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Chapter 1

Introduction

Nous introduisons dans ce chapitre le contexte dans lequel s’inscrit cette thèse, l’ordinateur
quantique. L’idée a été proposée à l’origine par Richard Feynman : puisqu’il semble impos-
sible à un ordinateur classique de simuler un système quantique (notamment d’un certain
nombre de particules quantiques interagissantes), Feynman suggéra d’utiliser les propriétés
de la physique quantique pour créer un système capable de simuler un autre système quan-
tique. Les propriétés en question sont le principe de superposition et l’intrication. Cette
proposition de simulateur quantique est toujours un sujet de recherche actif, mais une
autre classe d’ordinateur quantique a également fait son apparition à la fin des années
90 avec les travaux de Peter Shor. Ce dernier a montré qu’il était possible de tirer parti
du parallélisme quantique pour réaliser la factorisation de grands entiers plus rapidement
qu’un ordinateur classique. C’est dans ce cadre que ce situe ce travail de thèse, dont le
sujet est plus particulièrement l’élément de base de l’ordinateur quantique, le quantum bit
(ou qubit). Après avoir présenté rapidement les conditions pour réaliser un ordinateur
quantique, nous décrirons le cas particulier du qubit de spin. En effet, un des travaux fon-
dateurs publié par Loss et DiVincenzo [1] montre qu’il est possible de réaliser un ordinateur
quantique à partir de spin dans des boîtes quantiques dans des matériaux semiconducteurs.
Nous présentons rapidement les caractéristiques générales de ces qubits de spin, notam-
ment leur manipulation par un champ magnétique oscillant, la décohérence de spin, la
lecture du qubit, ainsi que les interactions entre qubits.
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Chapter 1. Introduction

1.1 A new computing paradigm

1.1.1 Context

Indisputably one of the greatest technological and theoretical achievement of the twentieth
century was the invention of computers, with in particular the work of Alan Turing. The
practical implementation of powerful computers was linked to another invention of great
importance, the transistor, discovered in 1947 by John Bardeen, William Shockley and
Walter Brattain. An outstanding property of transistors is that reducing their length typ-
ically allows for an increase of drive current and switching speed, and for an increase of the
number of transistors (and functions) per chip. Then, from 1970 to 2000, the performance
of computers has been growing extremely fast: the main technological requirement was
only to improve the lithography techniques. This lead to the famous Moore’s law: "the
number of transistors on a chip double every two years", and a steady economic growth of
10% per year for the microelectronics industry. When the transistor length reached ' 50
nm, short channels effects and issues related to thermal dissipation started to limit the
performance, therefore the processor clock frequencies stagnated to ' 4 GHz since 2005.
The reduction of the size of the transistors is not anymore the principal driving force
of performance enhancement. As the transistors are reaching nanometric size, quantum
effects such as tunneling [2] or even Coulomb blockade [3, 4] start to interfere, and to
limit the size reduction. Each new generation of transistors requires more time and more
investment. Ultimately it will be impossible to reduce the size below a few nanometers,
because of direct source-drain tunneling, and even extremely difficult to reach the 10 nm
limit [5, 6].

With the end of Moore’s law the top microelectronics companies are looking for new
markets. One way for this is to create new applications, as it is done today with the
Internet of Things. Another way is to investigate new computation paradigms, such
as neuromorphic computing, reversible computing, or quantum computing. The latter
emerged from the idea that we could use the peculiar properties of quantum systems in
order to make a new kind of computer. What are these properties? Let us start by
defining a quantum bit (or qubit) by analogy with a classical bit. A classical bit can
take two values, 0 and 1. A quantum bit is based on two quantum states |0〉 and |1〉.
According to quantum mechanics, the state |Ψ〉 of the qubit is as a superposition of these
two states:

|Ψ〉 = α|0〉+ β|1〉 (1.1)

with α, β two complex numbers such that |α|2 + |β|2 = 1. We can thus rewrite Eq. 1.1 as

|Ψ〉 = cos θ2 |0〉+ eiφ sin θ2 |1〉 (1.2)

2



1.1. A new computing paradigm

Figure 1.1: Bloch sphere representation of a two-level quantum state.

The information carried by the quantum bit can thus be mapped onto a continuous
ensemble of values, and thus contain much more information than a classical bit. The
qubit state can be represented as a function of the phases θ, φ in the so-called Bloch
sphere, shown Fig. 1.1. If we now have two qubits, their coherent state is a superposition
of the states {|00〉, |10〉, |01〉, |11〉}:

|Ψ〉 = α1|00〉+ α2|10〉+ α3|01〉+ α4|11〉 (1.3)

so is described by 22 complex amplitudes (α1,2,3,4). More generally, a system with n

qubits can be represented by 2n complex amplitudes. Finally the last property that will
be harnessed in a quantum computer is the quantum parallelism. In a classical computer,
applying a function f to two different bits x and y (that is computing f(x) and f(y))
must be done either sequentially or in two different computers simultaneously. Classical
parallelism then consists in connecting several computers. In a quantum computer, if
we start from |x〉, a register of n qubits in superposition, and apply a function f (which
is a series of unitary operations), we end up with an output register f(|x〉), which is
a superposition of all outputs. We have thus applied f only once and can obtain 2n

outputs: this is quantum parallelism. Of course, the output register f(|x〉) then needs to
be measured, which yields only one value. All the difficulty of quantum algorithms is to
build a series of operations that grant a more important probability to be measured to
the desired result.

All of this can make a quantum computer very different from a classical one. Our
computers are Turing Machines: ultimately, if one of them is able to solve a problem of
a given complexity, then any other computer potentially can. Another way to say it is
that you can potentially emulate any computer with another (provided you have enough
memory). It seems that a quantum computer does not belong to the same category: it
is practically impossible for a classical computer to simulate a system of many entangled
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Chapter 1. Introduction

particles. For instance, a system with 50 interacting spin-1/2 particles, requires 250 ' 1015

numbers in a classical memory, that is a few hundreds petabytes. Calculating its time
evolution requires the exponentiation of a 250 × 250 matrix. This is already close to
the limits of classical capabilities, and the complexity is exponentially growing with the
number of particles in the system. Feynman in his famous lecture of 1959 "There’s plenty
of room at the bottom" [7] conjectured that it is possible to circumvent this exponential
explosion by using a tunable, measurable quantum system to simulate another one. In
his own terms:

"Nature isn’t classical, dammit, and if you want to make a simulation of Nature
you better make it quantum mechanical, and by golly it’s a wonderful problem,
because it doesn’t look so easy."

Lloyd proved this conjecture in 1996 [8]: quantum computers can be programmed to
simulate any local quantum systems. This class of quantum computers are nowadays
called quantum simulators.

Another class of quantum computers also emerged from the idea to exploit the quan-
tum parallelism. Indeed, in the 1980’s David Deutsch examined the possibility to achieve
significant speedups on some problems using quantum algorithms [9,10]. Such a quantum
computer consists in a collection of qubits and logical operations, called gates (unitary
transformations). In a quantum computer, single-qubit and two-qubits operations are
needed. Single-qubit gates are any possible rotation on the Bloch sphere. At minimum,
one kind of two-qubits gate is needed, the CNOT (controlled-not), which acts on the state
of one qubit depending on the state of the other one. With this system, Shor showed in
1999 an algorithm for the prime factorization of large integers [11]. This algorithm pro-
vides an exponential speed-up compared to the best known classical algorithm. This may
have important implications in everyday life since our safest encryption method (RSA
algorithm) is based on the fact that factoring a big number into two prime numbers is
a problem impossible to solve by any classical computer. Another example is Grover’s
algorithm, which consists in searching for an element in a list of N elements. The quan-
tum speed-up is more modest, in average

√
N steps are needed on a quantum computer

against N on a classical one, and that is the best acceleration that can be achieved.
At this point, an important fact needs to be stressed out. The Grover algorithm illus-

trates that a quantum computer cannot, as often wrongly stated, look at many possible
solutions to a problem in parallel (doing so would be a technological and philosophical
revolution!). To be more precise, the general agreement is that a quantum computer can-
not rapidly solve a particularly difficult set of problems called NP-complete problems [12].
These problems (of which a famous example is the traveling salesman problem), are be-
lieved to not have a deterministic solution in polynomial time. No, up to today’s knowl-
edge, a quantum computer can only be used on a specific class of problems where they

4



1.1. A new computing paradigm

could provide a substantial acceleration of the resolution over a classical computer. To
our understanding, some problems are classically hard, and some are quantumly hard.

1.1.2 Is a quantum computer practically feasible?

Quantum systems interacting with the external environment are prone to decoherence.
That means that we are not able to put the system in a specific superposition for an
infinite time. The coupling with the environment is noisy and unknown, so unanticipated
errors will occur. Moreover, the no-cloning theorem states that in quantum physics, an
unknown state cannot be copied. Therefore it is not possible to detect the errors like in
classical computing, for instance by performing parity check on a byte with its copy.

In quantum computers decoherence is a major problem that limits the number of reli-
able operations, so it needs to be circumvented. For that purpose, error-correction codes
have been developed. In these schemes, many physical qubits encode the information of
one logical qubit. A quantum error correction code is applied to the physical qubits. The
threshold theorem [13] then states that providing that the error per physical qubit per
gate operation is below some threshold (which depends on the specifications of the code
and qubits), increasing the number of physical qubits allow to preserve the information
on the logical qubits. More precisely, quantum error correction theory predicts that the
precision of the logical qubit improves exponentially with the number of physical qubits.
If the assumptions of the theorem hold, quantum computing is "just" transformed into an
engineering problem: produce enough qubits with good characteristics. In 2000, David
DiVincenzo summarized the requirements to physically implement a quantum computer
in a series of 5 criteria [14]: 1) A scalable physical system with well characterized qubits
2) The ability to initialize the state of qubits in a well-known state 3) Decoherence times
much longer than the gate operation time 4) A "universal" set of quantum gates1 5) The
ability to measure individual qubits. In this thesis, we focus on criteria 1) and 3) in a
spin qubit in a silicon quantum dot.

With today’s technologies and current algorithms, this engineering problem is an in-
credible challenge. The number of physical qubits per logical qubit is at least of 10000 in
the most optimistic scenarios with realistic qubits characteristics [15,16]. Several big com-
panies are engaged in this race for quantum computing: IBM, Google, Intel, Microsoft.
They have already fabricated some quantum computers, however with yet insufficient
performances. A recent demonstration is the 20-qubits quantum computer from IBM,
available on the cloud, and announcements have been made of 50-qubits and 72-qubits
quantum computers, respectively by IBM and Google.

Whether quantum computing will be possible or not is debated. Some criticisms
have been expressed on the assumptions behind the threshold theorem [17, 18]. First,

1An arbitrary set of gates to which any possible unitary operation on the quantum computer can be
reduced.
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Chapter 1. Introduction

Figure 1.2: SEM picture of a double quantum dot device in a GaAs/AlGaAs heterostruc-
ture. Electrostatic gates (light gray) on top of a 2D electron gas define two quantum dots.
The gates L and R control the number of electrons in each dot, and gate T controls the
tunnel coupling between them. The conductance is measured between R1 and R2 and
allow to measure the charge in the right dot. Adapted from Ref. [19].

the quantum computer is an analog computer, so each of the qubit states are known
with finite precision, whereas the threshold theorem assumes infinite (same goes for the
readout fidelities). Some types of errors are also not taken into account by error-correction
codes [18].

Leaving aside these rather complex considerations on quantum computing, this thesis
is dedicated to the most elementary building block, the physical quantum bit. From what
we have seen, these qubits need to be well-controlled, scalable, and not strongly subjected
to errors. In this thesis we focus on a qubit made of a spin inside a quantum dot, and more
particularly on the electrical spin manipulation. Therefore the next part will elaborate
more on the characteristics of such qubits and the historical achievements.

1.2 The spin quantum bit

We have introduced quantum computers and what they are capable of. As we have seen
a quantum computer is composed of quantum bits which are two-levels system, thus, any
quantum two-levels systems can in principle be used for quantum information storage
and manipulation. In a seminal paper [1], Loss and DiVincenzo have shown that it was
possible to realize quantum computation with spins inside semiconductor quantum dots.

The spin qubits in semiconductor quantum dots were first studied in III-V heterostruc-
tures, notably in GaAs which is a good material for confining electrons thanks to its low
effective mass. In these devices the bandgap mismatch between two III-V materials is
responsible for a quantum well at the heterointerface, forming a 2D electron gas. Then,
it is possible to use metallic gates deposited on top to deplete the electron gas, thus form-
ing quantum dots. An example of a double quantum dot device is shown in Fig. 1.2.
These two dots are tunnel-coupled to each other and to the neighboring reservoirs. These
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1.2. The spin quantum bit

couplings can be tuned to reach the Coulomb blockade regime, with a fixed number of
electrons in each dot.

Once a single electron (or hole) is isolated in the Coulomb blockade regime, the states
of a spin qubit are defined in presence of a magnetic field B. Indeed, at B = 0 each orbital
state is spin-degenerate (this is called Kramers degeneracy), hence does not make a two-
level system. A finite B splits a Kramers pair into the qubits states spin up |1〉 = |↑〉 and
spin down |0〉 = |↓〉, separated by the Zeeman energy Ez = gµBB, where g is the Landé
factor. We have now a system that can be represented in the Bloch sphere of Fig. 1.1.
Importantly, the spin state precesses around the Z axis of the Bloch sphere at the Larmor
frequency fL = gµBB/h. Therefore, all the qubit operations implicitly takes place in the
Bloch sphere rotating around Z at frequency fL ("rotating Bloch sphere").

Now that the qubit states are properly defined, let us review the essential properties
of spin manipulation, decoherence, readout, and two-qubit interactions in these systems.

1.2.1 Spin manipulation

The spin is a magnetic dipole so the most natural way to manipulate it is to couple it
to a magnetic field. The method to do this is called electron spin resonance (ESR). It
consists in applying a static magnetic field B0 along z to separate the spin states, and an
oscillating magnetic field B(t) = Bac cos(ωt) perpendicular to z, let’s say along x. The
static magnetic field makes the spin precess around the Z axis of the Bloch sphere at the
Larmor frequency ωL. If ω = ωL the oscillating magnetic field interacting with the spin
can be represented in the {|↓〉, |↑〉} by the operator:

Hint =
 0 ωR cos(ωLt)
ωR cos(ωLt) 0

 = ωR
2

 0 eiωLt + e−iωLt

eiωLt + e−iωLt 0

 (1.4)

with ωR = gµBBac
2~ . Working now in the rotating Bloch sphere, soHint → eiωL/2σzHinte

−iωL/2σz ,
we have:

Hint = ωR

 0 e2iωLt + 1
e−2iωLt + 1 0

 (1.5)

Assuming ωR � ωL, we neglect the fast terms e±iωLt (rotating wave approximation) and
we have simply Hint = ωRσx. Then we solve the time-dependent Schrödinger equation,
∂|Ψ〉
∂t

= −i
~ ωRσx|Ψ〉, which yields:

|Ψ〉(t) = e−iωRσxt|Ψ〉(0) (1.6)
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Chapter 1. Introduction

Figure 1.3: (a) Expected value of the spin along z, exhibiting Rabi oscillations. (b)
Representation of the state evolution (in blue) in the rotating Bloch sphere.

Therefore, a resonant transverse magnetic field drives rotations of the spin around the
X axis of the rotating Bloch sphere, called Rabi oscillations, shown in Fig. 1.3. The
frequency of these oscillations, called the Rabi frequency, is fR = ωR/2π. Rabi oscilla-
tions in semiconductor quantum dots were first demonstrated experimentally by Koppens
et al [20]. Importantly, one can also drive rotations around another axis of the Bloch
sphere by changing the phase ϕ of B1(t) = Bac cos(ωt+ϕ): for ϕ = π/2, Y is the rotation
axis. This gives full control of the spin state on the Bloch sphere.

In the prospect of a scalable spin qubit architecture, the use of magnetic fields to
control the spin raises several issues. It is indeed technically almost impossible to localize
a magnetic field in order to affect only one qubit and not its neighbors. Moreover, as fR
depends linearly only on Bac (which cannot be very large), it is typically limited to a few
MHz.

Another possibility to manipulate the spin, very similar to ESR, is to use an oscillat-
ing electric field, which in comparison can be generated much more easily by exciting a
local gate electrode. This effect, called electric-dipole spin resonance (EDSR), requires
a mechanism that couples the spin of the electron to its motion induced by the electric
field. Several mechanisms were investigated. One of them, theoretically discussed by
Rashba and Efros [21], is to use the intrinsic spin-orbit interaction (SO). The spin-orbit
coupling can be described semi-classically in the following way: due to a relativistic effect,
an electron moving in an electric field (created by the nucleus of the crystal) experiences
in its reference frame an effective magnetic field which couples to its spin. The SO-driven
EDSR was observed by Nowack et al in GaAs [22], and the first spin-orbit qubit was made
by Nadj-Perge et al [23]. In another work, Laird et al used the hyperfine interaction in
GaAs to drive spin rotations with electric fields [24]: they took advantage of the inho-
mogeneity of the Overhauser field generated by the nuclear spins. The moving electron
feels an effective, position-dependent magnetic field, thus the spin and orbital degrees of
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1.2. The spin quantum bit

freedom are hybridized. On a similar idea, Pioro-Ladrière et al [25] engineered a slanting
magnetic field with Co micromagnets, which also acts effectively as a spin-orbit coupler.
All these mechanisms behave similarly to ESR: Eq. 1.6 is still valid for EDSR, however
ωR depends this time on the amplitude of the oscillating electric field and on the strength
of the spin-orbit coupling mechanism.

The use of EDSR opens up interesting perspectives for the fast and local manipula-
tion of spins. However, as EDSR calls for a mechanism coupling the spin and orbital
motion, this comes at a price: the spin is now sensitive to electrical perturbations in the
environment which will induce decoherence.

1.2.2 Spin decoherence

As for any other quantum system, it is not possible to isolate completely the spins from
their environment. They interact in a random way, so that the quantum information is
lost: this is called decoherence. It is convenient to separate decoherence in two processes:
relaxation and dephasing. Relaxation corresponds to the dissipative process |↑〉 → |↓〉,
that is the classical loss of information of the spin, and associated with a characteristic
time T1. On the Bloch sphere, it corresponds to a path of the state along a meridian,
i.e. a change of θ. On the contrary, dephasing corresponds to a change in the phase φ, a
path along a parallel of the Bloch sphere. It is associated with a characteristic time T2

(whose value may depend strongly on the measurement procedure). These two processes
are represented on Fig. 1.4.

An expected advantage of a spin qubit is that it should be coupled only to its magnetic
environment. The main source of magnetic noise is the random nuclear spins, which act
on the electron spin via the hyperfine interaction. In III-V materials, this is considered
as the main source of decoherence [26]. Another source could be the presence of magnetic
impurities nearby the device. However, as we have discussed, spin-orbit effects make the
spin state sensitive to noises which affects the real space motion of the electron, such
as phonons or electrical noises. In semiconductor quantum dots, sources of electrical
noise include notably the Johnson-Nyquist noise (thermal noise generating gate-voltage
fluctuations on the gates), or the capture-release of charges by traps nearby the device,
which generate random telegraph noise or 1/f noise.

The decoherence of a spin qubit needs to be carefully evaluated, taking into account
all the possible sources of noise. To make an efficient quantum bit the decoherence times
T1 and T2 need to be increased as much as possible while keeping the ability to perform
fast rotations. Therefore the relevant figure of merit for single-qubits operations is the
number of operations that can be performed before decoherence, that is Q = fR × T2

(assuming T2 � T1). This is related to the third DiVincenzo criteria, and is one of the
main issues of the chapter 5 of this thesis.
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Figure 1.4: Bloch sphere of the spin qubit with sketch of a relaxation process (in red),
and of a dephasing process (in violet).

1.2.3 Spin readout

Since it is very difficult to measure the magnetic moment of an individual spin, readout
schemes rely on indirect measurement via spin-to-charge conversion: the spin-dependent
movement of a charge is detected.

One method is to couple the qubit to a charge sensor, such as a single electron transistor
(SET). Then if the electrochemical potential of the SET lies in between the spin down and
spin up states of the qubit, only the spin up state can tunnel out and be detected, hence
the spin-to-charge conversion [27–29]. A different possibility is to use the Pauli principle
to implement Pauli spin blockade, as first demonstrated by Ono et al [30]. In the simplest
picture, with two quantum dots in series containing each one electron, the transition of
the spin of the left dot to the right dot is forbidden by Pauli exclusion principle if the two
spins are parallel. Then the presence or absence of transition between dots is measured
by a charge-sensing technique.

1.2.4 Two-qubit gates

In order to achieve a universal set of operations, two-qubit gates are needed in addition
to the single-qubit gates.

The most used way of achieving this is to rely on the exchange interaction J between
two spins, given by the Heisenberg interaction H12 = JS1 ·S2. In the case of two electrons
inside two quantum dots, J ' 4t2/U , where t is the tunnel coupling between the dots and
U the charging energy of the dots. Therefore, as first suggested by Loss and DiVincenzo
[1], one could use a gate voltage to tune the shape of the barriers between the dots, and
thus the tunnel coupling. That way it is possible to switch between a situation with a
high barrier potential, so uncoupled spins (J ' 0), and a situation with a low barrier
potential so that the spins are coupled by the exchange interaction. This is illustrated in
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Figure 1.5: Sketch of two qubits coupled by exchange interaction. The height of the
barrier between dots tunes t and thus J . Dotted lines correspond to the high-barrier
regime (t ' 0) and full lines to the the low-barrier regime (finite t).

Fig. 1.5. Similarly, it also possible to use the detuning between dots to control J , as it was
done in the first demonstration of controlled exchange by Petta et al [19], in the context
of singlet-triplet qubits (qubit in which the information is encoded into the singlet and
triplet states of two entangled spins). The first CNOT-gate in semiconductor spin qubits
using exchange interaction has been made by Brunner et al [31].

Another possibility for two-qubit gates has emerged recently: the use of circuit quan-
tum electrodynamics. It consists in coupling the spin state of an electron in a quantum
dot to microwave photons in a superconducting cavity. First experimental evidences have
been given in a InAs quantum dot [32], as well as in silicon [33–35], however two-qubits still
need to be demonstrated. The advantage of this approach is that it enables in principle
long distance coupling between qubits.

1.3 This thesis

In this thesis we focus on quantum computing with spin qubits in silicon. In particular,
we concentrate on the single qubit level, and we study numerically and theoretically the
electrical spin manipulation.

In chapter 2 we discuss the peculiarities of silicon and what makes it a material of
choice for quantum computation. We also present the paths taken by the main groups
towards quantum computing in silicon, as well as the strategy adopted by the teams at
CEA Grenoble.

In chapter 3 we present the numerical methods we use throughout the thesis. They
allow to model the potential, electronic structure, and many-body interactions in silicon
qubits, and to perform time-dependent numerical experiments.

In chapter 4, we start by presenting an interesting experimental results obtained at
CEA, the EDSR of electron spins in a double quantum dot. We develop an analytical

11



Chapter 1. Introduction

model validated by tight-binding simulations. We discuss the origin of the unexpectedly
strong spin-orbit interaction.

In chapter 5, we propose a scheme for an electrically-driven electron spin qubit, based
on the coupling with the valley states. We study with simulations the characteristics of
this qubit, give hints for optimization, and assess its feasibility. We compare tight-binding
simulations to a recent experimental result that established a first step for the realization
of this scheme.

In chapter 6, we study a hole spin qubit. In particular we analyze the experimental
measurements of the dependence of the Rabi frequency with the magnetic field orientation.
In order to interpret it, we develop a formalism allowing to separate the Rabi frequency
into two relevant contributions. Finally we propose an interpretation of the results with
k.p calculations.
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Chapter 2

Silicon

Le silicium est devenu ces dernières années un matériau de choix pour l’implémentation
des qubits de spin. Les qubits silicium sont l’un des compétiteurs majeurs pour la course
à l’ordinateur quantique, aux côtés des jonctions supraconductrices et des atomes froids.
Il y a plusieurs raisons à cela. Tout d’abord, le silicium est un matériau bien connu et
massivement utilisé dans l’industrie de la microélectronique, il bénéficie donc d’un savoir-
faire et d’une qualité de fabrication exceptionnels, qui pourraient faciliter l’intégration à
grande échelle des qubits. D’autre part le silicium possède certaines propriétés intrinsèques
très intéressantes pour le calcul quantique. Notamment, le silicium peut être purifié iso-
topiquement en son isotope le plus abondant, le 28Si. Ce dernier ne contient aucun spin
nucléaire, ce qui lui confère de très bonnes propriétés de cohérence, un net avantage sur
les semiconducteurs III-V. Nous présentons dans la première partie du chapitre les pro-
priétés liées à la structure de bande du silicium qui sont pertinentes pour l’information
quantique, en distinguant la bande de conduction (pour les qubits de spin d’électrons) et
la bande de valence (pour les qubits de spin de trous). Dans la bande de conduction il
s’agit en particulier des états de vallée, qui constituent un degré de liberté supplémentaire
pour un qubit, ainsi que du très faible couplage spin-orbite. Au contraire dans la bande de
valence, le couplage spin-orbite est relativement important.

Ces propriétés peuvent être des avantages ou des contraintes pour les qubits de spins en
fonction de la manière dont elles sont exploitées et de l’architecture choisie. Nous présen-
tons dans une deuxième partie du chapitre les différentes architectures utilisées par la
communauté scientifique puis le cas particulier des dispositifs développés au CEA Greno-
ble. Une approche assez répandue est celle proposée par Kane [36] : des électrons sont
liés à des dopants placés de manière déterministe en réseau sous une surface. Sur la
surface sont disposées des grilles qui contrôlent la probabilité de présence sur le dopant
ainsi que les interactions d’échange entre plus proches voisins. Le contrôle du spin d’un
qubit spécifique se fait par l’application d’un champ magnétique oscillant résonant (ESR:
electron spin resonance). Une autre approche consiste à utiliser des grilles métalliques
pour définir électrostatiquement des boîtes quantiques. Une stratégie répandue est alors
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de chercher à manipuler le spin avec un champ électrique, plus local qu’un champ magné-
tique. Pour pallier au faible couplage spin-orbite de la bande de conduction, un couplage
artificiel est en général implémenté via des micros-aimants qui génèrent un gradient de
champ magnétique.

L’approche du CEA est relativement différente. Les dispositifs quantiques utilisés sont
basés sur les technologies du Leti de transistors trigate sur isolant légèrement modifiés.
Il s’agit d’un nanofil gravé sur un substrat de SiO2 avec une grille arrière ("backgate"),
une grille métallique recouvre trois des interfaces du nanofil. Pour obtenir des qubits,
cette géométrie de base est adaptée pour permettre la localisation d’électrons uniques (par
blocage de Coulomb). D’autres grilles peuvent être ajoutées afin de créer des systèmes
de boîtes quantiques couplées. Dans ces dispositifs, la stratégie du CEA est d’utiliser au
maximum les spécificités du silicium pour avoir une architecture simple et donc qui puisse
permettre l’intégration à grande échelle. En particulier l’idée est d’utiliser le couplage
spin-orbite (pour les trous comme pour les électrons) pour contrôler le spin par EDSR
(electric dipole spin resonance).
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Any two-levels quantum system could be used as a qubit. There is indeed in the
literature an incredible zoology of proposals: superconducting junctions, spins in various
semiconductors, photons, trapped ions, and many more [1, 37–42]. Therefore, why does
silicon stand out as a serious candidate?

There is first a pragmatic answer: because it is a well-known material, which benefits
from all the know-how and technological advances of the microelectronics industry. In
particular the control on the quality of materials, on the Si/SiO2 interface, on the lithog-
raphy, should make possible the fabrication of quantum dots in silicon with the desired
properties. The quantum circuits also need to be scalable in order to reach the high
number of qubits needed for error-correction codes, and up to now such high density of
components and interconnections can only be found on a silicon chip. Moreover, by using
a silicon CMOS platform it is in principle possible to co-integrate the qubits with the
classical electronics needed for their control.

Some physical properties also make silicon a good candidate for quantum computing:
the peculiarities of its bandstructure and the fact that its most abundant isotope, 28Si,
has no nuclear spin. First of all, we are going to present the specific properties of silicon,
as a bulk material and in nanostructures. Then, we will outline the different strategies
adopted by the main groups working on silicon spin qubits as well as the particular
approach adopted by CEA.

2.1 Silicon properties

Silicon belongs to group IV semiconductors. It is a crystalline material with the diamond
lattice structure and cubic symmetry. The band structure of bulk silicon is shown in Fig.
2.1, with a zoom on the top of the valence band and the bottom of the conduction band.
Silicon is an indirect band gap semiconductor. The maximum of the valence band is at
the Γ point (k = 0), whereas the minima of the conduction band are closer to the X
points, at |k0| = 0.85×2π/a0, with a0 = 0.5431 nm. The band gap of silicon is Eg = 1.17
eV at T = 0 K.

An important property of silicon is the fact that its dominant isotope, 28Si, does not
have a nuclear spin. Indeed, natural silicon is made of 92 % of 28Si, 3 % of 30Si with also
zero nuclear spins, and only 4 % of 29Si which 1/2 nuclear spins. The hyperfine interaction
is thus very weak in silicon, therefore the coherence times can be very long [44]. Moreover,
silicon can be isotopically purified to 28Si with a residual concentration of 29Si of 50 ppm,
in order to extend further the coherence times [45, 46]. This grants to silicon a major
advantage over III-V semiconductors.

Although we have only discussed electron spin qubits so far in chapter I, it is possible
to choose either electron or holes to make a spin qubit. That is why in the next two
sections we present the properties of silicon in both the conduction and valence bands.
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Figure 2.1: (a) Band structure of bulk silicon. (b) Zoom on the conduction band minimum
and valence band maximum.From Ref. [43].
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Figure 2.2: Iso-energy surfaces of the six valleys of silicon.

We will discuss the bulk characteristics as well as the effect of confinement in quantum
dots.

2.1.1 Conduction band

Because of the cubic symmetry, the conduction band minimum is six-fold degenerate and
these minima are called valleys. They are located at ±k0x, ±k0y, and ±k0z. In the
k-space, the surfaces of constant energy are ellipsoids (Fig. 2.2), because the effectives
masses in each valley are anisotropic (the longitudinal mass is m∗l = 0.98m0, and the
transverse mass is m∗t = 0.2m0). The valley degeneracy may be a problem for quantum
computation, since we need only two well-defined states to encode the quantum informa-
tion in a qubit.

