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Résumé

Dans les systèmes électriques modernes, une part croissante de l’électricité est produite à
partir de sources d’énergies renouvelables, ce qui nécessite une adaptation des réseaux de
transport d’électricité. L’introduction d’équipements d’électronique de puissance y est no-
tamment de plus en plus marquée. Afin de permettre ces évolutions tout en garantissant
le niveau requis de sûreté de fonctionnement à leurs clients, les gestionnaires de réseaux de
transport d’électricité réalisent de nombreuses simulations dynamiques, visant à évaluer le
niveau de robustesse du système électrique face à un certain nombre d’aléas. Historique-
ment, deux grandes classes de simulations étaient réalisées selon le type de phénomènes
transitoires étudiés. Les simulations dites TS (Transient Stability) permettaient d’étudier
les phénomènes transitoires électromécaniques, caractérisés par des constantes de temps
et une propagation spatiale plus élevées. Au contraire, afin d’étudier les phénomènes tran-
sitoires électromagnétiques, caractérisés par des constantes de temps et une propagation
spatiale bien plus faibles, on avait recours aux simulations dites EMT (ElectroMagnetic
Transient). Dans la mesure où les évolutions actuelles du système électrique rendent
poreuse la frontière entre ces deux grands domaines d’application, les simulations EMT
ont finalement vocation à se généraliser à l’étude de systèmes de grande taille sur le moyen-
voire le long-terme.

Cependant, ce type de simulation est pour le moment bien trop coûteux pour envisager
de telles applications tout en conservant un contrôle fin sur la précision de la solution cal-
culée, de par la raideur et la dimension des systèmes d’équations différentielles algébriques
à résoudre. De plus, et il s’agit de la problématique de base de notre travail de recherche,
le pas de calcul utilisé pour intégrer ces équations est fortement contraint par la fréquence
d’oscillation des systèmes oscillants, ces derniers étant représentés à partir de leur forme
d’onde complète dans les simulations EMT. Pour accélérer ces simulations, la plupart des
approches actuelles se focalisent alors sur la modélisation, modifiant ainsi intégralement
(e.g. phaseurs dynamiques) ou partiellement (simulations hybrides) le système d’EDA
à résoudre à partir d’hypothèses fortes sur la solution. C’est pourquoi, dans la plupart
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des outils de simulation, les aspects liés à la modélisation et à la résolution numérique se
retrouvent souvent imbriqués.

Au contraire, l’approche proposée dans cette thèse, ayant pour objectif de contrôler fine-
ment l’erreur de calcul, repose sur un environnement de simulation découplant distincte-
ment ces deux aspects. De plus, nous proposons l’utilisation d’un schéma d’intégration à
pas adaptatif visant, d’une part, à garantir à l’utilisateur un certain niveau de précision
et, d’autre part, à ouvrir la possibilité d’optimiser le coût de calcul des simulations. En
effet, le pas de calcul étant directement lié à la dynamique de la solution simulée, un
tel mécanisme d’ajustement permet alors de le raffiner lorsque le système est en régime
transitoire, de sorte à capter les dynamiques étudiées, puis de l’augmenter de manière
significative en régime permanent, afin de réduire le nombre d’itérations nécessaires à la
simulation. L’objectif de la méthode des prédicteurs sinusoïdaux (SPM) proposée dans
cette thèse est donc de tirer parti du comportement attendu des composantes oscillantes
de la solution directement au sein du schéma d’intégration numérique afin d’en améliorer
les performances, notamment en régime permanent où elles sont censées être proches de
sinusoïdes à enveloppes et phases constantes oscillant à la fréquence nominale du système.
En définitive, notre approche a pour vocation de tirer pleinement profit de l’utilisation de
schémas d’intégration à pas adaptatif dans le cadre des simulations EMT.

D’un point de vue méthodologique, l’idée de base de la SPM est de décomposer la solution
de manière additive en la somme d’une partie périodique et d’un terme de correction pour
chaque intervalle d’intégration considéré. La première correspond au comportement sinu-
soïdal attendu de la solution en régime permanent. Il s’agit d’une fonction paramétrique,
ne dépendant que du temps lorsque ses paramètres sont fixés. Ces derniers sont alors les
coefficients de Fourier associés au mode fondamental, qui sont mis à jour par estimation
paramétrique. La deuxième partie, i.e. le terme de correction, est quant à elle calculée à
l’aide d’un schéma d’intégration à pas adaptatif. À chaque itération en temps, la méthode
consiste tout d’abord à injecter la valeur locale des coefficients de Fourier afin de déduire
le problème local sur le terme de correction à partir de l’EDA originale et de la fonction
périodique locale. Ce problème est ensuite intégré à l’aide d’un schéma d’intégration
classique, la mise du pas de calcul étant effectuée sur le terme de correction au lieu de la
solution globale. Cette dernière est alors déduite en additionnant le terme de correction
intégré et l’évaluation de la fonction périodique locale au pas de temps suivant. Pour finir,
les coefficients de Fourier sont mis à jour par estimation paramétrique. Au final, l’objectif
de la SPM est donc de capter autant que possible le comportement sinusoïdal attendu des
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composantes oscillantes de la solution au sein de la partie périodique de sorte à amortir
le terme de correction et ainsi pouvoir utiliser de grands pas de calcul pour l’intégration
numérique, d’autant plus en régime permanent. C’est pourquoi le choix de l’estimateur a
fait l’objet d’une attention toute particulière.

Afin de valider son potentiel industriel, la SPM a par ailleurs été implémentée au sein du
solveur de référence SUNDIALS IDA puis interfacée avec Dynawo, un environnement de
simulation développé par RTE étant basé sur le cadre de travail découplant le modeleur
du solveur. Il nous a alors été possible d’implémenter des cas tests à l’aide du langage
Modelica afin de valider puis comparer notre solveur IDASPM avec l’implémentation clas-
sique d’IDA. Les résultats obtenus nous ont montré que l’utilisation de la SPM permet
d’importants gains de performances.

