.2521<br>38.905                                                                                                                        | 557<br>ODP Log 121, Sile 756D<br>s 11724-48-1<br>Thodie: 27.305<br>27.597<br>845<br>1901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.172<br>0.172<br>0.172<br>0.172<br>0.148<br>0.70387<br>0.1887<br>0.51287<br>0.51287                                                                                                                                                                                                   | 0.5/12/05<br>0.5/12/05<br>0.7/12/05<br>0.7/05/05<br>0.7/05/05<br>0.7/05/05<br>0.7/05/05<br>0.7/05<br>0.7/25<br>0.7/25<br>0.7/25<br>0.7/25<br>0.7/25<br>0.7/25<br>0.7/25<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.5/21<br>0.                                                                                                                                                       | 502<br>ODP Leg 217, Site 7560<br>s 121-7560-44-35-59<br>s 121-7560-44-35-59<br>s 121-7560-44-3<br>587<br>s 10<br>16<br>16<br>16<br>16<br>16<br>16<br>15<br>16<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                         | 14                                                                                  | ð                                                                                                                                                                                                   | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18.603<br>15.504<br>38.863                                                                                                                                      | 538<br>ODP Log 12, 587 750<br>917356750<br>91735675<br>91735675<br>917567<br>9180<br>817597<br>919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ž                                                                                                                                                                                                                                                                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52<br>Ninelyeat Rege<br>DSDF Leg 22, Site 4<br>Hand<br>11, 137<br>8<br>9<br>9<br>11, 137<br>8<br>9<br>11, 137<br>8<br>11, 137<br>11, 137<br>11, 137<br>11, 10, 10, 10, 10, 10, 10, 10, 10, 10,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                         | 14                                                                                  | 8                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.512829<br>0.704170<br>15.521<br>15.521                                                                                                                        | 550<br>ODP Log 121: Sec 750<br>1172: Sec 750<br>1172: Sec 750<br>1172: File<br>1172: File<br>11                                                                                                                     | 14                                                                                                                                                                                                                                                                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5:3<br>Ninekwast Ridge<br>DSSD Log 22, Size 3:4<br>11:327<br>89:78<br>89:78<br>89:78<br>89:78<br>89:78<br>93:72<br>39:72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

|                           | RECA<br>L'Ag                                                  | LCU<br>je 14                                                | LE A<br>Ma                                          | REC<br>L'#                                                  | ALCU                                                    | JLE A<br>iblio                                                                     | CAL                                            | CULC                               | DLIER                        | DOK 2                            | 2017                                       |                                                      |                                               |                      |                      |           |                                      |                                                |                                                            |                                                                      | RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                   | Ą                      | RECALCULE A<br>L'Age Biblio                                                                                                                                                                                               | CALCUL OLI                                                                                     | EROOK 201                                                                                     |                                                                                              |                                                                                 |                      |                                                                                          |                                                                                 |
|---------------------------|---------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------|------------------------------|----------------------------------|--------------------------------------------|------------------------------------------------------|-----------------------------------------------|----------------------|----------------------|-----------|--------------------------------------|------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| (Sm/Nd) initial recalculé | (Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé | (87 Sr/86Sr) Initial recalcule<br>(Rb/Sr) initial recalculé | Age 14Ma (L. Ponthus)<br>(Rb/Sr) measured recalculé | (143Nd/14Nd) initial recalculé<br>(Sm/Nd) initial recalculé | (Rb/Sr) initial recalculé<br>(Sm/Nd) measured recalculé | Age ref. (L.Ponthus)<br>(Rb/Sr) measured recalculé<br>(R7Sr86Sr) initial recalculé | 207 Pb/204 Pb initial<br>208 Pb/204 Pb initial | 232Th/204Pb<br>206Pb/204Pb initial | 238 U/204 Pb<br>235 U/204 Pb | 87R b/86Sr<br>87Sr/86 Sr initial | 147 Sm/144Nd<br>143Nd/144Nd<br>143Nd/144Nd | 20 or 0 20 4F 0 measured<br>20 7P b/20 4P b measured | 143 Nd/1 44 Nd measured<br>87Sr/86Sr measured | Pb (ppm)<br>Th (ppm) | Kb (ppm)<br>Sr (ppm) | Sim (bbm) | Age Correction (Ma)<br>Age reference | Rock Tvbe<br>Latitude<br>Longitude             | Sample Name 214                                            | # (Ullerook et al., 2017 - n.)<br>Geochemistry Reference<br>Province | (FbVS) measured recalculé<br>(875/865/1 initial recalculé<br>(871/885/5) initial recalculé<br>(871/40) measured recalculé<br>(143/40/1/41/40) initial recalculé<br>(5m/4d) initial recalculé | Age 14 Ma (L. Ponthus) | Age ref. (L.Porthus)<br>(RUS9) measured recalculé<br>(875/86Sn1 initial recalculé<br>(875/85Sn1) initial recalculé<br>(57/1/4) measured recalculé<br>(143/4/1/41/4) initial recalculé<br>(143/4/1/41/4) initial recalculé | 235U/204Pb<br>232TIV304Pb<br>206Pb/204Pb initial<br>207Pb/204Pb initial<br>208Pb/204Pb initial | 147 Sill/ H4NG<br>143 Nd/1 44 Nd initial<br>87 Rb/96Sr<br>87 Sr/86 Sr initial<br>238 U/204 Pb | 206Pb/204Pb measured<br>207Pb/204Pb measured<br>207Pb/204Pb measured<br>208Pb/204Pb measured | Rb (com)<br>Sr (com)<br>U (com)<br>Pb (com)<br>Th (com)<br>Th (com)<br>Th (com) | Sm (ppm)<br>Nd (ppm) | Samble Name<br>Rock Type<br>Lattude<br>Longitude<br>Age Correction (Ma)<br>Age roference | # (Olierook et al. 2017 - n.)<br>Geochemistry Reference<br>Province<br>Location |
|                           |                                                               | 0.047                                                       | 0.047                                               | A                                                           | 0.047                                                   | 0.047<br>0.704031                                                                  | 15.576<br>38.440                               | 0.00<br>18.238                     | 8.91<br>0.07                 | 0.047<br>0.704031                | 001440                                     | 15.580<br>38.440                                     | 0.512896<br>0.704070                          | 0.3                  | 220.0                | 2         | 59<br>[8 1]                          | Isasan, Pyroxene / Isasan<br>-11,337<br>88.718 | DSDP Leg 22, Site 214<br>-53-1(30-35) / s 22-214-53-130-35 | 934<br>[69][47]<br>Ninetyeast Ridge                                  |                                                                                                                                                                                              | 14                     | 8                                                                                                                                                                                                                         |                                                                                                |                                                                                               | 18.662<br>15.561<br>38.876                                                                   |                                                                                 | [see]                | s 11755-9R-2<br>Tholeithe, C0lvine<br>-177.023<br>-88.03<br>56                           | 535<br>[66]<br>Ninetyeast Ridge<br>ODP Leg 121, Site 757C                       |
| 0.202                     | 0.202<br>0.512862                                             | 0.018                                                       | 0.018                                               | 0.512771                                                    | 0.018                                                   | 0.704859                                                                           | 15.574<br>38.654                               | 33.12<br>18.463                    | 12.59                        | 0.018                            | 0.512771                                   | 15.582<br>38.790                                     | 0.512880<br>0.704880                          | 0.3                  | 148.0<br>0.1         | 6.3       | 180                                  | 5.384<br>90.361                                | ODP Leg 121, Sile 758A<br>s 121-758A-54R-2,73-76           | 0 10<br>[71]<br>Ninetyeast Ridge                                     | :                                                                                                                                                                                            | 14                     | 8                                                                                                                                                                                                                         |                                                                                                |                                                                                               | 0.708000                                                                                     | 0.512737                                                                        | [seed                | s 117.65-9R-6<br>Tholeiite, Olivine<br>-17.023<br>88.03<br>56<br>1801                    | 536<br>I66J<br>Ninetyeast Ridge<br>ODP Leg 121, Sile 7 57C                      |
|                           |                                                               | 0.010                                                       | 0.010                                               | 0,145                                                       | 0.010                                                   | 0.010<br>0.704818                                                                  | 15.575<br>38.604                               | 66.98<br>18.282                    | 20.37<br>0.15                | 0.010<br>0.704818                | 0.145                                      | 15,588<br>38,880                                     | 0.704830                                      | 0.3                  | 115.0                | 0.00      | [80]                                 | 5.384<br>90.361                                | ODP Leg 121, Sile 758A<br>s 121-758A-73R-3,50-54           | 0.20<br>[71]<br>Ninetyeast Ridge                                     |                                                                                                                                                                                              | 14                     | 8                                                                                                                                                                                                                         |                                                                                                |                                                                                               | 0.705400<br>18.968<br>15.574<br>38.930                                                       | 0<br>4<br>0<br>5<br>8<br>8<br>9<br>0                                            | Tanat                | s 11765-10R-3<br>Tholeitke, Olivine<br>-177.023<br>88.03<br>56<br>56                     | 537<br>[66]<br>Ninetyeast Ridge<br>ODP Leg 121, Site 757C                       |