In nanostructures such as quantum dots, the confinement and interfaces reduce the
symmetry and lift this six-fold degeneracy. First, as the effective masses in the conduction
band are anisotropic, a stronger confinement in the z direction shifts the four kx and ky
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Figure 2.3: Schematic of the effect of the confinement and potential on the valley states
and their degeneracy.

valleys well above the two kz valleys (typical splitting is ' 10 meV). Then, the degeneracy
of two kz valleys can be lifted by inter-valley scattering potentials. As these valleys are
distant in k-space, the potential has to vary rapidly along z to couple them [47–49].
Namely, to achieve sizable coupling, the potential has to show significant variations at
the scale of 2 nm along z. Such steep variations can only be produced by dopants, or
abrupt interfaces. The resulting states v1 and v2 are, in a first approximation, bonding
and anti-bonding combinations of the +kz and −kz states. They are separated by an
energy called the valley splitting. Depending on the structure, the valley splitting can
be of the same order of magnitude than the orbital splitting and valley-orbit mixing can
occur. The effects of confinement and abrupt potentials are summarized in Fig. 2.3. For
dopants, the valley splitting reaches a few meV depending on the nature of the impurity.
For interfaces, the valley splitting depends a lot on the electric field [50] and on the atomic
details of the interfaces [51, 52], as we will see in more detail in chapter 5. For Si/SiO2

interfaces the valley splitting can range from a few tens to a few hundred µeV [50,53–57],
and for Si/SiGe heterostructures it is typically a few tens of µeV [58–62].

As opposed to most III-V semiconductors, another particularity of the silicon conduc-
tion band is the fact that is shows a very weak spin-orbit interaction. A reason for this
low spin-orbit is that silicon is a relatively light element, with Z = 14, so the electric field
close to the nucleus is smaller than for heavier atoms. Also, the spin-orbit interaction
couples p orbitals of different nature (pz with px for instance). Yet as the conduction
band minima are located at large k, the p orbitals are separated in energy and cannot be
coupled efficiently by the spin-orbit interaction. Finally, the crystal has centro-symmetry
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which suppresses most of the Dresselhaus spin-orbit effects [63]. In quantum dots, the
symmetry is in general lower than in the bulk, and in particular the central symmetry can
be broken. It has been shown that in certain cases this can lead to a sizable spin-orbit
interaction [64,65].

To summarize, silicon can apparently be the perfect host for an electron spin qubit.
As long as the valley splitting is large enough, and thanks to the very low spin-orbit
interaction, the spin degree of freedom is a very good quantum number. This makes
the spin qubit almost insensitive to electrical noise. As silicon can be purified of nuclear
spins, there will not be magnetic noises either. Therefore electron spin qubits can be
highly coherent [44–46]. However, in that situation the spin can in principle only be
manipulated by magnetic fields. One could also make use of the valley degree of freedom
to encode the quantum information, and make a valley qubit. Indeed there have been
some proposals in that direction [52,66,67]. This kind of qubit is effectively a charge qubit
so it does not benefit from the advantages of the spin qubit, but it can be manipulated
electrically.

2.1.2 Valence band

In the valence band, the situation is similar to most semiconductors. For bulk silicon, near
k = 0, the top of the valence band consists of two bands with different curvatures (the
heavy and light holes), which are degenerate at k = 0. A third band called the split-off
band, is separated from the other two by the spin-orbit splitting energy ∆SO = 44 meV.
Indeed, in the valence band spin-orbit is generally much stronger than in the conduction
band, because it is mostly formed out of bonding linear combinations of p atomic orbitals
which are efficiently coupled by the spin-orbit interaction at k = 0.

In a nanostructure the symmetry is lower than in the bulk. This lifts the degeneracy
between heavy and light holes at k = 0. The resulting states are combinations of heavy
and light holes, which depend on the type of confinement, and also on strain.

Because of the spin-orbit interaction in the valence band, the spin of holes is not a
good quantum number. A hole qubit would be effectively a spin-orbit qubit, built out
of pseudo-spin states {|⇓〉, |⇑〉} split by a magnetic field. As a result, the qubit can be
sensitive to electrical noise, but it can be efficiently manipulated by electric fields.

2.2 Silicon spin qubits.

As we have seen silicon has numerous properties, which can be advantages when making
a qubit or constraints that need to be managed. Accordingly, choosing to exploit some
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Figure 2.4: Kane quantum computer proposal (a) A-gate, which controls the hyperfine
interaction. (b) J-gate, which controls the exchange interaction between two neighboring
dots. Both figures are from Ref. [36].

particular properties instead of others (starting with the choice of electrons or holes)
leads to different strategies for qubit architectures. In the next paragraphs we are going
to describe the major strategies adopted in the silicon qubit community, then the approach
undertaken by CEA.

2.2.1 Possible strategies for silicon spin qubits.

One of the first proposals of quantum computer in silicon was made by Kane in 1998 [36].
It consists of an array of deterministically positioned Phosphorus dopants, under a surface
were a set of gates are patterned, and the electrons are bound to the donors. An out-of-
plane static magnetic field is applied in order to lift the spin degeneracy and define the
qubit states, and an in-plane oscillating magnetic field is applied to drive spin rotations.
In order to address selectively specific qubits, the resonance frequency of each qubit is
controlled. Indeed, the electron spin interact with the nuclear spin of the donor via the
hyperfine interaction, Hen = AS.I, where A is the hyperfine constant, S is the electron
spin and I is the nuclear spin. The hyperfine constant A depends on the probability
density of the electron on the donor nucleus, which is tuned by a gate on top of the
donor ("A-gate"). This leads to a change of the energy splitting of the electron spin
states, so that the A-gates tune the resonance frequency of each qubit. A second set of
gates located in between the dopants tune the exchange interaction between two neighbor
electrons ("J-gate"), thus allowing for two-qubit operations. These two gates and their
effects are depicted in Fig. 2.4. This proposal inspired a lot of experiments on spin
qubits with dopants in silicon, in particular in the UNSW group in Sydney. In particular,
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electrical control of the spin resonance by the A-gate in a continuous microwave magnetic
field has been realized by Laucht et al. [68]. One of the main difficulty of the Kane
proposal is the need for a precise positioning of the dopants, which critically determines
some properties such as the exchange interaction between qubits. Indeed, the valley
states oscillate rapidly in space [69], and the exchange interaction depends on the overlap
between wavefunctions, so that it also oscillates with the vertical position of dopants [70].
The UNSW group has made great technological progress in that sense, using scanning-
tunnelling-microscopy hydrogen lithography [71] as well as precise ion implantation [72].
More recently the idea of coupling a donor to a gate-defined quantum dot has been
revived by the demonstration of coherent coupling between a donor-bound electron and
a quantum dot bound electron, by Harvey-Collard et al. [73], and by some new proposals
derived from Kane architecture [74,75].

Another approach also adopted by many groups is to use only gate-defined quantum
dots without any dopants. A natural way in Silicon is to use the Si/SiO2 interface with a
set of gates defining the potential landscape that traps one electron, as shown in Fig. 2.5.
Some groups are also using Si/SiGe heterostructures, this is notably the strategy adopted
now in the Delft and Wisconsin groups [76, 77]. In this kind of proposal it is in principle
difficult to control the state by spin-orbit driven EDSR as for III-V quantum bits. Two
strategies are then explored by the community: electrical spin resonance (ESR), with ded-
icated current lines [78] (also shown in Fig. 2.5), or EDSR driven by a slanting magnetic
field created by a micromagnet as first demonstrated by Pioro-Ladrière et al [25], and then
adopted by the Delft and Tarucha groups with recent excellent results [75,79,80]. Either
approach calls for particular care in the design of ESR lines or micromagnets, especially
when it comes to scaling up the devices [81]. Finally, another possibility explored is to
encode the quantum information in the states of two or three entangled electron spins.
These are the singlet-triplet (two electrons in two dots) [19,82], or the hybrid qubit (three
electrons in two dots) [83,84].

Finally the last important requirement for quantum computation is the ability to per-
form two-qubits operations. We have already discussed in Kane’s proposal the use of the
exchange interaction, which is up to now the most implemented scheme [85,86]. Another
possibility that has recently emerged is to couple two qubits through a superconductor
resonator using quantum electrodynamics (QED), as first demonstrated by Mi et al. [35].
This allows to envision a new long-distance coupling scheme that could be co-implemented
with nearest-neighbor coupling.

There are many degrees of freedom in silicon devices, resulting in a wide variety of
strategies to make a spin qubit. The groups working in this subject are trying to make
the best out of many worlds. We will see in the next paragraph that CEA approach is
quite original on several points.
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Figure 2.5: Silicon spin qubit. The set of gates define the quantum dot as well as a
single electron transistor for readout. On the left, a microwave line is used to create an
oscillating magnetic field for spin control. From Ref. [78]

.

2.2.2 Silicon spin qubits in CEA.

In CEA Grenoble there are laboratories of condensed matter and low temperature physics
at INAC, and of microelectronics at Leti. Thus, there are historical reasons that guided
the technological choices that have been done for quantum bits. In the following, we
present the development of qubit devices in CEA and what make them original with
respect to the previous approaches we have presented.

In the race for Moore’s law, the technology of silicon nanowires has attracted a lot
of attention. Especially at CEA Leti, great progress has been made on the fabrication

Figure 2.6: 3D schematic of a typical trigate silicon MOSFET from Leti. Silicon is in red,
SiO2 in green, HfO2 in blue, and the metallic gate is in gray.

21



Chapter 2. Silicon

of the so-called silicon-on-insulator (SOI) trigate transistor. It consists in a nanowire,
first defined on a SOI substrate by standard optical lithography, then chemically etched
in order to achieve smaller dimensions (down to ' 10 nm). The nanowire thus lies on a
thick SiO2 layer, the BOX, with a backgate electrode below. The ends of the nanowire
are raised and degenerately doped in order to form the source and drain contacts. A gate
is deposited on top of the nanowire, and separated from the source and drain contacts
by Si3N4 spacers. The gate is used to define a channel in which the density of electrons
(or holes) is controlled. The metallic gate is separated from the Si channel by two oxides:
a thin (< 1 nm) SiO2 oxide layer and a thicker (' 2 nm) HfO2 layer which provides a
more efficient gate coupling thanks to its higher dielectric constant. The gate is covering
three out of the four sides of the nanowire, thus giving an excellent electrostatic control
over the channel. The SiO2 BOX limits the leakage current, and the backgate offers
an additional electrostatic knob on the system, for instance allowing for a tuning of the
threshold voltage (the limit between the "on" and "off" state of the transistor). These
assets make the trigate devices suitable for low-power applications.

Given the small dimensions of these devices, quantum simulations are needed to ex-
plain the physics and help the design. In particular, in this group, the quantum transport
has been modeled using Non-Equilibrium Green’s Function. During my master thesis
and at the beginning of my PhD I have studied the access resistance under low and high
electric fields [87, 88]. This study is not part of the present manuscript which focuses on
quantum bits, but it gave us some insights on their quantum counterparts. In particular,
comparison between mobility calculations and measurements allowed us to obtain the
surface roughness parameters on the facets of the nanowires [87,89], that we used for the
modeling of the qubit devices.

The approach of CEA is to divert these SOI trigate devices in order to create quantum
bits that would be more compact, more reproducible, and consequently more scalable.
First, the geometry needs to be modified to make the device operate in the single-electron
(or hole) regime. Then, we need a way to measure the spin state and to manipulate it
locally, and, finally, a scalable architecture incorporating two-qubit operations. We detail
all these points is the following.

A key ingredient for the control of single charges is the design of the spacers (between
the source/drain contacts and the gate). Indeed, these spacers control the tunnel barriers
between the channel and source/drain reservoirs. If they are long enough, they lead at
low temperature to the formation of a quantum dot under the gate in the regime of
Coulomb blockade. Acting on the gate potential then controls the number of electrons in
the quantum dot. Fig. 2.7 shows an example of device, as well as the measured Coulomb
oscillations.

A second step is to introduce another gate in this system, in order to create double
quantum dots. For instance in Fig. 2.8 there are two MOS gates in series, so that
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2.2. Silicon spin qubits.

Figure 2.7: (a) MOSFET transistor with long spacers, isolating a quantum dot under
the gate, capacitively coupled to the source and drain contacts. (b) Measured Coulomb
oscillations at 4.2 K (black curve), and at 400 mK (blue curve). Adapted from Ref. [90].

Figure 2.8: (a) 3D schematic of a double quantum dot sample. (b) Top view of the device.
From Ref. [93].

one quantum dot is formed under each gate, and they are tunnel coupled. The double
quantum system is ideal to study spin quantum bits thanks to the Pauli Spin blockade:
the current can only flow if the spins in the two dots are not parallel. A measure of the
current thus gives a measure of the spin, and this was demonstrated for electrons [53,91]
as well as for holes [92, 93]. However the current-based detection of Pauli spin blockade
is not suited for quantum computation, which requires single-shot readout. Therefore a
method for single-shot detection of charge transfer, called gate-reflectometry, is currently
implemented [94–96].

At this point we can isolate a single charge and measure its spin state, so that a
scheme of spin manipulation is needed to perform single-qubit operations. In order to
keep the compactness and scalability of the MOS devices, the main approach of CEA is
to perform electrical manipulation via EDSR. To that end, p-type samples have been used
to trap holes in the double quantum dot. Then the application of a microwave signal on
one of the gates, with a frequency resonant with the Zeeman splitting, leads to EDSR.
Maurand et al. have demonstrated that way the first hole spin qubit [93]. Fig. 2.9 show
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Chapter 2. Silicon

Figure 2.9: Rabi oscillations for different microwave powers. From Ref. [93].

the Rabi oscillations they measured. On that sample, Ramsey measurements were used
to estimate T ∗2 = 60 ns, however since this article much longer coherence times and larger
Rabi frequencies have been achieved. More surprisingly, Corna et al. [53] managed to take
advantage of the small spin-orbit interaction in the conduction band to perform EDSR
on electron spins in a n-type double quantum dot, using a similar set-up. In this thesis
we will study the experiments of spin manipulation on both electron and holes.

Another way of creating double quantum dots has also been implemented in order to
have a more scalable architecture than two dots in series. A fabrication process has been
developed to create gates in a geometry called ’face-to-face’ allowing to localize distinct
quantum dots in the two corners of the section of the nanowire [97, 98], as shown Fig.
2.10. These corner quantum dots, confined near two interfaces, are a unique specificity of
these devices. Pauli spin blockade between the two corners can be detected by gate re-
flectometry, as demonstrated by Betz et al. [94]. Finally, by duplicating these face-to-face
devices along a nanowire, we obtain the structure shown Fig. 2.11, currently under devel-
opment. Each qubit dot is facing its measurement dot. Moreover, two-qubit gates can be
implemented by tuning the exchange interaction between neighboring qubits. The goal is
to use this architecture to demonstrate a prototypical quantum algorithm implementation.

The qubit architecture studied at CEA is original in many ways. First, the use of
nanowires on silicon on insulator substrates leading to a 2D structural confinement is
different from the quantum well and planar MOS devices. This allows for a much more
compact structure: for a single qubit, two gates are sufficient for localization, control and
measurement (way less than the planar device of Fig. 2.5 for instance). Then, the use
of hole spin states is also peculiar and was only recently reproduced by another group in
a germanium nanowire [99]. To sum up, the particularity of CEA is to work on devices
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Figure 2.10: (a) Top view of a face-to-face device. The quantum dots approximate loca-
tions are shown by red lines. From Ref. [97]. (b) Schematic of the cross-section of the
device and set-up. The position of the wavefunctions into the corner states is outlined in
pink. Adapted from Ref. [94].

a)

Measurement

Exchange

EDSR

b)

Figure 2.11: (a) SEM tilted top view of an array of face-to-face devices on a single
nanowire. Schematics of the dots approximate position are given in red for the qubit
dots and in blue for the measurement dots. (b) SEM top view with same color code.
The possible operations (spin measurement, single spin control via EDSR, and exchange
interaction) are outlined in white.
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Chapter 2. Silicon

really close to MOSFET devices in order to facilitate the transition towards large scale
integration.

In this thesis, we will focus on the modeling of the electrical control of single spins in
silicon. The measurement of EDSR in an electron double quantum dot is theoretically
studied in chapter 4. We show in particular that EDSR is enabled by the particular
symmetry of the corner states. These results are used in chapter 5 to investigate a new
scheme for electrical control of a spin qubit, which takes advantage of the backgate of the
SOI devices. In chapter 6 we study the spin manipulation in a hole double quantum dot,
and in particular the anisotropy of the Rabi frequency with the magnetic field orientation
as measured in Ref. [100].
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Chapter 3

Numerical Methods

Dans ce chapitre nous présentons les différentes méthodes numériques (implémentées dans
le code TB_Sim développé au CEA Grenoble) qui sont utilisées dans les chapitres suiv-
ants pour l’étude des qubits de spins. Nous prenons comme exemple un dispositif typ-
ique développé au CEA, constitué d’un nanofil recouvert partiellement par deux grilles
métalliques se faisant face. Partant de la géométrie 3D du dispositif, il est possible de
calculer le potentiel dans le système en résolvant numériquement l’équation de Poisson, et
ce en incluant éventuellement des interfaces rugueuses et des charges ponctuelles comme
des dopants. Ce potentiel est ensuite utilisé pour le calcul des premiers états électroniques.
Ceci peut être réalisé via une méthode atomistique, la méthode des liaisons fortes, ou bien
par des méthodes de milieu continu, les méthodes k.p. Une fois obtenues les fonctions
d’onde et les énergies, il est possible de calculer les propriétés multi-électroniques du sys-
tème avec la méthode d’interaction de configuration. Nous donnons une application de
cette méthode avec le calcul de l’énergie de charge d’une paire de dopants Bore. Finale-
ment, partant des états à une ou plusieurs particules, il est possible de calculer l’évolution
des états en résolvant l’équation de Schrödinger dépendante du temps.

Le but de ces simulations est d’avoir une description aussi réaliste que possible des
dispositifs étudiés, afin de permettre des comparaisons précises avec les mesures expéri-
mentales. Valider ces comparaisons est indispensable pour pouvoir faire des prédictions
théoriques et des propositions d’expériences avec les simulations. D’autre part les simu-
lations seront utiles pour la construction et la validation de modèles analytiques dans les
prochains chapitres. Le couplage entre les calculs de structure électronique et les simula-
tions dépendantes du temps donnent la possibilité d’effectuer des expériences numériques
sur le qubit avec un accès à toutes les observables.

27



Chapter 3. Numerical Methods

In this chapter we introduce the numerical methods that will be used in chapter 4, 5,
and 6. They are all implemented in the TB_Sim code developed at CEA Grenoble. The
idea of these simulations is to describe the 3D geometries of the samples (which are more
complex than the usual planar devices), to compute the single particle electronic struc-
ture, to deal with many-particle interactions if needed, and to perform time-dependent
simulations with these inputs. We will use all these methods to characterize single qubits.
Two-qubit gates may also be studied with these methods, however going beyond two
qubits would be numerically difficult. The methodology we present here is hence adapted
to the study of the qubit itself whereas the simulation at the scale of the quantum circuit
must be done by other means.

In this chapter, we are first going to present the simulation workflow used to describe
the CEA devices, then we will give a short explanation of each method. In order to
illustrate this description we give the results of the typical numerical calculation on a
representative device, a silicon nanowire on a SOI substrate, with gates in the "face-to-
face" geometry presented in the previous chapter.

3.1 Simulation workflow

Let us begin with an overview of the toolbox of the TB_Sim code, and of the logical
sequence of possible simulations. This is summarized in Fig. 3.1. We start from an
accurate 3D description of the device. We compute the potential in this device with
a Poisson solver. Then the electronic states in this potential are calculated using two
possible methods: the semi-empirical tight-binding method (atomistic description), or
the k.p method (continuous medium description). After that, we can, if appropriate,
compute the many-particles states using the configuration interaction method. Finally
the single or many particles states can be used as inputs for time-dependent simulations.
At each step, we can postprocess the data for analysis. In the next paragraphs we are
going to present all these steps in more detail.

3.2 Device modeling

We are going to illustrate these different steps on a "face-to-face" device (called that way
because two gates are facing each other). It is similar to the devices that will be studied
throughout this thesis. The device is shown in Fig. 3.2 with the chosen {x,y, z} axes. It
consists in a [110]-oriented silicon nanowire with width W = 40 nm and height H = 10
nm, which lies on a SiO2 buried oxide layer (BOX) with thickness tBOX = 25 nm. The
SiO2 BOX lies on a thick Si substrate (not shown) which can be used as a back gate.
In the following the backgate is biased at Vbg = 0 V. Moreover, two metallic gates cover
partially the nanowire. The gate length (in the x direction) is Lg = 30 nm and the two
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Geometrical parameters, bias 
voltages

Poisson solver

3D potential 𝑉(𝒓), responses 𝐷𝛼(𝒓)

𝑉(𝒓), 𝐷𝛼(𝒓)

k.p or TB  solver

Ψ𝑛(𝒓), 𝐸𝑛

Ψ𝑛(𝒓)

Configuration interaction

n-particles energies and states

Ψ𝑛(𝒓)

Time-dependent solver

Ψ(𝑡)

or

postprocessing

postprocessing

postprocessing

Figure 3.1: Workflow of possible simulations. The solvers are in blue, their inputs are in
green and their outputs are in red.
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Figure 3.2: Geometry of the "face-to-face" device. The silicon nanowire is in yellow, HfO2
is in light gray, SiO2 is in dark blue and the metal gates are in light blue. The buried
SiO2 lies on top of a Si substrate, not shown.

gates are separated by 20 nm (in the y direction). The two gates are biased at (Vg1, Vg2).
The metallic gates are separated from the nanowire by one layer of SiO2 (typical thickness
tSiO2 ' 1 nm) and one layer of HfO2 (typical thickness tHfO2 ' 2 nm). The whole device
is embedded in Si3N4. We may introduce sources of local disorder, such as interface
roughness, dopants, or trapped charges at the interface between the materials. This will
be illustrated in the next section.

The dimensions of the structure can be arbitrary as well as the number and position
of top gates.

3.3 Potential

The potential V (r) in a continuous medium with a charge density ρ(r) and a dielectric
constant ε(r) is the solution of the Poisson equation:

∇[ε(r)∇V (r)] = −4πρ(r) (3.1)

To be solved numerically, this equation is spatially discretized on a mesh. In our case
this 3D mesh is a product of three 1D inhomogeneous meshes. The density of the mesh
is increased in the region of fast variations of the potential: the silicon nanowire (typical
mesh step down to 0.2 nm), and the oxides between gates and silicon. It is relaxed in the
region of slow variations of the potential, as in the buried oxide. We assume dielectric
constants εSi = 11.7, εSiO2 = 3.9, εHfO2 = 20, and εSi3N4 = 7.5 throughout the thesis.
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3.3. Potential

Eq. 3.1 is discretized using the method of the finite volumes. It consists in dividing the
space in small volumes centered on the nodes of the mesh. Each node i is characterized
by a potential Vi, a charge Qi and a dielectric constant εi. We then write Gauss theorem
on each elementary volume assuming that the electric field is constant on each face. This
leads to a system of equations of the form:

AV = 4π(Q+Qb) (3.2)

where Qb, Q, are the vectors which describe respectively the boundary conditions and
charge, V is the vector of the unknown potentials, and A is a symmetric matrix. Typically
Qb accounts for the fixed gate potentials and Q accounts for the dopants or individual
charges. Finally the linear system of Eq. 3.2 is solved with the conjugate gradient
method [101], and as a result we obtain the potential V (r) on the mesh. We apply
periodic boundary conditions along the x direction (wire axis).

Moreover, as we are interested in this thesis in electrical manipulation, we will need
the response of the system to an excitation on the gate. This is described by the gate
response potentials Dα. Dα is the electrostatic response of the system to an excitation
on gate α: Dα(r) = ∂V (r)

∂Vα
, the partial derivative of the total potential V (r) in the system

with respect to the gate potential Vα (α spans all the gates, including the backgate). In
practice, as the electrostatics of the system is linear, we compute Dα(r) by solving the
Poisson equation with Vα = 1 V and all the other gates grounded.

As an illustration we have computed the potential in the face-to-face device, with
various sources of disorder usually considered in silicon devices. The results are plotted in
Fig. 3.3 with Vg1 = 0.2 V, Vg2 = 0.1 V. In the calculations of b), c), d), we have introduced
surface roughness (SR). The rough interface is generated from the target autocorrelation
function C(r, r′) = 〈∆(r),∆(r′)〉 ' ∆2

SR exp[−|r− r′|2/Λ2
SR] [102,103], where r, r′ are the

2D position vectors in the interface plane, ∆(r) is the displacement of the interface, ∆SR

is the rms roughness, and ΛSR is a correlation length. Here we took ∆SR = 0.35 nm and
ΛSR = 1.5 nm. In c) we have placed a dopant with charge +1 at (x, y, z) = (0, 9, 0) nm. In
d) we have placed a distribution of so-called RCS (Remote Coulomb Scattering) charges at
the SiO2/HfO2 interface, with a density nRCS = 1013 cm−2. Room-temperature mobility
measurements indeed suggests the presence of such charges in the gate stack [104].
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No disordera) b)

c) d)

SR

SR+dopant SR+RCS

Figure 3.3: Cross-section of the calculated potential in the yz-plane at x = 0, for different
cases. (a) Perfect device without disorder. (b) Including surface roughness (SR). (c)
Including SR and one dopant with charge +1 at (x, y, z) = (0, 9, 0) nm. The color scale
is the same than (a), with open scale. (d) Including SR and positive RCS charges with
surface density nRCS = 1013 cm−2. The color scale is the same than (a), with open scale.
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3.4. Electronic structure

3.4 Electronic structure

The next step in this simulation flow is to use the calculated potential as input for the
electronic structure calculations. There are two kinds of methods available. The first kind
is an atomistic approach, the semi-empirical tight-binding method [105], which consists
in a development of the wavefunction in a basis of atomic orbitals. The second kind
are continuous method, such as the effective mass and k.p methods [106], which are
approximations of the band structure at the top of the valence band or at the bottom of
the conduction band. We will detail these two methods in the following.

3.4.1 Atomistic method: tight-binding

The semi-empirical tight-binding method (TB) consists in writing the electron or hole
wavefunctions as linear combinations of atomic orbitals [105,107,108]:

|Ψ〉 =
∑
iα

ciα|φiα〉 (3.3)

where i = {1..n} index the atoms, α = {1..m} index the atomic orbitals, and φiα is
the atomic orbital α centered on atom i. The φiα can be chosen orthogonal. Then the
Scrödinger equation takes a matrix form:

HTB|Ψ〉 = ε|Ψ〉 (3.4)

where |Ψ〉 is the vector of the coefficients ciα and ε is the corresponding eigenvalue. HTB

can be represented as a N ×N matrix, with N = nm:

HTB =
∑
iα

εiα|φiα〉〈φiα|+
∑
iα,jβ

tiαjβ|φiα〉〈φjβ| (3.5)

where εiα is the energy of the orbital α of atom i, and tiαjβ is the hopping integral
between |φiα〉 and |φiβ〉. The number of orbitals per atom depends on the type of atom.
In silicon, we use the sp3d5s∗ model that describes the s, p, d orbitals of the outer shell of
silicon, and include an extra s∗ orbital. Furthermore, as the orbitals are localized on the
Si atoms, we consider only the interactions between first nearest neighbor atoms. That
way the matrix HTB is sparse, and can be efficiently stored and diagonalized numerically.
The TB parameters (εiα, tiαjβ) are adjusted to reproduce the whole bulk band structure
calculated with advanced ab initio methods, such as the many-body GW approximation.
The comparison between the band structure of bulk silicon calculated with the GW and
TB methods was given in Ref. [109] and is shown in Fig. 3.4. Moreover, a slowly varying
potential V (r) can be added to the diagonal of the tight-binding Hamiltonian (εiα →
εiα+V (Ri)). In our case this potential is the output of the Poisson solver. The spin-orbit
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Figure 3.4: Band structure of bulk silicon in the sp3d5s∗ TB and GW approximations.
From Ref [109].

interaction needs also to be included. The general Hamiltonian for SO is:

HSO = ~
2m2

0c
2 (∇Vc(r)× p).S (3.6)

where m0 is the electron mass, c is the speed of light, p is the momentum, and Vc(r) is
the potential in the crystal. SO is efficient only when the electric field is strong, that is
near the nuclei. In that region we can make the assumption that the potential is central,
so that ∇Vc(r) = 1

r
dVc(r)

dr r. Using also that r×p = L, Eq. 3.6 then becomes for one given
atom:

HSO = ~
2m2

0c
2

1
r

dVc(r)
dr L.S (3.7)

The effects of SO are most important on the p orbitals involved in the sp3 bonds of silicon.
We may therefore rewrite Eq. 3.7 for p orbitals (after summation on the atoms) as:

HSO = 2λSO
∑
i

Li.S (3.8)

where Li are the matrices of the angular momentum and λSO is a constant.

The methodology we have described up to now is valid at zero magnetic field. In
presence of a magnetic field B, one has to deal with the following effects: first the coupling
between B and the spin is included via the Zeeman interaction Hz = g0µBB.S, where
g0 = 2.0023 is the bare Landé gyromagnetic factor, µB is Bohr’s magneton, and S is the
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Figure 3.5: Cross-section of the squared TB wavefunction of an electron in the yz-plane
at x = 0, calculated with the potential of Fig. 3.3b. The iso-probability surfaces are in
gray. The Si atoms are the black dots, and the same colors have been used for the other
materials as in Fig. 3.2.

spin vector. Second, the coupling between B and the orbital part of the wavefunctions
is described by the substitution p → p + eA. Conveniently, in tight-binding this can
be treated by Peierls substitution [110], i.e the orbital effect of the magnetic field can be
described by the following transformation on the hopping elements:

tij → tij exp
[−ie
h

∫
A(r′)dr′

]
' tij exp

[−ie
h

(Rj −Ri)
1
2(A(Ri) + A(Rj))

]
(3.9)

where
∫
A(r′)dr′ is the integral of the vector potential along the hopping path (from the

site at position R to the one at position R′). The approximation of the integral is valid
as long as A(r) is slowly varying.

In a nanostructure such as our nanowire, the dangling bonds at the surfaces are satu-
rated with pseudo-hydrogen atoms1. Then we solve numerically Eq. 3.4 to obtain |Ψi〉 and
εi for the first few conduction and valence band states using an iterative Jacobi-Davidson
eigensolver [112, 113]. Once the states are converged, we can compute the matrix ele-
ments 〈Ψi|Dα|Ψj〉 of the response potentials Dα, and the matrix elements of other useful
observables such as the position and spin operators.

An example of such simulation is given in Fig. 3.5, for a face-to-face device with
surface roughness. At bias voltage bias (Vg1, Vg2) = (0.2, 0.1) V, the electron is confined
in the top left corner of the nanowire, which is typical of this kind of device.