Dans la première partie de cette thèse, le problème mathématique ainsi que quelques ap-
proches existantes pour le résoudre sont introduits. Le chapitre 2 rappelle les systèmes
d’EDA à résoudre dans le cadre des simulations dynamiques de systèmes électriques et
leurs propriétés en régime permanent. La limitation du pas de calcul due à la présence
de variables oscillantes est présentée de manière plus détaillée. Nous proposons notam-
ment une estimation du pas de calcul maximum utilisable par la méthode des trapèzes en
fonction de la tolérance et de la fréquence des variables simulées. Les propriétés atten-
dues de la méthodologie développée sont également évoquées. Ensuite, dans le chapitre
3, nous présentons une revue bibliographique des méthodes existantes visant à accélérer
la simulation de systèmes électriques en courant alternatif. Cet état de l’art couvre les
approches consistant à reformuler le système d’EDA dans le domaine fréquentiel ainsi que
les méthodes type simulation hybride permettant de coupler les simulations EMT et TS.
Nous y présentons également quelques méthodes numériques.

La seconde partie de la thèse présente les aspects théoriques de la SPM. Dans le chapitre
4, la méthode est présentée de manière très détaillée. Nous y introduisons tout d’abord
les concepts de notre méthode puis les deux grandes étapes de chaque itération en temps,
à savoir l’intégration numérique du terme de correction et l’estimation paramétrique des
coefficients de Fourier. Le choix de l’estimateur étant déterminant pour les performances
globales de notre schéma numérique, nous y revenons de façon plus approfondie dans le
chapitre 5. Ce dernier synthétise le cheminement suivi ayant permis le développement
de l’estimateur retenu finalement. Cette partie se conclut avec le chapitre 6 qui présente
les résultats obtenus à partir de notre analyse théorique de la SPM sur un cas scalaire
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simple. Une attention particulière est portée sur le comportement attendu de la SPM en
régime transitoire et permanent.

La dernière partie présente notre implémentation industrielle de la SPM et quelques résul-
tats. Le chapitre 7 détaille le travail fait pour implémenter la SPM au sein du solveur de
référence SUNDIALS IDA. L’interface avec le moteur de simulation développé par RTE,
qui est basé sur l’environnement OpenModelica, est ensuite exposée dans le chapitre 8.
Pour finir, le chapitre 9 présente les résultats obtenus sur des cas tests implémentés à l’aide
du langage Modelica. En particulier, nous y comparons les performances obtenues avec et
sans l’utilisation de la SPM en confrontant notre solveur IDASPM avec l’implémentation
classique d’IDA. Le chapitre 10 conclut le présent manuscrit et propose quelques perspec-
tives.
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Introduction

Contents
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 Motivations

Modern power systems are characterized by the smart-grids development and the renew-
able energy sources increasing proportion in the energy mix. In 2030, 40% of the French
electricity should come from renewable energy sources in order to meet the European
energy targets. As the underlying technologies are radically different from historically
present electrical components, the transmission system has to be consequently adapted.
Therefore, more and more new smart controls and power electronics devices are intro-
duced into the transmission grid. In order to support these technological changes while
providing the security of supply required level to their customers, transmission system op-
erators (TSOs) have to assess the system reliability by performing numerous time-domain
simulations. Time-domain simulations generally consist in studying the power system
dynamical behavior during scenarios, which can be roughly seen as sequences of discrete
events associated to perturbations and remedial actions (controls and human operations).
By this way, the transmission grids robustness and especially the remedial actions effi-
ciency in response to these perturbations can be evaluated.

In power systems, electromagnetic transients (EMT) phenomena have always been inves-
tigated. Such phenomena are mainly studied for designing system protections in order
to enhance the system resilience to strong events, for example lightning strikes causing
transient over-voltages. As most of the simulated phenomena are associated to very fast
dynamics, these studies have been historically performed on short time intervals, i.e.

3



1. Introduction

around 1 second. However, with the increasing penetration of intermittent renewable en-
ergy sources interfaced through power electronics into the existing infrastructures, more
and more complex fast dynamics are to be anticipated. In addition, as the existing in-
frastructure contains many electromechanical components, whose inertia introduce slower
dynamical behaviors, modeling fast dynamics by performing long-term EMT simulations
is becoming crucial for assessing the entire system security.

However, this kind of simulation currently requires too large computational resources for
considering long simulation duration, for instance during several minutes, while control-
ling the solution accuracy. Indeed, as power systems contain a wide variety of dynamics
associated to different ranges of time scales, the differential algebraic equations (DAE)
systems that arise when modeling power systems in the time-domain are particularly stiff.
Indeed, on the one hand, modern components introduce electromagnetic transients phe-
nomena, whose typical time range varies from the microsecond to a few milliseconds. On
the other hand, historically present electrical components such as synchronous machines
lead to electromechanical transients, whose typical time range varies from the millisecond
to the minute. In addition, the study of these two kinds of phenomena can be less and
less separated since electromechanical components can be dramatically affected by elec-
tromagnetic phenomena. In addition, as EMT models take into account all the system
dynamics (a larger number of state variables must be considered, ideally in unbalanced
conditions), the underlying equations systems dimension can be roughly at least one order
of magnitude larger. As a result, each time step of the integration process potentially has
an important computational cost. To finish, most of the existing EMT simulation tools
are based on fixed step size strategies for integrating the DAE system. In order to catch
accurately the fastest dynamics, the step size is generally fixed to a very small value, such
as 10μs. In the current implementations, the computation time is reduced using decom-
position approaches and parallel computing taking advantage of the propagation delays
on long power lines, but these approaches cannot offer any guarantees on the solution
accuracy; they must be properly customized using trials and errors in order to find the
proper fixed time step and how to decompose the system (what is a long powerline?).
This could be considered as an acceptable practice for protection design studies but cer-
tainly not for operational decisions making processes close to real time or to study future
complex hypothetical systems. Henceforth, solving DAE systems associated to the EMT
models of large-scale power systems with some guarantees on the solutions accuracy re-
quires a considerable number time steps whose individual computational cost is important.