| 0.164                     | 0.164<br>0.512887                                             | 0.100                                                       | 0.100                                               | 0.512854<br>0.164                                           | 0.100                                                   | 0,100<br>0.703804                                                                  | 15.544<br>38.698                               | 126.02<br>18.595                   | 10.70<br>0.08                | 0.703804                         | 0.164<br>0.512854                          | 15.548<br>38.979                                     | 0.512902<br>0.703868                          | 0.6                  | 188.0<br>0.1         | 4.7       | 45                                   | 5asan<br>- 27, 354<br>87, 598                  | ODP Leg 121, Sile 756C<br>s 121-756C-10N-1,32-36           | [71][61]<br>Ninetyeast Ridge                                         | :                                                                                                                                                                                            | 14                     | 56                                                                                                                                                                                                                        |                                                                                                |                                                                                               | 0.704444<br>18.820<br>39.029                                                                 | 0.512765                                                                        | teel                 | s 11773-12R-1<br>Tholeiite, Olivine<br>-17.023<br>88.03<br>56<br>[801                    | 538<br>[66]<br>Ninetyeast Ridge<br>ODP Leg 12 1, Sile 757C                      |
| 0.174                     | 0.174<br>0.512874                                             | 0.297                                                       | 0.297                                               | 0.512839                                                    | 0.297                                                   | 0.297<br>0.703701                                                                  | 15.542<br>38.882                               | 50.08<br>18.569                    | 17.62<br>0.13                | 0.297                            | 0.174<br>0.512839                          | 15.548<br>38.004                                     | 0.512890<br>0.703891                          | 0.9                  | 156.0                | 13.5      | [80]<br>200                          | 1586811<br>-27.355<br>87.597                   | ODP Leg 121, Sile 756D<br>s 121-756D-10R-1,99-103 s        | [71][61]<br>Ninetyeast Ridge                                         | :                                                                                                                                                                                            | 14                     | 5<br>0                                                                                                                                                                                                                    |                                                                                                |                                                                                               | 0.704850<br>15.554<br>38.990                                                                 | 0 12                                                                            | Innel                | 5 11775-12R-3<br>Tholeilte, Olivine<br>-17.023<br>-88.03<br>-56<br>                      | 539<br>[66]<br>ODP Leg 121, Site 757C                                           |
| 0,190                     | 0.190<br>0.512833                                             | 0.034                                                       | 0.034                                               | 0.512794                                                    | 0.034                                                   | 0.703791                                                                           | 15.540<br>38.817                               | 56.11<br>18.567                    | 13.57                        | 0.034                            | 0.512794                                   | 15.544<br>38.942                                     | 0.512850<br>0.703813                          | 0.8                  | 163.0<br>0.2         | 13.4      | [80]                                 | Basant<br>-27.355<br>87.597                    | ODP Leg 121, Site 756D<br>121-756D-12R-3,139-143           | 71][61]<br>Ninetyeast Ridge                                          | :                                                                                                                                                                                            | 14                     | 83                                                                                                                                                                                                                        |                                                                                                |                                                                                               | 0.704740<br>18.778<br>15.521<br>38.879                                                       | 0.512881                                                                        | [ and                | s 11790-55R-5<br>Thoteliite, Olivine<br>5.384<br>90.361<br>83<br>[80]                    | 505<br>[66]<br>Ninetyeast Ridge<br>ODP Leg 121, Site 758A                       |
| 0.184                     | 0.184<br>0.512885                                             | 0.240                                                       | 0.240                                               | 0.512848<br>0.184                                           | 0.240                                                   | 0.240<br>0.703746                                                                  | 15.542<br>38.623                               | 154.92<br>18.613                   | 11.27<br>0.08                | 0.240                            | 0.512848                                   | 10.09±<br>15.546<br>38.968                           | 0.512902<br>0.703899                          | 1.3                  | 181.0                | 16.8      | [80]                                 | 5asan<br>-27.355<br>87.597                     | ODP Leg 121, Site 756D<br>s 121-756D-4R-1,85-89            | 70.3<br>[71][61]<br>Ninetyeast Ridge                                 | :                                                                                                                                                                                            | 14                     | oo<br>G                                                                                                                                                                                                                   |                                                                                                |                                                                                               | 0.704960<br>18.269<br>15.528<br>38.484                                                       | 0.5.12831                                                                       | Innel                | s 11788-58R-5<br>Thotelilte, Olivine<br>90.361<br>83<br>183                              | 506<br>[66]<br>Ninetyeast Ridge<br>ODP Leg 121, Site 758A                       |
| 0,175                     | 0.175<br>0.512877                                             | 0.331                                                       | 0.331                                               | 0.512842                                                    | 0.331                                                   | 0.703683                                                                           | 15.540<br>38.346                               | 277.10<br>18.574                   | 12.62<br>0.09                | 0.331                            | 0.512842                                   | 15.544<br>38.964                                     | 0.512893<br>0.703895                          | 0.4                  | 166.0<br>0.1         | 18.7      | [80]                                 | вазал<br>-27.355<br>87.597                     | ODP Leg 121, Site 756D<br>s 121-756D-6R-1,6-10             | 300+<br>[71][61]<br>Ninetyeast Ridge                                 | :                                                                                                                                                                                            | 14                     | 8                                                                                                                                                                                                                         |                                                                                                |                                                                                               | 0.704730<br>18.842<br>15.589<br>38.862                                                       | 0.512800                                                                        | Itani                | s 11797-60R-7<br>Tholeiite, Olivine<br>5.384<br>90.361<br>83<br>180                      | 507<br>[66]<br>Ninetyeast Rkdge<br>ODP Leg 121, Site 758 A                      |
|                           |                                                               | 0.018                                                       | 0.018                                               | 0.159                                                       | 0.018                                                   | 0.018<br>0.703878                                                                  | 15.545<br>38.753                               | 123.52<br>18.588                   | 15.37<br>0.11                | 0.018<br>0.703878                | 0,159                                      | 15,551<br>39 028                                     | 0.703890                                      | 0.4                  | 174.0                | 14.0      | [80]                                 | ызвал<br>-27.355<br>87.597                     | ODP Leg 121, Site 756D<br>s 121-756D-6R-2,13-17            | 7 1]6 1]<br>Ninetyeast Ridge                                         | :                                                                                                                                                                                            | 14                     | 8                                                                                                                                                                                                                         |                                                                                                |                                                                                               | 0.704000                                                                                     | 0.5.12765                                                                       | [and                 | s 11804-63R-1<br>Tholeille, Olivine<br>5.384<br>90.361<br>83<br>1801                     | 508<br>[66]<br>Ninetyeast Rkige<br>ODP Leg 121, Site 758 A                      |
| 0.186                     | 0.186<br>0.512869                                             | 0.558                                                       | 0.558                                               | 0.512831<br>0.186                                           | 0.559                                                   | 45<br>0.558<br>0.703542                                                            | 15.548<br>38.793                               | 113.10<br>18.604                   | 13.87                        | 0.558                            | 0.512831                                   | 15.552                                               | 0.512886                                      | 0.4                  | 33.0<br>171.0<br>0.1 | 4.0       | 45                                   | 53 54 55 55 55 55 55 55 55 55 55 55 55 55      | ODP Leg 121, Site 756D<br>s 121-756D-6R-2,9-13             | 7 1][6 1]<br>Ninetyeast Ridge                                        |                                                                                                                                                                                              | 14                     | 8                                                                                                                                                                                                                         |                                                                                                |                                                                                               | 0.704030<br>18.478<br>15.547<br>38.705                                                       | 0.512852                                                                        | To all               | s 11830-73R-1<br>Tholeille, Oli vine<br>90.361<br>83<br>IB01                             | 509<br>[66]<br>Ninetyeast Ridge<br>ODP Leg 121, Site 758A                       |