3.4.2 Envelope function methods: effective mass and k.p

In this paragraph we are going to describe the family of k.p methods, insisting in particular
on the 6-bands k.p scheme that will be used to describe holes in chapter 6. We will start

1The choice of modeling the interfaces by pseudo-hydrogen atoms can be discussed, however we used
also the effective oxide model of Ref. [111] which gave similar trends in our calculations.
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by giving the general ideas of the k.p methods
For electrons in a periodic crystal, the Hamiltonian reads:(

p̂2

2m0
+ Vc(r)

)
φ(r) = Eφ(r) (3.10)

where Vc(r) is the periodic potential of the crystal, and p̂ = −i~∇. According to Bloch’s
theorem, the eigenstates can be written as the product of a plane wave and a Bloch
function which has the periodicity of the lattice:

φnk(r) = eik.runk(r) (3.11)

where n indexes of the bands. Injecting Eq. 3.11 into Eq. 3.10 leads to the following
equation for the unk(r)

1
2m0

(
p̂2 + ~2k2 + 2~k.p̂

)
unk(r) = Enkunk(r) (3.12)

The idea is then to treat the k.p̂ term as a perturbation. This gives an expression for
the unk and Enk as a function of the unk0 and of Enk0 at the vicinity of k = k0. For the
conduction band, the simplest flavor of this method is the effective mass approximation
(EMA). In the EMA, for a direct band gap semiconductor, we consider only one band,
and the resulting dispersion relation is parabolic:

E(k) = E0 + ~2k2

2m∗ (3.13)

where m∗ is the isotropic effective mass, which can be expressed as a function the matrix
elements of the p̂ operator between the unk0 . Moreover, if we add an external potential
V (r) varying slowly compared to Vc(r), we may write the eigenstates as:

Ψn(r) = Φn(r)unk0(r)eik0.r (3.14)

where Φn(r) is the envelope function, also slowly varying compared to unk(r). The equa-
tion for Φn(r) can be obtained by substitution k→ −i∇ in Eq. 3.13. In the EMA,

H = E0 −
~2

2m∗∇
2 + V (r) (3.15)

For the conduction band of silicon, there are six valleys at |k| = 0.85 × 2π/a0, with
anisotropic effective masses. Considering that the six valleys v are uncoupled, and includ-
ing the anisotropic effective masses, the EMA Hamiltonian of each valley reads:

Hv(r) = −~2

2

(
1
m∗vx

∂2

∂x2 + 1
m∗vy

∂2

∂y2 + 1
m∗vz

∂2

∂z2

)
+ V (r) (3.16)
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where m∗vi is the effective mass of valley v in the direction i. To be solved numerically,
this Hamiltonian is discretized on a finite difference mesh. An advanced version of this
model is the 2-bands k.p model which couples the valleys at ±k0 [114].

Unlike the conduction band, the valence band of silicon cannot be approximated by
a one or two-bands model. The heavy-hole and light-hole bands are degenerate at the
Γ point, and the split-off band is very close. At k = 0, the unk can be mapped onto
|J,mJ〉 the eigenstates of the operators J = L + S and Jz. |32 ,±

3
2〉 are the heavy-holes

states, |32 ,±
1
2〉 are the light-holes states and |12 ,±

1
2〉 are the split-off states. Therefore,

in order to describe the valence band properly around the Γ point we have to use a
6-bands k.p model. In bulk silicon, the 6-bands k.p Hamiltonian [115] reads in the
{unk} = {|32 ,+

3
2〉, |

3
2 ,+

1
2〉, |

3
2 ,−

1
2〉, |

3
2 ,−

3
2〉, |

1
2 ,+

1
2〉, |

1
2 ,−

1
2〉} Bloch functions basis set [116]:

H6kp = −
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√
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√
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(3.17)

where:

P = ~2

2m0
γ1
(
k2
x + k2

y + k2
z

)
(3.18a)

Q = ~2

2m0
γ2
(
k2
x + k2

y − 2k2
z

)
(3.18b)

R = ~2

2m0

√
3
[
−γ3

(
k2
x − k2

y

)
+ 2iγ2kxky

]
(3.18c)

S = ~2

2m0
2
√

3γ3 (kx − iky) kz . (3.18d)

kx, ky, kz are the components of the wave vector in the axes of Fig. 3.2, γ1, γ2 and γ3

are the Luttinger parameters, and ∆ is the spin-orbit coupling parameter. In silicon,
γ1 = 4.285, γ2 = 0.339, γ3 = 1.446 and ∆ = 44 meV. Again if we add a slowly varying
potential, we can write the eigenstates as:

Ψn(r) =
∑
n

Φn(r)unk0(r)eik0.r (3.19)

where Φn(r) are the envelope functions. The equations for the envelope functions are
obtained after the substitution k→ −i∇ and are discretized on a finite differences mesh.
Periodic boundary conditions are applied along the wire axis x. Hard wall boundary
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Figure 3.6: Iso-surfaces of the squared wavefunction of a hole obtained from 6-bands k.p
in the yz-plane at x = 0. The same colors have been used for the materials as in Fig. 3.2.

conditions are applied at the surface of the wire (the wave function does not penetrate
in the oxides nor in Si3N4). As for the treatment of the magnetic field, the effect of the
potential vector A on the envelope functions is included through Peierls substitution as
done in tight-binding [110]. The effect of the magnetic field on the Bloch functions and
spin is described by the following Hamiltonian [117]:

HBloch = −(3κ+ 1)µBB · L + g0µBB · S (3.20)

where L is the orbital angular momentum of the Bloch function, S its spin, and κ = −0.42
in silicon. The HBloch matrices are given in appendix A. Finally, the eigenstates are once
again computed with an iterative Jabobi-Davidson eigensolver [112, 113]. As for TB, we
then compute the matrix elements 〈Ψi|Dα|Ψj〉 from the response potentials Dα.

As an illustration this methodology for the 6-bands k.p model is applied to the face-
to-face device with surface roughness, with negative bias (Vg1, Vg2) = (−0.2,−0.1) V, in
order to confine a hole state. A cross section of the squared wavefunction is plotted Fig.
3.6, showing the confinement in a corner state, as for electrons.

3.4.3 Comparison of tight-binding and k.p

We have presented two very different methods for the calculations of the electronic states
in the system. What are the strengths and weaknesses of each method?

To begin with, tight-binding is a method that provides a faithful description of all
bands on a large energy range hence is presumably more accurate in strongly confined
systems. In particular, in the conduction band, it describes the valleys and spin-orbit
interaction without the need for extra empirical terms in the Hamiltonian. Moreover, TB
provides an atomistic description of interfaces and dopants. The main drawback is that it
is computationally expensive: the complexity is at best O(n), for n atoms, which means
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Figure 3.7: Tunnel coupling between the two dots of the face-to-face device as a function
of Vbg, calculated using TB and EMA.

O(d3) with d the typical lateral dimension of the system.
On the other hand, k.p gets rid of the underlying atomic lattice, so is less adapted

to the study of dopants for instance. In the conduction band, the spin-orbit interaction
can only be treated by adding extrinsic Rashba and Dresselhauss Hamiltonians with
additional empirical parameters. However, in the valence band, the spin-orbit interaction
is well captured by the 6-bands k.p model. Moreover, the envelope function formalism is
easier to use in analytical models. From the numerical point of view, k.p is more tractable
than TB, as it is discretized on a mesh which can be adapted to the structures.

Consequently, in the following we use the TB method to study electrons in chapters 4
and 5 in order to have a good description of valley and spin-orbit couplings. We will use
the 6-bands k.p model in chapter 6, which is dedicated to holes, because it provides an
accurate enough description at a much lower cost than TB.

Since both methods should give an accurate description of the envelope functions in
weakly confined structures, it is interesting to compare them on a particular calculation,
where only the envelope is expected to matter. To that end we have computed the tunnel
coupling t between the two corner dots of a face-to-face device as a function of the backgate
voltage [98] (contrarily to previous examples, this system has a SiO2 BOX of 145 nm).
When Vg1 = Vg2, the first states are the bonding and anti-bonding combinations of the
ground states of each isolated dot. Then the difference in energy between the bonding
and anti-bonding states is to first order 2t. We extract t as a function of Vbg for electron
states using the tight-binding and EMA methods. The results are plotted in Fig. 3.7
and show a very good agreement. This figure also shows that the tunnel coupling can be
tuned over several order of magnitude by the electrostatic confinement.
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Figure 3.8: Illustrations of a few possible configurations for two-electrons states and their
corresponding Slater determinants.

3.5 Many-particles interactions

In our systems, the interactions between two qubits, the Pauli spin blockade, or the ef-
fect of the dot’s inner electrons (if there are more than one electron in the dot) on the
single qubit properties, are all problems that require the description of many-particles
interactions. These become too complex very fast with the increasing number of parti-
cles. For small numbers of electrons (2 to 4), we use the full configuration interaction
method (CI) [118]. The idea of CI is to write the n-particle wavefunctions Ψnp as a linear
combination of Slater determinants of the single-particle states.

|Ψnp〉 =
∑
i

ci|Di〉 (3.21)

Each Slater determinantDi correspond to one possible configuration i.e a given occupation
of single particle states. A few configurations and their determinants are given in Fig. 3.8.
In full CI, we consider all the possible excitations from a set of p single particle states,
so for n particles there are

(
p
n

)
Slater determinants in the basis. The Hamiltonian then

reads:
H|c〉 = ε|c〉 (3.22)

where |c〉 is the representation of |Ψnp〉 in the basis {|Di〉}. H features the Coulomb
integrals defined by:

Uijkl =
∫
φ∗i (r′)φj(r′)W (r′, r)φ∗k(r)φl(r)drdr′ (3.23)

withW (r, r′) the potential created at r′ by a charge at r. They are calculated numerically
with the Poisson solver using the single particle wavefunctions. The diagonalization of H
thus provides the many-particles energies and the coefficients ci. Because of the size of
the Slater determinants basis is

(
p
n

)
, this method has a very high numerical cost even for
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Figure 3.9: Charging energy of states bound to a cluster of two Boron impurities as a
function of the distance between them.

a few number of particles.

The current implementation of the method could be improved to enable the descrip-
tion of higher number of particles, for instance to treat the case of a single electron which
carries the quantum information, coupled to the dot’s inner electrons. To that end we
could choose a specific subset of excitations in the Slater determinants.

This method will not be used in the following chapters, which focus on the electrical
manipulation of single electrons or holes. However it has been used in some preliminary
studies. For instance, in Ref. [92], we have used it to explain the large charging energies
observed for the first hole states (up to 70 meV). Here the charging energy is the energy
cost when going from one hole to two holes in the dot. The device was doped with Boron
atoms, with a high probability of having two dopants closer than 2.5 nm from each other.
We used the CI method on top of TB calculations to compute the charging energies of
two-particles hole states bounded to cluster of two Boron impurities. The dependence of
the charging energy with the distance between dopants is shown Fig. 3.9. According to
these calculations, the measured charging energies are compatible with states bound to
two dopants distant of ' 2 nm. Assuming a random distributions of Borons, we have
actually estimated that there was a 95 % chance to have two dopants closer than 2.5 nm
in such devices.
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3.6 Time dependent simulations

In this part we want to describe how the states (computed with one of the previous
method) evolve in time when electric signals are applied on the gates. For that purpose,
we need to solve the time-dependent Schrödinger equation:

H(t)|Ψ(t)〉 = i~
∂

∂t
|Ψ(t)〉 . (3.24)

We introduce H0(V0) the static Hamiltonian at a reference bias point V0 ≡ {V 0
α }, with V 0

α

the potential applied on gate α (including the backgate), and δVα(t) = Vα(t)− V 0
α . Then

we can expand H(t) = H[Vα(t)] to first order:

H(t) = H[V 0
α + δVα(t)] (3.25a)

= H[V 0
α ] +

∑
α

δVα(t)∂Vtot

∂Vα

∣∣∣∣∣
V 0
α

(3.25b)

= H0(V0) +
∑
α

δVα(t)Dα (3.25c)

As in section 3.3, Dα = ∂Vtot(r)
∂Vα

|V0 is the derivative of the total potential Vtot(r) with
respect to gate α. Eq. 3.25 is exact if the electrostatics is linear with respect to all Vα,
which is the case in our simulations.

We solve this equation in the basis of the N lowest eigenstates of the Hamiltonian
H0(V0). H0(V0) is therefore diagonal in this basis set, and all matrix elements of all Dα

are precomputed in the tight-binding or k.p calculations. We sample the control signal
δVα(t) on a regular grid with time step δt. Assuming that the δVα(t) vary slowly enough
at the scale of δt, Eq. 3.24 can be integrated as follows:

|Ψ(t+ δt)〉 = exp
[
−iδt

~
H(t+ δt/2)

]
|Ψ(t)〉 (3.26)

with H(t + δt/2) = [H(t+) + H(t + δt)]/2. The evolution operator exp(−iHδt/~) needs
to be computed at each time step. This can be done from an exact diagonalization of the
N ×N matrix H(t+ δt/2), which can be numerically expensive. In our case, we expand
the evolution operator as a fast-converging series of Chebyshev polynomials [119]. The
use of Chebyshev polynomials is faster than exact diagonalization and ensures a uniform
convergence over the whole spectrum of H.

To illustrate this method we use again the face-to-face device. The reference bias
applied on the gate is V0 = {Vg1, Vg2} = {0.1, 0.1} V. We apply a sinusoidal signal on gate
1 in order to drive dot 1 - dot 2 transitions. Namely, we apply δVg1(t) = Vac sin(2πft),
with Vac = 15 mV and f = 5 MHz. We solve the time-dependent Schrödinger equation
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Figure 3.10: Signal on gate 1 δVg1(t) and average position 〈Y (t)〉 as a function of time.

in order to get |Ψ(t)〉, and we compute the average position 〈Y (t)〉 on the y axis as a
function of time. δVg1(t) and 〈Y (t)〉 are plotted in Fig. 3.10 as a function of time. We
indeed observe the electron oscillating between the two dots. In this kind of simulation,
we can also monitor the spin or the state probabilities as a function of time. This will be
used in chapter 5, where a qubit operation is studied using the time-dependent solver.

3.7 Conclusion

We have presented the methodology we are going to use in the chapters 4 to 6, which is
well suited to the study of a single qubits. The realistic calculations of the potential and
electronic structure enable precise comparisons with experimental measurements. Vali-
dating these comparisons is essential as it will allow us to make theoretical predictions and
proposals using the simulations. Moreover, the simulations will help in the construction
and validation of analytical models. The coupling of the electronic structure calculations
to the time-dependent solver gives the possibility to make numerical experiments of qubit
control with an access to all observables.

Broadly speaking, the first interest of these simulations is to give different insights
on the physics than can be achieved in experiments. The joint use of measurements and
simulations can lead to a deep understanding of the qubits behavior. The second interest
is that simulations are way faster and cheaper than experiments. Indeed, the fabrication
of a batch of qubits using microelectronics techniques can take up to one year, and the
low-temperature experiments can take a few months. We can thus explore in advance the
influence of the geometrical parameters in order to prepare the design of future devices,
propose new experiments, and test the validity of proposals.
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Chapter 4

Electrical control of the electron spin

Le spin d’un électron confiné dans le silicium est un candidat intéressant pour stocker
de l’information quantique, étant données ses très bonnes propriétés de cohérence, mais
pour en faire un quantum bit il est nécessaire de pouvoir le contrôler. Puisque le spin est
un dipôle magnétique, un moyen naturel de le manipuler est de le coupler à un champ
magnétique oscillant. Cependant, dans la perspective de réaliser un ordinateur quantique,
coupler localement le spin à un champ magnétique soulève certains problèmes. Il peut être
préférable de coupler le spin à un champ électrique, via le couplage spin-orbite qui peut
être intrinsèque ou extrinsèque.

Dans ce chapitre nous présentons et étudions un résultat expérimental d’importance
pour les qubits de spin sur silicium : l’observation de résonance électrique de spin (EDSR
ou "electric-dipole spin resonance"), sans élément extrinsèque. Le spectre fréquence/champ
magnétique montre plusieurs résonances qui sont compatibles avec la présence d’un état
de vallée excité et de couplage spin-orbite. Nous reproduisons ces résultats avec des calculs
de liaisons fortes et proposons un modèle analytique qui rend compte de la physique de
cette manipulation électrique de spin. Le mécanisme en jeu implique une combinaison du
couplage dipolaire inter-vallée et du couplage spin-orbite inter-vallée. Cette interaction
spin-orbite est responsable d’un anticroisement des états lorsque l’énergie de Zeeman est
égale à la séparation entre les vallées (ou "valley splitting"). La dépendance en champ
magnétique de la fréquence de Rabi est étudiée et montre une forte non-linéarité au voisi-
nage de cet anticroisement. Par une étude des symétries nous montrons que l’interaction
spin-orbite est rendue possible par la faible symétrie des états dans la boîte quantique.
Ceci est confirmé par les calculs ainsi que par l’anisotropie mesuré du courant en fonction
de l’orientation du champ magnétique.
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The spin of the electron in silicon is an interesting candidate for storing quantum
information given its excellent coherence properties [45,46], but in order to make quantum
bit we have to be able to manipulate it.

Since the spin is a magnetic dipole, the natural way to manipulate it is to couple it to
an oscillating magnetic field. However, in the prospect of making a quantum computer,
coupling locally a spin qubit to a magnetic field raises some challenges. Although some
group choose to address these challenges directly [74,120], coupling the spin to the electric
field gives a different pathway that could simplify the design and thus facilitate the large-
scale integration. This is possible only if there is a coupling between the orbital motion
of the electron and its spin. This coupling can be engineered for instance with a micro-
magnet generating a slanting magnetic field [25,76,80,86,121,122], or be intrinsic to the
material, that is the spin-orbit coupling (SO). The SO is generally present in atoms and
solids: due to a relativistic effect, electrons moving in an electric field experience in their
reference frame an effective magnetic field which couples to their spin. In the case of
electrons in silicon, however, SO is intrinsically very weak.

In this chapter we will present the first demonstration of the electrical control of the
electron spin in silicon without extrinsic elements. We will first present the experimen-
tal device and set-up, and then analyse the results of the electric dipole spin resonance
(EDSR) measurement. We show that the observed spectrum involves an excited valley
state with a small valley splitting (36 µeV), and a spin-orbit effect. We will then explain
with tight-binding simulations and an analytical model the physics behind electrical ma-
nipulation, and show that it involves a combination of intervalley dipolar and intervalley
spin-orbit interactions. We show that this peculiar spin-orbit interaction is only made
possible by the low symmetry of the dot. The anisotropy of the measured current with
the magnetic field backs up this interpretation.

4.1 Measurement of EDSR in a Silicon MOS double
quantum dot

This study of the electrical control of the electron spin in a silicon quantum dot has been
motivated by the first experimental observation of electric dipole spin resonance (EDSR)
by Andrea Corna during his PhD at CEA INAC [53,123]. He measured a double quantum
dot in series in the Pauli spin blockade regime, with, for first intention, to perform an
electron spin resonance (ESR) experiment with a nearby antenna. Yet he realized that
a microwave signal applied on one of the MOS gates was lifting the blockade, with a
clear resonance, signature of EDSR [22,124]. In the following paragraphs we are going to
present the protocol and the main results of this experiment.
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Figure 4.1: SEM image of a similar sample after source/drain epitaxy.
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Figure 4.2: (a) Sketch of the sample and measurement setup. The silicon nanowire is
coloured in yellow, the two top gates in green and the side gate in violet. The gate oxides
are colored in orange and the buried oxide (BOX) is in blue. (b) Colourized device top
view obtained by scanning electron microscopy before the deposition of the spacers of a
device similar to the one used in the experiment, with same colour code. Adapted from
Ref. [53]

The device consists in a silicon nanowire (H = 12 nm, W = 30 nm) with two metallic
gates in series (G1 and G2). The two gates overlap only part of the channel, in order to
create two corner quantum dots. They are connected to the source and drain contacts,
which are degenerately Arsenic-doped reservoirs of electrons. An additional gate, G3,
originally intended to work as an antenna, is located at 50 nm from the channel. G3 is
biased at Vg3 = −0.28 V throughout the experiment in order to push the wavefunctions
further in the corners. SEM and TEM pictures of the device are shown in Fig. 4.1 and
4.2b, and the device and measurement setup is schematized in Fig. 4.2a. In the Coulomb
blockade regime, the potential Vg1 and Vg2 are adjusted in order to fill the quantum dots
below the gates with small numbers of electrons n1, n2. Transports measurement are
performed in a dilution fridge at T = 15 mK, by setting a small source-drain bias and
measuring the current.
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Figure 4.3: Bias triangles. (a) Map of the current Ids as a function of Vg1 and Vg2 at finite
Vds = −2.5 mV around a pair of triangles showing current rectification. The magnetic
field B = 0.7 T is parallel to x−y (see axes on Fig. 4.2). The number of electrons in each
dot is given between parentheses. (b) Same as (a) at opposite Vds = +2.5 mV. Adapted
from Ref. [53]

In this double quantum dot system, the current can flow only if the energy levels of
the dots are properly aligned, which results in pairs of triple points [125]. The typical
current signature is a couple of conduction triangles in the (Vg1, Vg2) plane, shown Fig.
4.3a. Under a finite magnetic field, if the triple points correspond to a transition (n1, n2)
→ (n1−1, n2 +1), with n1, n2 odd, the current is blocked in a region at the base of triangle
as shown Fig. 4.3b, which is a signature of Pauli spin blockade. For a reverse source-drain
bias, the transition (n1 − 1, n2 + 1) → (n1, n2) is never blocked and the current can flow
throughout the whole triangle. The Pauli blockade in presence of the valley degree of
freedom is actually a bit more complex than the picture that we have drawn in chapter
1. In the appendix B we give a more detailed explanation of the Pauli blockade with spin
and valleys. It is very interesting to see that in Fig. 4.3b there is little difference between
the background current outside the triangle and within the blocked part, highlighting a
nearly perfect blockade. In the qubit perspective, a reliable readout mechanism is very
important for the readout fidelity.

In the following, (Vg1, Vg2) are chosen so that we are in the Pauli blockade regime, and
a microwave signal is applied on G2. The frequency ν of the microwave signal and the
amplitude B of the magnetic field are swept, and we observe a set of resonance lines in
Fig. 4.4 in the current versus ν and B maps. On the lines labelled A, B, C, V, H, the
Pauli blockade is lifted and the current is enhanced: we evidenced here electric dipole spin
resonance (EDSR). As pure spins are not coupled by an electric field, either an intrinsic
or extrinsic spin-orbit effect must be involved. The other regularly spaced horizontal
lines are due to resonances in the cables or photon assisted tunnelling. Other than these
parasitic lines, the resonance lines are remarkably clear.

The equations for lines A, B, C, appear to be a modified version of the usual resonance
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1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

9.6

9.4

9.2

9.0

8.8

ν 
 (

G
H

z)

0.64 0.66
B (T)

Id  (pA)

Figure 4.5: Zoom on lines H, B, C of the EDSR map. This scan comes from a different
measurement than the one of Fig. 4.4, there are less parasitic lines.

49



Chapter 4. Electrical control of the electron spin

Line g K (µeV)
A 1.97 ± 0.005 −0.32
B 2.00 ± 0.01 −36.9
C 0.96 ± 0.01 43× 10−3

Table 4.1: Extracted parameters of resonance lines A, B, C.

condition, namely:
hν = gµBB +K (4.1)

where ν is the frequency of the applied microwave signal, g is the gyromagnetic factor,
and K is an additional energy splitting independent of the magnetic field. With this
equation we extract the slope and intercept of lines A, B, C in Table 4.1. As for the other
lines, the vertical line V appears at constant magnetic field B = 316 mT independently
of the RF frequency. This value correspond to a Zeeman gµBB ' 36.2 µeV (for g ' 2).
The horizontal line H appears at ν = 8.88 GHz independently of magnetic field, which
also corresponds to an energy of 36 µeV. The H line is best visible on another scan, Fig.
4.5, with less parasitic lines. From these data we can ascribe line A to a resonance of
the microwave photon with the Zeeman splitting Ez = gµBB, with g = 1.98 compatible
with the reported gyromagnetic factors of electrons in silicon (g ' 2 [126]), and an offset
K ' 0. The line C is also extrapolating to hν = 0 at B = 0, with half the slope of
line A. It can be attributed to a second-harmonic (two-photons) process. Interestingly,
line B also has g ' 2.00 and extrapolates to hν = 36 µeV at B = 0, the same value
characteristic of line H and line V. This observation led us to the conclusion that a second
orbital state was involved, spaced by 36 µeV from the ground state. Such a small value
can only correspond to another valley state as higher orbitals excitations lie way farther
in energy, and we will confirm this later by tight-binding simulations.

In order to understand the experimental EDSR spectrum, we neglect in first approxi-
mation the hybridization between the two quantum dots and consider only the quantum
dot 2 filled with one electron. In this silicon nanowire, the confinement is strongest along
the z direction (normal to the substrate plane), so that the low-energy levels belong to
the ∆±z valleys. Valley coupling at the Si/SiO2 interface lifts the two-fold valley degener-
acy [43,47,51,127], resulting in two spin-degenerate valley eigenstates |v1〉 and |v2〉, with
respective energy E1, E2. The valley splitting is ∆ = E2 − E1. In the simplest approx-
imation the states |v1〉 and |v2〉 are bonding and anti-bonding combinations of the ∆±z
states. In presence of a static magnetic field, the state v1 is then split into |v1 ↓〉, |v1 ↑〉
with respective energies E1− 1

2µBB and E1 + 1
2µBB ; and the state v2 is split into |v2 ↓〉,

|v2 ↑〉 with respective energies E2− 1
2µBB and E2 + 1

2µBB (the spin being quantized along
B). When B = ∆

gµB
, |v1 ↑〉 and |v2 ↓〉 are resonant so they might anticross [50]. Fig. 4.6a

shows the energy levels of a one-electron system with two valleys and their evolution with
magnetic field, assuming an anticrossing between |v1 ↑〉 and |v2 ↓〉. This anticrossing,
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Figure 4.6: (a) Energy diagram of the first four states as a function of the magnetic field
amplitude. An avoided crossing is supposed at B = ∆/(gµB). The energy of |v1 ↓〉 is in
light blue, and the energy of |v2 ↑〉 is in green. The spin and valley composition of the
hybridized states is quantified by a colour scale. (b) Sketch of the possible transitions
noted by the arrows in (a). The experimentally measured region is in light blue.

due to spin-orbit interaction, couples |v1 ↑〉 and |v2 ↓〉 in mixed spin-valley states. On
Fig. 4.6b are shown the expected EDSR lines, with a blue frame highlighting the region
measured experimentally.

It is worth noting that some of these resonances were observed in a Si-SiGe planar
quantum dot with a micro-magnet by Scarlino et al. [61]. In this paper they do not
measure the H line because their readout mechanism is ineffective in this energy range,
however they observe it in simulations. In another paper Hao et al [54] have measured
similarly the ESR spectrum of a double quantum dot. They do not observe the H line
because it is purely an EDSR feature (an oscillating magnetic field cannot couple valley
states of same spin). However they detect in the ESR spectrum the anticrossing on line
A. They identify this anticrossing as an inter-valley spin-orbit interaction with a strength
of 125 neV.

In conclusion we have seen that in a silicon double quantum dot device the spin
blockade is lifted by a microwave signal, signature of EDSR. Sweeping the magnetic field
results in a rich resonance spectrum showing several state transitions. It indicates the
presence of a valley excited state spaced by 36 µeV from the ground state. In the next
part we will unveil the physics behind EDSR in the conduction band of silicon through
theoretical modeling and tight-binding simulations.
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4.2 Model for EDSR with inter-valley spin-orbit in-
teraction.

The spin degree of freedom does not couple with the electric field, so as said earlier, a
spin-orbit interaction must be involved to couple the orbital motion of the electron to
its spin. To study this in our particular system we performed tight-binding simulations
including spin-orbit through the Hamiltonian:

HSO = 2λSO
∑
iat

Liat.S (4.2)

with iat the atomic index and λSO = 0.01851 eV [109] (see chapter 3). Tight-binding is
particularly well suited to the descriptions of these silicon devices since it accounts for
valley and spin-orbit coupling at the atomistic level. In particular, there is no need for
extrinsic terms in the Hamiltonian such as interface terms on the interface for the valley
coupling, or Rashba or Dresselhaus terms for the spin-orbit coupling.

We consider the prototypical device of Fig. 4.7a, which consists in a [110] silicon
nanowire, W = 30 nm wide and H = 10 nm thick. It is etched in a (001) silicon-on-
insulator film on top of a 25 nm thick buried oxide (BOX). The backgate is polarized at
Vbg = 0 V. The quantum dot is defined by the central, 30 nm long gate. This gate covers
only part of the nanowire as in the experiment, in order to confine a corner state. The
gate stack consists in a 1 nm layer of SiO2 and a 2 nm layer of HfO2. The corner quantum
dot is surrounded by two side gates, placed 30 nm on the left and right of the central gate,
which control the barrier height between the dots (periodic boundary conditions being
applied along the wire). The two side gates are polarized at Vs1 = Vs2 = 0 V. They mimic
here the quasi-metallic source/drain contacts. Finally the atomistic segment of the device
considered in the tight-binding calculations is 80 nm long and contains 1 120 000 atoms.
The dangling bonds at the surface are saturated with hydrogen atoms.

We compute the first four eigenstates of this device using tight-binding. As explained
before, with confinement and at the Si/SiO2 interface, the first two spin-degenerate states
are |v1〉 and |v2〉, separated by the valley splitting ∆ = E2 − E1. We apply a magnetic
field which splits each spin-degenerate state via the Zeeman interaction. Then the first
four eigenstates that we compute are expected to be {|v1 ↓〉, |v1 ↑〉, |v2 ↓〉, |v2 ↑〉} with
respective energy {E1 − 1

2gµBB, E1 + 1
2gµBB, E2 − 1

2gµBB, E2 + 1
2gµBB}. We may

neglect the effects of the magnetic field on the orbital motion of the electrons in a first
approximation. The wavefunctions ϕn,σ = 〈r|vn〉 (n = 1, 2 and σ =↓, ↑) can then be
chosen real.