As the time and space propagation of EMT through the transmission grid has been
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1. Introduction

historically assumed to be very limited, EMT simulations are generally done on a small
part of the system and during very short time intervals. This approximation is justified
by the fact that the system is a low pass filter and damps the fast dynamics, in particular
via the electromechanical components inertia. The fast dynamics are not traveling very
far in the system, if they are stable and if they don’t trigger protection devices actions.
On the contrary, as the space and time propagation of slow electromechanical transients
is very important (e.g. inter-zone oscillations), the associated studies are conducted on
large-scale systems. Then, this currently results to the use of different models and so of
different simulation tools depending on the dynamics to study and implicitly assuming
that the neglected dynamics are stable:

• Electromechanical transient phenomena are simulated from so-called Transient Sta-
bility (TS) models. These models are based on numerous assumptions which enable
faster computations. In particular, they generally represent three-phase systems in
balanced conditions and in the frequency domain, focusing on their envelope. In
other words, inner-cycle dynamics are neglected as they are considered as stable and
instantaneous (singular perturbation).

• EMT tools are used to study very fast phenomena. They model electrical compo-
nents with a much finer accuracy than TS models and, especially, do not make the
above-mentioned assumptions. As the underlying models represent the three-phase
systems in full-waveform, inner-cycle dynamics can be considered. This leads to the
use of much smaller time steps.

Then, as the penetration of new technologies is getting important, choosing a priori the
appropriate tool and relevant modeling level (which part of the system to consider, which
time window, which boundary conditions, ...) depending on the phenomenon to study
is getting harder and harder. Hence, as EMT models are much more detailed and could
thus enable to simulate all the investigated dynamics, our objective is to perform mid-to-
long-term large-scale power systems simulations with full-EMT models.

Furthermore, in most of the existing simulation tools, the modeling and solving aspects
are combined. For instance, mathematical equations defining the components dynamical
behavior are often implemented in discretized form: trapezoidal formula for smooth dy-
namics and backward Euler formula for discontinuities [43]. Although it enables faster
computations, such an approach leads to numerous heuristics and the presence of solver
parameters in physical models. It is consequently impossible to change the solving strategy
and to assess or compare the simulations accuracy, which leads to question the simulation
results reliability. More precisely, the DAE systems are generally solved with fixed step
size integration schemes which do not really enable to control the computational error.
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Therefore, in order to meet some accuracy requirements, the time step is fixed to very
small values (e.g. 10 μs), which completely prevents from long-term simulations. To
tackle this constraint, most of the existing approaches consist in simplifying the DAE
system to solve by reducing either the simulated solution frequency or the EMT system
dimension. However, as such approaches directly affect the model by modifying the orig-
inal equations to solve in a non-equivalent way, controlling the resulting computational
error seems difficult.

The approach proposed in this thesis is based on two cornerstones:
1. Completely separating the modeler from the solver. As shown in figure 1.1, from

a mathematical point of view, the idea is that the modeler only builds the DAE
system, which is solved in a second time by the numerical integrator. In particular,
the model does not contain any solver data. On the contrary, the solver can contain
model-related data such as the oscillating variables index and pulsation, which is
provided by the modeler. However, the solver should not interfere at all with the
modeling process, i.e. the corresponding data flux is unidirectional. As the model is
not affected by the solver choice, state-of-the-art methods can more easily be tested
within the solver. To finish, such an approach simplifies the simulation results
analysis as the modeler and solver respective roles can be clearly distinguished.

2. Integrating DAE systems with an adaptive step size solver, in which the time step
size is adjusted so that the integration error meets a tolerance target. By this way,
the simulation results reliability is reinforced. Furthermore, the step size adjustment
makes the computational cost optimization possible. Indeed, as the step size is
directly linked to the solution dynamics (the faster its variations, the smaller the
step size), it enables to catch fast transient phenomena when the system is subject
to perturbations while reducing the computational cost when the system returns to
steady-state.

Figure 1.1: Proposed approach: fully separated modeler/solver framework
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However, as the three-phase voltages and currents full-waveform is simulated in EMT
simulations, using an adaptive step size strategy is generally inefficient because of their
sinusoidal behavior. More precisely, their frequency limits the time step size that is used
for the integration. Paradoxically, this limitation is finally due to an expected behavior
which could be taken into account. That’s why the proposed solver aims at exploiting
this property in order to increase the step size and so the performances in steady-state,
while being able to finely catch transients phenomena. In other words, our objective is
to exploit the full potential of adaptive step size schemes in the EMT simulations context.

Hence, in the developed Sinusoidal Predictor Method (SPM), the solution is decomposed
as the sum of a periodic part and a correction term. The former corresponds to the ex-
pected steady-state oscillating solution, i.e. a sinusoid oscillating at the nominal frequency.
It is a parametered function of the time, whose parameters are the Fourier coefficients
associated to this fundamental mode. It is updated using parametric estimation. The
latter, i.e. the correction term, is integrated by an adaptive step size solver. At each
time step, the DAE system is rewritten on the correction term by injecting the solution
periodic part and solved with a predictor-corrector scheme. The step size adjustment is
then performed on the correction term. Thus, the SPM aims at catching as much as pos-
sible the solution smooth sinusoidal behavior into the periodic part. That’s why a special
attention has been given on the estimator choice. By this way, as the solution oscillating
parts should tend toward sinusoids with constant Fourier coefficients in steady-state, the
associated correction term would be damped. As a result, the simulated variable would
be reduced to a constant term (zero for the solution oscillating parts and their asymptotic
values for its non-oscillating parts) and much larger time steps could be used by the solver.

To asses its industrial potential, this method has been implemented into the reference
solver SUNDIALS IDA [34] and interfaced with RTE’s simulation engine for time-domain
simulations [25]. The latter is based on the OpenModelica [19] environment and enables
to set our simulations. Thus, using the simulation engine, it was possible to implement
EMT models in Modelica language [20] from an internally-implemented library. Finally,
our customized solver has been validated and compared with IDA’s basic implementation.

1.2 Contents

In this thesis first part, the mathematical problem and some existing approaches for
solving it are introduced. Hence, chapter 2 presents the DAE systems to solve in time-
domain simulations of power systems and their steady-state properties. It also further
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develops the step size limitation by the oscillating variables frequency and some expected
properties of our methodology. Then, in chapter 3, we present a bibliographic review of
existing approaches for accelerating the AC power systems simulation when the frequency
is known a priori. This covers methods modifying the entire model by rewriting it in the
frequency domain and some current methods for hybrid simulations coupling EMT and
TS simulations.