| RECALCULE A<br>L'Age 14 Ma L'Age Biblio CALCUL OLIEROOK 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RECALCULE A<br>L/Age 14 Ma L/Age Biblio CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tabled Auto Initial<br>transfer Auto Initial<br>transfer Auto Initial<br>transfer<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate<br>zerunzate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | # (Olerook et al., 2017 - n.)<br>Geochemister Reference<br>Provine<br>Sample Name<br>Sample Name<br>Sample Name<br>Correction Ma)<br>Aus of erecto<br>Mas Correction Ma)<br>Aus of erecto<br>Mas Correction Ma)<br>Aus of erecto<br>Mas Software<br>Mas Software<br>Mas Software<br>Mas Software<br>Mas Software<br>Mas Software<br>Mas Software<br>Mas Software<br>Mas Software<br>Mas Mas Mas Mas Mas Mas<br>Mas Mas Mas Mas Mas Mas Mas<br>Mas Mas Mas Mas Mas Mas Mas<br>Mas Mas Mas Mas Mas Mas Mas Mas<br>Mas Mas Mas Mas Mas Mas Mas Mas<br>Mas Mas Mas Mas Mas Mas Mas Mas Mas<br>Mas Mas Mas Mas Mas Mas Mas Mas Mas<br>Mas Mas Mas Mas Mas Mas Mas Mas Mas Mas<br>Mas Mas Mas Mas Mas Mas Mas Mas Mas Mas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | # f Oliveroxik et al., 2017 - n.)<br>Geochemistry Relevance<br>Location<br>Sample Mann<br>Rock Twans<br>Rock Twa                                                                                                              |
| 0.1612722<br>0.70444<br>2.22.2<br>0.70444<br>2.2.2<br>0.16<br>1.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5<br>0.15.5                                                                                                                                               | (7) 548<br>ODP Log 12, 546<br>(7) 770-596-53-97<br>(7) 780-596-53-97<br>(7) 780-596-53-97<br>(7) 780-596-53-97<br>(7) 780-596-53-97<br>(7) 780-596-53<br>(7) 780-596-53<br>(7) 790-595<br>(7) 700-595<br>(7) 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Biological States State                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.179<br>0.794279<br>19004279<br>0.144<br>0.144<br>0.14555<br>18555<br>18555<br>18555<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166<br>0.166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 549<br>ODPL Nineyesti Ridge<br>3 121-78C-0943 (132-165<br>-17.023<br>-17.023<br>-17.023<br>-17.023<br>-18.05<br>-17.023<br>-18.05<br>-17.023<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1.02<br>-1. | F         568           CODE         Lega (21, 158, 187, 1560)           st 121-7560-561, 120-25         -5           st 121-7560-561, 120-25         -5           st 22, 158, 187, 120         -5           st 23, 558         -6           st 21-7560-561, 120-25         -5           st 21-7560-561, 120-25         -13, 20           st 21-75         -13, 20           st 21-75         -13, 20           st 21-75         -13, 12           st 21-75         -14, 22           st 21-75         -14, 22           st 21-75         -14, 22           st 21-76         -14, 22           st 21-76         -14, 22           st 21-76         -14, 22           st 21-76         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.51271<br>0.228<br>0.70222<br>2.429<br>2.429<br>7.365<br>15.571<br>3.551<br>15.571<br>0.1717<br>0.612721<br>0.1717<br>0.612721<br>0.1717<br>0.512718<br>0.1717<br>0.512718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 550<br>Ninetyessi 71(81)<br>OOP Los 121. Sile 757C<br>51227/57C-82<br>Basis<br>-17.023<br>15<br>15<br>15<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nime Normal Nume Network         17         16-10           ODP Leng 121, Sam 5757         88.33         88.5757           St21-7575-100-2, 26-50         17.10,23         86.33           17.10,23         86.33         18.10,20           17.10,23         18.13         19.10,20           17.10,23         19.10,20         19.10,20           18.11         17.10,20         24.70           19.11         17.10,20         24.70           19.11         17.10,20         24.70           19.11         17.10,20         24.70           19.11         19.10,10         24.70           19.11         19.10,10         24.70           19.11         19.10,10         24.70           19.12         17.10,20         24.70           19.12         19.10,10         24.70           19.12         19.10,10         24.70           19.12         19.10,10         24.70           19.12         19.13,10         24.95           20.19         0.19,10         19.13,10           19.13,10         19.13,10         19.13,10           19.14         0.11,10         0.11,10           19.15         0.11,10         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.51277<br>0.76278<br>0.76278<br>0.76278<br>0.755<br>0.75<br>0.755<br>0.755<br>0.766<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.246<br>0.2466<br>0.2466<br>0.2466<br>0.2466<br>0.2466<br>0.2466<br>0.2466<br>0.2466<br>0.2466<br>0.2466<br>0 | 00P Log 121, St 1<br>00P Log 121, St 1757C<br>5 122/757C 444<br>- 17.023<br>8 102<br>1 1<br>1 1<br>2 2<br>1 1<br>1 1<br>1 2<br>1 2<br>1 1<br>1 2<br>1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CODE Lege 121, Sea 87572<br>CODE Lege 121, Sea 87572<br>s 121, 75772-108-32, 6<br>56 0<br>121, 58 0<br>121, 58 0<br>121, 58 0<br>121, 58 0<br>121, 58 0<br>120, 59 0<br>120, 50 0<br>120, 5                                                                                |
| 0.6427762<br>33.75<br>33.75<br>64.75<br>15.604<br>15.604<br>15.604<br>15.604<br>15.604<br>15.604<br>15.604<br>15.604<br>15.604<br>15.604<br>15.604<br>15.604<br>15.604<br>0.0022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.055<br>0.055<br>0.055     | 111<br>Ninetyvesii 71564<br>ODP Len 121: Sile 7564<br>9 121-7564-556-62.82-85<br>9 121-7564-556-62.82-85<br>9 121-7564-556-62.82-85<br>9 121-7564-556-62.82-85<br>121-7564-556-62.82-85<br>122-02-25-256<br>122-02-25-256<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64-85<br>12-64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ninelynead Ridge<br>ODP Lag 121, Sar 7572<br>s 121, 757, 718, 2, 10, 14<br>Basat<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023<br>-17,023 |
| 0.612731<br>27.9478<br>27.9478<br>27.9478<br>27.9478<br>27.9478<br>27.9478<br>27.9478<br>27.9477<br>2.9479<br>2.9479<br>2.94798<br>2.94798<br>2.949978<br>2.949978<br>2.949978<br>2.949978<br>2.949978<br>2.949978<br>2.949978<br>2.949978<br>2.949978<br>2.949978<br>2.949978<br>2.949978<br>2.949978<br>2.949978<br>2.949978<br>2.949978<br>2.949978<br>2.949978<br>2.949978<br>2.949978<br>2.949978<br>2.949978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.9497878<br>2.9497878<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.94978<br>2.949                                                                                                                                                                                                                                                                   | 112<br>112<br>113<br>114<br>114<br>114<br>114<br>114<br>114<br>114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ninelynear Ridge<br>ODP Fung 121, Sea<br>121, 757, 757, 717, 23<br>121, 757, 757, 757, 757, 757, 757, 757, 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.412811<br>20060<br>20060<br>20060<br>20060<br>20060<br>20060<br>20060<br>20060<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20070<br>20000<br>20000<br>20000<br>200000000                | PT 1513<br>ODP Let 127: Ster 755A<br>8 121-756A-5646-21-55<br>90:381<br>12-756A-5646-21-55<br>90:381<br>12-754A-5646-21-55<br>90:381<br>12-754A-2646-21-55<br>90:381<br>14-2<br>14-2<br>14-2<br>14-3<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ninelynear Right<br>ODP Flag 121, Set<br>121, 257, 223, 1200<br>121, 257, 223, 223, 223, 223, 223, 223, 223, 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 State<br>0 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDP Log 12, 1995<br>CDP Log 12, 1995<br>CDP Log 12, 1995<br>12, 1, 25, 5<br>12, 1, 25, 5<br>12, 1, 25, 5<br>12, 1, 25, 5<br>12, 1, 25, 5<br>13, 15, 15, 15<br>14, 15, 15, 15<br>14, 15, 15 14, 15, 15<br>14, 15, 15 14, 15, 15 14, 15, 15<br>14, 15, 15 14, 15, 15 14, 15, 15 14, 15, 15 14, 15                                                                                                                                                                             |
| 0.517762<br>27.646<br>27.6466<br>27.6466<br>27.6466<br>27.6466<br>27.6466<br>18.527<br>19.5580<br>0.0175<br>0.0175<br>0.0175<br>0.0175<br>0.0175<br>0.0175<br>0.0175<br>0.0175<br>0.0175<br>0.0175<br>0.0175<br>0.0175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1217780-0071122115<br>1217780-0071122115<br>1217780-0071122115<br>13191<br>13191<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192<br>13192                                                                                                                                                                                                                                                                                                                                                                                                                                            | CDP Los 121, 546<br>CDP Los 121, 546<br>CDP Los 121, 546<br>S 121-757C-128-4,24-5<br>S 121-757C-128                                                                                                                                                                                                                                                                          |
| 0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,0000<br>0,0000<br>0,000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 516<br>Ninelyeast Filefi<br>CODP- Ninelyeast Filefi<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Statu                                                                                                                                        | 01401<br>0140<br>0140<br>0140<br>0140<br>0140<br>0140<br>014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| 1                         | RECA                                                          | ALCL<br>ge 14             | JLE A<br>4 Ma                                                                       | R                         | ECAI<br>L'Ag                                                  | LCULE<br>e Bibli                                           | E A<br>o              | CALC                                           | UL C                                | LIERO                                         | OK 201                            | 17                                   |                                            |                      |                                  |                                       |                                              |                                 |                                                                      |                          | RECA<br>L'Ag                                                                               | LCULE /<br>e 14 Ma                                                                        | A F                                               | ECALCU                                                                                                                        | LE A<br>olio                                       | CALCU                                                                      | IL OLIER                                      | OOK 201                                                    | ,                                                                                            |                                                         |                                  |                                                               |                                                                                                        |                                |
|---------------------------|---------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------|------------------------------------------------------------|-----------------------|------------------------------------------------|-------------------------------------|-----------------------------------------------|-----------------------------------|--------------------------------------|--------------------------------------------|----------------------|----------------------------------|---------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------|