To understand the role of SO, let us compare calculations of the energy levels with
and without SO. The results are shown Fig. 4.8: the SO is responsible for an anti-crossing
between states |v1 ↑〉 and |v2 ↓〉, thus mixing spins and valleys. From the anti-crossing gap,
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Figure 4.7: (a) Schematics of the device. The silicon nanowire is in yellow, SiO2 in
blue, HfO2 in light gray and the gate are in dark green. The squared wavefunction is
schematized in orange. (b) Cross-section of the squared wavefunction in the (yz) plane,
computed with tight-binding.

this SO effect seems small but sizeable compared to what is expected for silicon [128]. This
observation incites to build a model dealing with the SO Hamiltonian as a perturbation.
A first step is to apply a simple non-degenerate perturbation theory, valid far from the
anti-crossing.

In perturbation theory, a perturbed state |Ψ̃k〉 is given to first order as a function of
the unperturbed states {|Ψn〉} by:

|Ψ̃k〉 = |Ψk〉+
∑
n6=k

〈Ψn|H̃|Ψk〉
Ek − En

|Ψn〉 (4.3)

where H̃ is a perturbation. Here, treating HSO as a perturbation yields to first order:

|Ψ̃v1↓〉 = |v1 ↓〉 −
Cv1v2

∆ + gµBB
|v2 ↑〉 −

iRv1v2

∆ |v2 ↓〉+ ... (4.4a)

|Ψ̃v1↑〉 = |v1 ↑〉+
C∗v1v2

∆− gµBB
|v2 ↓〉+ iRv1v2

∆ |v2 ↑〉+ ... (4.4b)

The sum goes on for the orbital excited states, and we have used the following spin-orbit
matrix elements:

Cv1v2 = 〈v2 ↑|HSO|v1 ↓〉 = −〈v1 ↑|HSO|v2 ↓〉 (4.5a)

Rv1v2 = −i〈v2 ↓|HSO|v1 ↓〉 (4.5b)

The above equalities follow from time-reversal symmetry considerations for real wavefunc-
tions. Cv1v2 is complex and Rv1v2 is real.

We want now to drive spin rotations by applying a microwave signal on the gate, of
the form Vg(t) = V 0

g + Vac sin(2πνt + ϕ). When the frequency ν is resonant with the
splitting between two states |Ψi〉, |Ψj〉, the frequency of the Rabi oscillations driven by
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the electric field read:
fR = eVac

h
|〈Ψi|D|Ψj〉| (4.6)

Here D̂ is the gate coupling operator, i.e the electrostatic response of the system to an
excitation of the gate: D̂(r) = ∂Vtot(r)

∂Vg
, formally the partial derivative of the total potential

Vtot(r) with respect to the gate potential Vg. Coming back to the perturbation theory, we
can inject the expression of the first order state into Eq. 4.6. We make the hypothesis
that we can restrict the sum over states to to {|v1 ↓〉, |v1 ↑〉, |v2 ↓〉, |v2 ↑〉}, that is the
spin and valley states of the first orbital. We use the fact that D̂ cannot couple states
with opposite spins. This yields:

fR = eVac
∣∣∣〈Ψ̃v1↓|D|Ψ̃v1↑〉

∣∣∣ (4.7)

= 2eVac
h
|Cv1v2| |Dv1v2|

∣∣∣∣∣ 1
∆− gµBB

+ 1
∆ + gµBB

∣∣∣∣∣ (4.8)

where we have introduced the electric dipole matrix element between valleys v1 and v2:

Dv1v2 = 〈v1σ|D|v2σ〉 = 〈v2σ|D|v1σ〉 (4.9)

We can already notice that Rv1v2 does not contribute to fR (as it couples states with the
same spin). In the case were |∆− gµBB| � 0, we can expand the denominators of Eq.
4.8 to first order in B:

fR = 2eVacgµBB |Cv1v2| |Dv1v2|
h∆2 (4.10)

This simple model gives interesting insights into the physics: the EDSR is mediated
by virtual transitions, |v1 ↓〉

D−→ |v2 ↓〉 due to inter-valley dipolar coupling, and |v2 ↓
〉 HSO−−→ |v1 ↑〉 due to inter-valley spin-orbit coupling. In other words, the electric field
can drive spin rotations only if the spin orbit coupling hybridize spin and valley. We will
come back in part 4.3 to the non-trivial origin of the spin-orbit coupling here, which is
expected to be small in the conduction band of silicon [50, 54, 64, 129–131]. The dipolar
interaction between valleys is less surprising. Indeed the valley wavefunctions feature
oscillations in quadrature in the strongest confinement direction, leading to a finite dipolar
coupling [52,132,133]. This will be discussed in more details in the next chapter. For now,
it is illustrated it in Fig. 4.9, in which the pz orbital component of the |v1〉 and |v2〉 states is
plotted in real space. The interface roughness can also induce dipolar coupling in the other
directions [52,133]. From Eq. 4.10 the Rabi frequency is linear in B when |∆− gµBB| �
0. If B = 0, the time-reversal symmetry is not broken and the contributions of terms
∝ Cv1v2 in Eqs. 4.4a and 4.4b cancels out so fR = 0. fR is also linear in Vac, so that in the
following we will set Vac = 1 mV, and the Rabi frequency can be understood in MHz/mV.

We can compute fR from Eq. 4.6 with the tight-binding wavefunctions. We have
verified that we obtain the same value for fR with the solution of the time-dependent
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Figure 4.8: Energy levels computed with tight-binding, in violet including spin-orbit
coupling. The zoomed part show the anticrossing, with in dotted black the calculations
without spin-orbit interaction.

a) b)

Figure 4.9: (a) pz atomic orbital component of the |v1〉 and |v2〉 states in the (yz) plane
at z = 0 nm. (b) Cut of (a) along the green dashed line at y = −8 nm. The two states
can be coupled by the potential V (z) = −eEzz of an electric field E along z.

55



Chapter 4. Electrical control of the electron spin

Figure 4.10: Rabi frequency against magnetic field, from direct TB simulations and non-
degenerate perturbation theory model.

Schrödinger equation (see chapter 3) as with Eq 4.6. We can also compute Dv1v2 and Cv1v2

in tight-binding, by switching off the spin-orbit interaction to calculate the uncoupled
states |vnσ〉 and then get the matrix elements from Eqs. 4.5a and 4.9. We perform the
calculation on the device of Fig. 4.7 with Vg = 0.1 V. We plug the computed Cv1v2 and
Dv1v2 into Eq. 4.10, and we compare the outcome to the direct TB calculations in Fig.
4.10. In this calculation B is parallel to y, |Dv1v2| = 180 µV/V, |Cv1v2| = 3.25 µeV, and
∆ = 136 µeV. We can see that for B > 0.3 T the Rabi frequency starts to move away
from the linear perturbation model. This approach is, indeed, not valid when ∆ is close
to gµBB, because one of the terms is diverging in Eq. 4.8. This let us anticipate that
there is an enhancement of fR at this point. We may deal with the anticrossing using
degenerate perturbation theory in the {|v1 ↑〉, |v2 ↓〉} subspace, and using non-degenerate
perturbation theory for the first and fourth excited states, which are weakly coupled.
However such strategy would spoil the cancellations to achieve the proper behaviour
fR(B → 0) → 0. Consequently a proper way to address this case is to treat the SO
Hamiltonian in the basis {|v1 ↓〉, |v1 ↑〉, |v2 ↓〉, |v2 ↑〉}:

H =


E1 − 1

2gµBB 0 −iRv1v2 C∗v1v2

0 E1 + 1
2gµBB −Cv1v2 iRv1v2

iRv1v2 −C∗v1v2 E2 − 1
2gµBB 0

Cv1v2 −iRv1v2 0 E2 + 1
2gµBB

 (4.11)

where the term Rv1v2 can been set to zero for simplicity because as before it is not
contributing to the Rabi frequency as it mixes states with same spin. H can then be split
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into two blocks in the {|v1 ↓〉, |v2 ↑〉} and {|v1 ↑〉, |v2 ↓〉} subspaces.

First we can diagonalize in the {|v1 ↑〉, |v2 ↓〉} subspace, which yields the energies of
the states that anti-cross:

E ′± = 1
2(E1 + E2)± 1

2
√

(∆− gµBB)2 + 4|Cv1v2 |2 (4.12)

and their wavefunctions:

|ψ′+〉 = α′|v1 ↑〉+ β′|v2 ↓〉 (4.13a)

|ψ′−〉 = β′|v1 ↑〉 − α′∗|v2 ↓〉 (4.13b)

with:

α′ =
2C∗v1v2

(4|Cv1v2|2 + F ′2)1/2 (4.14a)

β′ = F ′

(4|Cv1v2|2 + F ′2)1/2 (4.14b)

and:
F ′ = ∆− gµBB +

√
(∆− gµBB)2 + 4|Cv1v2|2 (4.15)

Likewise, diagonalization in the {|v1 ↓〉, |v2 ↑〉} subspace yields the energies of the lowest
and highest states:

E± = 1
2(E1 + E2)± 1

2
√

(∆ + gµBB)2 + 4|Cv1v2|2 (4.16)

and their wavefunctions:

|ψ+〉 = α|v1 ↓〉+ β|v2 ↑〉 (4.17a)

|ψ−〉 = β|v1 ↓〉 − α∗|v2 ↑〉 (4.17b)

with:

α = −2Cv1v2

(4|Cv1v2|2 + F 2)1/2 (4.18a)

β = F

(4|Cv1v2|2 + F 2)1/2 (4.18b)

and:
F = ∆ + gµbB +

√
(∆ + gµBB)2 + 4|Cv1v2|2 (4.19)

From this we can compute the Rabi frequency for resonant transitions between the ground
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state |Ψ−〉 ' |v1 ↓〉 and the mixed states |Ψ′±〉 from the {|v1 ↑〉, |v2 ↓〉} subspace:

hf− = eVac
∣∣∣〈ψ′−|D|ψ−〉∣∣∣ = eVac|α′β + α∗β′||Dv1v2| (4.20a)

hf+ = eVac
∣∣∣〈ψ′+|D|ψ−〉∣∣∣ = eVac|αα′ − ββ′||Dv1v2| . (4.20b)

Let us now compare this model to the tight-binding simulations. We work on the same
device (Fig. 4.7) but we added surface roughness (SR), with rms ∆SR = 0.4 nm and cor-
relation length ΛSR = 1.5 nm [87,102], in order to match the experimental device better.
Indeed, in the perfect device the valley splitting is way higher than the experimental value
of 36 µeV, and SR is known to decrease ∆ [132]. In the SR sample we chose, we compute
Cv1v2 = 1.8, Dv1v2 = 70 µeV/V and ∆ = 36 µeV. In Fig. 4.11 we have plotted the energy
levels and Rabi frequencies (f−, f+). The results are obtained with the full tight-binding
calculations at finite field (Eq. 4.6) and with the model (Eq. 4.20). We reach a perfect
agreement between the two, thus validating the hypothesis that we have made: it is not
necessary to include higher orbital states in Eq. 4.11, and the matrix elements Dv1v2 and
Cv1v2 do not depend on B. In a pertubative picture, this is true at least for B < ∆Eorb

gmuB
'

8 T, where ∆Eorb = 1 meV is the splitting to the nearest orbital state. Higher orbitals
might need to be considered in particular systems like in Ref [131] where they are closer
in energy.

We can now analyse the particular sigmoid shape of the Rabi frequencies, and to do
so we can plot the coefficients α, α′, β, β′ as a function of B (Fig. 4.12). For all B, α ' 0
and β ' 1, meaning that |Ψ−〉 is mostly |v1 ↓〉 and |Ψ+〉 is mostly |v2 ↑〉, as expected
since these two states do not anti-cross. As the Rabi frequencies are proportional to
|Dv1v2 | the shape of f− and f+ are thus respectively given by α′ and β′ which give the
proportion of |v2 ↓〉 in respectively |Ψ′−〉 and |Ψ′+〉. When |Ψ′−〉 or |Ψ′+〉 is purely |v2 ↓〉
the corresponding Rabi frequency saturates at |Dv1v2 | /h.

We now choose to follow the state which has the most |v1 ↑〉 character, as along line A
of the EDSR map (Fig. 4.4), that is |Ψ〉 = |Ψ′−〉 before the anti-crossing and |Ψ〉 = |Ψ′+〉
after. In that case fR = min(f−, f+), which is plotted along with the energy levels on Fig.
4.13 from the model and the tight-binding simulations. The interesting feature of this
plot is the peak of fR at the anti-crossing. From Eq. 4.20 we can show that the height of
the peak is:

hfR = e |Dv1v2|√
2

(4.21)

We can also show that the width of the peak is proportional to Cv1v2 . The full width at
half maximum of the peak is indeed:

gµB∆BFWHM = 12 |Cv1v2|√
7

(4.22)
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Figure 4.11: Energy levels and f− and f+ Rabi frequencies, corresponding to transitions
between the ground state and respectively |Ψ′−〉 and |Ψ′+〉, as highlighted by the blue (f−)
and red (f+) arrows. Dots are for direct tight-binding calculations, the solid lines are for
the analytical model with Cv1v2 = 1.8, Dv1v2 = 70 µeV/V and ∆ = 36 µeV, extracted
from the TB calculations.

Figure 4.12: Norm of the coefficients α, α′, β, β′ as a function of magnetic field amplitude.
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Figure 4.13: Energy levels and Rabi frequency as a function of magnetic field. Here
fR = min(f−, f+) Coloured lines are from the analytical model, black dots are tight-
binding simulations.

The two relations 4.21 and 4.22 may be used to determine the matrix elements experimen-
tally. Nevertheless this peculiar resonance is not observed experimentally on the EDSR
map: as the measured region starts after the anti-crossing we should see a decrease of the
current when increasing B. The problem is that the power of the microwave signal sent
on the gate is not constant with frequency, and the power-frequency dependence is not
known. However we will see in the next part how other measurements and the study of
symmetries can confirm our model.

4.3 What is the origin of the spin-orbit interaction?

The spin-orbit coupling is a relativistic effect which couples the orbital motion of the
electron to its spin. As seen in chapter 2, in bulk silicon the crystal centro-symmetry
suppresses most effects of spin-orbit interaction. However, in nanostructures, symmetries
can be locally broken and some groups observed (yet small) effects of spin-orbit in group
IV materials [50,54,130]. Huang et al. [131] even proposed a qubit using an inter-orbital
inter-valley spin-orbit interaction, based on a coupling with a p-like excited orbital enabled
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by putting the wavefunction on an interface step. Our model here supposes quite differ-
ently that we can have an inter-valley spin-orbit coupling within the same orbital. This
coupling may be intrinsic or extrinsic, i.e originating from an inhomogeneous magnetic
field. The latter possibility has been envisioned as the metallic TiN gates can be super-
conducting, and because HfO2 can be ferromagnetic at low temperature. However we
have quantitatively excluded these possibilities [123]. TiN is indeed superconducting but
is too thin in the experiment to produce a sizeable gradient of magnetic field. Although
rejected here as explanations for spin-orbit interactions these two effects open interesting
perspectives for the creation of a local magnetic field gradient, to the condition that they
can be engineered properly.

To investigate further the origin of the spin-orbit interaction, we have analysed the
effect of the symmetries of the system using group theory. To do so, we are going to study
what form the spin-orbit tight-binding Hamiltonian and the dipolar coupling operator can
take given the different symmetries of the system. We choose to focus on two different
set of symmetries: those of our device and those of a trigate device (which have the same
symmetries as a planar quantum dot). The ground state in each device is plotted Fig.
4.14 and Fig. 4.15, highlighting the mirror planes. In the corner geometry the device is
invariant by reflection by the (yz) plane, thus belonging to the Cs space group. In the
trigate or planar geometry, the device is invariant by reflection by the (yz) and the (xz)
planes, as well as by a twofold rotation around the z axis, thus belonging to C2v space
group. The table of characters for these two space groups are given Table 4.2. For the
corner geometry |v1〉 and |v2〉 states belong to the A1 irreducible representation of Cs.
For the trigate geometry they belong to the A1 irreducible representation of C2v. In both
cases, the mirror planes transform |v1〉 and |v2〉 into themselves.

According to group theory, for any observable Ô, unitary symmetry operation R, and
wavefunctions |Ψ1〉 and |Ψ2〉 we have the relation:

O12 = 〈ψ1|Ô|ψ2〉 = 〈Rψ1|RÔR†|Rψ2〉 (4.23)

Let us start with the dipolar coupling D(r) = ∂Vt(r)/∂Vg. For the corner geometry
Vt(r) belongs also to the Cs space group so that σ(xy)Dσ(xy)† = D. Therefore, Eq. 4.23
does not set any condition on the Dv1v2 matrix element. The result is the same for the
trigate geometry. We now turn to the spin-orbit tight-binding Hamiltonian, which we
write:

HTB
SO = λSO (Lxσx + Lyσy + Lzσz) (4.24)

where σα are the Pauli matrices, Lα = ∑
iat Liat,α and Liat,α is the component α = x, y, z

of the angular momentum on atom iat. We neglect here the coupling to d orbitals (see
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Cs E σ(yz)
A1 1 +1
A2 1 −1

C2v E σ(yz) σ(xz) C2(z)
A1 1 +1 +1 +1
A2 1 −1 −1 +1
B1 1 +1 −1 −1
B2 1 −1 +1 −1

Table 4.2: Table of characters of (a, left) the Cs and (b, right) the C2v group.

Liat,x =

0 0 0
0 0 −i
0 i 0

 Liat,y =

 0 0 i
0 0 0
−i 0 0

 Liat,z =

0 −i 0
i 0 0
0 0 0


Table 4.3: Matrices of Liat,x, Liat,y and Liat,z in the {px, py, pz} basis set.

chapter 2). The matrix element Cv1v2 = 〈v1 ↑|HTB
SO |v2 ↓〉 reads

Cv1v2 = λSO
∑
α

〈v1|Lα|v2〉〈↑|σα|↓〉 (4.25)

We are now interested in the terms 〈v1|Lα|v2〉. We start with the corner geometry: the
plane σ(yz) leaves the orbitals py,z invariant but transforms a px orbital into −px, so that
Eq. 4.23 gives σ(yz)Ly,zσ(yz) = −Ly,z and σ(yz)Lxσ(yz) = Lx. Hence using Eq. 4.23,
〈v1|Ly,z|v2〉 = 〈σ(yz)v1|σ(yz)Ly,zσ(yz)†|σ(yz)v2〉 = 〈v1|−Ly,z|v2〉 = 0. The inter-valley
matrix element therefore reads:

Cv1v2 = λSO〈v1|Lx|v2〉〈↑|σx|↓〉 (4.26)

As for the trigate geometry, the σ(yz) mirror sets the same condition: only Lx can
couple |v1〉 and |v2〉. Similarly one can show that the σ(xz) operation imposes that only
the 〈v1|Ly|v2〉 is non zero. Hence Cv1v2 = 0 for the trigate/planar geometry, as these
conditions are incompatible. Consequently, the C2v symmetry must be broken in order
to get significant intervalley spin-orbit coupling. This is actually achieved in corner dots
where the symmetry is lower.

Coming back to the corner geometry, is this result compatible with the measurements?
The study of symmetries gave a spin-orbit Hamiltonian proportional to 〈↑|σx|↓〉, so when
the magnetic field is oriented along the wire axis x this coupling is zero. More precisely
the expected dependence of 〈v1 ↑|HSO|v2 ↓〉 with the magnetic field orientation is pro-
portional to sin θ, with θ the angle between the nanowire axis and the magnetic field.
On Fig. 4.16 we compare the measured current on line A, as a function of the magnetic
field orientation in the plane of the wafer, to the square of the calculated Rabi frequency,
with θ = 0 the nanowire axis. Indeed the current is expected to be ∝ f 2

R [134, 135]. We
have a perfect agreement between theory and experiment on the sin2 θ dependence. We
do not have experimental data for B out of the plane, but we have verified that we have
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Figure 4.14: Symmetry plane in half-gated device. The mirror planes of the wavefunction
are given by the dotted green lines.

Figure 4.15: Symmetry plane in trigate device. The mirror planes of the wavefunction
are given by the dotted green lines.

〈v1 ↑|HSO|v2 ↓〉 ∝ sin θ for any polar angle φ in the TB calculation. This confirms that
intrinsic spin-orbit coupling is the main driving force for the observed EDSR.

As discussed earlier, some groups have observed the effects of spin-orbit interactions
in Si MOS planar quantum dots [50, 54, 136], but it has never been leveraged to per-
form EDSR. The results of Hao et al. [54] give an interesting point of comparison: they
measured the ESR spectrum of a silicon gate-defined quantum dot and observed an anti-
crossing, which they identify as spin-valley mixing. From the position of the anticrossing
they extract the valley splitting, 86.2 µeV, comparable to the one we measured. From the
anticrossing gap, we can deduce the value of the intervalley spin-orbit coupling: 125 neV.
This value is one order of magnitude smaller than what we computed with tight-binding
in our device. The reason for that is probably that their system is much more symmetric
than a corner state: the asymmetry could only be created by disorder or asymmetric gate
potential. In half-gated nanowires, the combination of asymmetric structural and electric
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θ

z

yx

Figure 4.16: Comparison of the dependence with in-plane magnetic orientation of the
measured current and of the squared Rabi frequency computed in tight-binding. The
directions parallel and perpendicular to the nanowire are highlited with dashed lines.
The definition of the angle θ is given in the right panel, on the schematic of the device.

field confinements enhance the spin-orbit interaction much more efficiently.
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4.4 Conclusion

We have presented the first experimental observation of EDSR in the conduction band of
silicon without intrinsic elements. The measured EDSR spectrum reveals the presence of
a valley excited state spaced by 36 µeV from the ground state, and demonstrate that spin
and valley degree of freedom are hybridized.

We have presented an analytical model that explains this mixing of spin and valley
by the intrinsic spin-orbit interaction, the electric field coupling opposite valleys via a
dipolar interaction. This model has been validated by detailed tight-binding simulations.
We have studied, in particular, the effect of the magnetic field amplitude and have shown
that the Rabi frequency is non-linear with B: the main EDSR line is expected to exhibit
a resonance when the Zeeman splitting matches the valley splitting.

By studying the effects of the symmetries of the system, we have shown that the
observed anisotropy of EDSR with the magnetic field orientation is compatible with the
intrinsic spin-orbit interaction. Furthermore, the symmetry study shows that the spin-
orbit coupling is non-zero only if there is no more than one mirror plane in the structure.
In corner states, as opposed to planar quantum dots, symmetries are strongly broken,
therefore corner states are good candidate for the realization of an all-electrical spin
qubit.

However, we have not yet demonstrated a qubit. We know that a strong mixing of spin
and valleys is essential for efficient EDSR, but we also expect that it couples the states
to parasitic electric fields, thus inducing an enhancement of relaxation and decoherence
times [50,129]. In the next chapter we are going to address this issue with a scheme which
allows to tune the level of mixing between spin and valleys with the electric field.
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Chapter 5

A Spin-Valley qubit

Dans ce chapitre nous utilisons le modèle et les mécanismes développés au chapitre 4 pour
proposer un schéma de qubit de spin efficace. Ce schéma consiste à passer de manière
réversible entre un qubit de spin, où l’information quantique est protégée, et un qubit de
vallée où le qubit peut être manipulé électriquement mais la décohérence est plus impor-
tante. Pour ce faire, nous étudions les propriétés du qubit en fonction du champ électrique,
qui est contrôlé par le potentiel appliqué sur l’électrode en face arrière, la "backgate". Celle-
ci constitue une caractéristique clé des dispositifs du CEA.

Les calculs de liaisons fortes associés à des modèles analytiques et des simulation
dépendantes du temps nous cherchons à caractériser de manière exhaustive la physique
de ce système. En particulier les simulations dépendantes du temps sont utilisées pour
démontrer l’opération du qubit selon le schéma "spin-vallée" en prenant en compte les
contraintes d’adiabaticité. Nous cherchons ensuite à étudier la viabilité du schéma. Nous
évaluons donc la décohérence causée par l’interaction avec les phonons et le bruit élec-
trique sur les grilles (bruit Johnson-Nyquist), confirmant que les temps caractéristiques
sont différents de plusieurs ordres de grandeurs entre les régimes de spin et de vallée.
L’impact de la variabilité due à la rugosité des surfaces sur les différents éléments du mod-
èle est évalué. Nous étudions également l’effet de variation de l’épaisseur du nanofil sur
le splitting de vallée, qui est expliqué par un modèle analytique simple. Finalement, nous
présentons quelques résultats expérimentaux préliminaires qui montrent le bon contrôle du
splitting de vallée avec la backgate. Ces résultats peuvent être reproduits par les calculs
de liaisons fortes, qui montrent un fort effet des charges piégées à l’interface SiO2/HfO2.
Il suggèrent que supprimer la couche de HfO2 de l’empilement de grille permettrait de
réduire fortement la variabilité dans ces dispositifs. Ces résultats expérimentaux ainsi que
ceux présentés au chapitre 4 constituent une première étape vers la réalisation pratique du
schéma de spin-vallée qubit que nous proposons.
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Chapter 5. A Spin-Valley qubit

The EDSR experiment has been a great occasion to unveil a lot of physics in this
system and to gather it in a simple model. In the previous chapter we have shown that
the electrical control of the spin can be achieved with the intrinsic spin-orbit coupling
that mixes spin of opposite valleys and to the inter-valley dipolar interaction that couples
opposite valleys of same spin. That spin-orbit interaction is enhanced by the low symmetry
that exists in the corner quantum dots. We have studied the magnetic field dependence of
the Rabi frequency and have shown that it exhibits strong non-linearities at the vicinity
of the anticrossing between states |v1 ↑〉 and |v2 ↓〉.

However the magnetic field is not a convenient local knob, as it affects many qubits
at once. It is preferable to achieve an all-electrical control on the qubit. In this part
we study the dependence of the properties of the qubit on the electric field in the dot,
handily controlled by the potential on the back electrode, a key feature of silicon-on-
insulator devices. We try to use it to engineer an efficient qubit based on controlled
spin-valley mixing. Indeed we will show that the backgate allows to switch between a
spin qubit, in which the quantum information is well-preserved, and a valley qubit, in
which the electrical manipulation is fast. We call this scheme the spin-valley qubit.

Our tight-binding calculations combined with analytical models and time-dependent
simulations allow a thorough characterization of the physics of the system. In particular
we use the time-dependent simulations to demonstrate the qubit operation and adiabatic
constraints. After that, in order to give precise boundaries on the feasibility and interest
of the proposed scheme, we study the decoherence with some simple sources of noise and
the variability due to the surface roughness and the film thickness variations. Finally we
present some recent experimental results that show the good control of the valley splitting
with the backgate, a first step towards the practical realization of the spin-valley qubit.

5.1 Electric field dependence of the spin-valley sys-
tem.

5.1.1 Principle

Let us start by giving the main ideas of our qubit proposal taking advantage of the
particular physics of this system. In the last chapter we have studied in particular the
transition along the line A of the EDSR spectrum, that is between the ground state and
the "mostly spin up" state. This was determined by the experiment, but it may not be
the best choice for a qubit.

A natural way to build a qubit is to choose its states as the ground and first excited
state of the system, in order to avoid enhanced relaxation with an intermediate level. In
this chapter we propose a qubit based on the states |0〉 ≡ |Ψ−〉 and |1〉 ≡ |Ψ′−〉, with
energy E0, E1. The state |0〉 is in fact almost a pure |v1 ↓〉 state, whereas the state |1〉
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5.1. Electric field dependence of the spin-valley system.

Figure 5.1: (a) Energy levels of the quantum dot in a magnetic field B. The solid blue line
is the energy of the |v1, ↓〉 state, the dotted blue line the energy of the |v2, ↑〉 state, and
the solid and dashed red lines the energies of the |ψ′−〉 and |ψ′+〉 states (which are mixtures
of the |v1, ↑〉 and |v2, ↓〉 states that anti-cross at B = BA = 1.172 T). (b) Computed Rabi
frequency for the transition between |0〉 ≡ |v1, ↓〉 and |1〉 ≡ |ψ′−〉 (solid lines in (a)). The
parameters of the model are ∆ = 136 µeV, |Cv1v2| = 3.25 µeV, and |Dv1v2| = 179.26
µV/V. They have been extracted from tight-binding simulations on the device of chapter
4 (Fig. 4.7) at Vg = 0.1 V and Vbg = 0 V. The amplitude of the RF excitation on the
front gate is Vac = 1 mV.
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Chapter 5. A Spin-Valley qubit

is a combination of |v1 ↑〉 and |v2 ↓〉. We remind the expressions of the qubit states from
chapter 4:

|0〉 = β|v1 ↓〉 − α∗|v2 ↑〉 (5.1a)

|1〉 = β′|v1 ↑〉 − α′∗|v2 ↓〉 (5.1b)

The coefficients α and β have the following expressions:

α = −2Cv1v2

(4|Cv1v2|2 + F 2)1/2 (5.2a)

β = F

(4|Cv1v2|2 + F 2)1/2 (5.2b)

with:
F = ∆ + gµbB +

√
(∆ + gµBB)2 + 4|Cv1v2|2 (5.3)

and:

α′ =
2C∗v1v2

(4|Cv1v2|2 + F ′2)1/2 (5.4a)

β′ = F ′

(4|Cv1v2|2 + F ′2)1/2 (5.4b)

with:
F ′ = ∆− gµbB +

√
(∆− gµBB)2 + 4|Cv1v2|2 (5.5)

When a signal Vg(t) = V 0
g + Vac sin(2πνt) is applied on the gate, with hν = E1 − E0,

the Rabi frequency is:

hfR = eVac |〈1|D|0〉| = eVac|α′β + α∗β′||Dv1v2| (5.6)

In practice, |α| ' 0 and |β| ' 1, so that most relevant coefficient in the Rabi frequency
is α′, the mixing of |v2 ↓〉 into |v1 ↑〉. We recall in Fig. 5.1 the energy levels of the
system as a function of the magnetic field, and the Rabi frequency in response to the
resonant gate excitation. This figure presents clearly two regimes. Left of the avoided
crossing, |1〉 ' |v1 ↑〉, the qubit is effectively a spin qubit {|v1↓〉, |v1↑〉}, which is difficult
to manipulate electrically (low Rabi frequency). On the right of the avoided crossing,
|1〉 ' |v2 ↓〉 and the qubit is effectively a valley qubit {|v1 ↓〉, |v2 ↓〉} whose manipulation
is much faster. In this regime, the Rabi frequency saturates at fmax

R = eVac|Dv1v2|/h. We
expect the valley qubit to be sensitive to all kinds of electric noises, which are the dominant
noises in silicon, especially in pure Silicon 28. On the contrary in the spin mode, the qubit
is almost decoupled from electric noises (the residual coupling is proportional to the small
|v2 ↓〉 component of |1〉).

70



5.1. Electric field dependence of the spin-valley system.

Figure 5.2: (Central panel) valley splitting as a function of backgate potential (Vg = 0.1
V). The valley splitting shows a minimum ∆min = 83 µeV at V min

bg = 0.15 V. (Lateral
panels) The squared wavefunction of the ground state |0〉 is plotted in the (yz) cross
section, at the four bias points labelled by the symbols. The thick gray lines outline the
position of the front gate.