Then, in the second part, different SPM theoretical aspects are introduced. First, we
present the Sinusoidal Predictor Method (SPM) in chapter 4, which details the method
concept and different steps, i.e. the correction term integration by an adaptive step size
solver and the periodic term update by a parametric estimator. The estimator choice is
more precisely discussed in chapter 5. In particular, it presents the developments made
to design the finally retained estimator. This part is concluded with chapter 6 which
presents some SPM theoretical validation results on a simple ODE. A special attention is
given on the method behavior in steady-state and during transients.

To finish, the third part focuses on the SPM implementation and obtained results. Chap-
ter 7 details our work for integrating the SPM into the reference solver SUNDIALS IDA.
The interface with the OpenModelica-based RTE’s simulation engine for performing time-
domain simulations is presented in chapter 8. Then, the chapter 9 shows results obtained
with the SPM on several test cases that have been implemented with Modelica and simu-
lated with this implementation. In particular, we compare our customized solver IDASPM
performances with those of the classical solver IDA.

1.3 Publications

1. Gibert P.-M., Panciatici P., Tromeur-Dervout D., Beaude F., Wang P. and Erhel
J. (2017). A Generic Customized Predictor Corrector Approach for accelerating
EMTP-like simulations. IEEE PES PowerTech 2017.

2. Gibert P.-M., Panciatici P., Losseau R., Guironnet A., Tromeur-Dervout D. and Er-
hel J. (2018). Speedup of EMT simulations by using an integration scheme enriched
with a predictive Fourier coefficients estimator. IEEE PES ISGT 2018

3. Gibert P.-M., Losseau R., Guironnet A., Panciatici P., Tromeur-Dervout D. and
Erhel J. (2018). Use of the Sinusoidal Predictor Method within a fully separated
modeler/solver framework for fast and flexible EMT simulations. SIMULTECH
2018
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2
Mathematical problem

Contents
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2.4 Implemented method expected properties . . . . . . . . . . . 15

As presented in the general introduction, this research work objective is to accelerate
the time-domain simulations of AC power systems in order to pave the way for long-
term EMT simulations. This chapter presents the corresponding mathematical problem.
To begin, DAE systems arising in EMT simulations are presented. As our methodology
mainly aims at enhancing the integration method performances by using larger time steps
in steady-state, the system properties in these conditions are then discussed. In the third
section, the step size limitation affecting classical numerical schemes due to the presence of
oscillating variables is explained in a more formal way with its mathematical justification.
To finish, we present the expected properties and behavior of our method.

2.1 Time-domain simulation of AC power systems

In the time-domain simulation of power systems, the mathematical problem to solve is
generally a set of differential algebraic equations [63]. In its most general form, this system
can be written as a full-implicit equation [29], i.e.

F (t, X(t), Ẋ(t)) = 0 (2.1)

Let d be the system dimension. In this equation t ∈ R refers to the time, X : R → Rd is
the solution and F : R × Rd × Rd → Rd is the DAE system residual function. In most of
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the power system application, this system can be rewritten in semi-explicit form [4] i.e.⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ(t) = f(t, x(t), y(t))

0 = g(t, x(t), y(t))

(x(t0), y(t0)) = (x0, y0)

(2.2)

where
• x : R → R

dx are the solution differential state components. Let Ix be the associated
index set.

• y : R → R
dy are the solution algebraic state components. Let Iy be the associated

index set.
• f : R × R

dx × R
dy → R

dx is the differential equations Right-Hand-Side function.
• g : R × R

dx × R
dy → R

dy is the algebraic constraints function.
• (x0, y0) are consistent initial conditions. It is generally computed from a dedicated

initialization procedure and corresponds to the DAE system steady-state solution.

In this system, some variables that we will denote by the s subscript are oscillating. They
are thus assumed to be sinusoidal in standard operations, i.e. when the system is not
subject to transients. Let ds be the number of oscillating variables and Is the associated
index set. On the contrary, let dns be the number of non-oscillating variables that we will
denote by the ns subscript. The index set Is is known a priori and generally corresponds
to network electrical quantities such as three-phase currents and voltages. Their frequency
is supposed to be close to the system nominal frequency.

2.2 System steady-state properties

In steady-state, the transmission system is designed for the three-phase currents and
voltages to be as close as possible to balanced three-phase sinusoids. In other words,
each three-phase signal should be a system of three centered sinusoids oscillating at the
nominal frequency (for instance 50Hz for the Continental Europe) with equal amplitudes
and phases with a 2π

3 offset, as illustrated in 2.1:

X∞
s,abc(t) =

⎡
⎢⎢⎢⎣

A∞ cos(ωt + φ∞)
A∞ cos(ωt + φ∞ − 2π/3)
A∞ cos(ωt + φ∞ + 2π/3)

⎤
⎥⎥⎥⎦ (2.3)

The s, abc subscript means that we consider a three-phase oscillating component and
the ∞ superscript refers to the steady-state solution. A∞ and φ∞ are respectively the
steady-state amplitude and phase of Xs,abc.
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Figure 2.1: Illustration of a balanced three-phase system (on the abscissa: time in
seconds, on the ordinate: three-phase system in arbitrary units).

Then, each component a, b or c should be in the form:

X∞
s (t) = u∞ sin(ωt) + v∞ cos(ωt) (2.4)

where u∞ and v∞ are the steady-state Fourier coefficients associated to the three-phase
signal fundamental mode. Hence, the power system is assumed to not contain second
or higher order harmonics in steady-state. As these asymptotic Fourier coefficients are
constant, the oscillating solutions time-derivative is given by

Ẋ∞
s (t) = ω(u∞ cos(ωt) − v∞ sin(ωt)) (2.5)

In addition, the non-oscillating components should be constant, i.e.