| (Sm/Nd) initial recalculé | (Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé | (Rb/Sr) initial recalculé | Age 14 Ma (L.Pontrus)<br>(Rb/Sr) measured recalculé<br>(875e868ch initial recalculé | (Sm/Nd) initial recalculé | (Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé | (R7Sr/86Sr) initial recalculé<br>(R5/Sr) initial recalculé | Age ref. (L. Ponthus) | 207 Pb/204 Pb initial<br>208 Pb/204 Pb initial | 232 Th/204Pb<br>206Ph/204Ph initial | 87Sr/86Sr Initial<br>238U/204Pb<br>235U/204Pb | 143Nd/144Nd initial<br>87R b/86Sr | 208Pb/204Pb measured<br>147 Sm/144Nd | 8757865r measured<br>2066Pt/204Pb measured | Pb (ppm)<br>Th (ppm) | Rb (ppm)<br>Sr (ppm)<br>U (ronm) | Age reference<br>Sm (ppm)<br>Nd (ppm) | Latitude<br>Longitude<br>Age Correction (Ma) | Sample Name                     | # (Olierook et al., 2017 - n.)<br>Geochemistry Reference<br>Province | DUDARDO I IDUUT (DAMITO) | (Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé<br>(Sm/Nd) initial recalculé | (Rb/Sr) measured recalculé<br>(87 Sr/86Sr) initial recalculé<br>(Rb/Sr) initial recalculé | (Sm/Nd) initial recalculé<br>Age 14Ma (L.Ponthus) | (87 Sr/86S r) initial recalculé<br>(Rb/Sr) initial recalculé<br>(Sm/Nd) measured recalculé<br>(143Nd/144Nd) initial recalculé | Age ref. (L.Ponthus)<br>(Rb/Sr) measured recalculé | 206 Pb /204 Pb initial<br>207 Pb /204 Pb initial<br>208 Pb /204 Pb initial | 238 U/204 Pb<br>235 U/204 Pb<br>232 Th/204 Pb | 147 SIIN (444Kd initia)<br>87R b/86Sr<br>87Sr/86Sr initial | 206Pb/204Pb measured<br>207Pb/204Pb measured<br>208Pb/204Pb measured<br>208Pb/204Pb measured | U (ppm)<br>Pb (ppm)<br>Th (ppm)<br>143Nd/144Nd measured | Sm (ppm)<br>Nd (ppm)<br>Sr (ppm) | Latitude<br>Longitude<br>Age Correction (Ma)<br>Age reference | Geochemistry Reference<br>Province<br>Location<br>Sample Name<br>Rock Type                             | # (Olierook et al., 2017 - n.) |
| 0.182                     | 0.182<br>0.512773                                             | 0.044                     | 0.044                                                                               | 0.182                     | 0.182                                                         | 0.706596<br>0.044                                          | 118                   | 15.5.87<br>38.465                              | 47.65                               | 9.33                                          | 0.512650<br>0.044                 | 38.744                               | 0.706570<br>18.350<br>15.595               | 0 5127en             | 5.1<br>334.0<br>0.2              | [4][18]<br>4.1<br>13.6                | 25500<br>92.1<br>118                         | Sylhet Traps<br>CH-1<br>Basalt  | 595<br>[12]<br>Ralmahal-Bengal-Sylhet Traps                          | \$11190                  | 0.189<br>0.512848<br>0.189                                                                 | 0.013<br>0.704499<br>0.013                                                                | 0.189<br>14                                       | 0.704487<br>0.013<br>0.512763                                                                                                 | 0.013                                              | 18.3.12<br>15.557<br>38.752                                                | 24.72<br>0.18<br>34.48                        | 0.512763<br>0.013<br>0.704487                              | 0.704502<br>18.633<br>15.573<br>38.894                                                       | 0.2<br>0.5<br>0.5<br>12865                              | 3.4<br>10.9<br>157.0             | 5.384<br>90.361<br>83<br>[80]                                 | Ninetyeast Ridge<br>ODP Leg 121, Sile 756A<br>s 121-758A-62R-3,80-84<br>Basat                          | 517                            |
| 0.186                     | 0.186<br>0.512543                                             | 0.032                     | 0.032<br>0.706294                                                                   | 0.187                     | 0.186                                                         | 0.706247<br>0.032                                          | 118                   | 15.625<br>38.538                               | 33.58<br>17.900                     | 4.16                                          | 0.512416<br>0.032                 | 38.735                               | 0.706300<br>17.977<br>15.629               | 0.512560             | 2.9<br>261.0<br>0.2              | [4][18]<br>4.5<br>14.6                | 200000<br>92.1<br>118                        | Sylhet Traps<br>CH-2<br>Basatt  | 596<br>[12]<br>Raimahal-Bengal-Sylhet Traps                          | 61170                    | 0.175<br>0.512855<br>0.175                                                                 | 0.007<br>0.704424<br>0.007                                                                | 0.175<br>14                                       | 0.704416<br>0.007<br>0.175<br>0.512776                                                                                        | 0.007                                              | 18.2.53<br>15.5.48<br>38.5.77                                              | 25.19<br>0.18<br>71.57                        | 0.512776<br>0.007<br>0.704416                              | 0.704425<br>18.580<br>15.564<br>38.871                                                       | 0.1<br>0.3<br>0.512871                                  | 2.5<br>9.0<br>157.0              | 90.364<br>83<br>[80]                                          | Vinetyeast Ridge<br>ODP Leg 121, Site 758A<br>s 121-758A-65R-1,51-55<br>Basat<br>East                  | 518                            |
| 0.188                     | 0.188<br>0.512673                                             | 0.019                     | 0.019<br>0.704786                                                                   | 0.189                     | 0.188                                                         | 0.704758<br>0.019                                          | 118                   | 15.608<br>38.006                               | 32.61                               | 4.61                                          | 0.512545<br>0.019                 | 38,197                               | 0.704790<br>17.709<br>15.612               | 0.512860             | 1.3<br>196.0<br>0.1              | [4][18]<br>4.3<br>13.9                | 25.2<br>92.1<br>118                          | Sylhet Traps<br>CH-3<br>Basalt  | 597<br>[12]<br>Raimahal-Bengal-Svilhet Traps                         |                          | 33.106<br>0.509839<br>33.109                                                               | 0.004<br>0.704439<br>0.004                                                                | 33.124<br>14                                      | 0.704435<br>0.004<br>33.106                                                                                                   | 0.004                                              | 18.355<br>15.547<br>37.837                                                 | 10.89<br>0.08<br>233.70                       | 0.494901<br>0.2044901<br>0.204435                          | 0,704440<br>18.497<br>38.799                                                                 | 0.1<br>0.8<br>2.7<br>0.512870                           | 10.4<br>0.2<br>144.0             | 90.364<br>83<br>[80]                                          | Ninetyeast Ridge<br>ODP Leg 121, Stle 786A<br>s 121-758A-67R-4,31-35<br>g aat<br>£ 35                  | 519                            |
| 0.135                     | 0.135<br>0.512308                                             | 0.075                     | 0.075<br>0.709755                                                                   | 0.135                     | 0.135                                                         | 0.709644<br>0.775                                          | 118                   | 15.70.4                                        | 40,46                               | 0.709644<br>5.57<br>0.04                      | 0.512216                          | 39.359                               | 0.709770<br>18.048                         | 7.8                  | 12.2<br>470.0<br>0.7             | [4][18]<br>7.6<br>34.0                | 25.27<br>92.1<br>118                         | Sylhet Traps<br>CH4<br>Basalt   | 598<br>[12] Raimahal-Bengal-Sylhet Traps                             | 4114                     | 0.175<br>0.512855<br>0.175                                                                 | 0.018<br>0.704386<br>0.018                                                                | 0.175                                             | 0.704369<br>0.018<br>0.175<br>0.512776                                                                                        | 0.018                                              | 18.186<br>15.541<br>38.445                                                 | 29.95<br>0.22<br>86.66                        | 0.512776<br>0.018<br>0.704369                              | 0,704390<br>18,575<br>38,560<br>38,802                                                       | 0.1<br>0.2<br>0.512871                                  | 2:4<br>8:3<br>114:0              | 5.394<br>90.361<br>[80]                                       | [/1]01]<br>Ninetyeast Ridge<br>ODP Leg 121, Site 758A<br>s 121-758A-69R-3,53-57<br>East<br>f sat       | 520                            |
| 0.193                     | 0.193<br>0.512722                                             | 0.005                     | 0.005                                                                               | 0.193                     | 0.193                                                         | 0.704561<br>0.005                                          | 118<br>0.005          | 15.555                                         | 37.83<br>17.914                     | 0.704561<br>7.73<br>0.06                      | 0.512591                          | 38.121<br>0.193                      | 0.704570<br>18.057<br>15.562               | 0.512740             | 0.4<br>243.0<br>0.2              | [4][18]<br>3.3<br>10.3                | 25.22<br>92.1<br>118                         | Sylhet Traps<br>CH-5<br>Basalt  | 599<br>[12] Raimahal-Bengal-Sylhet Traps                             |                          |                                                                                            | 0.704425<br>0.002                                                                         | 0.147                                             | 0.704423<br>0.002<br>0.147                                                                                                    | 0.002                                              | 18.287<br>15.550<br>38.692                                                 | 18.41<br>0.14<br>34.87                        | 0.704423                                                   | 0.704425<br>18.526<br>15.562<br>38.836                                                       | 0.1<br>0.2                                              | 2.3<br>8.3<br>140.0              | 5.384<br>90.361<br>83<br>[80]                                 | Vinetyeast Rdge<br>ODP Leg 121, Sile 758A<br>s 121-758A-70R-1,71-75<br>Basalt                          | 521                            |
| 0.191                     | 0.191<br>0.512452                                             | 0.040                     | 0.040<br>0.704892                                                                   | 0.192                     | 0.191                                                         | 0.704833<br>0.040                                          | 118                   | 15.572<br>38.091                               | 46.33                               | 0.704833<br>6.15<br>0.05                      | 0.040                             | 38.362                               | 0.704900<br>17.910<br>15.578               | 0.512470             | 3.3<br>242.0<br>0.1              | [4][18]<br>5.0<br>15.7                | 25.2<br>92.1<br>118                          | Sylhet Traps<br>CH-6<br>Basalt  | 600<br>[12]<br>Raimahal-Bengal-Sylhet Traps                          | V(1)                     | 0.171<br>0.512754<br>0.171                                                                 | 0.012<br>0.704349<br>0.012                                                                | 0.171                                             | 0.704337<br>0.012<br>0.171<br>0.512677                                                                                        | 0.012                                              | 18.185<br>15.551<br>38.591                                                 | 22.84<br>0.17<br>49.17                        | 0.512677<br>0.512677<br>0.704337                           | 0,704351<br>18.482<br>15.565<br>38.794                                                       | 0.1<br>0.3<br>0.512770                                  | 7.8<br>0.5<br>125.0              | 5.,594<br>90.361<br>[80]                                      | Vinetyeast Ridge<br>ODP Leg 121, Ste 758A<br>s 121-758A-70R-2,129-130<br>Basalt<br>£ 29                | 522                            |
| 0.196                     | 0.196<br>0.512662                                             | 0.008                     | 0.704508                                                                            | 0.196                     | 0.196                                                         | 0.704496<br>0.008                                          | 118<br>0.008          | 15.537                                         | 34.80<br>17.815                     | 0.704496<br>4.94<br>0.04                      | 0.008                             | 38,194                               | 0.704510<br>17.907<br>15.541               | 0.5126R0             | 0.7<br>228.0<br>0.2              | [4][18]<br>5.6<br>17.3                | 25.2<br>92.1<br>118                          | Sylhet Traps<br>CH-7<br>Basalt  | 601<br>[12]<br>Raimahal-Bengal-Sylhet Traps                          | V.101                    | 0.512852<br>0.512852                                                                       | 0.018<br>0.704341<br>0.018                                                                | 0.161                                             | 0.704324<br>0.018<br>0.512780                                                                                                 | 0.018                                              | 18.225<br>15.558<br>38.571                                                 | 23.05<br>0.17<br>58.47                        | 0.512780<br>0.512780<br>0.704324                           | 0,704345<br>18.524<br>38.811                                                                 | 0.1<br>0.3<br>0.512867                                  | 2:1<br>7.9<br>130.0              | 5.384<br>90.361<br>83<br>[80]                                 | Uneryeast Ridge<br>ODP Leg 121, Site 788A<br>s 121-758A-71R-1,127-131<br>Basat<br>£ 284                | 523                            |