In this chapter, we try to make the best out of those two worlds. We want to be in the
spin mode most of the time to protect the quantum information and switch to the valley
mode when necessary for fast electrical control: we want to make a spin-valley qubit.

Then, how to switch between modes? We can already devise from Fig. 5.1 a first easy
answer: we can sweep the magnetic field. There are two problems with that option. First
the magnetic field would affect many qubits at once, and second in practice changing its
amplitude is very slow. The solution we propose is to switch between the two modes
using the electric field, which can be handily controlled in silicon-on-insulator devices by
the backgate electrode. Indeed, the valley splitting ∆ is dependent on the static electric
field E and the anti-crossing position is given by gµBB = ∆. Therefore by controlling ∆
at a constant magnetic field we can in principle switch between the two modes: the spin
mode at electric field E1 such that gµBB < ∆(E1) and the valley mode at electric field
E2 such that gµBB > ∆(E2).

In the following we are going to demonstrate this principle using tight-binding simula-
tions. We will study the dependences of the valley splitting with the backgate potential,
and then how to practically operate the qubit.

5.1.2 Electric field control of the qubit.

We are now going to implement this scheme in a quantum dot defined by a gate in a silicon
nanowire, and control the vertical electric field with the backgate. The device studied here
is the same as the one of the previous chapter. The side gates could in the present case
mimic source/drain barriers as well as neighbouring qubits. We have computed the valley
splitting as a function of the backgate potential using tight-binding (TB). As in chapter
4, the atomistic segment of the device included in the TB calculation is 80 nm long.

The results are shown Fig. 5.2 along with the wavefunctions at a few bias points. The
valley splitting increases as the wavefunction is pushed against one of the interfaces and
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Chapter 5. A Spin-Valley qubit

Figure 5.3: Map of Rabi frequency as a function of the magnetic field amplitude and
Vbg. The dotted black line is the anticrossing condition Ez = gµBB = ∆(Vbg). The RF
amplitude is Vac = 1 mV. The green line is the path chosen for qubit operation at B = 1
T.

is minimum when the state is the most delocalized. More precisely the valley splitting
shows a minimum ∆min = 83 µeV at V min

bg = 0.15 V; for Vbg � V min
bg the electron is pushed

in the corner of the front gate, and for Vbg � V min
bg the electron is pulled in the opposite

corner near the buried oxide interface. This leads to this particular ∆(Vbg) curve with a
crescent shape.

Using Eq. 5.6, we can compute the Rabi frequency as a function of Vbg and B, plotted
in Fig. 5.3. On this map we easily see the spin-valley transition given by the condition
∆ = gµBB (dotted line). The qubit is in valley mode inside the area enclosed by the
line and is is spin mode outside. Remarkably the Rabi frequency can be as high as
124 MHz/mV. The variations of fR on this map are quite complex, but we will dwell
on this later. For now let us set a fixed magnetic field, for instance B = 1 T, so that
gµBB > min(∆(Vbg)). We can then switch between spin and valley modes: acting on
the backgate voltage, we follow the path on the dashed line of Fig. 5.3 (the spin S and
valley V bias operating points we chose are marked for later use). To illustrate what it
means practically let us examine the three first energy levels and the Rabi frequency as
a function of Vbg, Fig. 5.4. On the energy spectrum we see that we have this time two
anticrossings: in between them |1〉 ' |v2 ↓〉, and outside |1〉 ' |v1 ↑〉. The Rabi frequency
is hence maximum in between the anticrossings, and tends to zero outside. This case is
different from a magnetic field sweep (Fig. 5.1), in which the variation of fR is only due to
the proportion |v1 ↑〉/|v2 ↓〉 in |1〉, the matrix elements Cv1v2 and Dv1v2 being independent
of B. Here the electric field modifies the shape of the wavefunction, therefore Cv1v2 and
Dv1v2 are not constant anymore. This way, not only the proportion |v1 ↑〉/|v2 ↓〉 in |1〉
is controlled by Vbg (the anticrossings of Fig. 5.4 do not have the same size), but fmax

R
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Figure 5.4: (Top panel) Energy levels as a function of Vbg. The gray dashed lines highlight
the spin (S) and valley (V) mode chosen for the qubit operation and the avoided crossing
(A) separating the two regimes. (Bottom panel) Rabi frequency corresponding to the
transition |0〉 ↔ |1〉 as a function of Vbg.
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Figure 5.5: (a) Spin-orbit and (b) dipolar inter-valley matrix elements as a function of
Vbg. The gray dashed lines highlight the spin and valley mode arbitrarily chosen for the
qubit operation.

changes with Dv1v2 (even in between the anticrossings fR is not constant).
The dependence of the matrix elements Dv1v2 and Cv1v2 with Vbg is plotted Fig. 5.5.

Remarkably the SO matrix element is zero at Vbg = 0.23 V. Indeed at this point the
wavefunction gains an additional symmetry plane (perpendicular to y) which kills the
coupling, in agreement with our symmetry study of chapter 4. Group theory does not
predict the detailed dependence of the SO matrix element, however it is interesting to
note that Cv1v2 increases linearly as the asymmetry increases.

The dependence ofDv1v2 is more complicated, however a general trend is that it is max-
imum when the wavefunction is the most delocalized in the z direction. This is a strong
point of this proposal: the Rabi frequency has a maximum in between the anticrossings,
that is in the region of the valley mode in which we will perform the manipulation.

In Fig. 5.3 we have highlighted in green the path that we choose to perform the
qubit operation. The valley and spin points, S and V, are marked as well on the other
figures. In the next part we are going to study the qubit operation along this path, using
time-dependent simulations.

5.2 Qubit operation.

We now perform time-dependent simulation in order to study the real time operation of
our proposed spin-valley scheme. The inputs of the calculations are the results of the
previous static tight-binding simulations, as discussed in chapter 3 (numerical resolution
of time-dependent Schrödinger equation). We will use this equation to model the qubit
operation, taking care of the adiabatic criteria in this system. Finally the systematic
dephasing inherent to the operation will be included in order to control the rotation axis
in the Bloch sphere.
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5.2. Qubit operation.

5.2.1 Demonstration of qubit operation.

In this part we are going to demonstrate numerically the following operation:

1. Starting from the spin mode, sweep Vbg to reach the valley mode.

2. Send an RF excitation on the front gate to drive a |0〉 ↔ |1〉 rotation.

3. Sweep Vbg back to the spin mode.

This should result in an effective spin rotation. The chosen spin (S) and valley (V) modes
are shown on Figs. 5.3 and 5.4. The time dependent Schrödinger equation is solved in a
basis of N low energy single particle states. In order to describe correctly the wavefunction
all over the Vbg span (from −40 mV to +80 mV), we have to use a large enough basis
of such states. We actually use 128 states at the middle of the range, Vbg = 20 mV,
in order to achieve convergence on the whole Vbg range. We prepare the initial state as
|Ψ(t = 0)〉 = |0〉 ' |v1 ↓〉, and the simulation then gives |Ψ(t)〉. From |Ψ(t)〉 we compute
the expectation value of Sx, Sy, Sz, as well as |〈1|Ψ(t)〉|2, the probability to be in |1〉
state. Starting from Vbg = −40 mV we apply a square pulse on the backgate electrode
in order to reach the valley regime at Vbg = +80 mV. The pulse is not perfectly square,
as the edges have finite slopes in order to ensure that we move adiabatically from S to V
(see details in the next section). We apply during the pulse a resonant microwave signal
on the main gate to rotate the valley state. Fig. 5.6a show the result of the simulation,
exhibiting 8.5 Rabi oscillations and ending in the |1〉 state. The Rabi frequency extracted
from these oscillations, 83.8 MHz, is very close to the direct tight-binding calculation at
the S point (84.4 MHz, Eq. 5.6), showing the excellent convergence with N = 128 states.

As expected the oscillations of the average spin values are very small as we are mostly
driving valley rotations between |v1 ↓〉 and |v2 ↓〉. However the spin suddenly changes
its value during the ramp as we adiabatically go through the anticrossing back to the
spin mode (|v2 ↓〉 → |v1 ↑〉). This is an interesting feature of this scheme: contrarily
to usual EDSR, in which the dipolar and spin-orbit interactions act simultaneously, here
their action is separated in time. First we make use of the dipolar interaction to drive
valley rotation, then the spin-orbit interaction, to convert the valley rotation into a spin
rotation.

5.2.2 Adiabaticity.

Let us now explore a bit more the physics of adiabaticity/diabaticity along this path.
Indeed, what we want here is to ensure that a given state at the S point, let’s say |Ψ〉 = |1〉,
stays |1〉 if no excitation is applied when we switch the system to the V point, back and
forth. According to the adiabatic theorem [137], an eigenstate of the initial Hamiltonian
will evolve continuously to the corresponding eigenstate of the final Hamiltonian if the
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Chapter 5. A Spin-Valley qubit

(a) Adiabatic S-V transition. (b) Non-adiabatic S-V transition.

Figure 5.6: Time series for spin manipulations, monitored by the probability p(|1〉) to
be in the |1〉 state, and by the expectation value of the spin 〈Sy〉. Starting from the
|0〉 = |v1 ↓〉 state at point S, the qubit is pulsed (adiabatically in (a) or diabatically in
(b)) to point V by the backgate, and the RF signal with resonant frequency is applied on
the front gate to drive rotations between |0〉 and |1〉. Once the RF signal is switched off,
the qubit is brought back to point S (again adiabatically in (a) or diabatically in (b)).

perturbation is applied slowly enough: this is an adiabatic process. On the contrary, if
the perturbation is too fast, the probability density is unchanged, and an initial eigenstate
evolves into a linear combination of eigenstates of the final Hamiltonian: this is a diabatic
process. The rapidity of the changing perturbation thus determines the type of process.
In our case, we can derive the adiabatic condition by using the well-known case of the
avoided crossing, treated by Landau and Zener [138,139]. The Hamiltonian for the avoided
crossing is:

H =
 α

2 C

C∗ −α
2

 (5.7)

where C is the coupling between the states, and α is the energy splitting between the
uncoupled states. The elements on the diagonal are the energies of the diabatic states,
which are not eigenvalues of the Hamiltonian. Diagonalization of this Hamiltonian yields
the adiabatic states, which form an avoided crossing. The diabatic and adiabatic energies
are given in Fig. 5.7. Assuming α can be controlled externally at speed v (α = vt), the
Landau-Zener formula gives the probability of a diabatic transition. Starting from the
lower branch of the anticrossing, the probability of transiting to the upper branch is:

PD = exp(−2πΓ) (5.8)

with Γ = |C|2
~v . This equation can be applied to derive the condition on the adiabatic

passage of the state |1〉, which will be the most limiting since it is the closest in energy
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Figure 5.7: Diabatic and adiabatic states of an avoided crossing described by the Hamil-
tonian of Eq. 5.7.

to the other excited states, in particular at the anticrossing. For this some assumptions
are needed. We have to suppose that ∆ varies linearly with t, which is almost the case
if we apply a linear ramp on Vbg during a time τR. We also have to neglect the fact that
in our case Cv1v2 depends on time since it depends on Vbg. We will hence take as average

Cv1v2 its value at the anticrossing. Then v = ∆S−∆V

τR
and Γ = |Cv1v2 |

2
τR

~(∆S−∆V ) , with ∆S = 156.8
µeV, ∆V = 98.5 µeV and |Cv1v2 | = 2.7 µeV. We hence get:

τR = − log(PD)~(∆S −∆V )
2π |Cv1v2|

2 (5.9)

If we choose the criteria that PD < 10−5, we get τR > 9.6 ns, which gives an approximation
of the ramp time we need for an adiabatic passage.

Let us now examine the numerical results. We have plotted on Fig. 5.6b the same
simulation than in Fig. 5.6a but with a perfect square pulse. We see that for the first
diabatic passage from S to V there is at first sight little difference since we start in the
|v1 ↓〉 state which is well separated from the other states in energy. Nonetheless the
Rabi oscillations have a slightly smaller amplitude, indicating that the |0〉 state has been
coupled to some excited states. In the second diabatic passage from V to S, we start
from a mostly |v2 ↓〉 state. During the passage, the state does not follow the |1〉 branch
but retains a large |v2 ↓〉 component, with 〈Sy〉 dropping to ' −0.5. By varying the
ramp time τR we find that for a good adiabatic passage (with the criteria PD = 10−5) the
minimal τR time is 9 ns. Eq. 5.9 hence gave a very good estimation, showing that the
passage of the anticrossing is the most limiting point.

Consequently we could reduce this time by increasing the value of Cv1v2 at the an-
ticrossing. For instance, at B = 1.5 T, Cv1v2 = 4.1 µeV at the anticrossing. Keeping
the same ∆S − ∆V , Eq. 5.9 then gives τR = 4.2 ns. Another possibility is to adapt the
backgate gate signal to make it slower as we are closer to the anticrossing.
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Chapter 5. A Spin-Valley qubit

5.2.3 Control of rotation axis.

Now that we have properly calibrated the ramp times, another issue to take care of in
designing the control signals arise when we want to chain together two rotations. Indeed
when going from S to V and from V to S, the phase of the qubit state drifts for two
reasons. First, the precession frequencies are different at point S and at point V, since
hfS = gµBB/2 and hfV = ∆/2. Second, the adiabatic passages add a phase that has two
components: the dynamical phase that comes from the time evolution, and the geometric
phase that comes from the continuous variation of the eigenstates.

We therefore introduce the time-dependent states |0〉(t) = |v1 ↓〉e+iωSt/2 and |1〉(t) =
|v1 ↑〉e−iωSt/2, where ωS/(2π) is the precession frequency at point S. The projections of
the qubit state on |0〉(t) and |1〉(t) define its representation in the rotating Bloch sphere
at point S.

The transformation matrix T for the complete manipulation sequence reads in the
{|0〉(t), |1〉(t)} basis set:

T = RZ(∆ϕVS)RZ(∆ϕV)RXY (α, ϕ)RZ(∆ϕSV) , (5.10)

where RZ(α) is the matrix of a rotation of angle α around the polar axis Z of the Bloch
sphere:

RZ(α) =
eiα/2 0

0 e−iα/2

 , (5.11)

and RXY (α, ϕ) is the matrix of a rotation of angle α around U = cosϕX + sinϕY:

RXY (α, ϕ) =
 cos(α/2) −i sin(α/2)eiϕ

−i sin(α/2)e−iϕ cos(α/2)

 . (5.12)

The first rotation, RZ(∆ϕSV), accounts for the phase drift on the way from S to V. The
second, RXY (α, ϕ), accounts for the electrical manipulation at V . The third, RZ(∆ϕV),
accounts for the difference in precession frequencies at V and S. Finally the fourth,
RZ(∆ϕVS), accounts for the phase drift on the way back to S. ∆ϕSV and ∆ϕVS depend
on the back gate voltage ramps, while ∆ϕV = (ωV − ωS)τV, where ωV/(2π) and τV are
the precession frequency and the total time spent at point V, respectively. α is controlled
by the duration τα ≤ τV of the RF pulse at V. The axis of rotation, characterized by ϕ,
can be controlled by the phase of the RF signal, as demonstrated in Fig. 5.8. The above
sequence of rotations can be factorized as:

T = RZ(∆ϕSV + ∆ϕV + ∆ϕVS)RXY (α, ϕ−∆ϕSV) . (5.13)

Namely, the net operation appears as a rotation around an axis of the equatorial plane of
the Bloch sphere (as expected), followed by a rotation around Z that outlines the total
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Figure 5.8: (a) Time series for a π/2 rotation from the |v1 ↓〉 state (b,c) Expectation
value of Sx and Sz in the rotating Bloch sphere after that π/2 rotation as a function of
the phase φ of the driving RF signal.

phase accumulated out of the S point. This phase must be accounted for when chaining
rotations. Once the ramp time is fixed, ∆ϕSV and ∆ϕVS are fixed, so the total phase
can be compensated by choosing τV such that ∆ϕT = ∆ϕSV + ∆ϕV(τV) + ∆ϕVS = 2nπ
irrespective of the rotation (typically, τV must be greater than τπ so that π rotations can
be accommodated within the manipulation window at V).

By varying the phase of the microwave signal we are in principle able to control
the axis of rotation of the spin in the Bloch sphere [93] and consequently to perform
arbitrary rotations giving a two-axis control on the Bloch sphere. We show in Fig 5.8 the
expectation values of Sx and Sz in the rotating Bloch sphere after a π/2 rotation from
the |v1 ↓〉 state as a function of the phase φ of the RF signal on the front gate, namely
δVg(t) ∝ sin(ωVt+ φ). In this figure, the time τV spent at the V point has been adjusted
so that two successive π/2 rotations around the same axis result in a net π rotation, i.e
∆ϕT = 2nπ. Still, the phase φ of the second rotation must account for the mismatch in
precession frequencies at S and V. For example, if the first rotation at time t0 is driven
by a RF signal δVg(t) ∝ sin[ωV(t − t0) + φ)], the second rotation at time t1 must be
driven by a RF signal δVg(t) ∝ sin[ωV(t − t0) + φ + (ωS − ωV)(t1 − t0)]. Such a phase
management is systematic in qubit systems where the precession frequency changes with
a tuning parameter.

To conclude we have shown how to operate the spin-valley qubit with gate signals
using time-dependent calculations on top of the tight-binding Hamiltonian. We have
computed the dynamics of the system and have given the conditions for adiabatic passage
of the anticrossing. Finally we have shown that some precautions need to be taken
when chaining rotations as our protocol introduces systematic dephasing at each qubit
operation. Nonetheless our protocol depends a lot on the amplitude and tunability of the
valley splitting, as well as on the existence of sizable intervalley dipolar and spin-orbit
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couplings. We will see in part 5.4 and 5.5 that in our system both features depends on
the surface roughness and film thickness thus calling for careful design.

5.3 Noise and decoherence

In the previous parts we have shown how to operate the spin-valley qubit in a decoherence-
free environment, we will now study the decoherence in both regimes. In silicon devices
there are various sources of electric noises with different dynamics, which are not well
characterized and depends a lot on the device. Here we choose to study the effects of two
simple pervasive noises (Johnson-Nyquist and phonons) on the qubit. We will show, as
we first intuitively claimed, that the decoherence is faster in the valley regime than in the
spin regime because of the greater sensitivity to electric fields.

Huang and Hu [129] have studied the spin relaxation in a spin-valley system with spin-
orbit coupling, and reached good agreement with the measurements of Yang et al [50].
In this paper the relaxation of a spin up is calculated as a function of the magnetic field,
showing as in the experiment an enhancement of the relaxation rate at the anticrossing.
The relaxation rate T−1

1 due to the electron-phonon interactions are

T−1
1,l = ω5

01
4π~ρv7

l

[
|Y01|2 + |Z01|2

2

(4
3Ξ2

d + 8
15ΞdΞu + 4

35Ξ2
u

)

+ |X01|2
(2

3Ξ2
d + 4

5ΞdΞu + 2
7Ξ2

u

)]
cotanh

(
~ω01

2kT

)
(5.14)

for the longitudinal phonons, and

T−1
1,t = ω5

01
4π~ρv7

t

[
|Y01|2 + |Z01|2

2
16
105Ξ2

u + |X01|2
4
35Ξ2

u

]
cotanh

(
~ω01

2kT

)
, (5.15)

for the transverse phonons, where ω10/(2π) is the qubit precession frequency, X01 =
〈0|x|1〉, Y01 = 〈0|y|1〉 and Z01 = 〈0|z|1〉 are the dipole matrix elements in the device axis
set, vl = 9000 m/s and vt = 5400 m/s are the longitudinal and transverse sound velocities,
Ξd = 1.0 eV and Ξu = 8.6 eV are the conduction band deformation potentials, ρ = 2329
kg/m3 is the mass density of silicon, and T = 100 mK is the temperature.

We follow Refs. [129,140,141] for the relaxation rate T−1
1 and dephasing rate T ∗−1

2 due
to Johnson-Nyquist noise. Also known as thermal noise, this noise corresponds to the
fluctuations of potential due to the thermal agitation and zero-point motion of electrons
inside an electrical conductor. In our case the electrical conductor is the metallic gates.
We assume a R = 2kΩ series resistance on the front gate and neglect the noise on the far
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less coupled back and lateral gates. Then,

T−1
1,jn = 4π

~
R

R0
|D01|2~ω01coth

(
~ω01

2kT

)

T ∗−1
2,jn = 2π

~
R

R0
|D11 −D00|2kT , (5.16)

where R0 = h/e2, D00 = 〈0|D|0〉, D11 = 〈1|D|1〉 and D01 = 〈0|D|1〉, with D(r) =
∂Vtot/∂Vg the gate coupling operator.

The relevant data at the S and V points are given in Table 5.1. As expected, T1 and T ∗2
are much longer in the spin than in the valley regime due to the reduced sensitivity of spin
qubits to electric fields. The operation of the qubit is limited by Johnson Nyquist noise,
but the calculated T1,jn remains orders of magnitude larger than the total manipulation
time (around 25 ns on Fig. 5.8). The phonon-limited T1’s are also much longer than
measured in Ref. [50] because the valley splittings and dipole matrix elements are smaller
(in particular, T1,l and T1,t scale as ∆−5 in the valley regime). Practically, the coherence
might be limited by various sources of 1/f noise [61,141], which still need to be carefully
characterized. In particular an important expected effect is the noise of the capture-release
of charges by traps that are known to exist in standard MOSFETs [142], either as dopants
in source/drain or in the gate stack (especially with HfO2 [143]), and are responsible for
random telegraph noise. It has been in particular observed in the Coulomb blockade
regime by Hofheinz et al [144] and more recently by Li et al [145]. It is in principle
possible to study this effect with the tools we have. We need to compute the matrix
elements associated with the change of potential due to the capture-release of a charge by
a trap, then add it as a noise with Poisson statistics (with a characteristic time of capture
and release) in the time dependent-solver in order to compute T1 and T2 numerically. The
methodology has been implemented but the study is still ongoing at this time.

The working points of spin and valley mode have been chosen arbitrarily, so the T1

and T ∗2 we have computed are not optimal. Indeed, we have computed T1 and T ∗2,jn as
a function of the backgate bias at B = 1 T, plotted in Fig. 5.9. We see that we can
gain on both times in the spin mode by going further away from the anticrossing at more
negative Vbg, but the lifetime of the qubit is already pretty long at that point. More
interestingly there is a peak on T ∗2 at Vbg ' 0.15 V, which corresponds to a sweet spot
in the energy splitting that we can see in Fig. 5.4. Indeed the energy splitting (and thus
ωV ) is independent on Vg and Vbg to first order, which limits the sensitivity of the qubit
to electrical noises and enhances the T ∗2 . This could be an interesting working point for
the qubit in the valley mode, with improved coherence and fast manipulation.
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S point V point
~ω01 (µeV) 115.3 98.3
X01 (Å) 0.000 0.001
Y01 (Å) 0.005 0.050
Z01 (Å) 0.011 0.287
D01 (µV/V) 9.5 348.9
|D11 −D00| (µV/V) 2.4 607.8
T−1

1,l (s−1) 1.02×10−2 3.08
T−1

1,t (s−1) 0.15 32.8
T−1

1,jn (s−1) 15.4 1.77×104

T ∗−1
2,jn (s−1) 3.64×10−2 2.35×103

Table 5.1: Precession frequency, dipole and gate coupling matrix elements, inverse relax-
ation and coherence times at the S and V points of Fig. 5.4.

Figure 5.9: (a) Relaxation time including phonons and Johnson-Nyquist noises as a func-
tion of Vbg (b) Dephasing time for Johnson-Nyquist noise T ∗2,jn as a function of Vbg. For
both panels B = 1 T, and the vertical gray dotted lines mark the spin and valley operation
points of part 5.2.
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5.4 Effect of surface roughness

We have seen in detail how to implement our spin-valley qubit scheme in an ideal device.
An important concern on the feasibility of this approach is whether it is still doable in a
realistic device. In this part we have thus studied the effect of surface roughness, which
is a source of local disorder that is always present, although it can be reduced [146].

We have used realistic surface roughness parameters (but neither state of the art nor
optimal) generated from a gaussian spectral density with rms ∆SR = 0.4 nm on the top
and lateral interfaces and ∆SR = 0.25 nm on the bottom interface, with a correlation
length of ΛSR = 1.5 nm on all sides. ∆SR lies in the upper range of the values compatible
with the carrier mobilities measured in similar devices at room temperature [87,89]. The
description of the surface is critical for the physics of the valley splitting. Here the
surface is passivated with pseudo-hydrogen atoms, however we compared our results to
test calculations made with the model of Ref. [111] for the Si/SiO2 interfaces, which show
exactly the same trends.

The main elements of the EDSR model (∆, Cv1v2 , Dv1v2) have been computed for 16
different samples with surface roughness disorder, as a function of Vbg. The results are
plotted Fig. 5.10. The Rabi frequency maps (B, Vbg) of four of these samples are plotted
in Fig. 5.11 as an illustration. The maximal fR are typically a few tens of MHz, which is
significant.

Let us discuss the three elements of the model one by one, starting with the valley
splitting. A well-known observation is that ∆ is reduced with surface roughness [47,
132, 147], because it disturbs the reflections of the wavefunctions on the interfaces. The
variability is low at the minimum of ∆ and increases when Vbg pulls the wavefunction
at the top or bottom interface. This has an important consequence for our scheme: it
is always possible to choose a reasonable magnetic field such that gµBB > min(∆(Vbg))
for all the devices. As the variability increases away from the minimum, the bias point
where the anticrossing occurs (that is gµBB = ∆(V A

bg)) will be quite different from device
to device. Each qubit will thus need an individual calibration, which is almost always the
case whatever the qubit architecture.

Concerning the spin-orbit, the Cv1v2 matrix element has very low variability. It goes
to zero at exactly the same Vbg for all devices. This is very interesting on the physics side
because it means that it does not change with the details of the interface and depends
only on the overall confinement.

Finally the surface roughness effect on the dipolar interaction is probably the weakest
point of this proposal so far. As the valley splitting, Dv1v2 is also decreased by the SR
disorder. The variability is quite high, because Dv1v2 is now not only due to the vertical
electric field (along z), as the surface roughness also creates non zero intervalley dipolar
coupling in the y direction [52, 133] (the gate electric field being mostly along z and y).
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Figure 5.10: (a) Valley splitting ∆ as a function of the back gate voltage Vbg, for differ-
ent realizations of the surface roughness disorder (dotted gray lines). The average and
standard deviation are plotted as the blue line and error bars. (b) SOC matrix element
Cv1v2 as a function of the back gate voltage Vbg, for different realizations of the disorder
(c) Gate coupling matrix element Dv1v2 as a function of the back gate voltage Vbg, for
different realizations of the disorder. Vg = 0.1 V in all plots.

Again, at the price of a bit slower Rabi frequencies (keeping in mind that the time we
apply microwave is not the longest time of our scheme) and individual bias calibration of
the qubits, our manipulation protocol is still interesting. For all the realizations of the
disorder there is always a maximum of the Rabi frequency in the valley mode of at least
20 MHz/mV. This is also the result that can be the most debated, since it depends on
the description of the interfaces and on the thickness [64]. For the performances of the
qubit as well as for the modeling it is then necessary to delve into the valley physics of
these devices. That is the study we started in the next part using a simple two-valleys
effective mass analytical model and tight-binding simulations.
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Figure 5.11: Map of the Rabi frequency as a function of the magnetic field and Vbg, for
different realizations of the disorder. The dotted black line is the anti-crossing condition
EZ = gµBB = ∆(Vbg). The horizontal dashed line is a target magnetic field B = 0.5 T
for qubit operation. Vg = 0.1 V and B ‖ y in all plots.

5.5 Valley physics and dependence of thickness.

In the following we will give a simple model for the valley physics and use it to explicit
the valley splitting. We will study in particular the influence of the interfaces and of the
thickness of the nanowire, which are crucial here. Indeed in the last part we have studied
the variability due to interface roughness for a given thickness, but the device-to-device
variation of the thickness is estimated to be a few Å, depending on the process. It is up
to now impossible to control the thickness with atomic precision, so this must be included
in the study of variability of the devices.