X∞
ns(t) = X∞

ns (2.6)

thus
Ẋ∞

ns(t) = 0 (2.7)

Finally, by injecting (2.4), (2.5), (2.6) and (2.7) into (2.1), we see that the DAE system
should respect the following equation in steady-state:

F

⎛
⎝t,

⎡
⎣us,∞ sin(ωt) + vs,∞ cos(ωt)

X∞
ns

⎤
⎦ ,

⎡
⎣ω(us,∞ cos(ωt) − vs,∞ sin(ωt))

0

⎤
⎦
⎞
⎠ = 0 (2.8)
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2.3 Step size limitation with classical EMT methods

Even when the system is in steady-state, the time step used by numerical integration
algorithms is limited by the presence of oscillating variables and, more precisely, by the
alternating currents frequency [13] (the higher their frequency, the lower the numerical in-
tegration performances). As precised in the previous section, the power system is designed
such as there is no harmonic of the nominal frequency in standard operations. It means
that, in steady-state, this step size limitation is finally due to the presence of expected
sinusoidal variables whose frequency is equal or close to the system nominal frequency.
Despite the high predictability of this constraint and especially in steady-state when using
larger step sizes should be possible, classical EMT methods do not enable to get around it.

In order to illustrate this point, let us consider the equation below which corresponds to
the simplest strategy for controlling the step size [47]

hnew = ks
q+1

√
TOL

en+1
hold (2.9)

where ks ∈]0, 1[ is a security coefficient, q is the integration scheme order (for instance
q = 2 for the trapezoidal formula), TOL is the tolerance on the local truncation error
that is set by the user and en+1 is an estimation of the local truncation error. hold and
hnew are respectively the step size before and after the adjustment. In other words, the
estimated local truncation error should be at most equal to the tolerance for the step size
to be validated.

Now, if we consider a second-order method (e.g. the trapezoidal formula), its local trun-
cation error is given by

en+1 = O(h3
n) ≈ h3

n

12 ||X(3)
n || for the trapezoidal formula (2.10)

where X(3)
n refers to the third time-derivative of Xn. Then, if we simulate a per united sinu-

soidal variable (i.e. whose amplitude is equal to ||Xn|| = 1) oscillating at the Continental
Europe reference frequency (i.e. ω = 100πrad/s), an approximation of the maximum step
size with the trapezoidal formula is

hmax
n = 3

√
12TOL

ω3||Xn|| = 3

√
12TOL

106π3 (2.11)
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Tolerance 1.e-3 1.e-4 1.e-5 1.e-6
Estimated maximum step size 7.29e-4 3.38e-4 1.57e-4 7.29e-5

Table 2.1: Estimated maximum step sizes for several tolerances on the local truncation
error.

Figure 2.2: Illustration of the step size limitation due to the integration of an oscillating
solution (on the abscissa: time in seconds, on the ordinate: step size in seconds).

In table 2.1 and figure 2.2, some corresponding maximum step size estimations and sim-
ulation curves are presented for different solver tolerances. Such step sizes prevent from
simulation durations comparable to those of transient stability simulations. In classical
TS studies, investigated time scales are generally in the range of minutes [63], while the
used step sizes in EMT simulations do not exceed 100μs. It means that several millions
of time steps would be necessary for conducting mid-term EMT studies. In addition, as
EMT models are much more detailed than TS models, the individual computational cost
of each time step is dramatically greater [39].

2.4 Implemented method expected properties

Even if our objective is to accelerate time-domain simulations of EMT phenomena, such
simulations require the use of a global methodology that enables a fine control of the
computational error [58]. The latter results from, on the one hand, the approximations
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made on the model representing the simulated system and phenomena and, on the other
hand, the solver numerical errors [65]. Thus, from the users point-of-view, controlling the
error should be feasible by modifying the model assumptions or the solver tolerance. The
only counterpart would be a possibly significant increase of the required computational
time and resources. That’s why the entire simulation process has to be as transparent as
possible.

In order to finely control the integration error, the implemented method should respect
some requirements that are further developed in chapter 6:

• Solving the original DAE system (2.1) (or (2.2)) and particularly not modifying it
in order to accelerate the simulations: if the DAE system is rewritten in a non-
equivalent way at the continuous level, the reference to the basic equations is lost.
Then, nothing can ensure that the error control process is applied to the actual
solution.

• Using an adaptive step size strategy. By this way, the integration time step is
adjusted so that the error remains close to a chosen tolerance [58]. Indeed, as
the integration error depends on the simulated variables dynamics [28], choosing
an appropriate fixed step size is complicated. It is all the more difficult as power
systems lead to very stiff DAE systems [4]. In addition, thanks to the adaptive step
size, the integration process can be significantly optimized [58] since the step size
is adjusted so that fast dynamics are accurately approximated during transients by
using small time steps while the computational cost can be drastically reduced in
steady-state by using large time steps.

• A-stability [29] and, in particular, A-instability in order to respect as much as
possible the simulated signals dynamics. Indeed, as time-domain simulations are
mainly used for security assessments in our context, unstable phenomena should
not be damped by the solver.
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In order to accelerate the EMT simulations of power systems, existing approaches mainly
focus on the modeling aspects. Two strategies are generally implemented:

1. Using larger integration step sizes by reducing the simulated oscillating variables fre-
quency. In order to do this, the DAE system associated to these variables waveform
is rewritten on their envelope. In this chapter, we briefly present dynamic phasors
and some related approaches. Then, we highlight the Time Domain Transformation
which could almost be seen as the corresponding solver approach, initially proposed
for purely oscillating ordinary differential equations, with our extension to differen-
tial algebraic equations with both oscillating and non-oscillating components.

2. Reducing the EMT model dimension by coupling it with a TS model, also referred as
hybrid simulations. The two kinds of coupling are presented i.e. with a geographical
slicing, which is the most investigated in the literature, and with a temporal slicing,
which has been more recently proposed. In particular, we will show that choosing
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a priori an appropriate interface between the EMT and TS model is the common
difficulty of such approaches.