| 0.198                     | 0.198<br>0.512792                                             | 0.040                     | 0.040<br>0.704262                                                                   | 0,198                     | 0.198<br>0.512657                                             | 0.704204<br>0.040                                          | 118                   | 15.549                                         | 34.62<br>17.780                     | 0.704204<br>6.28<br>0.05                      | 0.040                             | 38.345                               | 0.7.04.270<br>17.896<br>15.555             | 0.512810             | 3.1<br>224.0<br>0.2              | [4][18]<br>5.5<br>16.8                | 25-22<br>92.1<br>118                         | Sylhet Traps<br>CH-7A<br>Basalt | 602<br>[12]<br>Raimahal-Bengal-Sylhet Traps                          | V(10)                    | 0.512869<br>0.512869                                                                       | 0.002<br>0.704335<br>0.002                                                                | 0.191<br>14                                       | 0.704332<br>0.002<br>0.512783                                                                                                 | 0.002                                              | 18.252<br>15.554<br>38.614                                                 | 18.69<br>0.14<br>57.95                        | 0.512783<br>0.704332                                       | 0,704335<br>18.495<br>15.566<br>38.853                                                       | 0.1<br>0.4<br>0.512896                                  | 2.3<br>7.3<br>122.0              | 5.,394<br>90,361<br>(80)                                      | Unetyeast Ridge<br>ODP Leg 121, StRe 758A<br>s 121-758A-71R-3,64-68<br>Basalt<br>£ 298t                | 524                            |
| 0.182                     | 0.182<br>0.512763                                             | 0.074                     | 0.074<br>0.704595                                                                   | 0.182                     | 0.182                                                         | 0.704485<br>0.074                                          | 118                   | 15.565                                         | 18 089                              | 0.704485<br>10.75<br>0.08                     | 0.074                             | 38.683                               | 0.704610<br>18.288<br>15.575               | 0.512780             | 5.5<br>214.0                     | [4][18]<br>2.3<br>7.5                 | 255-041<br>92.1<br>118                       | Sylhet Traps<br>CH-8<br>Basalt  | 603<br>[12]<br>Raimahal-Bengal-Sylhet Traps                          | 51 F 100                 | 0.199<br>0.512868<br>0.199                                                                 | 0.000<br>0.704318<br>0.000                                                                | 0.199<br>14                                       | 0.704318<br>0.000<br>0.512778                                                                                                 | 0.000                                              | 18.311<br>15.553<br>38.524                                                 | 16.07<br>0.12<br>61.91                        | 0.512778<br>0.704318                                       | 0.704318<br>18.520<br>15.563<br>38.779                                                       | 0.1<br>0.4<br>0.512886                                  | 2.3<br>7.0<br>121.0              | 9.394<br>90.361<br>[80]                                       | Ir 1]to 1]<br>Ninetyeast Ridge<br>ODP Leg 121, Site 758A<br>s 121-758A-73R-1,82-86<br>Basalt<br>Basalt | 525<br>17 418 41               |
| 0.184                     | 0.184<br>0.512753                                             | 0.032                     | 0.032<br>0.704584                                                                   | 0.184                     | 0.184                                                         | 0.704537<br>0.032                                          | 118                   | 15.555<br>37.772                               | 29.95<br>17 678                     | 0.704537<br>6.10<br>0.04                      | 0.032                             | 37.965                               | 0.704590<br>17.803                         | 0.512770             | 2.5<br>229.0<br>0.1              | [4][18]<br>2.4<br>8.0                 | 25.2<br>92.1<br>118                          | Sylhet Traps<br>CH-8A<br>Basalt | 604<br>[12]<br>Raimahal-Bendal-Svihet Traos                          | V.1V4                    | 0.182<br>0.512859<br>0.182                                                                 | 0.038<br>0.704335<br>0.038                                                                | 0.182                                             | 0.704298<br>0.038<br>0.182<br>0.512777                                                                                        | 0.038                                              | 18.533<br>15.556<br>38.759                                                 | 4.74<br>0.03<br>11.58                         | 0.102<br>0.512777<br>0.038<br>0.704298                     | 0.704343<br>18.594<br>38.509<br>38.800                                                       | 0.1<br>1.5<br>0.3<br>0.512876                           | 2.5<br>8.3<br>1.5<br>113.0       | 5.344<br>90.361<br>[80]                                       | [/ 1][01]<br>Ninetyeast Ridge<br>ODP Leg 121, Site 758A<br>s 121-758A-73R-4,105-109<br>Basalt          | 527                            |

| RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                                 | RECALCULE A<br>L'Age Biblio                                                                                                                                                             | CALCUL OLIEROOK 2017                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RECALCULE A<br>L'Age 14 Ma                                                                                                                                                                                         | RECALCULE A<br>L'Age Biblio                                                                                                                                                                                                                      | CALCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ace 14Ma (_ Ponthus)<br>(RSUS) measured recalculé<br>(875/8655) httal recalculé<br>(877/8655) httal recalculé<br>(87N/0) measured recalculé<br>(143/kd/14/kd/ httal recalculé<br>(5mN/d) intilal recalculé | Age ref. (L. Porthus)<br>(RUS/S) measured recalculé<br>(RTS/R655) Initial recalculé<br>(Sm/Nd) measured recalculé<br>(143Nd/14/Nd) Initial recalculé<br>(143Nd/14/Nd) Initial recalculé | 141/Smr/1444antital<br>143/Smr/1444antital<br>875/s685 entral<br>258U/204Pb<br>228U/204Pb<br>2005/P2/04Pb ninal<br>2005/P2/04Pb ninal<br>2005/P2/04Pb ninal | Nd Ionni<br>Nd Ionni<br>Sr Ionni<br>U Ionni<br>143,Nd) 141Nd maaured<br>2069-2021<br>2077-2024 Ponsaured<br>2077-2024 Ponsaured<br>2077-2024 Ponsaured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | # (Olierook et al., 2017 - n.)<br>Geochemiatry Reference<br>Province<br>Second Marme<br>Samoth Marme<br>Samoth Marme<br>Landaude<br>Alao Correction (Ma)<br>Alao reference<br>Alao reference<br>San total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ade 114/ki (L. Ponthus)<br>(RUSS) measured recalculé<br>(RUSS) Initial recalculé<br>(RSVR) Initial recalculé<br>(Sm/Vc) measured recalculé<br>(143Wd/144/Vd) Initial recalculé<br>(GM/Vc) McMich Initial recalculé | Age ref. (L.Ponthus)<br>(RUS2) massured recalculé<br>(RUS2) massured recalculé<br>(RUS2) hitkal recalculé<br>(RUS2) hitkal recalculé<br>(RUS2) hitkal recalculé<br>(RUS2) hitkal recalculé<br>(RUS2) hitkal recalculé<br>(RUS2) hitkal recalculé | 147 Smr 144 Hui<br>147 Smr 144 Hui<br>875 MSS - Inhia<br>287 LVSSS - Inhia<br>228 LV2AFb<br>228 LV2AFb<br>228 LV2AFb<br>228 LV2AFb<br>228 LV2AFb<br>228 LV2AFb<br>208 Fb 224 Hb<br>208 | Genchar (Clarootk et al. 2017 - n.)<br>Genchar<br>Lication<br>Sampb Hame<br>Rock Tree<br>Rock Tree<br>Ro                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4                                                                                                                                                                                                          | 11                                                                                                                                                                                      |                                                                                                                                                             | 0.708210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6ajmabi Senga Syna<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14<br>0.087<br>0.705723<br>0.087<br>0.183<br>0.512852<br>0.193                                                                                                                                                     | 118<br>0.087<br>0.705595<br>0.193<br>0.193<br>0.512521<br>0.193                                                                                                                                                                                  | 0.51250<br>0.51259<br>0.087<br>0.705595<br>5.40<br>0.04<br>2.981<br>17.988<br>17.988<br>15.571<br>38.598                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 605<br>Rajmatai-Sengai-Spine Trags<br>Spine Trags<br>Based<br>CH3<br>Based<br>252<br>102<br>1103<br>61<br>61<br>1103<br>61<br>61<br>1103<br>61<br>61<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.212<br>0.704968<br>0.212<br>0.212<br>0.212<br>0.512658<br>0.154                                                                                                                                          | 0.212<br>0.2704655<br>0.154<br>0.154<br>0.154<br>0.154<br>0.154                                                                                                                         | 0.51253<br>0.51253<br>0.212<br>0.704655                                                                                                                     | 265<br>2050<br>2050<br>107.180<br>0.17.180<br>0.17.180<br>17.180<br>0.17.180<br>0.17.180<br>17.180<br>0.17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.180<br>17.18 | 575<br>Rajmaha-Bengal-Sylfver Trans<br>Rajmaha Trans<br>Deferte<br>24:25<br>87:35<br>118<br>118<br>118<br>118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14<br>0.040<br>0.704532<br>0.041<br>0.041<br>0.185<br>0.512773<br>0.185<br>0.185                                                                                                                                   | 0.744<br>0.744<br>0.74472<br>0.041<br>0.185<br>0.5126477<br>0.186                                                                                                                                                                                | 0.5126<br>0.512647<br>0.04472<br>9.32<br>9.007<br>48.47<br>18.088<br>18.088<br>15.561<br>38.4541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rajmubu Bengai Sylvet Trans<br>Sylvet Trans<br>Stort Trans<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 14<br>0.306<br>0.707829<br>0.306<br>0.1306<br>0.512291<br>0.149                                                                                                                                            | 0.306<br>0.306<br>0.107477<br>0.306<br>0.149<br>0.512190<br>0.149                                                                                                                       | 0.51219<br>0.51219<br>0.306<br>0.707477                                                                                                                     | 22.9<br>25.0<br>3.310<br>0.517200<br>0.707950<br>0.707950<br>0.707950<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.970<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.9700<br>17.97000<br>17.97000<br>17.97000<br>17.97000<br>17.97000<br>17.97000<br>17.9700000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 578<br>Rajmaha-Bengal-Sofrei Tarao<br>Rajmaha-Tarao<br>8 2.7.78<br>Basat<br>Basat<br>118<br>118<br>5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14<br>0.092<br>0.70528<br>0.188<br>0.512723<br>0.188<br>0.512723                                                                                                                                                   | 118<br>0.092<br>0.705146<br>0.092<br>0.188<br>0.512595<br>0.189                                                                                                                                                                                  | 0.188<br>0.092<br>4.003<br>0.03<br>0.03<br>3.640<br>17.860<br>15.583<br>38.