Let us start from the uncoupled valley solutions in the simple effective mass approxi-
mation (EMA). The EMA Hamiltonian is noted H0, with H0φ

±
0 = ε0φ

±
0 , and:

φ±0 (r) = φ0(r)e±ik0zu±k0(r) (5.17)

We include only the valley mixing effects resulting from the interfaces through the
operator:

V̂if =
(
V̂T δ(z −H/2) + V̂Bδ(z +H/2)

)
θ(|y| −W/2) (5.18)
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with

V̂T,B =
 0 λT,B

λ∗T,B 0

 (5.19)

Let us now introduce the matrix element V = 〈φ+
0 |V̂if |φ−0 〉 so that in the basis {φ+

0 , φ−0 }
the Hamiltonian reads:

H =
 ε0 V

V ∗ ε0

 (5.20)

The eigenenergies of this Hamiltonian are

E± = ε0 ± |V | (5.21)

and its eigenfunctions are

Ψ±0 (r) = 1√
2

(eik0zuk0(r)± e−iφV e−ik0zu−k0(r))φ0(r) (5.22)

with φV = arg(V). We can write explicitly the matrix element V :

V =
∫
φ+∗

0 (r)Vif (r)φ−0 (r)dr

=
∫
|φ0(r)|2 e−2ik0z |uk0(r)|2 Vif (r)dr

=
∫∫

xy

∣∣∣∣φ0(x, y, H2 )
∣∣∣∣2 λT e−ik0H +

∣∣∣∣φ0(x, y,−H2 )
∣∣∣∣2 λBeik0Hdxdy

so that
V = χTλT e

−ik0H + χBλBe
ik0H (5.23)

with

χT =
∫∫

xy

∣∣∣∣φ0(x, y, H2 )
∣∣∣∣2 dxdy (5.24)

χB =
∫∫

xy

∣∣∣∣φ0(x, y,−H2 )
∣∣∣∣2 dxdy (5.25)

The valley splitting is ∆ = E+ − E− = 2 |V |, so

∆ = 2
√
χ2
T |λT |

2 + χ2
B |λB|

2 + 2χTχB |λT | |λB| cos(2k0H + φT − φB) (5.26)

with arg(λT,B) = φT,B. This general expression for ∆ was first given by Nestoklon et al
[64]. We are now going to look at some limiting cases. The first limit is when the electron
is pushed on the top (respectively bottom) interface, so that χB = 0 (χT = 0), hence only
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one term in Eq. 5.26 does not vanish and we are left with:

∆Top/Bottom = 2χT,B |λT,B| (5.27)

As λT,B is a constant, we expect that the linear dependence of ∆(Vbg) in this regime is
due to the linearly increasing charge density on the interface. We have verified this by
computing explicitly (in EMA) the wavefunction density at the interface, and find indeed
a perfect linear dependence on Vbg. A second limiting case is when the wavefunction is
symmetric with respect the two interfaces, and χT = χB. This should be the case in
particular when ∆(Vbg) is minimum. The valley splitting then reads:

∆ = 2χT
√

(|λT |2 + |λB|2) + 2 cos(2k0H + φT − φB) (5.28)

Eq. 5.28 shows that ∆ should oscillate with the thickness H, but as χT,B decreases with
increasing H these oscillations must be damped. We have computed the valley splitting
as a function of H in the symmetric case. It is important to realize here that in tight-
binding H is a multiple of the thickness of one atomic layer, and that the orientation of
the surface bonds is shifted by 90 degrees each time we add an atomic layer, as illustrated
Fig. 5.12. We call these types of interfaces α, for hydrogen bondings perpendicular to the
wire direction, and β, for hydrogen bondings parallel to the wire direction. We have then
two orientations for each surface which should give two different phases for φT,B, but with
similar amplitude |λT,B|. In the end there are four possibilities of interfaces: αα, βα, αα,
ββ. For the global decrease of ∆ with H, it can be estimated from χT . The hard wall
boundary conditions φ0(x, y, z = ±H

2 ) = 0 cannot be used because they imply χT,B = 0
so ∆ = 0. We can apply in this case generalized hard wall boundary conditions as given
by Volkov and Pinsker [148]:

φ0(z = ±H2 ) = R
∂φ0

∂z
(z = ±H2 ) (5.29)

where R is homogeneous to a length 1. Then,

χT = R2
∫∫

xy

∣∣∣∣∣∂φ0

∂z
(x, y, H2 )

∣∣∣∣∣
2

dxdy (5.30)

If we approximate φ0 by the solution of the 3D infinite quantum well, with width W ,
height H and length L, namely φ0(x, y, z) =

√
8

LWH
cos( π

L
x) cos( π

W
y) cos( π

H
z), we get:

χT = 2π2R2

H3 (5.31)

1In a quantum well of width H and with finite depth U0 such that ~2π2

2mH2 � U0, R ' ~√
2mU0
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Figure 5.12: Small portion of a silicon nanowire passivated with hydrogen atoms. (Left)
Type α interface, the surface bondings are oriented perpendicularly to the wire direction.
(Right) Type β interface, the surface bondings are oriented parallel to the wire direction.

In Fig. 5.13a we have plotted the valley splitting at Vbg = 0.15 V (symmetric case) as
a function of H, for the four sets of interfaces. All the curves show damped oscillations
but with different phases. This confirms that the parameters φT,B in our model can be
related to the surface orientation, and that |λT,B| does not depend on this orientation.
The curves for αα and ββ are almost superimposed, as well as the curves for αβ and
βα. What seems to matter here is if the surface bondings of each interface are parallel or
orthogonal.

First, concerning the global decrease of ∆ with H, we have fitted the data with a
∝ 1

H3 envelope, showing excellent agreement, highlighting the relevance of this model
(Fig. 5.13). Then, in Fig. 5.13, we have fitted the full model (Eq. 5.28) with damping
and oscillations with

∆ = K

H3

√
A+ 2 cos(2k0H + Φ) (5.32)

We have distinguished between parallel and orthogonal surface bondings. In both cases
the parameters K and A are similar. As for the phase, we obtained Φ‖ − Φ⊥ = π,
the oscillations in the sets of parallel and perpendicular surface bondings are antiphased.
More precisely we have (φαT−φαB)−(φαT−φ

β
B) = π. Assuming that |λT | = |λB| because the

interfaces are identical, then φα,βT = φα,βB , and the previous relation becomes φβT,B−φαT,B =
π.

This is the case of an ideal device, however in a realistic sample, the interface disorder
is expected to decrease the valley splitting as it mixes the interference between the two
valleys [52, 132, 147] as we have already observed in part 5.4. However it has never been
shown if the oscillations of ∆ with H are still present. We have tried to verify this here
by computing the valley splitting for different surface roughness profile (with the same
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Figure 5.13: Valley splitting as function of the wire thickness H, for four sets of surface
termination. The hydrogen bondings of top and bottom surfaces are either parallel (AA
or BB) or orthogonal (AB or BA). (a) Linear scale, we fit the envelope from the model
of Eq. 5.31. (b) Semilog scale, we fit the full model from Eq. 5.32 for orthogonal surface
bondings (top panel) and parallel surface bondings (bottom panel).

parameters as in part 5.4), as a function of H. The results of the calculation of the valley
splitting of 11 samples of surface roughness are plotted on Fig. 5.14, along with the
average value and standard deviation. Here we plotted ∆ at Vbg = 0.2 V, which is close
to the minimum of ∆(Vbg). We still observe a decrease of ∆min with H. The variability
is high for small thicknesses, and is decreasing with H. The necessary condition of our
scheme is to have gµBB > min(∆(Vbg)), and min(∆(Vbg)) small enough to allow qubit
manipulation at frequencies ∆min/h of a few tens of GHz. This is achieved for a thickness
higher than 8 nm. Interestingly, the oscillations of ∆min with H are still visible. This
means that for a random surface profile, the valley phase does not have a totally random
value, otherwise the different samples would not have the same oscillations.

Models for the dependence of Dv1v2 and Cv1v2 on the thickness are under development
in order to reach a comprehensive understanding of the Rabi frequency with the design
of the device. Preliminary results indeed show that Cv1v2 does not depend much on H,
whereas Dv1v2 exhibits large variations with H.
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Figure 5.14: Valley splitting as function of the wire thickness H, with surface roughness.
The individual samples are in dotted lines, the blue line is for the average valley splitting,
and the error bars show the standard deviation.

5.6 Experimental control of valley splitting with back-
gate potential

To conclude this study on the spin-valley quantum bit, we present a new experimental
result in a device similar to the one we studied in the simulations.

Several groups have demonstrated the electrical control of the valley splitting in planar
Si/SiO2 MOS quantum dots [50,56], showing linear dependence with gate bias. Up to date
the valley splitting was not measured as a function of backgate in a nanowire device with
at least one partially covering gate. Nevertheless this measurement has been performed at
Hitachi Cambridge in a similar device with trigate geometry. This is a first experimental
step in realizing the spin-valley qubit scheme. The device consists in a [110]-oriented
nanowire with W = 42 nm, H = 8 nm and one overlapping gate of length Lg = 44
nm with the usual SiO2/HfO2 gate stack. The channel is doped with phosphorous at a
concentration of 5× 1017 cm−3. The undoped silicon substrate is activated by flashing a

Figure 5.15: Device measured by David Ibberson at Hitachi Cambridge. From Ref. [57].
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Figure 5.16: (a) Diagrams illustrating the respective alignment of the quantum dot and
source and drain electrochemical levels at the three features observed in b). (b) Measured
source-drain current (blue dots) in the first Coulomb oscillations at VBG = −7.8 V. The
black line is a fit considering that the system is in the sequential multi-level transport
regime [43]. (c) Plot of valley splitting against VBG with a best-fit line gradient of −45±3
µeV/V. From Ref. [57] .

Figure 5.17: Tight-binding simulations of the valley splitting as a function of VBG. The
black dots are the experimental data points. The red line gives the trend for a perfect
device with no defects or roughness. The blue line and error bars are the average an
standard deviation for different SR profiles with rms 0.35 nm (each plotted as a dashed
gray line). Finally, the orange lines are a few representative simulations with SR and
RCS charges included (the best match with the experiment being highlighted by the solid
line with diamond symbols). The top axis indicates the effective electric field felt by the
electron.
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surface-mounted blue LED to generate free carriers, then used as a back gate. A SEM
picture of the device is shown Fig. 5.15.

For several backgate bias VBG, Ibberson et al measured the source drain current while
sweeping the top gate potential VTG. This measurement, illustrated in Fig. 5.16a, presents
three peaks. They correspond to three configurations shown Fig. 5.16b: ground state
aligned with the source, excited state aligned with the source, ground state aligned with
the drain. From this the ground state-excited state splitting is extracted as a function of
VBG, giving the curve Fig. 5.16c. This splitting shows a linear dependence with VBG and
goes from 880 µeV at VBG = −9 V to 610 µeV at VBG = −3, with a slope of−45±3 µeV/V.
To determine the nature of this excited state, we performed tight-binding calculations,
that include several sources of disorder: dopants, surface roughness and charges in the
gate stack.

First of all, the first orbital excited state is too far in energy, whatever the disorder,
and does not show this linear dependence. The measured splitting is then most probably
a valley splitting. We plot Fig. 5.17 the TB valley splitting in different cases. In the
ideal case, the amplitude of the valley splitting is slightly lower than the experiment and
indeed shows linear dependence but with a larger slope. As expected, surface roughness
reduces the valley splitting amplitude and slope. Dopants could enhance ∆ but then the
slope is expected to be opposite if the wavefunction gets bound to a donor, as negative
backgate voltages tend to transfer the electron from the dopant to the top interface
thereby reducing the effects of the impurity potential (as already shown by Rahman
et al. [149] and Roche et al. [97]). However we show that the measured ∆ is compatible
with the presence of charges in the gate stack. The presence of such charges at the
Si/SiO2 interface is supported by mobility measurements in similar devices and gives
rise to "Remote Coulomb Scattering" (RCS) [87, 150]. The apparent density of these
charges can be as large as a few 1013 cm−2. In fact, the Coulomb disorder in the gate
stack likely results from a combination of charge traps at this interface, local band offset
fluctuations (interface dipoles), and possibly from work function fluctuations in granular
metal gates [151]. Here we have modeled this disorder as a distribution of positive and
negative charges at the SiO2/HfSiO2 interface with net density nRCS = 1013 cm−2. In that
case, the valley splitting depends strongly on the position of the charges. The localization
is, indeed, much more efficient in a Coulomb than in a short-range SR potential, but also
much more variable. For a given density of RCS charges, the valley splitting spans about
one order of magnitude depending on their distribution. A statistical analysis of both
mechanisms shows that 20 out of 20 simulated rough devices show well defined corner
states at negative VBG, while only 14 out of 20 simulated devices with RCS included
still do so. In Fig. 5.17 a few representative samples are shown, illustrating this large
variability, and a particular sample which reproduces perfectly the experimental results is
highlighted. Coulomb disorder must, therefore, primarily be reduced in order to mitigate

92



5.7. Conclusion

device variability. As a matter of fact, the valley splitting has been measured in a similar
device with two corner dots in parallel but with only SiO2 as the gate dielectrics [94].
The valley splitting at VBG = −1 V was found to be 145 µeV in one dot, which is more
compatible with the TB valley splitting calculated with SR and no RCS. This calls for a
careful assessment of the sources of disorder in silicon devices. Removing the HfO2 oxide
from the gate stack might help to reduce Coulomb disorder and variability.

As discussed earlier, the fact that ∆ is linearly increasing with the gate potential, as
the wavefunction is pushed at a Si/SiO2 interface was already known. It was not obvious
in our system since we have four interfaces. In fact, the lateral interfaces do not play
a role because they are perpendicular to the most confined direction and therefore they
do not act on the z valleys. We have verified this by computing the dependence of ∆
with a pure lateral electric field and note no effect. We have thus computed the effective
electric field felt by the electron, in the z direction, as Eeff

z =
∫
Ez(r) |Ψ(r)|2 dr. That

way the experimental slope of the valley splitting is 48± 3 µeV/(MV/m) with respect to
the effective field. This is to be compared with the measured value in the planar MOS
quantum dots of Refs. [50, 56], respectively 20.9 and 21.0 µeV/(MV/m). The order of
magnitude is similar, but controlling the planar device seem less efficient.

In conclusion, this experiment is an important step towards the realization of the
spin-valley qubit in a silicon nanowire. However it does not meet yet the requirements
to implement our scheme. We would benefit from partially covering gates to create well
controlled corner dots, and more importantly we should use devices with much smaller
valley splitting. In order to make it easier to achieve and more reproducible, a message
of these simulations is to suppress the HfO2 oxide layer inherited from the ultra-scaled
CMOS devices, and replace it with thicker SiO2.

5.7 Conclusion

We have shown in chapter 4 that it was possible to manipulate electrically the spin of
the electron in silicon, which is one of the main problem of current spin-based electron
quantum bits. The electrical manipulation was allowed by the inter-valley spin-orbit
interaction, coupling opposite spins of different valleys, and by the inter-valley dipolar
interaction, coupling different valleys. In this chapter, we tailored these interactions in
order to build a qubit which at the same time would have fast electrical control and
preserve the good coherence properties of the electron spin. To achieve that we proposed
a scheme, the spin-valley qubit, that consists in switching between a spin qubit where
quantum information is well preserved, and a valley qubit for manipulation. The switch
is made possible by the intervalley spin-orbit interaction and the electrical control over
the valley splitting.
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As we were working with the particular devices made at CEA in a silicon-on-insulator
MOS technology, we leveraged on the backgate electrode to control the electric field, and
thus the valley spitting. The nanowire and the partially covering gate are strong features
of these devices because they easily break the symmetries of the electron wavefunction,
thus allowing for sizable and reproducible inter-valley spin-orbit operation. Once in the
valley mode, another requirement of the model is to be able to electrically couple the
valley states. After demonstrating with tight-binding simulations that we had all this
elements in our quantum dot device, we have studied the dynamics of the qubit with
time-dependent simulations. We have derived the conditions on the control signals to
operate properly the qubit, in order to keep the spin-valley passage adiabatic, and to
compensate the systematic dephasing induced by this transition.

Once demonstrated how to operate the qubit, we have evaluated the decoherence and
relaxation in both regimes to demonstrate the sustainability of the scheme. We have in
particular dealt with pervasive sources of noise, phonons and Johnson-Nyquist, showing
indeed the interest in switching modes for manipulation, but also the great advantage of
having a small valley splitting. In order to asses further the feasibility of the protocol,
we have studied the effect of surface roughness on the variability of the key figures of
the qubit. The result is that the spin-orbit interaction is remarkably robust, so that the
spin-valley switching is always possible. On the downside, as they depend on the atomic
details of the interface, Dv1v2 (and ∆ also to a lesser extent) has a large variability. We
have also shown how the valley splitting depends on the thickness of the silicon layer,
which must be optimized. Finally we have shown a new experiment on the measurement
of the control of valley splitting with the backgate, the first step in the the realization of
the spin-valley qubit.
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Hole spin qubits

Dans ce chapitre nous nous intéressons à la manipulation électrique des trous dans les
qubits silicium. En effet, l’interaction spin-orbite est bien plus importante dans la bande
de valence que dans la bande de conduction, et permet en principe de réaliser une manip-
ulation du spin par EDSR. Dans le cadre de la réponse linéaire (en champ magnétique et
en excitation électrique), deux mécanismes d’EDSR ont été identifiés. Le premier est la
g-TMR ("g-Tensor Modulation Resonance") et repose sur le contrôle électrique des fac-
teurs gyromagnétiques. Il requiert des facteurs g anisotropes et dépendant du potentiel.
Un champ électrique crée une modulation du potentiel de confinement, qui se traduit par
des facteurs g dépendant du temps, et donc en une modulation du vecteur de Larmor
qui peut résulter en une rotation du spin. Le second mécanisme a été observé dans les
semiconducteurs III-V, et la théorie a été donnée par Golovach, Borhani et Loss (GBL).
Contrairement à la g-TMR, il n’est pas associé avec une variation des facteurs g. À la
place, le champ électrique oscillant translate simplement la fonction d’onde sans changer
sa forme. Pendant ce mouvement le couplage spin-orbite crée un champ magnétique ef-
fectif qui se couple au spin.

De manière générale il est attendu que ces deux mécanismes coexistent puisqu’ils parta-
gent la même origine: le couplage spin-orbite. Notamment, dans les qubits de spin de
trous dans le silicium ont été observées des oscillations de Rabi par EDSR [93], ainsi que
des modulations électriques des facteurs g [152]. GBL et g-TMR doivent donc coexis-
ter dans ces dispositifs. Dans ce chapitre nous étudions cette coexistence dans un qubit
de spin de trou, confiné dans une boîte quantique silicium. Pour cela, nous présentons
tout d’abord des mesures d’anisotropie des facteurs g et de la fréquence de Rabi en fonc-
tion de l’orientation du champ magnétique. Après cela nous introduisons le formalisme
de la matrice ĝ, qui est une généralisation de la g-TMR, et nous montrons comment il
permet de séparer la fréquence de Rabi en deux contributions : la g-TMR, qui peut être
extraite de mesures de splitting Zeeman, et l’iso-Zeeman EDSR, qui ne peut pas être ex-
traite de telles mesures (le mécanisme GBL en est un exemple). Nous appliquons cette
technique aux données expérimentales afin de déterminer ces deux contributions. Il appa-
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raît que, comme attendu, les deux contributions coexistent. Le mécanisme dominant est
l’iso-Zeeman EDSR, mais la contribution g-TMR est non négligeable. Finalement nous
introduisons une méthode pour le calcul numérique de la matrice ĝ et nous l’appliquons
à des des simulations k.p pour reproduire qualitativement les cartographies de Rabi. Ces
résultats mettent en évidence l’effet de la position de l’état dans le dispositif ainsi que
l’impact important de la contrainte.
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In condensed matter, the spin-orbit (SO) interaction couples the motion of a particle to
its spin state; in combination with a static magnetic field, alternate electric fields then re-
sult in intrinsic, effective magnetic fields able to rotate the spins [153]. Sufficiently strong
SO can allow for electric-dipole spin resonance (EDSR). As we have seen, such a perspec-
tive is very attractive for quantum computation with confined spins in semiconductor as
quantum bits (qubits) [154]. Indeed, it gets round the need of localized alternate magnetic
fields [78, 155], rather challenging to generate, or magnetic field gradients [76,156].

In the linear response regime where the Rabi frequency is proportional to th static
magnetic and RF electric field, two mechanisms for spin rotations have been identified.
The first one is called g-Tensor Modulation Resonance (g-TMR) and relies on the elec-
trical tunability of the spin g-factors [157–159]. Indeed it requires anisotropic and gate
dependent g-factors. In essence, an alternating electric field modulates the confinement
potential and the shape of the electron wavefunction, which translates into time-dependent
g factors and, therefore in a modulation of the Larmor vector which can result in a rotation
of the spin. It is formally characterized by a tensor which describes g-factors variations.
The second one was experimentally observed in a variety of III-V semiconductor quan-
tum dots [22, 23, 32, 160] and the theory was given by Golovach, Borhani and Loss [161].
Contrarily to g-TMR, it is not associated with a variation of the g-factors. Instead, the
alternating electric field shakes the wavefunction as a whole. During this motion, the spin-
orbit interactions give rise to an effective time-dependent magnetic field proportional to
the alternating electric field, to the static magnetic field, and to the inverse spin-orbit
length. It can be characterized by an effective spin-orbit field ΩSO. Although sometimes
called EDSR in the literature, in the following we call this mechanism GBL from the
names of the authors of Ref. [161], in order to distinguish it from the more general con-
cept of EDSR, that is the coherent control of a spin by a radio-frequency electric field, as
introduced by Rashba [162,163]. It is worth noting that the electrical spin-orbit mediated
spin manipulation described in chapter IV does not belong to either of these categories.
Indeed it involves an Hamiltonian that is not linear in magnetic field due to the coupling
between different valley states.

In general, the above two mechanisms are expected to coexist, since they share a
common SO origin. Besides, in the experimental realizations of Refs. [124,157,164], there
is little proof that one of the mechanism is truly negligible. Interestingly, on p-type silicon
devices, all-electrical coherent Rabi oscillations of the spin [93] and sizable, anisotropic
electrical modulation of the g-factors have been demonstrated [152]. GBL and g-TMR
must therefore coexist in hole silicon quantum dots. In this chapter we thus investigate
this coexistence in a hole spin qubit confined in a silicon quantum dot. In this device a
gate voltage microwave modulation has been applied to induce Rabi oscillations of the
hole spin. The measured Rabi frequency is anisotropic with respect to the magnetic field
orientation. By correlating this to the angular and gate-voltage dependence of the g
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factors, we will discriminate the mechanisms contributing to EDSR. Then, we build a
model that is a generalization of Ref. [157]. We relate EDSR to the electrical modulation
of a g-matrix ĝ in a unified description of GBL and g-TMR mechanisms. More precisely
this model allows to distinguish two contributions to the Rabi frequency. The first one
is due to the gate voltage dependence of the g factors |g∗| =

∣∣∣ĝ · B
|B|

∣∣∣ (where B is the
magnetic field), and therefore of the measured Zeeman splitting. This is a generalization
of the g-TMR mechanism, which accounts for the variation of the g factors and of their
principal axes with the gate voltage. The second contribution originates from unitary
modulations of the ĝ matrix, which do not results in variations of the g factors. In
this case there is no Zeeman energy modulation, so we call this contribution iso-Zeeman
EDSR (IZ-EDSR). It can only be extracted from measurements of the Rabi frequency as
a function of the magnetic field orientation. The GBL mechanism is an example of this
scenario. We will show how the g-matrix formalism provides a simple yet efficient way to
analyze the experimental results, as well as a compact model for the qubit which allows
for fast numerical calculations of the full Rabi frequency map.

In this chapter, we proceed in the following way. We first present the experiment of
Ref. [100], and the results obtained on the Rabi frequency and g factor anisotropies with
the magnetic field orientation. After that we introduce the g-matrix formalism and show
how that it naturally leads us to separate the Rabi frequency into two contributions. We
then apply it to the experimental data and show the angular maps of IZ-EDSR and and
g-TMR. Finally we introduce the method for the numerical calculation of the g-matrix
and use it to qualitatively reproduce the experimental Rabi maps, showing the importance
of the position of the dot and of strain inside the device.

6.1 Measurement of g-factor and Rabi anisotropy

In this part we present the measurement of the Rabi frequency and of the g-factor as a
function of the magnetic field orientation in a hole spin qubit, performed by Alessandro
Crippa and Romain Maurand at CEA/INAC. We detail the device structure, the mea-
surement set-up, and show the main results that we will analyze in the next paragraphs
through the g-matrix formalism.

The device studied here is similar to the one used to make the CMOS hole qubit
of Ref. [93], and the following measurements are reported in Ref [100]. It consists in a
silicon nanowire (H = 8 nm, W = 25 nm) oriented along [110] in the so-called "pump
geometry": two 35 nm-long metallic gates in series (G1 and G2) completely overlap the
channel connected to the source (S) and drain (D) degenerately boron-doped contacts.
Two hole quantum dots are formed under each gate in the Coulomb blockade regime at
the base temperature T = 15 mK of the dilution cryostat. A small source-drain bias is
applied to measure the current. The transport through the double quantum dot is possible
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Figure 6.1: Scanning electron micrograph of a device similar to the one measured, with
false colors. The white dashed lines outline the Si nanowire, 25 nm large and 8 nm thick,
constituting the channel between S and D (yellow regions). Gates G1, G2 (in brown) are
35 nm long and separated by SiN3 spacers (cyan); microwave bursts are applied to G2.
The x, y, z axes define the lab frame. From Ref. [100].

in the triple-point regions characterized by pairs of triangles in the (VG1, VG2) diagram.
We work at the triple point shown Fig. 6.2a in the Pauli spin blockade regime. In this
figure ("1,1") and ("0,2") denote the excess charges of the double quantum dot, though
each dot contains between 10 and 30 holes. The lever-arms parameters characterizing
the influence of G1 and G2 on the chemical potentials of dot 1 and 2 are extracted from
Fig. 6.2a [125]. With αij giving the influence of gate j on the levels of dot i, we have
α11 = 0.7117 eV/V, α12 = 0.0115 eV/V, α21 = 0.2984 eV/V and α22 = 0.264 eV/V. This
suggests that dot 1 is well coupled to gate 1, whereas dot 2 is similarly coupled to both
gates, thus is most likely located under the spacer in between the two gates.

Starting from the Pauli spin blockade regime at the yellow star bias point of Fig. 6.2,
a microwave signal of frequency f can be applied on gate 2. In the presence of a magnetic
field, EDSR occurs when the microwave energy matches the Zeeman splitting. The Pauli
blockade is lifted as hole spin transitions are driven. Hence at the resonance,

hf = |g∗|µBB (6.1)

where |g∗| is the effective hole g factor of the resonant dot for this orientation of B. This
is illustrated in Fig. 6.2b, for a magnetic field along x. In this plot we see two EDSR
lines with different slopes and intensity, one for each dot. This shows, firstly, that the
excitation on gate 2 affects also the quantum dot under gate 1, and secondly, that the
g-factors in the two dots are different. The most intense line corresponds to the resonance
of the right dot (located under G2 or between G1 and G2) whose gate receives directly

99



Chapter 6. Hole spin qubits

Figure 6.2: (a) Bias triangles of the double dot under study at Vd = 5 mV. Quoted
numbers denote the equivalent excess charges deducible from Pauli spin blockade; points
V0, V1 mark where spins are manipulated during pulse sequences. (b) Spectroscopy of
the hole qubit under Pauli spin blockade (yellow star in (a)) via Id as a function of a
continuous microwave frequency f and |B = (B, 0, 0)|. From Ref. [100].

the microwaves, whereas the less intense line corresponds to the left dot (located under
G1) which only sees the cross-talk signal. Using Eq. 6.1, we obtain for the left dot
|g∗L| = 1.96± 0.02 and for the right dot |g∗R| = 2.02± 0.02.

In order to operate the device as a spin qubit and perform and measure Rabi oscilla-
tions, the Koppens scheme [134] is used. This scheme is schematized in Fig. 6.3: starting
from the spin blockade regime (yellow star in Fig. 6.2), the qubit (dot 2) is pulsed into
the Coulomb blockade regime (bias point V0), then a burst of resonant microwaves of
duration τ is applied on G2 and rotates the spin. Finally the system is pulsed back to the
spin blockade for spin projection. This sequence is repeated continuously, resulting in an
measurable current Id that oscillates as a function of τ , signature of the Rabi oscillations
shown in Fig. 6.4. Remarkably the spin coherence seems quite good since we observe no
decay over the 13 oscillations in this figure. This of course is just an indication, and a
proper evaluation of the coherence times would be needed.

We can now characterize the full dependence of the qubit Rabi frequency on the
magnetic field orientation. Fig. 6.5a displays the Rabi frequency for 291 directions of B,
defined by the angles θ and ϕ. θ is the angle with the z direction and ϕ is the angle with
the x direction. For each pixel |B| is adjusted so that the spin resonance sticks to 9 GHz
in order to drive the spin at same microwave power for each field direction. The Rabi
frequency ranges from 3 MHz to 40 MHz, it is maximal for B ‖ z. Rabi oscillations are
minimal for (ϕ ≈ 0◦, θ ≈ 90◦) and (ϕ ≈ 180◦, θ ≈ 90◦), that is along the x direction.

We then want to extract precisely |g∗(V,B)|, the g factor of the qubit for a given
direction of the magnetic field, at the bias points V0 and V1. To do so the current trace
is measured as a function of the microwave frequency for a burst duration τ = 20 ns.

100



6.1. Measurement of g-factor and Rabi anisotropy

Figure 6.3: Protocol for manipulation and detection of the spin. Adapted from Ref. [93].

Figure 6.4: Rabi oscillations as a function of microwave burst time τ for B =
(0, 0,−0.36)T. A current offset of 200 fA is subtracted for clarity. From Ref. [100].
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Figure 6.5: (a) Cartography the angular dependence of the Rabi frequency. The measure-
ment is performed at constant Zeeman splitting (9 GHz). (b) Measured g∗ carthography.
θ, ϕ are stepped by 10◦ between 0◦ and 180◦. The whole plot can be obtained by symmetry
(B→ −B).

Following Ref. [122], the current is fitted with Id ∝ (f 2
R/a) sin2(πτ

√
a), with a = (f −

f0)2 +f 2
R where fR is the Rabi frequency and f0 the resonance frequency. The histograms

of f0 for 400 such measurements are plotted in Fig. 6.6. Using Eq. 6.1 we can then
deduce |g∗| from the peak of f0 for each direction of B.

By sweeping the magnetic field orientation in the same way as we did for the Rabi
frequency cartography, the full angular dependence of |g∗| at bias point V0 can be char-
acterized: in Fig. 6.5b, θ and ϕ are stepped between 0◦ and 180◦, so that the full maps
can be obtained by symmetry (B → −B). |g∗| ranges from 1.6 to 2.48, and the two
strong minima are (ϕ ≈ 0◦, θ ≈ 90◦) and (ϕ ≈ 180◦, θ ≈ 90◦). Interestingly, a similar
in plane |g∗| ' 2-2.6 (depending on the gate voltage) and out-of-plane |g∗| ' 1.5 have
been measured in an other p-type nanowire quantum dot [152]. The fact that the ra-
tio between the highest and the lowest g factors is not very large suggests a significant
heavy-hole/light-hole mixing [165,166].

In conclusion we have presented the measurement set-up for a full cartography of the
Rabi frequency and g factors of a hole qubit. In the following we are going to present the
g-matrix formalism which provides a unified description of the two maps.
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Figure 6.6: Inset: current trace as a function of microwave frequency f for burst duration
τ = 20 ns at B = (0, 216, 216)mT. Blue and orange histograms display the dispersion
of the resonance frequency when VG2 is pulsed to point V0 and V1, respectively. The
Gaussian fits yield g∗(V0) = 2.013±0.001 and g∗(V1) = 2.010±0.001, taking into account
the field uncertainty. From Ref. [100].

6.2 g-matrix formalism and data interpretation

In this section we introduce the g-matrix formalism and show that the Rabi frequency is
linked to the derivative of the g-matrix with respect to the gate potential. The distinction
between g-TMR and GBL mechanisms suggests to separate the Rabi frequency into two
contributions depending if spin transitions are accompanied with a variation of the Zeeman
tensor (TMR) or not (IZ-EDSR). These two contributions have particular relations with
the g-matrix and its derivative. We finally show how to extract g-TMR and IZ-EDSR
contributions from the experimental data.