3.1 Frequency-domain modeling

As above mentioned, the first strategy consists in rewriting the DAE system on the os-
cillating variables waveform into a system on their envelope for tackling the step size
limitation [13]. Such approaches are currently the most investigated within the power
system community as they really focus on simulation modeling aspects. Especially, as
most of the used simulators were based on phasor models for TS studies, their imple-
mentation would only consist in extending existing models. However, as we will see, the
problem is that these kinds of approaches rely on high hypotheses on the solution which
may be inappropriate in the system design context.

3.1.1 Dynamic Phasors

Such kind of approach has been initially implemented within classical TS simulation tools
using so-called phasor models. In phasor models, oscillating solutions are represented by
centered complex variables with piecewise-constant amplitude and phase, i.e.

Xs(t) = �
{
Aej(ωst+φ)

}
= �

⎧⎪⎪⎨
⎪⎪⎩Aejφ︸ ︷︷ ︸

def
= X̄

ejωst

⎫⎪⎪⎬
⎪⎪⎭ (3.1)

where A and φ are respectively the phasor X̄ amplitude and phase. ωs is the power system
reference pulsation. As a consequence, if the frequency of Xs(t) is close to those of the
system, the simulated phasor X̄ frequency is close to zero. This approach is illustrated in
figure 3.1. In addition, as this modeling is used for quasi-steady-state studies, fast varia-
tions are commonly neglected, i.e. Ȧ = 0 and φ̇ = 0. This assumption was acceptable for
TS studies but not for EMT studies. That’s why, the idea of dynamic phasors has been
to extend this approach by adding the phasor time variation and higher harmonics to the
modeling [13].

In general, a real or complex valued periodic signal X̃s with period T can be expressed
with a Fourier series representation given by (3.2) :

X̃s(τ) =
∞∑

k=−∞
X̄kejkωsτ (3.2)

where ωs = 2π

T
and X̄k is the k-th Fourier coefficient which is invariant in time. This

Fourier coefficients can be referred to as k-th order phasors. In [56] Sanders & Al extended
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Figure 3.1: Example of phasor diagram. The reference frame is a rotating plan whose
angle is ωst with respect to the real axis. The complex signal defined by X̄(t)ejωst can
thus be projected into this plan to define the low-frequency real part X̄R and imaginary
part X̄I .

this approach and approximated X̃s(τ) in the interval τ ∈]t − T, t] with a Fourier series
representation given by (3.3) :

X̃s(τ) =
∞∑

k=−∞
X̄k(t)ejkωsτ (3.3)

where the phasors coefficients are time varying and are referred to as dynamic phasors.
They are expressed as :

X̄k(t) = 1
T

∫ t

t−T
X̃s(τ)e−jkωsτ dτ (3.4)

In transient simulations, the oscillating variables are real signals and can be represented
as the real part of dynamic phasors with a centered complex exponential, i.e.

Xs(t) =
√

2�
{
X̄(t)ejωst

}
(3.5)

Let us illustrate this approach with a signal containing only the fundamental mode. The
dynamic phasor of Xs(t) is the complex number X̄(t) which can thus be represented as

X̄(t) = A(t)ejφ(t) (3.6)

This exponential representation is very convenient for electrotechnical purposes since the
two parameters will play an important role : for instance, in synchronous machines mod-
eling, the modulus A can be used as input for machine controls while the argument φ can

19



3. Review of the relevant literature

be used for measuring its relative angle. However, for time-domain simulations, complex
numbers are generally implemented in additive representation:

X̄(t) = X̄R(t) + j X̄I(t) (3.7)

Indeed, as the real and the imaginary axes are orthogonal, the equations on the real part
X̄R can be distinguished from those on the imaginary part X̄I . We recall the following
equation giving the relation between these two phasor representations:

X̄(t) = A(t)ejφ(t) = A(t) cos(φ(t))︸ ︷︷ ︸
X̄R(t)

+j A(t) sin(φ(t))︸ ︷︷ ︸
X̄I(t)

(3.8)

As previously mentioned, if the pulsation of a 3-phase system is ω, the phasor oscillates
at the pulsation |ωs − ω|. That’s why this approach, which focuses only on the envelope
and so substitutes the original oscillating signal by an almost constant variable in steady-
state, is very efficient. Finally, as ωs is known, the complete waveform corresponding to
X̄(t)ejωst can be computed from the phasor X̄(t).

In this representation, the time derivative is computed as follows:

d

dt
(X̄(t)ejωst) = d

dt
(
[
X̄R(t) + j X̄I(t)

]
ejωst) (3.9)

= (
[ ˙̄XR(t) + j ˙̄XI(t)

]
ejωst) + jωs

[
X̄R(t) + j X̄I(t)

]
ejωst (3.10)

=
[
( ˙̄XR(t) − ωsX̄I(t)) + j ( ˙̄XI(t) + ωsX̄R(t))

]
ejωst (3.11)

To illustrate this approach, let us consider the example of a linear model corresponding
to electrical grid equations with an input term, i.e. :

Ẋ(t) = AX(t) + BU(t) (3.12)

This equation can be rewritten as below, by using the equation (3.5) and (3.11) :⎡
⎣ ˙̄XR(t)

˙̄XI(t)

⎤
⎦ =

⎡
⎣ A ωsId

−ωsId A

⎤
⎦
⎡
⎣X̄R(t)

X̄I(t)

⎤
⎦+

⎡
⎣B 0

0 B

⎤
⎦
⎡
⎣ŪR(t)

ŪI(t)

⎤
⎦ (3.13)

Hence, for linear systems, deducing the phasor equations is trivial and can be automati-
cally performed. However, when the system contains non-linear equations and harmonics,
the new equations system has to be derived for each considered unit-model. Plenty of
publications correspond to the derivation of electrical components models for taking into
account most of the studied dynamics. In [59][60][30], these models were mainly writ-
ten using a symmetrical components approach for dealing with asymmetrical faults. In
[14] [16][15], models are expressed either in ABC or in DQ0 representation depending on
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the considered electrical component. Hence, in spite of their efficiency, dynamic phasors
possibly require fastidious and very particular developments. In addition, as the pha-
sor approach requires several high assumptions on the solution and modify the original
equation system in a non-equivalent way, it is not suited to our framework whose main
objective is to control the computational error.