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rajmaha-Bengai-SylverTrans<br>SylverTrans<br>CH-11<br>Basait<br>92.2<br>92.1<br>92.1<br>14.6<br>14.1<br>254.0<br>0.1<br>254.0<br>0.1<br>254.0<br>0.1<br>1.7<br>255.0<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>1.7<br>2.5<br>0.0<br>0.0<br>1.7<br>2.5<br>0.0<br>0.0<br>1.7<br>2.5<br>0.0<br>0.0<br>1.7<br>2.5<br>0.0<br>0.0<br>1.7<br>2.5<br>0.0<br>0.0<br>1.7<br>0.0<br>0.5<br>1.7<br>0.0<br>0.5<br>1.7<br>0.0<br>0.5<br>1.7<br>0.0<br>0.5<br>1.7<br>0.0<br>0.5<br>1.7<br>0.0<br>0.5<br>1.7<br>0.0<br>0.5<br>1.7<br>0.0<br>0.5<br>1.7<br>0.0<br>0.5<br>1.7<br>0.0<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14<br>0.291<br>0.707872<br>0.291<br>0.291<br>0.291<br>0.417<br>0.512293<br>0.147                                                                                                                           | 0.291<br>0.291<br>0.70745<br>0.292<br>0.147<br>0.512197<br>0.147                                                                                                                        | 0.51219<br>0.51219<br>0.707442                                                                                                                              | 22.4<br>23.0<br>328.0<br>0.512211<br>0.77980<br>0.77980<br>17.580<br>54.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 577<br>Rajmaha Bengal Sylfret Trato<br>Rajmaha Trato<br>Rajmaha Trato<br>Basel<br>24-5<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35<br>87-35 | 14<br>0.707129<br>0.707129<br>0.104<br>0.221<br>0.512200<br>0.221                                                                                                                                                  | 0.118<br>0.706976<br>0.104<br>0.221<br>0.512049<br>0.221                                                                                                                                                                                         | 0.5221<br>0.512049<br>0.1044<br>0.706976<br>3.80<br>0.03<br>21.22<br>17.556<br>15.454<br>38.1484<br>38.1484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rajmatuki-Bengak-Syllivet Trans<br>Syllivet Trans<br>Syllivet Trans<br>2.8.1<br>9.1.7<br>9.1.7<br>9.1.7<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1.7<br>2.860<br>9.1. |
| 14<br>0.234<br>0.708263<br>0.234<br>0.234<br>0.234<br>0.149<br>0.149                                                                                                                                       | 0.234<br>0.235<br>0.235<br>0.235<br>0.235<br>0.149<br>0.51220<br>0.149                                                                                                                  | 0.51220<br>0.51220<br>0.234<br>0.707917                                                                                                                     | 2225<br>2800<br>35500<br>0.512316<br>0.759310<br>17.590<br>17.590<br>15500<br>55500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 578<br>Rajmaha Bengal Sytheti Targo<br>Rajmaha Targo<br>Sorta<br>Basel<br>87.3<br>87.3<br>118<br>118<br>5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14<br>0.421<br>0.713556<br>0.421<br>0.145<br>0.51222<br>0.146                                                                                                                                                      | 118<br>0.421<br>0.421<br>0.421<br>0.421<br>0.421<br>0.146<br>0.51217<br>0.146                                                                                                                                                                    | 0.5121<br>0.51212<br>0.421<br>0.712894<br>0.03<br>0.03<br>40.92<br>18.073<br>15.695<br>38.679<br>38.6795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rajmabit-Bengal-Sylfreet Trans<br>Sylfreet Trans<br>Sylfreet Trans<br>2.8<br>2.8<br>2.1<br>2.1<br>2.1<br>2.1<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14<br>0.256<br>0.707679<br>0.256<br>0.128<br>0.512351<br>0.512351<br>0.148                                                                                                                                 | 118<br>0.256<br>0.707301<br>0.256<br>0.148<br>0.512250<br>0.148                                                                                                                         | 0.512.25<br>0.512.25<br>0.707.301                                                                                                                           | 216<br>216<br>216<br>217<br>217<br>217<br>217<br>217<br>217<br>216<br>217<br>216<br>216<br>216<br>216<br>216<br>216<br>216<br>216<br>216<br>216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 570<br>Fajimaha Benga Sylver Trave<br>Rajimaha Trave<br>Baset<br>2045<br>8735<br>8735<br>118<br>53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14<br>0.370<br>0.370<br>0.370<br>0.370<br>0.370<br>0.161<br>0.161                                                                                                                                                  | 0.370<br>0.703360<br>0.370<br>0.370<br>0.370<br>0.161<br>0.161                                                                                                                                                                                   | 0.512006<br>0.370<br>0.370<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>36.18<br>17.886<br>15.663<br>38.957                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Flagmath al-Benergial-Sylver [12]<br>Sylver Traces<br>Sylver Traces<br>M43-<br>Busal<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118<br>1118                                                                                                                                                                                                                                                                                                                                                  |
| 14<br>0.726<br>0.706556<br>0.120<br>0.512382<br>0.512382<br>0.154                                                                                                                                          | 0.720<br>0.720<br>0.720<br>0.120<br>0.120<br>0.154<br>0.154                                                                                                                             | 0.512<br>0.512<br>0.706<br>0.706<br>378                                                                                                                     | 1450<br>1400<br>337.0<br>0.512.200<br>0.705580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 580<br>Rajmaha Bergak Sylver Travo<br>Rajmaha Travo<br>Basel<br>2142<br>8723<br>8725<br>8723<br>118<br>118<br>4119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14<br>0.300<br>0.706880<br>0.300<br>0.300<br>0.512328<br>0.512328<br>0.135                                                                                                                                         | 0.706436<br>0.706436<br>0.301<br>0.301<br>0.51226<br>0.135                                                                                                                                                                                       | 0.5122<br>0.5122<br>0.300<br>0.706486<br>7.648<br>0.06<br>47.40<br>47.40<br>17.754<br>15.510<br>37.537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rajmahai-Borogak-Sylver [12]<br>Sylver 17020<br>Busal<br>222<br>217<br>1118<br>4119<br>413<br>413<br>413<br>413<br>413<br>413<br>413<br>413<br>413<br>415<br>415<br>415<br>415<br>415<br>415<br>415<br>415<br>415<br>415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 14<br>0.765<br>0.705376<br>0.166<br>0.512470<br>0.512470<br>0.156                                                                                                                                          | 0.705126<br>0.705126<br>0.169<br>0.169<br>0.5126<br>0.512364<br>0.156                                                                                                                   | 0.512364<br>0.512364<br>0.705128<br>0.705128                                                                                                                | 217.3<br>210<br>389.0<br>0.5.12.464<br>0.7.56410<br>0.7.7.560<br>1.7.560<br>1.7.560<br>3.6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SS1<br>Rajmaha-Bengal-Sylter Trans<br>Rajmaha 27.5<br>Baset<br>Baset<br>118<br>419<br>419<br>419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14<br>0.304<br>0.715450<br>0.304<br>0.304<br>0.161<br>0.512225<br>0.161                                                                                                                                            | 118<br>0.7150004<br>0.304<br>0.304<br>0.304<br>0.512146<br>0.161                                                                                                                                                                                 | 0.51210<br>0.324<br>0.304<br>0.715000<br>3.50<br>0.03<br>37.85<br>17.871<br>15.671<br>38.828<br>38.828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Flagmath al-Springer<br>Sylfwer Trans<br>Sylfwer Trans<br>Sylfwer Trans<br>Basel<br>Basel<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.058<br>0.705078<br>0.058<br>0.058<br>0.153<br>0.512504<br>0.153                                                                                                                                          | 0.058<br>0.704992<br>0.058<br>0.153<br>0.153<br>0.153                                                                                                                                   | 0.51240<br>0.51240<br>0.058<br>0.704992                                                                                                                     | 15.0<br>7.8<br>387.3<br>18<br>0.5.12518<br>0.7.15560<br>0.7.15560<br>18.5590<br>38.510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52<br>Rajmaba-Bengai-Schinel Targo<br>Rajmaba-Targo<br>Rajmaba-Targo<br>Rajmaba-Targo<br>Rajmaba-Rajmaba-<br>21,2<br>118<br>118<br>118<br>118<br>118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14<br>0.282<br>0.707582<br>0.282<br>0.282<br>0.141<br>0.51233<br>0.141                                                                                                                                             | 118<br>0.707200<br>0.283<br>0.141<br>0.141<br>0.141                                                                                                                                                                                              | 0.5123<br>0.51232<br>0.282<br>0.707200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rajmuba-Bengai Syltret Trati<br>Rajmuba-Bengai Syltret Trati<br>Rajmuba 2, 2, 3<br>Basat<br>27, 33<br>87, 33<br>87, 33<br>87, 33<br>87, 33<br>87, 33<br>10<br>1118<br>41118<br>42, 3<br>2, 4<br>33, 10<br>33, 10<br>17, 260<br>17, 260<br>17, 260<br>15, 600<br>38, 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 14<br>0.042<br>0.705042<br>0.152<br>0.1512<br>0.1512<br>0.152<br>0.152                                                                                                                                     | 118<br>0.042<br>0.704379<br>0.042<br>0.152<br>0.512410<br>0.152                                                                                                                         | 0.152<br>0.512410<br>0.042<br>0.704979                                                                                                                      | 14.7<br>5.7<br>390.7<br>0.705027<br>0.705020<br>18.0000<br>18.550<br>18.550<br>18.550<br>38.550<br>38.550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 563<br>Rajmabi-Bengai-Sylined Tupo<br>Rajmabi-Tupo<br>Rajmabi Tupo<br>Ramabi Tupo<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ramabi<br>Ra                                                                                                                                             | 14<br>0.2011<br>0.708390<br>0.201<br>0.201<br>0.187<br>0.512820<br>0.187                                                                                                                                           | 118<br>0.2018<br>0.707992<br>0.202<br>0.187<br>0.187                                                                                                                                                                                             | 0.187<br>0.57.2493<br>0.201<br>0.707992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Figuration Sector 1<br>Figuration 1<br>Fagmatian Trajes<br>Ramania Trajes<br>24.25<br>Figuration 1<br>Figuration 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| RECALCULE A<br>L'Age 14 Ma RECALCULE A<br>L'Age Biblio CALC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CUL OLIEROOK 2017                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RECALCULE A<br>L'Age 14 Ma L'Age Biblio CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LCUL OLIEROOK 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2017-62/247b Initial<br>2018-62/247b Initial<br>Age to (L. Forthus)<br>(RDS) measured recalcule<br>(RDS) measured recalcule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 447Sm/14Ald<br>143Ch/14Ald initial<br>87RU885<br>87S/858 initial<br>238U/204Pb<br>228U/204Pb<br>228U/204Pb<br>228TV/204Pb<br>228TV/204Pb | # (Olerook et al., 2017 - n.)<br>Geochemister Reference<br>Province<br>Samuels kanne<br>Samuels kanne<br>Samuels kanne<br>Samuels kanne<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>Lahitude<br>La                                                                                                                                                                                                                                                                                                                                                       | Age of L. Pormai<br>Age of L. Pormai<br>(TSVS) measured resolution<br>(TSVS) measured resolu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | **X3M2**X3M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4M2**X4%*X4%*X4%*X4%*X4%*X4%*X4%*X4%*X4%*X4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | # (Olerook et al. 2017 - n.)<br>Geochamistry Reference<br>Location<br>Standak Name<br>Samak Name<br>Location<br>Auer of erence<br>Longitude<br>Longitude<br>Longitude<br>Samak Samak<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longitude<br>Longi                                                                                   |