6.2.1 The g matrix formalism.

The Hamiltonian of a Kramers doublet {|⇑〉, |⇓〉} in a homogeneous magnetic field B can
be written:

H = 1
2µB

tσ · ĝ ·B , (6.2)

where µB is Bohr’s magneton, σ = (σ1, σ2, σ3) is the vector of Pauli matrices, ĝ is the
g-matrix (a real 3 × 3 matrix), and · is the matrix product. Any linear-in-B two-level
Hamiltonian can in principle be mapped onto Eq. (6.2) up to an irrelevant energy shift.
The 9 elements of the g-matrix are independent unless symmetries reduce the number of
degrees of freedom. In order to get further insights into the significance of the g-matrix,
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we may factor ĝ = Û · ĝd · tV̂ , where ĝd = diag(g1, g2, g3) is diagonal and Û , V̂ are unitary
matrices with determinant +1 (singular value decomposition):

H = 1
2µB

t(tÛ · σ) · ĝd · (tV̂ ·B) . (6.3)

The columns of V̂ define three direct, orthonormal magnetic axes X, Y and Z. σ′ =
tÛ · σ sets three new spin matrices (σ′1, σ′2, σ′3), or, equivalently, three new orthogonal
quantization axes for the pseudo-spin of the Kramers doublet. Therefore, there must
exist a unitary transform R in the {|⇑〉, |⇓〉} subspace such that R†σ′iR = σi for all i’s.
The columns of R define a new basis {|⇑〉Z, |⇓〉Z} for the two levels system in which:

H = 1
2µB(g1B1σ1 + g2B2σ2 + g3B3σ3) , (6.4)

where B1, B2 and B3 are the components of B along the magnetic axes X, Y and Z.
Hence, the g-matrix can be made diagonal with an appropriate choice of real space axes
for the magnetic field and basis set for the two levels system [167, 168]. The states |⇑〉Z
and |⇓〉Z can be identified as the up and down pseudo-spin states along Z as they are the
eigenstates of H for magnetic fields B ‖ Z.

Once the g-matrix is made diagonal, if we apply concomitant rotations on the magnetic
axes (B′ÂB) and pseudo-spin quantization axes (σ′ = Âσ), with Â unitary, then

ĝT = Â · ĝd · tÂ (6.5)

is symmetric and is usually known as the g-tensor in the literature. However, such a
symmetric ĝT may not be able to describe the system when the potential is varied. Indeed
if we choose ĝ symmetric at some bias point V0, ĝ(V0+δV ) might not be symmetric because
the V̂ and Û matrices that diagonalizes ĝ can depend on the bias point.

6.2.2 The (symmetric) Zeeman tensor

In this paragraph we introduce on the Zeeman tensor, which can be obtained from mag-
netospectroscopy measurements.

Rewriting Eq. (6.2) as
H = 1

2µB|ĝ ·B|σu , (6.6)

where σu = tu ·σ and u = ĝ ·B/|ĝ ·B|, the Zeeman splitting ∆E between the eigenstates
of H reads:

∆E = µB|ĝ ·B| . (6.7)
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Figure 6.7: Isosurface of ∆E2 = g∗2µ2
BB

2 in the measurement frame {x,y, z}. The blue
lines are the principal magnetic axes X,Y,Z of the ellipsoid at VG2 = V0. From Ref. [100].

This can be conveniently cast in the form:

∆E2 = µ2
B(tB · tĝ · ĝ ·B) = µ2

B(tB · Ĝ ·B) , (6.8)

where Ĝ = tĝ · ĝ is the symmetric Zeeman tensor. From a practical point of view, Ĝ
can be constructed from the measurement of ∆E2 for six orientations of the magnetic
field. Note that Ĝ only depends on the choice of a frame for the magnetic field. On the
contrary ĝ depends on the choice of a frame for the magnetic field and on a choice of basis
set {|⇑〉, |⇓〉} for the Kramers doublet. Any rotation R of the {|⇑〉, |⇓〉} basis set results
in a corresponding rotation ĝR = tÛ(R) · ĝ of the g-matrix (see note [169]), which leaves
the Zeeman tensor ĜR = tĝR · ĝR = tĝ · Û(R) · tÛ(R) · ĝ = tĝ · ĝ = Ĝ invariant, since
Û is a unitary matrix. This is expected, since the Zeeman splittings must not depend
on the choice of the {|⇑〉, |⇓〉} basis set. It follows from Eq. (6.4) that the eigenvalues
of Ĝ are g2

1, g2
2, and g2

3 while the eigenvectors of Ĝ are the magnetic axes X, Y and Z.
The characterization of the Zeeman splittings therefore brings the principal g-factors and
associated magnetic axes, but leaves |⇑〉Z and |⇓〉Z unspecified.

Coming back for a moment to the experimental results, we can apply Eq. 6.8 to the
measurements and reconstruct Ĝ from six orientations of the magnetic field. We find at
VG = V0, |g∗1| ' 2.08, |g∗2| ' 2.48 and |g∗3| ' 1.62, and the associated principal magnetic
axes in the lab frame (defined in Fig. 6.1) X = (0.82, 0.19,−0.53), Y = (−0.22, 0.98, 0.01)
and Z = (0.52, 0.11, 0.84). Fig. 6.7 shows the ellipsoidal isosurfaces ∆E2 in the lab frame
(∆E2 = µ2

B(g∗21 B
2
X + g∗22 B

2
Y + g∗23 B

2
Z)). Fig. 6.8a and 6.8b compare the full angular

dependence of g∗ reconstructed from Ĝ, to the experimental values as a function of θ and
φ, showing a perfect agreement.

We have shown how to characterize the g-matrix at a given bias point from Zeeman

105



Chapter 6. Hole spin qubits

3601800

EXPECTED

2.4

2.2

2.0

1.8

1.6

g* MEASURED

2.4

2.2

2.0

1.8

1.6

g*

360180
φ (°)

180

90

0

θ
(°
)

0φ

φ (°)

a) b)

θ

y

z

B

Y

Z

X

x
Figure 6.8: (a) g∗as a function of the field angles θ and ϕ, reconstructed from the six
values of g∗ defining the Zeeman tensor. (b) Experimental cartography of g∗, same as
Fig. 6.5b), for comparison. From Ref. [100].

splitting measurements. In our problem, ĝ depends on the gate potential VG. Next we
demonstrate the link between the Rabi frequency and the ĝ′ matrix, the derivative of ĝ
with respect to the gate voltage.

6.2.3 The Rabi frequency in the g-matrix formalism

We now derive the formula for the Rabi frequency when the g-matrix is dependent on a
single control parameter, in this case a gate voltage VG. When this gate voltage is varied
around VG = V0, with VG(t) = V0 + Vac sin(2πf0t), we can expand the g-matrix to first
order as:

ĝ(VG) ' ĝ(V0) + (VG − V0)ĝ′(V0) (6.9)

where ĝ′ is the derivative of ĝ with respect to VG and δVG = VG − V0. The Hamiltonian
can then be written:

H(VG) = 1
2µB

tσ · ĝ(VG) ·B

' 1
2µB

tσ · [ĝ(V0) + ĝ′(V0)δVG] ·B , (6.10)

Let us introduce the Larmor vector ~Ω = µB ĝ(V0) · B/2 and its gate-voltage derivative
~Ω′ = µB ĝ

′(V0) ·B/2. Then,

H(VG) = ~|Ω|σω + ~|Ω′|δVGσω′ , (6.11)
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with ω = Ω/|Ω| and ω′ = Ω′/|Ω′|. Splitting Ω′ = Ω′‖ + Ω′⊥ into components parallel and
perpendicular to Ω,

H(VG) = ~|Ω + Ω′‖δVG|σω + ~|Ω′⊥|δVGσω′
⊥
. (6.12)

Ω′‖ characterizes gate-driven modulations of the Larmor (spin precession) frequency, while
Ω′⊥ characterizes spin rotations. For a radio-frequency (RF) δVG = Vac sin(|Ω|t) resonant
with the transition between the eigenstates of H(V0), the Rabi frequency fR reads [157,
159]:

hfR = ~|Ω′⊥|Vac
= ~|ω ×Ω′|Vac

= µBBVac
2|g∗|

∣∣∣∣[ĝ(V0) · b]× [ĝ′(V0) · b]
∣∣∣∣ , (6.13)

where b = B/B is the unit vector along the magnetic field and |g∗| = |ĝ(V0) · b| is the
effective g-factor along that direction. This may be conveniently written fR = |fR|, with:

hfR = µBBVac
2|g∗| [ĝ(V0) · b]× [ĝ′(V0) · b] . (6.14)

We can note that, as expected from the assumptions behind Eqs. 6.2 and 6.9, the Rabi
frequency is linear in B and Vac. Also, the Larmor frequency |Ω|/(2π) and the Rabi
frequency |fR| do not depend on the choice of the basis set for the Kramers doublet (see
note [170]).

From Eq. 6.13, we see that in order to predict the Rabi frequency, one only needs
in principle to characterize ĝ(V0) and ĝ′(V0). As we have discussed in part 6.2.2, we can
always write a diagonal g-matrix ĝ(V0) with an appropriate choice of real space axes for
the magnetic field and basis set for the Kramers doublet. If the Kramers basis {|⇑〉Z, |⇓〉Z}
depends on VG, then ĝ(VG) is diagonal in a different (yet implicit) basis set at each gate
voltage. It is then not possible to reconstruct ĝ′ from the measurement of the Zeeman
tensor at different gate voltages. Eq. 6.13 precisely provides a link between a measurable
quantity, fR, and ĝ′. In the following we will use this link to extract the ĝ′ matrix. To do
so, we will first show how to split the Rabi frequency into two contributions, the g-TMR
which is obtained from the measurement of the Zeeman tensor, and the iso-Zeeman EDSR
which can not.

6.2.4 Iso-Zeeman EDSR and g-TMR.

Here we present in more detail the two contributions to the Rabi frequency, IZ-EDSR and
g-TMR, and we show their relation to the g-matrix formalism.
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A key feature here is the fact that a gate-voltage modulation of ĝ can give rise to a
finite Rabi frequency, but no variations in the Zeeman splitting, i.e Ĝ′ = 0. Indeed Ĝ′ is
related to the derivative of the g-matrix by

Ĝ′ = tĝ · ĝ′ + tĝ′ · ĝ . (6.15)

Notably, Ĝ′ is zero if tĝ · ĝ′ is an antisymmetric matrix. We refer to such contributions to
the Rabi frequency as the iso-Zeeman EDSR: it captures, in particular, the pure rotations
of the basis {|⇑〉Z, |⇓〉Z} that do not give rise to modulations of the Zeeman splittings. In
a complementary manner, we refer to variations of the Zeeman tensor contributing to the
Rabi frequency as g-Tensor Modulation Resonance (g-TMR). Let us formalize in more
detail these definitions. We can always write tĝ · ĝ′ = Ŝ + Â, where Ŝ is a symmetric
matrix and Â an antisymmetric matrix. Then Eq. 6.15 sets Ŝ = Ĝ′/2. We can then
introduce the g-TMR matrix

ĝ′TMR = tĝ−1 · Ĝ′/2 (6.16)

and the IZR matrix
ĝ′IZR = tĝ−1 · Â, (6.17)

so that ĝ′ = ˆgTMR
′ + ˆgIZR

′ and split accordingly Eq. 6.14 as

fR = fTMR + fIZR (6.18)

where fTMR and fIZR are the contributions of ĝ′TMR and ĝ′IZR to the Rabi frequency.

A notable example of IZ-EDSR is the GBL mechanism of Ref. [161]. In their setup
a harmonic potential define a quantum dot in a static magnetic field, and the dot is
moved around its equilibrium position by an homogeneous alternating electric field, thus
mediating EDSR by intrinsic SO coupling. In these conditions, Ĝ′ = 0, because the
alternating electric field does not change the shape of the confinement potential, and
therefore the Zeeman splitting. The electric field only moves the dot as a whole, however
ĝ′ 6= 0 since the vector potential breaks translational symmetry. In the end, for an
isotropic g-tensor g0, the GBL Rabi frequency can be put in the form:

hfR = 2g0µB|B×ΩSO| , (6.19)

where ΩSO is a field describing the combined effect of the spin-orbit interaction and electric
field excitation. It is, in particular, dependent on the direction of the excitation. From
Eq. 6.19, the Rabi frequency is minimal when the magnetic field is parallel to ΩSO. Eq.
6.19 being linear in B, it can be cast into the form of Eq. 6.13. Indeed we discuss in
appendix C the reformulation of the GBL mechanism in the g-matrix formalism.

On the other hand g-TMR is a generalized version of the g-TMR of Ref. [157]. A
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Figure 6.9: Potential and squared wavefunction; the dashed lines represents the same po-
tential with a constant electric field added. (a) State confined in a harmonic confinement
potential, an oscillating constant electric field leads to IZ-EDSR. (b) State confined at an
interface, an oscillating constant electric field mostly leads to g-TMR.

change of the confinement potential modulates the principal g factors g∗i , and therefore
drives spin rotations. In the original scenario of Ref. [157], the magnetic axes are fixed
by the symmetries of the system and do not rotate.

It is important to note that the case in which the confinement potential is harmonic
and the alternative electric field is constant in space always leads to IZ-EDSR. Indeed in
that case, the alternating electric field only translates the confinement potential, so that
the Zeeman tensor is invariant. To put it in another way, for a constant electric field
excitation, only the anharmonicity of the confinement potential can lead to g-TMR. This
is illustrated in Fig. 6.9, with two typical cases for IZ-EDSR and g-TMR. The first one is a
state confined in a harmonic potential: adding a constant electric field only translates the
state. The second one is a state confined at an interface, with a potential that is almost
triangular: the constant electric field barely translates the state position but change the
stiffness of the confinement potential, leading mainly to g-TMR.

6.2.5 Interpretation of the Rabi map through the g-matrix for-
malism.

We have now all the tools needed to interpret the experimental data within the g-matrix
formalism. We are going to start by extracting the IZR and g-TMR contributions from
the experimental Rabi frequency. As we have discussed, the ĝ′ matrix cannot usually be
reconstructed from the measurement of the Zeeman splittings, which can only provide
ĝ′TMR. Nonetheless, ĝ′IZR can be extracted from the Rabi frequency map. We detail the
general procedure in the following, and after that we apply it to the experimental data of
paragraph 6.1.

First, the symmetric Zeeman tensor Ĝ = tĝ · ĝ is constructed from the measurement
of the Zeeman splittings along 6 independent directions. The eigenvalues of Ĝ are the
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square of the principal g-factors g2
1, g2

2, and g2
3, while the eigenvectors of Ĝ are the principal

magnetic axes X, Y and Z. In the magnetic axes frame, there exists a (yet implicit) basis
set {|⇑〉Z, |⇓〉Z} for the Kramers doublet such that:

ĝ ≡ ĝd =


g1 0 0
0 g2 0
0 0 g3

 . (6.20)

Note that there might be an ambiguity on the sign of the gi’s (all assumed the same sign
here).

The matrix Ĝ′ can be extracted from the measurement of Ĝ for two nearby gate volt-
ages VG = V0 and VG = V0 + δVG. In the principal magnetic axes and {|⇑〉Z, |⇓〉Z} basis
set at VG = V0, the g-TMR matrix is then ĝ′TMR = ĝ−1

d ·Ĝ′/2. We then need ĝ′IZR = ĝ−1
d ·Â.

There are three independents elements in Â (because Â is antisymmetric), therefore using
Eq. 6.13 one should be able to extract them from the measurement of the Rabi frequency
along three directions of the magnetic field. The measurement of Ĝ and Ĝ′ hence pro-
vides ĝ and six out of the nine degrees of freedom of ĝ′. Only three degrees of freedom of
ĝ′ are not accessible from a measurement of the Zeeman splitting and give rise to IZ-EDSR.

Let us apply this procedure to the experimental data. We first compute Ĝ′ from the
experimental tensors ˆG(V0) and ˆG(V1), with V1 − V0 = 0.25 mV ' Vac. In the magnetic
axes frame {X,Y,Z} at VG2 = V0 we find

Ĝ′(V0) =


−17.9 21.1 7.2
21.2 17.1 −19.8
7.2 −19.8 9.1

V−1 (6.21)

The fact that Ĝ′ is not diagonal in this low-symmetry device shows that the principal
magnetic axes (as well as, presumably, the basis set {|⇑〉Z, |⇓〉Z}) rotate with the gate
voltage. With ĝd = diag(2.08, 2.48, 1.62), we get

ĝ′TMR(V0) =


−4.31 5.07 1.73
4.26 3.45 −4.01
2.22 −6.12 2.82

V−1 (6.22)

We can next fit the elements of Â on at least three Rabi frequency measurements. For
better accuracy, we also fit the amplitude Vac of the RF field, and do a least-square
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a) b)

Figure 6.10: (a) Measured angular dependence of the Rabi frequency, as in Fig. 6.5a. (b)
Analogous map obtained from the fit of (a) with Eq. 6.13.

a) b)f (MHz)IZR f (MHz)TMR
IZ-EDSR g-TMR

Figure 6.11: (a) IZ-EDSR and (b) g-TMR contributions to fR.

regression on the whole Rabi map fR(B). This yields:

ĝ′IZR(V0) =


0.0 −7.45 −4.97
6.26 0.0 −23.99
6.38 36.60 0.0

V−1 (6.23)

as well as Vac = 0.41 mV, close to the value expected for the present RF setup. Finally
in the same magnetic axes we can compute ĝ′ = ĝ′TMR + ĝ′IZR,

ĝ′(V0) =


−4.3 −2.4 −3.2
10.5 3.4 −28.0
8.6 30.5 2.8

V−1 (6.24)

We plot on Fig. 6.10 the measured Rabi map along with the one calculated from ĝd and
ĝ′ via Eq. 6.13. There are only small discrepancies between the two that we ascribe to
the experimental uncertainty on Ĝ′(V0).
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Finally we plot on Fig. 6.11 the contributions fIZR and fTMR computed using Eq.
6.13 with ĝd, ĝ′IZR and ĝ′TMR. We can see that the dominant contribution is IZ-EDSR.
Nevertheless the g-TMR part cannot be neglected since it can reach as much as 30 % of
the total Rabi frequency. The g-TMR map of Fig. 6.11b shows a complex dependence on
the magnetic field orientation that reflects the complex structure of the potential in the
device. As for the IZ-EDSR contribution, we point out that, although the GBL model
cannot be applied directly (because our ĝd is not isotropic), fIZR reproduces its most
salient feature: two well-defined minima along x suggest that the effective spin-orbit field
ΩSO is along x. We have seen that the lever-arms parameters characterizing the influence
of G1 and G2 on dot 2 respectively are α21 = 0.2984 eV/V and α22 = 0.264 eV/V, showing
similar coupling to both gates. This suggests that the dot is most likely located under
the spacer in between the two gates, therefore implies that the RF electric field on G2
drives the motion of the hole along the nanowire axis y. In the simplest approximation
(discarding the complex behavior of holes under magnetic field), it is possible to interpret
the position of the minima. Indeed, the spin-orbit Hamiltonian HSO ∝ (∇V ×p)σ, for a
static electric field ∇V mostly along z, and a motion mostly along the wire direction y,
becomes HSO ∝ σx, and does not couple spins when B ‖ x. Therefore, as the orientation
of ΩSO depends on the direction of the electric field excitation, we may expect a different
direction for the minimum of Rabi frequency if the dot is located under G2 (with electric
field excitation along x and z). We will verify this with numerical calculations in part
6.3.

It is in fact not surprising that with a quantum dot located between the gates and a RF
electric field along the nanowire, the dominant contribution is IZ-EDSR. As we have seen
before, one driving force of IZ-EDSR is the RF oscillations of a harmonic potential dot,
whereas an anharmonic confinement potential also leads to g-TMR. Along the wire the
potential is much more harmonic than perpendicular to it, where structural confinement
is very sharp and strong. On the contrary, we shall then expect g-TMR to dominate for a
dot under the gate, and that is indeed what we will verify with the numerical calculations.

Another point worth noting is the fact that |fR| ≤ |fTMR| + |fIZR|, because fIZR and
fTMR are in general not aligned, so Fig. 6.10b is not the exactly the sum of Fig. 6.11a
and b. In order to highlight this correction, we have plotted in Fig. 6.12 the difference
|fR| − |fIZR| − |fTMR|, along with cos(θZ), where θZ is the angle between fIZR and fTMR.
There is a large sector around θ = 90◦, ϕ = 135◦ where IZR and g-TMR tend to cancel
each other. Elsewhere the two vectors are almost aligned.

We have thus shown that as expected the IZ-EDSR and g-TMR contributions to the
Rabi frequency coexist in a silicon hole quantum dot made in nanowire FET technology.
It is the first time that such coexistence is evidenced. The common origin of the two
mechanisms is the spin-orbit interaction yet they manifest it in different ways. g-TMR
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Figure 6.12: (a) Map of |fR|−|fIZR|−|fTMR| as a function of the orientation of the magnetic
field. (b) Map of cos(θZ) as a function of the orientation of the magnetic field, where θZ
is the angle between fIZR and fTMR.

is driven by changes in the confinement potential resulting in a variation of the Zeeman
tensor. IZ-EDSR is mostly driven by the alternating motion of the dot, which does not
result in variations of the Zeeman splitting. The g-matrix formalism provides a unified
description of both phenomena, allowing to separate them, and to evaluate the full angular
dependence from a few measurements. In our particular sample IZ-EDSR has been found
to be the most relevant contribution, probably because of the localization of the dot
between the two gates promote the alternating motion of the dot over the change of
confinement potential. We shall verify this with detailed simulations in the next part.
Fortunately, the g-matrix formalism provides an easy way to compute the full map of
Rabi frequencies. It is indeed possible to calculate the g-matrix from the wavefunctions
at zero magnetic field.

6.3 Theoretical prediction of experimental Rabi map

In the previous part we have shown how the g-matrix formalism allowed us to interpret the
angular dependence of the Rabi frequency. We have extracted the IZ-EDSR and g-TMR
contributions, showing that they coexist. IZ-EDSR can be characterized by a spin-orbit
field ΩSO ‖ x, and g-TMR can be associated with the variations of the confinement
potential. This calls for a precise modeling of the confinement potential and spin-orbit
interaction, which would be very useful in order to understand the nature of the dot, why
IZ-EDSR dominates over g-TMR, if these Rabi cartographies are reproducible, and ideally
provide guidelines to optimize the qubits. Fortunately, the g-matrix formalism developed
in part 6.2 provides a very efficient way to compute numerically the Rabi maps when
associated to electronic structure calculations. Indeed we will show that the g-matrix

113



Chapter 6. Hole spin qubits

and its derivative can be easily calculated from the eigenstates at zero magnetic field
using simple perturbation theory. We will use this methodology on top of 6-bands k.p
calculations in order to study the effect of disorder and localization on the Rabi map. This
alone cannot reproduce the experimental results but give interesting informations on the
behavior of IZ-EDSR and g-TMR. With the introduction of strains in the system (known
to be present in CMOS devices, but not precisely characterized), we are able to reproduce
the experimental results. In this part, we first describe the general methodology for the
numerical calculation of the g-matrix, then we use it to predict the Rabi frequencies in
SOI devices.

6.3.1 Numerical calculation of the g-matrix and its derivative

First of all we present the methodology for the numerical calculation of ĝ and ĝ′ in the
general case. Then in order to verify it, we apply the methodology to a hole quantum
dot, and compare the Rabi frequency map computed from ĝ, ĝ′, using Eq. 6.13, to the one
obtained from a direct calculation using the equation:

fR = eVac
h

∣∣∣〈0|D̂|1〉∣∣∣ (6.25)

where |0〉 and |1〉 are the states of the qubit at finite magnetic field, and D̂(r) = ∂Vtot(r)
∂Vg

as in chapter IV and V.

We consider a quantum dot in a homogeneous magnetic field B = (Bx, By, Bz). The
system can therefore be characterized by a Hamiltonian Ĥ(V,B) On one hand we can
expand the Hamiltonian in power of B, at B = 0:

H(V,B) = H0(V )−BxM1,x −ByM1,y −BzM1,z +O(B2)

= H0(V )−B ·M1 +O(B2) , (6.26)

where M1,α ≡ −∂H/∂Bα|B=0, and H0(V ) = H(V,B = 0). We then consider a two-
level qubit, based on a pair of Kramers-degenerate eigenstates of H0(V ), {|Ψ⇑〉, |Ψ⇓〉},
at B = 0. We wish to deal with the magnetic field as a perturbation. At finite B, the
zeroth-order states and first order energies are the eigenpairs of:

H1(V,B) = −B ·M1 = −
〈Ψ⇑|B ·M1|Ψ⇑〉 〈Ψ⇑|B ·M1|Ψ⇓〉
〈Ψ⇓|B ·M1|Ψ⇑〉 〈Ψ⇓|B ·M1|Ψ⇓〉

 (6.27)

On the other hand, we remind that any two-level system can be mapped to first order in
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B onto the effective spin Hamiltonian (up to an energy shift):

Ĥ = 1
2µB

tσ · ĝ(V ) ·B (6.28)

with σ = (σ1, σ2, σ3) the vector of Pauli matrices and ĝ the 3× 3 real g-matrix. We can
write this Hamiltonian explicitly:

Ĥ = 1
2µB

α β∗

β −α

 (6.29)

with

α = gzxBx + gzyBy + gzzBz (6.30a)

β = (gxx + igyx)Bx + (gxy + igyy)By + (gxz + igyz)Bz (6.30b)

We can then identify Eq. 6.29 and Eq. 6.27, which yields

ĝ(V ) = − 2
µB


Re〈Ψ⇓|M1,x|Ψ⇑〉 Re〈Ψ⇓|M1,y|Ψ⇑〉 Re〈Ψ⇓|M1,z|Ψ⇑〉
Im〈Ψ⇓|M1,x|Ψ⇑〉 Im〈Ψ⇓|M1,y|Ψ⇑〉 Im〈Ψ⇓|M1,z|Ψ⇑〉
〈Ψ⇑|M1,x|Ψ⇑〉 〈Ψ⇑|M1,y|Ψ⇑〉 〈Ψ⇑|M1,z|Ψ⇑〉

 . (6.31)

In practice, the states {|Ψ⇑〉, |Ψ⇓〉} are computed at zero magnetic field with the k.p
or tight-binding method. The operator M1 is not constructed explicitly. For instance the
matrix elements of M1,x are evaluated from finite differences with a leapfrog scheme as

〈Ψi|M1,x|Ψj〉 = 〈Ψi|H(V,+δBx)|Ψj〉 − 〈Ψi|H(V,−δBx)|Ψj〉
−2δB (6.32)

with |Ψi,j〉 ∈ {|Ψ⇑〉, |Ψ⇓〉}. The leapfrog scheme allows to get rid of the small ∝ B2 terms
that might develop at finite δB in the Hamiltonian. The g-matrix is then easily computed
with Eqs. 6.31 and 6.32. We then need to compute ĝ′ at V = V0. This can be done by
computing the g-matrix ĝ(V0 ± δV ) at two close bias points V = V0 ± δV in some basis
sets {|Ψ±,⇑〉, |Ψ±,⇓〉} and calculate ĝ′ from finite differences:

ĝ′(V0) = ĝ(V0 + δV )− ĝ(V0 − δV )
2δV (6.33)

However, the above equation is usually meaningless as {Ψ±,⇑,Ψ±,⇓} are defined up to an
arbitrary unitary transform U±. We show in appendix D how to find the appropriate
basis set {|Ψ±⇑′〉, |Ψ±⇓′〉} which allow for a safe calculation of ĝ′ using Eq. 6.33.

As an example, we have applied this methodology to the same device as in chapters
IV and V, a nanowire with W = 30 nm, H = 10 nm, and a gate covering half the width
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Figure 6.13: (a) Direct calculation of fR using Eq. 6.25 (b) Calculation of fR using the
g-matrix formalism and Eq. 6.13.

with Lg = 30 nm. We apply VG = −0.1 V on the gate in order to trap a hole. The
convention for the axes and angular dependence are the same as for the experimental
device. On one hand we have computed directly the Rabi frequency for a given magnetic
field B using Eq. 6.25. We have then swept the magnetic field orientation (the magnetic
field amplitude is kept constant |B| = 1 T). On the other hand we have calculated ĝ

and ĝ′ and used Eq. 6.13 to compute the Rabi frequency with respect to the magnetic
field orientation. The results, displayed Fig. 6.13, show that the two methods give almost
identical numerical results on the full map of Rabi frequency. The difference between the
two methods is less than 1%. The use of the g-matrix formalism for numerical calculation
is however much more efficient: for an equal accuracy we just need three calculations of
the two states |Ψ⇑〉 and |Ψ⇓〉 (at V0 and V0 ± δV ) and we can get very precisely the Rabi
frequency for arbitrary B (the calculation of the g-matrix is very cheap). In the case of
the direct calculation, the electronic structure of the qubit must be calculated for each B.

For the same device we have also tested the assumption of a linear in B Rabi frequency.
To that end, we have chosen a direction of the magnetic field, here b = (1, 0, 1)/

√
2, and

computed the dependence of the fR with the magnetic field amplitude with Eq. 6.25 and
with Eq. 6.13 (linear in B by construction). The results, plotted Fig. 6.14 show that
fR is indeed linear in B on a large range, up to a few Teslas. This is perfectly fine for
qubit applications in which the magnetic field remains below 2 T, in order to reach EDSR
frequency not larger than a few tens of GHZ.

The methodology now validated, we can use it to compute the Rabi maps from the
electronic structure calculations and compare with the experimental map.
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Figure 6.14: Rabi frequency from direct calculation and g-matrix formalism, as a function
of magnetic field amplitude, with a field along x + z.

6.3.2 Calculations of the Rabi map.

We have used the g-matrix formalism to analyze the measured Rabi frequency anisotropy,
and have shown that it can be used to efficiently calculate numerically the Rabi map. In
this part we will use it along with 6 bands k.p calculations on the hole qubit, in order to
find which physical parameters reproduce the experimental Rabi map. The microscopic
disorder in the device is not known, so it is illusory to look for a quantitative agreement,
but we could seek at least for a qualitative agreement. We use a device similar to the
experimental one, a nanowire with height H = 8 nm and W = 25 nm, and two gates in
series of length Lg = 30 nm. As in the previous chapters, we place two side gates 30 nm
to the left and right of the central gates, in order to mimic the quasi-metallic source/drain
contacts. The schematic of the device is shown Fig. 6.15.

First let us examine the simplest case, a dot trapped under the gate, without any
disorder. However, in this device with fully covering gates, the perfect symmetry hin-
ders the formation of corners states, whereas in practice local disorder easily breaks this
symmetry. Therefore, in that case we artificially break the symmetry by using gates cov-
ering only half of the width of the nanowire. We apply Vs1 = Vs2 = 0.3 V, in order to
create the source/drain barriers, Vbg = 0 V, and (VG1, VG2) = (−0.1, 0.0) V, in order to
trap a hole under gate G1. Here the g-factors are |g∗1| = 1.97, |g∗2| = 1.35, |g∗3| = 3.27
respectively along x, y, z. The anisotropy of g factors is therefore very different from
the experimental case, where the larger g factors are in-plane (2.08 and 2.48), and the
smaller (1.62) is out of plane. We have computed the Rabi frequency in this system, and
we have decomposed it into IZ-EDSR and g-TMR contributions, shown in Fig. 6.16, at
constant Zeeman splitting Ez/h = 9 GHz, like in the experiment. Here the g-TMR is
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Figure 6.15: Schematic of the device. The silicon nanowire is in yellow, SiO2 is in blue,
HfO2 in light gray and the gates are in dark green.