3.1.2 Related methods

In [61] [62] Strunz & Al proposed a simulation approach called Frequency Adaptive Simu-
lation of Transient (FAST). It combines the previously presented dynamical phasor mod-
eling with EMTP’s model assembling process [17][41]. In addition, in their methodology, a
frequency shift is introduced in order to have a degree of freedom on the system frequency.
Its numerical properties are investigated in [76]. Then, the idea is to write unit-models,
called companion models, corresponding to the discretized unit-components dynamical
phasor model. For instance, in [75][38], synchronous machine models are presented using
FAST. The global model then combine them using the modified-augmented nodal analysis
[41]. This approach has been tested within EMTP tools, whose results are presented in
[22][42]. However, in spite of its performances, FAST does not seem suited to our final
objective as it is based on the same hypotheses as dynamical phasors. Another limita-
tion is that testing different solvers requires to rewrite the associated new models, as the
components models are written in discretized form.

The dynamic phasors approach has also been extended within the so-called Dynamic Har-
monic Domain [55]. Indeed, when signal harmonics occur (multiple of the basis signal
frequency), for example in transmission lines modelling [9] and its interfacing with syn-
chronous machine [8], the dynamical system state space representation is transformed in
the frequency domain. The DHD accuracy depends on the time step size and the har-
monics number. Nevertheless, Chavez and Ramirez mention that there is no criterion
for determining the number of harmonics given a predefined error [9]. Additionally, the
highest harmonic is closely related to the time step used for the simulation. A steady
state solution using Harmonic Domain can be used to figure out the approximate number
of harmonic coefficients required in a dynamic study. Compared with the corresponding
standard time-domain equation, it is clear that phasor dynamic models (or DHD) result
in an increase of the equations number that is proportional to the number of retained
harmonics.
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3.1.3 Time Domain Transformation

The Time Domain Transformation (TDT), proposed in [18] by Fan and Ding, also consists
in transforming the original equations system on the oscillating variables waveform into
an equations system on their envelope. However, this approach can be seen as a "quasi-
solver approach" since the new equations system is automatically derived from the original
system. In order to do this, the TDT only requires the system Jacobian and time-
derivative. The former is generally provided by the modeler but the latter is less common
as it is not used in classical numerical integrators. Let us assume that we have access
to these two partial-derivatives. In this section, we first present this approach for ODE
containing only oscillating variables, as initially introduced in Fan and Ding’s paper, and,
in a second time, the extension that we developed for DAE systems containing both
oscillating and non-oscillating solutions.

3.1.3.1 Presentation on a scalar ODE

Fan and Ding proposed a novel frequency-adaptive methodology based on the transfor-
mation of the time domain original problem in order to take into account a slow time
varying waveform superimposed on the fundamental frequency ω0 waveform.

Hence, they considered the following model for representing real-valued oscillating variable
xs, whose pulsation is ω0, in the time-domain:

xs(t) = As(t) cos(ω0t + φs(t)) (3.14)

Let us consider a scalar ODE
ẋs(t) = fs(t, xs) (3.15)

As we have one equation to define two unknowns corresponding to the parameters As(t)
and φs(t), the problem written in this form is not well defined. A second equation is
necessary. This second equation is artificially deduced by computing the solution second-
order time-derivative from the ODE (3.15). The TDT then consists in 2 steps:

1. Creating the second ODE by computing the ODE function fs total time derivative.
By this way, a coupled system of ODE on the actual solution xs and its scaled
time-derivative δxs

def= ẋs

ωs

is obtained. ωs is generally set to the system nominal
frequency, i.e. ωs = ω0.

2. Substituting the variables in order to "project" the resulting system into a rotating
plan, as in the phasor modeling.
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Hence, the first step consists in computing the total time derivative of f from the classical
formula:

ẍs(t) = Dfs(t, xs)
Dt

= ∂fs(t, xs)
∂t

+ ∂fs(t, xs)
∂xs

ẋs (3.16)

By combining the equations (3.15) and (3.16), the coupled ODE system on xs and δxs is
directly obtained as below:⎧⎪⎪⎨

⎪⎪⎩
ẋs = fs(t, xs)

δ̇xs = 1
ωs

∂fs(t, xs)
∂t

+ ∂fs(t, xs)
∂xs

δxs

def= Φs(t, xs, δxs)
(3.17)

In a second time, the idea is to introduce the same frequency reduction approach as in
phasors. In other words, the two unknowns xs and δxs are projected into a rotating plan
whose rotation speed is associated to the sinusoidal variables frequency. So, let u and v

be the projections of xs and δxs into this rotating plan :⎡
⎣u

v

⎤
⎦ =

⎡
⎣ cos(ωst) − sin(ωst)
− sin(ωst) − cos(ωst)

⎤
⎦

︸ ︷︷ ︸
=R(t)

⎡
⎣xs

δxs

⎤
⎦ (3.18)

where, the matrix R is symmetric and orthogonal (R(t)T = R(t) and R(t)−1 = R(t)) and
its time-derivative is given by Ṙ(t) = ωsR(t + π

2ωs
). Finally, the expected ODE on u and

v is obtained by computing the time derivative of (3.18):
⎡
⎣u̇

v̇

⎤
⎦ = ωsR(t + π

2ωs

)
⎡
⎣xs

δxs

⎤
⎦ + R(t)

⎡
⎣ fs(t, xs)
Φs(t, xs, δxs)

⎤
⎦ (3.19)

Then, u and v give the envelope of xs. Since they are computed in the rotating plan, as
in phasors, their variations are much slower than those of xs and δxs . Thus this reference
frame change enables to use much larger time steps to solve (3.19) than (3.15). Indeed,
by assuming that As(t) and φs(t) variations are sufficiently small, we can prove that :

⎧⎪⎨
⎪⎩

u(t) ≈ As(t) cos(φs(t))

v(t) ≈ As(t) sin(φs(t))
(3.20)

To illustrate this point, let us consider u from the definition (3.18):

u(t) = xs(t) cos(ωst) − δxs(t) sin(ωst)

= As(t) cos(ω0t + φs(t)) cos(ωst) − Ȧs(t)
ωs

cos(ω0t + φs(t)) sin(ωst)