| 118<br>0.762740<br>0.167<br>0.167<br>0.167<br>0.167<br>0.167<br>0.120<br>0.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.187<br>0.120<br>0.09<br>0.09<br>0.42                                                                                                   | 594<br>Raymathal Bengali Sylheet Tras<br>Raymathal Tras<br>Throkelite, Cuartz / Basalt<br>[41]18<br>[41]18<br>[51]<br>151<br>152<br>102<br>102<br>102<br>102<br>102<br>102<br>102<br>102<br>102<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.157<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.1500 | 0.708100<br>11.12.00<br>11.12.00<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.12.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14<br>0.14.14.14<br>0.14.14.14<br>0.14.14.14<br>0.14.14.14.14.14.14.14.14.14.14.14.14.14. | 584<br>Rajmaba Bengal Sejner Trans<br>Rejenada Transformesite<br>24.25<br>87.33<br>(111)<br>118<br>(111)<br>25.25<br>87.3<br>87.3<br>97.04.0<br>704.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 124<br>0.726585<br>0.443<br>0.444<br>0.4214<br>0.4214<br>0.4214<br>0.4214<br>0.434<br>0.434<br>0.434<br>0.434<br>0.434<br>0.434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.134<br>0.443<br>0.19<br>0.00<br>0.00                                                                                                   | 613<br>Wallaby Plane<br>Gower Rise<br>Basat<br>24.365<br>107.8172<br>20<br>20<br>20<br>20<br>107.8172<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.187<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.0007<br>0.000700000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.724.420<br>0.725.00<br>0.657.260<br>0.657.260<br>0.037<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.726.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7276.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.00<br>0.7776.0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                  | 580<br>Rajmaha Geopa Spiner Trans<br>Rajmaha Trans<br>51305<br>8733<br>8733<br>8718<br>1118<br>1118<br>129<br>233.0<br>233.0<br>30<br>233.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 124<br>0.70654<br>0.528<br>0.528<br>0.528<br>0.528<br>0.5128<br>0.77280<br>0.5124<br>0.5124<br>0.168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.168<br>0.528<br>0.144<br>0.000<br>0.56                                                                                                 | 614<br>Watabby Pieten<br>Coviet Ree<br>5585004<br>-2415<br>107,8172<br>173<br>1231<br>1231<br>1231<br>1231<br>1231<br>1231<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.13<br>0.125<br>0.125<br>0.127<br>0.128<br>0.127<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.708898<br>16.520<br>0.134<br>0.134<br>0.130<br>0.134<br>0.130<br>0.134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 689         769           Ragarata Trays         8-1131           Ragarata Trays         5-1131           Tholelie / Barsa         8-133           Tholelie / Sata         8-733           87.53         87.53           1116         1116           17.6         17.6           17.5         372.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 124<br>0.70697<br>0.463<br>0.463<br>0.463<br>0.463<br>0.463<br>0.463<br>0.463<br>0.463<br>0.463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.483<br>0.463<br>0.08<br>0.00<br>0.52                                                                                                   | 615<br>Wallaby Pattern<br>Sorre R40e<br>57067640e<br>57067640e<br>57067640e<br>109.6871167<br>123<br>123<br>123<br>123<br>123<br>123<br>123<br>123<br>123<br>123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 118<br>0.008<br>0.7204025<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.652<br>0.0086<br>0.0086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 531<br>531<br>Rajma<br>Rajmabal Targe<br>8,228.7 / 15.027<br>Thoele / 53.25<br>14.3<br>14.3<br>14.3<br>14.3<br>237.4<br>237.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.702444<br>0.702444<br>0.1642<br>0.1642<br>0.1642<br>0.1642<br>0.1642<br>0.164<br>0.164<br>0.164<br>0.164<br>0.164<br>0.162<br>0.162<br>0.162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.142<br>0.164<br>0.06<br>1.06                                                                                                           | 617<br>Walleby Part<br>Some Hole Seamount<br>-24 0198657<br>100,1985<br>112<br>112<br>1142<br>1142<br>1142<br>1142<br>1142<br>1142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 118<br>0.704 824<br>0.1124<br>0.1124<br>0.1124<br>0.1124<br>0.1124<br>0.1124<br>0.1124<br>0.1124<br>0.1124<br>0.1124<br>0.1124<br>0.1124<br>0.1124<br>0.1125<br>0.1124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.122501<br>171560<br>151560<br>15156<br>0.1159<br>0.1248<br>0.1248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 802<br>802<br>Regiments Tires<br>Regiments Trans<br>Regiments 1:12:1<br>Doent 1:12:1<br>Doent 1:12:1<br>Doent 1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1<br>1:12:1                                                                                                                                                                                       |
| 00<br>072016<br>072016<br>0.0912<br>0.0912<br>0.144<br>0.144<br>0.144<br>0.144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.144<br>0.512.604<br>0.092<br>0.705116<br>0.00<br>0.00<br>0.26                                                                          | 618<br>Wallaby Pateral<br>Some Redge Samount<br>Spickovar<br>409 19885<br>100 19885<br>114 5<br>144 5<br>141 | 118<br>0.008<br>0.009<br>0.125<br>0.125<br>0.125<br>0.008<br>0.008<br>0.008<br>0.008<br>0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.764390<br>0.125<br>0.086<br>0.704228<br>0.206<br>0.300<br>0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 885<br>ahuk-Bengak-Sythet Trac<br>SuBcatt<br>Baset, Advanter / 52,68<br>83,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52<br>84,52,52<br>84,52,52<br>84,52,52<br>84,52,52<br>84,52,52<br>84,52,52<br>84,52,52<br>84,52,52<br>84,52,52,52<br>84,52,52,52,52,52,52,52,52,52,52,52,52,52,                                                                                                                                                                                                                                                                                                           |
| 0704516<br>0704516<br>0.57145<br>0.57145<br>0.57145<br>0.57146<br>0.57146<br>0.57146<br>0.57146<br>0.57146<br>0.57146<br>0.57146<br>0.57146<br>0.57146<br>0.57146<br>0.57146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.512618<br>0.521618<br>0.221<br>0.704516<br>0.00<br>0.00<br>0.84                                                                        | 611<br>Wateby P 661<br>567226<br>109.1097<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1977<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1987<br>109.1997<br>109.1977<br>109.1977<br>109.1977<br>100.1977<br>100.10                                                                                                                                                                                                                                                                                                                                     | 118<br>070584<br>0.105<br>0.117<br>0.116<br>0.117<br>0.116<br>0.105<br>0.105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.785440<br>0.117<br>0.70520<br>0.70520<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 587<br>1900<br>1900<br>1900<br>1900<br>1900<br>1900<br>1900<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1 |
| 0.160<br>0.704422<br>0.1442<br>0.142<br>0.172<br>0.172<br>0.172<br>0.172<br>0.172<br>0.172<br>0.172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.512688<br>0.512688<br>0.704422<br>0.22<br>0.00<br>0.00<br>0.00                                                                         | 620<br>Wallaby Patena<br>Some Redge Seamount<br>-24.026 Seamount<br>-24.026<br>123<br>105.1980<br>123<br>123<br>123<br>123<br>123<br>123<br>123<br>123<br>123<br>123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 118<br>0.708207<br>0.007<br>0.007<br>0.154<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.708280<br>0.154<br>0.708251<br>0.031<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 888<br>Rajjining Trip<br>Rajjining Trip<br>Rajjining Raj<br>SALAVRI<br>Thotellik, Olivine / Basis<br>SALAVRI<br>840<br>118<br>118<br>13.5<br>35.0<br>0.5<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 124<br>0.7 0.220<br>0.220<br>0.210<br>0.210<br>0.210<br>0.210<br>0.210<br>0.210<br>0.210<br>0.210<br>0.210<br>0.210<br>0.210<br>0.210<br>0.210<br>0.210<br>0.210<br>0.210<br>0.210<br>0.210<br>0.210<br>0.210<br>0.210<br>0.210<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.220<br>0.210<br>0.220<br>0.220<br>0.220<br>0.210<br>0.220<br>0.210<br>0.220<br>0.210<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.2000<br>0.2000<br>0.2000<br>0.200000000 | 0.182<br>0.230<br>0.15<br>0.000<br>0.74                                                                                                  | 616<br>Walluby Paten<br>610 Zore Scap<br>-05 Archivesat<br>-25 S4453<br>108 S445<br>144<br>184<br>184<br>184<br>184<br>184<br>184<br>184<br>184<br>184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 116<br>0.7064007<br>0.148<br>0.148<br>0.148<br>0.248<br>0.2607<br>0.2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.705430<br>0.146<br>0.007<br>0.008<br>0.008<br>0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 580<br>mata-bengai Spine Tice<br>Regarded Torge<br>Thodelb, Count? / SNADA<br>Thodelb, Count? / Stat<br>88,5<br>(11)18<br>(11)18<br>(11)18<br>(26,2<br>26,2<br>28,0<br>28,0<br>3,3<br>2,2<br>2,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 005<br>005<br>005<br>005<br>005<br>005<br>005<br>005<br>005<br>005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0776<br>0.55842                                                                                                                        | Avtarcita<br>Gausseers voicano<br>0.066<br>15.77<br>122.9<br>1716.7<br>1716.7<br>0.7169<br>0.7169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 118<br>0.750054<br>0.125<br>0.174<br>0.174<br>0.0174<br>0.025<br>0.024<br>0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.706060<br>0.174<br>0.024<br>0.03<br>0.03<br>0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 503<br>504<br>505<br>506<br>507<br>507<br>507<br>507<br>507<br>507<br>507<br>507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| R                         | E                               | CA<br>Ag                   | LC<br>Ie                  | CU<br>14                       | LE<br>Ma                   | A                    | 1                         | RE<br>L                         | CA<br>'Ag                  | Je I                      | :UL<br>Bib                     | E /<br>lio                 | A.                    | C/                    | AL C                  | cu                    | LO           | ILIE       | ERO        | DOC                | K 2        | 201                   | 7             |                      |                      |                      |                    |                      |          |          |       |          |          |          |          |               |                     |           |          |           |             |                   |                       |                        |                               |
|---------------------------|---------------------------------|----------------------------|---------------------------|--------------------------------|----------------------------|----------------------|---------------------------|---------------------------------|----------------------------|---------------------------|--------------------------------|----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------|------------|------------|--------------------|------------|-----------------------|---------------|----------------------|----------------------|----------------------|--------------------|----------------------|----------|----------|-------|----------|----------|----------|----------|---------------|---------------------|-----------|----------|-----------|-------------|-------------------|-----------------------|------------------------|-------------------------------|