Figure 6.16: Rabi frequency cartography for a state located under the main gate, at
constant Zeeman energy (9 GHz) (a) IZ-EDSR contribution (b) g-TMR contribution.

the dominant mechanism, as expected because the dot is confined close to two interfaces,
leading to an anharmonic transverse potential, similar to Fig. 6.9a. The IZ-EDSR map
present a minimum for θ = 90◦, ϕ = 90◦ corresponding to a ΩSO ‖ y, orthogonal to the
experimental one. This is also consistent with the GBL model, as ΩSO depends on the
direction of the electric field excitation, which is here along x and z, whereas it is mainly
along y in the experimental case.

We have thus here three main inconsistencies with the experimental results: the g-
factors anisotropy, the proportion between IZ-EDSR and g-TMR, and the orientation of
the IZ-EDSR minima are not properly reproduced.

Let us start with the g-factor anisotropy. There could be different reasons that could
explain this discrepancy. First, we are looking at the ground state. If tens of holes
are present, the actual qubit state might have a different orbital shape, so a different
g factor. In addition, the charge disorder could induce such variations. However, the
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Figure 6.17: Energy of hole states as a function of the amplitude of an in-plane biaxial
strain. The color code gives the light-hole character in %. The hole state higher in energy
is the ground state.

same anisotropy is systematically measured in these devices, even for the first hole in a
smaller wire [152]. This invites us to look for a reproducible feature. A possibility is the
presence of non-intentional strain. Indeed, up to now in the simulations we have dealt
with hole states which are mostly heavy holes in the z direction (higher g-factor along
that direction). Experimentally, the small g-factor along z is more likely a signature of
a light-hole state. In a planar device in-plane biaxial tensile strain promotes light-hole
states [171]. We have verified that it is also the case in our device: in Fig. 6.17 we
have plotted the energy of the first states as a function of the amplitude of in-plane
biaxial strain and characterized their heavy or light hole nature by a color code. When
increasing the strain amplitude more excited states have a light hole character, up to ten
orbital states for εxx = εyy = 0.2 %. Such non-intentional strain are known to be present
in MOSFET devices, due for instance to the deposition of metallic gates [172]. They are
difficult to characterize and can be inhomogeneous [173]. Moreover, as we cool down the
samples to sub-Kelvin temperatures, the difference of thermal dilatation between Si and
the surrounding materials inevitably induces strain. Here we applied a small quasi-biaxial
strain of εxx = εyy = 0.2 % and εzz = −0.15 % and we obtained the correct anisotropy.
We got |g∗1| = 2.48, |g∗2| = 2.01, |g∗3| = 0.80 respectively along x, y, z.

This leaves us with the discrepancies on the IZ-EDSR/g-TMR ratio, and on the angular
position of the IZ-EDSR minima. We know from the measurement of the lever-arms
parameters that the dot is localized between the two gates. Therefore an obvious way to
reproduce the experimental maps is to start by putting the dot in that position. To do
that, we cannot put 10 to 30 holes in each dot because it is too complicated to describe.
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Figure 6.18: Rabi frequency cartography for a state located under between the two gates,
at constant Zeeman energy (9 GHz), with tensile in-plane strain, without disorder. (a)
IZ-EDSR contribution (b) g-TMR contribution.

We then simply adjust the bias on the different gates in our system to put a potential
well in between two gates. We start with a device with fully covering gates but without
disorder, and we will introduce disorder later. We apply Vs1 = Vs2 = 0.3 V in order to
create the source/drain barriers, and VG1 = VG2 = 0.1 V in order to position the dot
between the gates. We have again computed the Rabi frequency map and separated the
two mechanisms. The IZ-EDSR and g-TMR maps are plotted in Fig. 6.18. The IZ-
EDSR is the dominant mechanism, because the confinement potential is more harmonic.
As expected ΩSO is this time almost aligned with x, as we have shifted the direction
of electric excitation by roughly 90◦. The amplitude of g-TMR is very small and has a
complex dependence.

In that ideal case, without any disorder, the electric field excitation is mostly along
the wire direction, so the minima of IZ-EDSR are along the x direction. If we introduce
disorder, such as surface roughness and RCS charges in the gate stack, the direction of the
electric field excitation can be slightly shifted. To verify this we have introduced surface
roughnes, and positive and negative charges trapped at the SiO2/HfO2 interface with
density nRCS = 2× 1012 cm−2, on top of the previous simulation. We have computed the
Rabi frequency maps on a few samples, and the results for a typical example are shown
in Fig. 6.19. The minima of IZ-EDSR are this time slightly shifted, and this example
reproduces pretty well the experimental cartography of Fig. 6.11a. On the other samples,
the minima can be shifted slightly differently in the x-y plane depending on disorder.
Moreover, the g-TMR/IZ-EDSR ratio as well as the g-TMR anisotropy seem to depend
a lot on the distribution of charges in the gate stack.

Consequently, our simulations qualitatively reproduce the main experimental features
for a dot positioned between two gates, and with an in-plane biaxial strain. We do not
have a qualitative agreement on the values of the g-factors. This can be explained by the
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Figure 6.19: Rabi frequency cartography for a state located under between the two gates,
at constant Zeeman energy (9 GHz), with tensile in-plane strain, with surface roughness
and RCS charges with density nRCS = 2 × 1012 cm−2. (a) IZ-EDSR contribution (b)
g-TMR contribution.

fact that we consider only the ground state, so we need to look for the g-factors of higher
orbital and the effect of Coulomb interactions. Moreover, the amplitude of the Rabi fre-
quency is smaller in all the cases we presented (keeping in mind that the fR are given
in MHz/mV, and a gate excitation Vac smaller than 1 mV is applied in the experiment).
The dot is hence probably too confined in the simulations. However, in the experimental
device, the dots contains between 10 and 30 holes which would screen and smoothen the
potential, thus decreasing the confinement. Anyway, as the number of holes in the dots,
the potential disorder and the inhomogeneous strains are not known in the device, we can
only seek a qualitative agreement.

To conclude, in these hole spin qubits the dependence of the Rabi frequency with the
magnetic field orientation can be very complex, and thus needs to be carefully charac-
terized. In particular the influence of strain seems to be very important, even for small
strains. It can then be interesting to add intentional strain to overcome the uncontrolled
effect of non-intentional strains. Strain-engineering is straightforward in microelectron-
ics [174,175], so it could be used to optimize the properties of qubits.

On another note, in the perspective of the approach of a linear chain of face-to-face
devices presented in chapter II, each dot is located under a gate, therefore the main mech-
anism is expected to be g-TMR. In that sense, the present experiment is not representative
of these qubits. More detailed simulation studies are needed to determine the robustness
of the two mechanisms with respect to disorder and how they can be engineered in these
devices, in order to find the best qubit architectures.
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6.4 Conclusion

The original motivation of the study of this chapter was the measurement by Crippa et al.
of the Rabi frequency dependence on the magnetic field orientation in a hole spin qubit.
In that experiment, the Rabi frequency is driven by EDSR, allowed by the spin-orbit
coupling in the valence band of silicon. Therefore, a point to clarify was the relative role
played by the two spin-orbit mechanisms identified in the literature, g-TMR and GBL.
To that end we have developed a methodology based on the original g-TMR, the g-matrix
formalism, which encompasses both mechanisms. This formalism allows to split the Rabi
frequency into two contributions: one which is accessible via measurements of the Zeeman
splittings (g-TMR), and one which is not (IZ-EDSR). We have applied this methodology
to the experimental data and extracted these two contributions, showing that the main
mechanism is IZ-EDSR and that g-TMR exists in a non-negligible proportion. More-
over, we have shown how to compute the g-matrices on top of 6-band k.p calculations,
which allowed to compute efficiently the Rabi maps. We have used these calculations
to reproduce the main features of the experimental. In particular, we have shown that
the g-factors anisotropy is compatible with in-plane tensile biaxial strain, and that the
anisotropy of IZ-EDSR can be explained by the position of the dot between the two gates
of the double quantum dot.

These results show some important points to be characterized in future works. The
strain seem to have important effects on the Rabi frequencies and g-factors, so strain-
engineering could be used to override the non-intentional strains and for qubit optimiza-
tion. Then, the variability with local disorder on the Rabi maps need to be evaluated
and controlled, because the orientation of the magnetic field will be the same for all the
qubits.

Finally, it is worth noting that as long as the system is in the linear response regime
(in B and electric field), the g-matrix formalism is applicable. Therefore, even if it has
been used in the specific of silicon on insulator hole spin qubits, it can be applied to
various materials and architectures of spin qubits.
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Conclusion

This thesis is focused on the numerical and theoretical study of the electrical manipulation
of the spin in the electron and hole silicon qubits. It is included in a large program in CEA
Grenoble whose purpose is to take advantage of the CMOS capabilities at Leti and low
temperature physics expertise at INAC, in order to develop scalable spin quantum bits in
silicon. Therefore, we tried to work as close as possible to the real experimental devices.
To that end we have used a set of simulation tools presented in chapter 3, which allow
for a faithful description of electrostatic potential and electronic structure of the qubits,
hence for a reliable comparison with the measurements. We summarize our results in the
next section, then we discuss the next steps that could be undertaken starting from the
present work.

7.1 Main results

We started by investigating in chapter 4 the unexpected measurement of EDSR on elec-
trons in a silicon double quantum dot, involving an excited valley state. We have devel-
oped an analytical model, validated by tight-binding calculations, and shown that EDSR
is due to a combination of intervalley spin-orbit and dipolar interactions. Using group
theory we have shown that the sizable spin-orbit coupling exists in dots with low symme-
try (no more than one mirror plane). States localized at the corner of a nanowire have
such symmetry, whereas planar quantum dots do not. This explains why EDSR was first
observed in CEA particular devices. The anisotropy of the predicted spin-orbit interaction
is consistent with the anisotropy of the measured current, thus validating the hypothesis
of a spin-orbit driven EDSR. We have also computed the Rabi frequency as a function
of the magnetic field amplitude, which shows a strong non-linearity: the main EDSR
transition exhibits a sharp peak when the Zeeman splitting equals the valley splitting.

In chapter 5, we have built on these elements to create an efficient scheme for spin
manipulation. This scheme is based on the tuning of the spin-valley mixing by the valley
splitting, which is handily controlled by the backgate. Indeed, thanks to the intervalley
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spin-orbit interaction we can switch between a spin qubit, where manipulation is slow
but with good coherence properties, and a valley qubit, more prone to decoherence yet
efficiently controllable electrically. The goal of this chapter is to determine the workability
of this proposal, being as thorough as it is possible with the simulations. To that end, we
have computed with tight-binding the evolution of the main elements of the model with
the backgate potential, showing that the Rabi frequency can reach more than 100 MHz in
the valley regime. After that, we have used time-dependent simulations to demonstrate
the qubit operation. In order to give proof on the sustainability of the scheme we have
computed the decoherence due to a few simple sources of noise. Then we have studied
the effect of surface roughness on qubit variability, showing that an efficient scheme (with
Rabi frequency of a few tens of MHz) can be achieved at the price of individual calibration
of the qubits. Moreover we have investigated the effect of the wire height on the valley
splitting, and have evidenced the significant impact of the interfaces. Finally, we have
presented a recent measurement of the valley splitting as a function of the backgate bias.
We have explained the large value observed by the presence of remote charges in the gate
stack, which induce a lot of variability. This experiment constitutes a first step towards
the experimental realization of our proposal.

In the last chapter, we focus on hole spin qubits. Contrarily to the conduction band,
the spin-orbit coupling is intrinsically much larger in the valence band, therefore making
holes natural candidates for electrical spin manipulation. We have presented a recent
experiment in which the anisotropy of the Rabi frequency with the magnetic field direction
is measured. In order to explain the obtained cartography, we have developed a formalism
that allows for the description of the qubit via the g-matrix. In this model, the Rabi
frequency can be computed (in the linear response regime) from the g-matrix and its
derivative with respect to the gate voltage. With this formalism, we distinguish two
contributions to the Rabi frequency: on one hand the g-Tensor Magnetic Resonance,
analogous to the mechanism of Ref. [157], which can be extracted from measurements of
the Zeeman splittings, and on the other hand Iso-Zeeman EDSR, including the EDSR
mechanism of Ref. [161], which is not accessible from the Zeeman splittings. We have
extracted the experimental maps of the g-TMR and IZ-EDSR contributions, showing that
in that case the IZ-EDSR is the dominant mechanism, although g-TMR is not negligible.
In order to interpret these results we have computed the g-matrices on top of 6-bands k.p
calculations, and obtained the Rabi maps. We have shown that the g-factors anisotropy is
compatible with non-intentional strain, and that the anisotropy and dominant proportion
of IZ-EDSR are due to the position of the dot between the gates and to charge disorder
in a lesser extent. Indeed, g-TMR is enhanced by the anharmonicity of the potential,
which is much higher when the dot is shaken against an interface. We thus expect that
in the intended corner dots, the dominant mechanism is g-TMR, so this will have to be
taken into account in the analysis of the next experiments. In this chapter, the use of the
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g-matrix formalism and k.p simulations provided us with a lot of new information on the
measured system.

7.2 Outlook

The outlooks of this work are twofold: the continuation of the studies we have presented,
and the use of unexploited features of the simulation tools.

Concerning the first, there is ongoing work that need to be completed. Regarding
electrons, we need to develop a complete model for the valley describing the intervalley
spin-orbit and dipolar interactions with the height of the nanowire. First calculations
indeed show that the spin-orbit coupling is almost independent of the height, whereas
the dipolar interaction shows large variations. More generally, we hope that this work
will stimulate new experiments, not only in nanowire devices, but maybe also in other
type of silicon devices, provided they have sizable spin-orbit interaction. As for holes, the
studies are less advanced than electrons, and preliminary studies tend to show that there
is room for improvement. For instance, by computing the Rabi frequency dependence
with the backgate, we have observed that the symmetries are also important for holes: in
some high-symmetry points the Rabi frequency vanishes. This is currently investigated
as part of the PhD of Benjamin Venitucci, and a paper has just been submitted [176].
We could thus envision a scheme analogous to electrons, with a manipulation regime and
a noise-protected regime, but this has to be carefully characterized. Moreover, the strain
seem to have a great influence on the qubit properties and could be used for optimization
of the Rabi frequency.

We have also presented in chapter 3 the numerical tools based on the configuration
interaction method that can describe the many-particles interactions. An interesting
prospect is then to use it to describe everything that make use of particle-particle inter-
actions in the experiments. Namely, we could model the readout in a face-to-face device,
and compare our results with the reflectometry measurements. We could also study the
effects of the inner electrons/holes in a dot on the properties of the qubit, which were ne-
glected in this thesis so far. Finally, we could model two-qubit gates, which is an ongoing
experimental work and a key feature for quantum computing.
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Appendix A

HBloch matrices

As discussed in chapter III, the effect of the magnetic field on the Bloch functions and
the spin is described buy the following Hamiltonian:

HBloch = −(3κ+ 1)µBB.L + g0µBB.S = µBB.K (A.1)

For completeness, we give below the expression of the matrices Kx, Ky, Kz consistent
with our choice of phases for the Bloch functions 1:

Kx = −



0
√

3κ 0 0 −
√

3
2κ
′ 0

√
3κ 0 2κ 0 0 − κ′

√
2

0 2κ 0
√

3κ κ′
√

2 0
0 0

√
3κ 0 0

√
3
2κ
′

−
√

3
2κ
′ 0 κ′

√
2 0 0 κ′′

0 − κ′
√

2 0
√

3
2κ
′ κ′′ 0


(A.2a)

Ky = i



0
√

3κ 0 0 −
√

3
2κ
′ 0

−
√

3κ 0 2κ 0 0 − κ′
√

2
0 −2κ 0

√
3κ − κ′

√
2 0

0 0 −
√

3κ 0 0 −
√

3
2κ
′√

3
2κ
′ 0 κ′

√
2 0 0 κ′′

0 κ′
√

2 0
√

3
2κ
′ −κ′′ 0


(A.2b)

Kz = −



3κ 0 0 0 0 0
0 κ 0 0

√
2κ′ 0

0 0 −κ 0 0
√

2κ′

0 0 0 −3κ 0 0
0
√

2κ′ 0 0 κ′′ 0
0 0

√
2κ′ 0 0 −κ′′


, (A.2c)

1We assume g0 = 2 in Eq. (A.1).
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with κ′ = 1 + κ and κ′′ = 1 + 2κ.
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Appendix B

Pauli blockade in a spin-valley
system

In chapter IV, we have discussed the nature of the A, B, C and V line in a one-particle
picture. In this appendix, we introduce a two-particle picture for the blockade, which
accounts for the valley degree of freedom and gives a better description of the V line.

Spin blockade can arise when the current flows through the sequence of charge config-
urations (n1, n2) ≡ (2n+ 1, 2m+ 1)→ (2n, 2m+ 2)→ (2n, 2m+ 1)→ (2n+ 1, 2m+ 1)...,
where n1 and n2 are the number of electrons in dots 1 and 2. [30, 177] Indeed, the
(2n + 1, 2m + 1) states can be mapped onto singlet S(1, 1) and triplet T (1, 1) states,
while the (2n, 2m+2) states can be mapped onto singlet S(0, 2) and triplet T (0, 2) states.
While the S(1, 1) and T (1, 1) states are almost degenerate, the S(0, 2) and T (0, 2) states
can be significantly split because the T (0, 2) state must involve some orbital excitation.
The (2n + 1)th electron may enter in dot 1 through any of the (1, 1) configurations at
high enough source-drain bias. Once in a T (1, 1) state, the system may, however, get
trapped for a long time if the T (0, 2) states are still out of the bias window, because
tunneling from T (1, 1) to S(0, 2) requires a spin flip. The current is hence suppressed. At
reverse source-drain bias, the current flows through the sequence of charge configurations
(2n+ 1, 2m+ 1)→ (2n, 2m+ 1)→ (2n+ 1, 2m)→ (2n+ 1, 2m+ 1)..., which can not be
spin-blocked, giving rise to current rectification.

The observation of inter-valleys resonances suggests that m is even (otherwise only
transitions between v2 states would be observed in dot 2). We assume from now on that
n is also even. As a matter of fact, the absence of visible bias triangles for lower gate
voltages suggests m = n = 0.

We discuss below the role of valley blockade in the present experiments. We assume
the valley splitting is much larger in dot 1 (∆1) than in dot 2 (∆2 = 36µeV) due to disorder
and bias conditions. The valley splitting in dot 1 is actually beyond the bandwidth of the
EDSR setup. This reflects the stochastic variations from one dot to an other, as confirmed
by tight-binding simulations.
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Figure B.1: Scheme of the energy levels for a system with two dots, filled with two
electrons in the (1, 1) and (0, 2) charge configurations, as a function of magnetic field. We
assume different valley splittings in the two dots (respectively ∆1 > ∆2). Triplets in the
(0, 2) configurations with two electrons in the same valley are not represented, since they
are energetically far away.

In the (1, 1) charge configuration, the low-energy states can be characterized by their
spin component [singlet (S) or triplet (T0, T−, T+)] and by the valley occupied in each
dot (v1 or v2). Sixteen states can be constructed in this way (see Fig. B.1). We neglect in
a first approximation the small exchange splitting between singlet and triplet states with
same valley indices. The magnetic field B = Bb splits the T− (total spin 〈Sb〉 = −1) and
T+ states (〈Sb〉 = +1) from the S and T0 states (〈Sb〉 = 0). The splitting between T+

and T− is Ez = 2gµBB.
Similar states can be constructed in the (0, 2) charge configuration. The Sv1v1(0, 2)

and Sv1v1(1, 1) are detuned by the bias on gates 1 and 2. We focus on detunings smaller
than the orbital singlet-triplet splitting ∆ST = 1.9 meV, so that neither the v1v1 nor the
v2v2 triplets can be reached from the (1, 1) states.

Given the small ∆2 = 36µeV extracted from spin resonance, we need, however, to
reconsider the mechanisms for current rectification. Indeed, the system must be spin-and-
valley blocked [54] since the detuning is typically much larger than ∆2 so that T v1v2(0, 2)
states are accessible in the bias window. Assuming that both spin and valley are conserved
during tunneling, the spin and valley blocked (1, 1) states are actually T v1v1

− , T v1v1
+ , T v2v2

−

and T v2v2
+ . Although T v1v1

0 and T v2v2
0 are, in principle, also spin and valley blocked, they

may be mixed with the nearly degenerate Sv1v1 and Sv2v2 states by, e.g., spin-orbit coupling
and nuclear spin disorder, [178,179] and be therefore practically unblocked.
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We can now refine the interpretation of the different lines. Each one corresponds to a
different set of transitions between blocked and unblocked (1, 1) states. Line A corresponds
to transitions between T v1v1

± and T v1v1
0 /Sv1v1 states, and to transitions between T v2v2

± and
T v2v2

0 /Sv2v2 states. Line B corresponds to transitions between T v1v1
+ and T v1v2

0 /Sv1v2 states,
and between T v2v2

− and T v2v1
0 /Sv2v1 states. The line D on Fig. 3 of the main text would

correspond to transitions between T v1v1
− and T v1v2

0 /Sv1v2 states, and between T v2v2
+ and

T v2v1
0 /Sv2v1 states. These transitions give rise to the same spectrum as in the one-particle

picture.
Line V is independent on the microwave frequency and also appears when no mi-

crowaves are applied. At the magnetic field BV ' ∆2/(gµB), the states T v1v1
+ and

T v1v2
0 /Sv1v2 , as well as the states T v2v2

− and T v2v1
0 /Sv2v1 are almost degenerate. The mix-

ing of these near degenerate blocked and unblocked states by SOC lifts spin and valley
blockade of the T v1v1

+ and T v2v2
− states, giving rise to an excess of current at B ' BV

independent on the microwave excitation.
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Appendix C

g-matrix formulation of the GBL
mechanism

Any mechanism giving rise to Rabi oscillations with frequency proportional to B and Vac
shall be captured by Eq. 6.13. This excludes spin rotations at zero-field [180] or showing
significant non-linearities [53].

As an example, we can cast the spin-orbit mechanism of Ref. [161] (GBL mechanism) in
the g-matrix formalism. We consider a quantum dot in the effective mass approximation,
with strong confinement along z, harmonic confinement V (x, y) = mω2

0(x2 + y2)/2 in the
(xy) plane, and in-plane Rashba plus Dresselhaus spin-orbit coupling [161]. We assume
an isotropic g-factor g0. An electric field E = E0(exx + eyy) sin(ωt) is applied in the (xy)
plane in order to drive Rabi oscillations between the |↓〉 and |↑〉 states (e2

x + e2
y = 1, the

spin being quantized along z). Then, according to Ref. [161],

hfR = 2g0µB|B×ΩSO| (C.1)

at resonance, where:

ΩSO = − eE0

mω2
0

(
ey
λ−
,
ex
λ+
, 0
)

(C.2)

wuth λ± = ~/[m(β ± α)], (α, β) being the Rashba and Dresselhaus spin-orbit constants.
From the effective Hamiltonian of the quantum dot in the static limit (ω → 0) [161],

Heff = 1
2g0µBB · σ + g0µB(B×ΩSO) · σ , (C.3)

the matrices ĝ and ĝ′ can be readily identified (the derivative being taken with respect to
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Appendix C. g-matrix formulation of the GBL mechanism

E0 instead of V ):

ĝ = g0


1 0 0
0 1 0
0 0 1

 (C.4a)

ĝ′ = 2g0


0 0 −Θ0,y

0 0 +Θ0,x

+Θ0,y −Θ0,x 0

 (C.4b)

with Θ0 = ΩSO/E0. Insertion of Eqs. (C.4) into Eqs. (6.13) yields back Eq. (6.19),
showing that the present g-matrix formalism indeed captures the EDSR mechanism of
Ref. [161].
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Appendix D

Numerical calculation of g-matrix
derivative

We detail here the calculation of ĝ′ the derivative of ĝ with respect to V . As shown in
chapter VI, the g-matrix ĝ(V0) can be obtained in the Kramers basis set {|0,⇑〉, |0,⇓〉}
(the states are written in the form |n, σ〉, where n is the orbital index). Doing so again at
V = V0 ± δV yields ĝ(V0 ± δV ) in some basis sets {|0±,⇑〉, |0±,⇓〉}. We cannot compute
directly ĝ′ from the leapfrog scheme of Eq. 6.32, because {|0,⇑〉, |0,⇓〉} may differ from
{|0±,⇑〉, |0±,⇓〉} by an arbitrary transform U±.

In order to choose the appropriate basis {|0±,⇑′〉, |0±,⇓′〉}, we first notice that al-
though |0,⇑〉 and |0,⇓〉 are degenerate eigenstates of H(V0,B) (with H from Eq. 6.28),
they are not coupled by the electric field, so that non-degenerate perturbation theory
applies for our purpose:

∂

∂V
|0,⇑〉 = −e

∑
n>0,σ

〈n, σ|D1|0,⇑〉
E0 − En

|n, σ〉 (D.1a)

∂

∂V
|0,⇓〉 = −e

∑
n>0,σ

〈n, σ|D1|0,⇓〉
E0 − En

|n, σ〉 (D.1b)

Eqs. D.1 actually suggest that the appropriate {|0±,⇑′〉, |0±,⇓′〉} must fulfill:
〈0±,⇑′ |0,⇑〉 〈0±,⇑′ |0,⇓〉
〈0±,⇓′ |0,⇑〉 〈0±,⇓′ |0,⇓〉

 = α±I , (D.2)

where I is the identity matrix and 0 < α± ≤ 1. We therefore seek the unitary transforma-
tion P± ≡ R†± in the {|0±,⇑〉, |0±,⇓〉} subspace such that the states |0±, σ′〉 = P±|0±, σ〉
satisfy the above relations. Solving this problem for Kramers degenerate states uniquely
defines P±:

P± = β±

〈0±,⇑ |0,⇑〉 〈0±,⇓ |0,⇑〉
〈0±,⇑ |0,⇓〉 〈0±,⇓ |0,⇓〉

 , (D.3)
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Appendix D. Numerical calculation of g-matrix derivative

where:

β−2
± = |〈0±,⇑ |0,⇑〉|2 + |〈0±,⇓ |0,⇑〉|2 (D.4a)

= |〈0±,⇑ |0,⇓〉|2 + |〈0±,⇓ |0,⇓〉|2 . (D.4b)

Finite differences (Eq. 6.32) can then be safely calculated in the basis sets {|0±,⇑′

〉, |0±,⇓′〉}:

|0±,⇑′〉 = β± (〈0±,⇑ |0,⇑〉|0±,⇑〉+ 〈0±,⇓ |0,⇑〉|0±,⇓〉) (D.5a)

|0±,⇓′〉 = β± (〈0±,⇑ |0,⇓〉|0±,⇑〉+ 〈0±,⇓ |0,⇓〉|0±,⇓〉) . (D.5b)

We practically use δV = 1 mV.
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Résumé

Dans la course à l’ordinateur quantique, le silicium est devenu ces dernières années un matériau de
choix pour limplémentation des qubits de spin. De tels dispositifs sont fabriqués au CEA en utilisant
les technologies CMOS, afin de faciliter leur intégration à grande échelle. Cette thèse porte sur la
modélisation de ces qubits, et en particulier sur la manipulation de l’état de spin par un champ
électrique. Pour cela nous utilisons un ensemble de techniques numériques avancées pour calculer le
potentiel et la structure électronique des qubits (notamment les méthodes de liaisons fortes et k.p),
afin d’être le plus proche possible des dispositifs expérimentaux. Ces simulations nous ont permis
d’étudier deux résultats expérimentaux d’importance : l’observation de la manipulation par champ
électrique du spin d’un électron d’une part, et la caractérisation de l’anisotropie de la fréquence de
Rabi d’un qubit de trou d’autre part. Le premier résultat était plutôt inattendu, étant donné le très
faible couplage spin-orbite dans la bande de conduction du silicium. Nous développons un modèle,
validé par les simulations et certains résultats expérimentaux, qui met en évidence le rôle essentiel
du couplage spin-orbite inter-vallée, exacerbé par la faible symétrie du système. Nous utilisons ces
résultats pour proposer et tester numériquement un schéma de manipulation électrique consistant à
passer réversiblement d’un qubit de spin à un qubit de vallée. Concernant les qubits de trous, le cou-
plage spin-orbite relativement élevé autorise la manipulation du spin par champ électrique, toutefois
les mesures expérimentales d’anisotropie donnent à voir une physique complexe, insuffisamment bien
décrite par les modèles actuels. Nous développons donc un formalisme permettant de caractériser
simplement la fréquence de Rabi en fonction du champ magnétique, et qui peut s’appliquer à d’autre
type de qubit spin-orbite. Les simulations permettent de reproduire les résultats expérimentaux, et
de souligner le rôle important de la contrainte.

Abstract

In the race for quantum computing, these last years silicon has become a material of choice for the
implementation of spin qubits. Such devices are fabricated in CEA using CMOS technologies, in
order to facilitate their large-scale integration. This thesis covers the modeling of these qubits and
in particular the manipulation of the spin state with an electric field. To that end, we use a set
numerical tools to compute the potential and electronic structure in the qubits (in particular tight-
binding and k.p methods), in order to be as close as possible to the experimental devices. These
simulations allowed us to study two important experimental results: on one hand the observation
of the electrical manipulation of an electron spin, and on the other hand the characterization of the
anisotropy of the Rabi frequency of a hole spin qubit. The first one was rather unexpected, since the
spin-orbit coupling is very low in the silicon conduction band. We develop a model, confirmed by the
simulations and some experimental results, that highlights the essential role of the intervalley spin-
orbit coupling, enhanced by the low symmetry of the system. We use these results to propose and
test numerically a scheme for electrical manipulation which consists in switching reversibly between
a spin qubit and a valley qubit. Concerning the hole qubits, the relatively large spin-orbit coupling
allows for electrical spin manipulation. However the experimental measurements of Rabi frequency
anisotropy show a complex physics, insufficiently described by the usual models. Therefore we develop
a formalism which allows to characterize simply the Rabi frequency as a function of the magnetic
field, and that can be applied to other types of spin-orbit qubits. The simulations reproduce the
experimental features, underline the important role of strain.
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