| (Sm/Nd) initial recalculé | (143Nd/144Nd) initial recalculé | (Sm/Nd) measured recalculé | (Rb/Sr) initial recalculé | (87 Sr/86Sr) initial recalculé | (Rb/Sr) measured recalcule | Age 14Ma (L.Ponthus) | (Sm/Nd) initial recalculé | (143Nd/144Nd) initial recalculé | (Sm/Nd) measured recalculé | (Rb/Sr) initial recalculé | (87 Sr/86Sr) initial recalculé | (Rb/Sr) measured recalculé | Age ref. (L. Ponthus) | 208 Pb/204 Pb initial | 207 Pb/204 Pb initial | 206 Pb/204 Pb initial | 232 Th/204Pb | 235U/204Pb | 238U/204Pb | 87Sr/86 Sr initial | 870 h/86Cr | 143 Nd/144 Nd initial | 147 Sm/14 ANH | 208Pb/204Pb measured | 207Pb/204Pb measured | 206Pb/204Pb measured | 87Sr/86Sr measured | 143Nd/144Nd measured | Th (ppm) | Pb (ppm) | (ppm) | Sr (ppm) | Rb (ppm) | Nd (ppm) | Sm (ppm) | Age reference | Age Correction (Ma) | Longitude | Latitude | Rock Type | Sample Name | Location          | Province              | Geochemistry Reference | # (Olierook et al. 2017 - n.) |
| 0.079                     | 0.511911                        | 0.079                      | 0.494                     | 0.709294                       | 0.494                      | 0.056                |                           |                                 |                            |                           |                                |                            |                       |                       |                       |                       |              |            |            | 0.49400            | 0 40499    | 0001000               | 0.07803       |                      |                      |                      | 0.709294           | 0.511911             |          |          |       | 1767.4   | 301.9    | 121.5    | 15.87    |               | 0.056               |           |          |           | 457         | Gaussberg volcano | Antarctica            |                        |                               |
| 0.079                     | 0.511867                        | 0.079                      | 0.562                     | 0.709718                       | 0.562                      | 0.056                |                           |                                 |                            |                           |                                |                            |                       |                       |                       |                       |              |            |            | 0.001100           | 0 66176    | 0.01941               | 0.02011       |                      |                      |                      | 0.709718           | 0.511867             |          |          |       | 1686.5   | 327.3    | 127.1    | 16.7     |               | 0.056               |           |          |           | 470         | Gaussberg volcano | Antarctica            |                        |                               |
| 0.078                     | 0.511906                        | 0.078                      | 0.500                     | 0.709405                       | 0.500                      | 0.056                |                           |                                 |                            |                           |                                |                            |                       |                       |                       |                       |              |            |            | 0.2002.0           | 0 50052    | 0.0111                | 0.0777        |                      |                      |                      | 0.709405           | 0.511906             |          |          |       | 1750.4   | 302.7    | 122      | 15.68    |               | 0.056               |           |          |           | 477         | Gaussberg volcano | Antarctica            |                        |                               |
| 0.080                     | 0.511937                        | 0.080                      | 1.303                     | 0.706914                       | 1.303                      | 0.056                |                           |                                 |                            |                           |                                |                            |                       |                       |                       |                       |              |            |            | 1 2002-1           | 4 20077    | 0.0000.0              | 2 UUSU U      |                      |                      |                      | 0.706915           | 0.511937             |          |          |       | 694.1    | 312.5    | 121.7    | 16.12    |               | 0.056               |           |          |           | 472         | Gaussberg volcano | Antarctica            |                        |                               |
| 0.101                     | 0.511954                        | 0.101                      | 1.644                     | 0.709002                       | 1.644                      | 0.056                |                           |                                 |                            |                           |                                |                            |                       |                       |                       |                       |              |            |            | 1:09400            | 1 84488    | 0,1007.0              | 0 40073       |                      |                      |                      | 0.709003           | 0.511954             |          |          |       | 583.9    | 331.8    | 100      | 16,66    |               | 0.056               |           |          |           | 468         | Gaussberg volcano | Antarctica            |                        |                               |
| 0.086                     | 0.511913                        | 0.086                      | 0.546                     | 0.709816                       | 0.546                      | 0.056                |                           |                                 |                            |                           |                                |                            |                       |                       |                       |                       |              |            |            | 0.0400             | 0 54 65 1  | 1000.0                | 0.0857        |                      |                      |                      | 0.709816           | 0.511913             |          |          |       | 1689.7   | 319      | 109.4    | 15.5     |               | 0.056               |           |          |           | 479         | Gaussberg volcano | Antarctica            |                        |                               |
|                           |                                 |                            |                           |                                |                            |                      |                           |                                 |                            |                           |                                |                            |                       |                       |                       |                       |              |            |            | 0.705200           |            | 0.512559              |               |                      |                      |                      |                    |                      |          |          |       |          |          |          |          | Loftus2011    | 12.955              |           |          | ~         | ~           | Mount Ballons     | Kerguelen Archipelago | Loftus2011             |                               |
|                           |                                 |                            |                           |                                |                            |                      |                           |                                 |                            |                           |                                |                            |                       |                       |                       |                       |              |            |            |                    |            |                       |               |                      |                      |                      |                    |                      |          |          |       |          |          |          |          |               |                     |           |          |           |             |                   |                       |                        |                               |
|                           |                                 |                            |                           |                                |                            |                      |                           |                                 |                            |                           |                                |                            |                       |                       |                       |                       |              |            |            |                    |            |                       |               |                      |                      |                      |                    |                      |          |          |       |          |          |          |          |               |                     |           |          |           |             |                   |                       |                        |                               |
|                           |                                 |                            |                           |                                |                            |                      |                           |                                 |                            |                           |                                |                            |                       |                       |                       |                       |              |            |            |                    |            |                       |               |                      |                      |                      |                    |                      |          |          |       |          |          |          |          |               |                     |           |          |           |             |                   |                       |                        |                               |

Annexe n°15: Compilation des données isotopiques (suite) - Olerook et al. 2017 Suppl. data - references

100 147-173

| AUTEUR :              | Léandre Ponthus                                                                                                                                            |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TITRE :               | Origine, évolution et mise en place d'un pluton récent en contexte intraplaque océanique. Exemple du complexe sud de Rallier du Baty, Kerguelen (T.A.A.F.) |
| DIRECTEURS DE THESE : | Michel Grégoire ; Damien Guillaume, Michel de Saint Blanquat                                                                                               |
| LABORATOIRE :         | Géosciences Environnement Toulouse – UMR 5563                                                                                                              |
| SOUTENANCE :          | Toulouse, le 20 mars 2018                                                                                                                                  |

## RESUME

L'étude de ce complexe plutonique alcalin fut multidisciplinaire mêlant, observations et mesures sur le terrain, ASM, pétrographie, minéralogie, géochimie (majeur et traces), géochimie isotopique Rb/Sr et Sm/Nd et géochronologie U-Pb sur zircons. La synthèse des résultats démontre la participation minoritaire de plusieurs sources (manteau métasomatisé et fragments continental) en plus de la source prédominante qui est le manteau typique du panache de Kerguelen. Dans un environnement magmatique ouvert, les magmas contaminés ont formé la plus ancienne série magmatique calcique du complexe. La seconde et plus jeune série magmatique a produit (dans un environnement clos) des roches de plus en plus agpaïtique au cours de la différenciation. La mise en place progressive mais diachrone des intrusions s'est faite entre 11,7 (au sud) et 7,9 Ma (au nord). Enfin, le mode de construction de ce pluton en fait un exemple unique connu de laccolithe en contexte intraplaque océanique.

MOTS-CLÉS : plateau océanique, série sursaturée, syénite, point chaud

## ABSTRACT

The study of this alkaline plutonic complex was multidisciplinary, mixing field observations and measurements, ASM, petrography, mineralogy, geochemistry (major and traces), isotopic geochemistry Rb / Sr and Sm / Nd and geochronology U-Pb on zircons. The synthesis of the results shows the minor participation of several sources (metasomatised mantle and continental fragments) in addition to the predominant source which is the typical asthenospheric mantle of the Kerguelen plume. In a dynamic and open magmatic system, the contaminated magmas formed the oldest magmatic and calcic series of the complex. The second and younger magmatic series produced (in a closed environment) more and more agpaitic rocks during differentiation. The incremental emplacement of the intrusions occurred between 11.7 (in the south) and 7.9 Ma (in the north). Finally, the type of construction of this pluton makes it a unique known example of laccolith in oceanic within-plate settings.

KEYWORDS: oceanic plateau, over-saturated series, syenites, hot spot