− As(t)
ωs

(ω0 + φ̇s(t)) sin(ω0t + φs(t)) sin(ωst)
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We assume that ωs = ω0 :

u(t) = As(t) (cos(ω0t + φs(t)) cos(ω0t) + sin(ω0t + φs(t)) sin(ω0t))︸ ︷︷ ︸
=cos(φs(t))

− Ȧs(t)
ω0

cos(ω0t + φs(t)) sin(ω0t) − φ̇s(t)
ω0

As(t) sin(ω0t + φs(t)) sin(ω0t)

So, if |Ȧs(t)| � ω0 and |φ̇s(t)| � ω0, corresponding to classical TS studies assumptions, we
finally get u(t) ≈ As(t) cos(φs(t)). For instance, if we consider the steady-state differential
equation ẋ(t) = −ω0A0 sin(ω0t + φ0), whose solution is xs(t) = A0 cos(ω0t + φ0), the
computation of xs with a classical approach is constrained by the pulsation of xs while

the TDT solves
⎡
⎣u̇

v̇

⎤
⎦ =

⎡
⎣0
0

⎤
⎦, for which very large time steps can be used.

3.1.3.2 Extension to DAE systems

After having tested the TDT on simple differential equations, we have extended this
method to DAE systems in semi-explicit form with both oscillating and non-oscillating
components, i.e. : ⎧⎪⎨

⎪⎩
ẋ(t) = f(t, x(t), y(t)) with x ∈ R

dx

0 = g(t, x(t), y(t)) with y ∈ R
dy

(3.21)

We recall that, in this system, x : R → R
dx are the differential state variables of the

solution and y : R → R
dy represents the algebraic state variables of the solution. Further-

more, as mentioned in the introduction, some unknowns are oscillating : let us define xs

and xns, respectively the differential oscillating and non-oscillating variables, and ys and
yns, the algebraic oscillating and non-oscillating variables.

First of all, the DAE system oscillating and non-oscillating equations are separated:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋs(t) = fs(t, x(t), y(t))

0 = gs(t, x(t), y(t))

ẋns = fns(t, x(t), y(t))

0 = gns(t, x(t), y(t))

(3.22)

Once this DAE Jacobian and its partial-derivative with respect to the time are known,
we derived a systematic methodology for using the Time Domain Transformation for this
DAE system from these data. As seen before, we compute the total time derivative of
the equations associated to the oscillating variables in order to complete this system and
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have the right equations number:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋs = fs(t, x, y)

ẍs = ∂tfs(t, x, y) + ∂xfs(t, x, y)ẋ + ∂yfs(t, x, y)ẏ

0 = gs(t, x, y)

0 = ∂tgs(t, x, y) + ∂xgs(t, x, y)ẋ + ∂ygs(t, x, y)ẏ

ẋns = fns(t, x, y)

0 = gns(t, x, y)

(3.23)

In the above equations, ẋs and ẏs are given by the TDT method, ẋns is directly obtained
from the associated ODE and ẏns is computed from the gns total time derivative such as

ẏns = −∂gns

∂yns

−1

(∂gns

∂t
+ ∂gns

∂xs

ẋs + ∂gns

∂xns

ẋns + ∂gns

∂ys

ẏs) (3.24)

which means that deducing the algebraic non-oscillating solutions requires to perform a
linear system resolution, whose computational cost may be important. Let us introduce
δx = ẋ

ωs
and δy = ẏ

ωs
to get the coupled DAE system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋs = fs(t, x, y)

δ̇xs = 1
ωs

∂tfs(t, x, y) + ∂xfs(t, x, y)δx + ∂yfs(t, x, y)δy
def= Φs(t, x, δx, y, δy)

0 = gs(t, x, y)

0 = 1
ωs

∂tgs(t, x, y) + ∂xgs(t, x, y)δx + ∂ygs(t, x, y)δy
def= Γs(t, x, δx, y, δy)

ẋns = fns(t, x, y)

0 = gns(t, x, y)

(3.25)

Finally, by introducing u and v as defined in (3.18), the final lower-frequency DAE system
to solve is obtained:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u̇x,1

v̇x,1
...

u̇x,dxs

v̇x,dxs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ωs(Idxs
⊗ R(t + π

2ωs

))

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xs,1

δxs,1
...

xs,dxs

δxs,dxs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ (Idxs
⊗ R(t))

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fs,1(t, x, y)

Φs,1(t, x, δx, y, δy)
...

fs,dxs
(t, x, y)

Φs,dxs
(t, x, δx, y, δy)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 = gs(t, x, y)

0 = Γs(t, x, δx, y, δy)

ẋns = fns(t, x, y)

0 = gns(t, x, y)
(3.26)
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The numerical results, shown in the Appendix A, prove that this method is efficient
in terms of iterations number but not in terms of CPU time. As the CPU time per
iteration is much greater than those of classical methods, the final gains of performance
are low. In addition, such an approach is based on assumptions on the solution. Indeed,
even if a systematic approach has been derived for applying this method on DAE systems
containing both oscillating and non-oscillating components, it assumes that the oscillating
components are centered sinusoids without harmonics. Therefore, even if the three-phase
voltages and currents generally respect this hypothesis, strong transient phenomena such
as asymmetrical faults may lead to non-centered signals for instance. There is no proper
way to detect numerical errors due to this assumption if it is not actually verified. In
other words, such as the phasor modeling, the Time Domain Transformation also modifies
the original equations system in a non-equivalent way in order to simplify its resolution
a posteriori. In conclusion, this approach does not seem suited to our problem as it
presents the same limitation as the previously presented frequency-domain modeling while
its potential gains of performances are limited due to its computational cost by iteration.

3.2 Hybrid simulations

The previously presented methods have the common flaw of changing the entire system
to solve. In particular, as this substitution is done in a non-equivalent way, controlling
the simulation error associated to the original EMT system is not possible. Then, as our
objective is to finely control the simulation error for design studies wherein the solution
may be radically different from its expected a priori steady-state shape, such approaches
seem inappropriate.

In order to accelerate EMT simulations, another proposed strategy, initially proposed by
Heffernan & Al in [32][66][67], consists in performing hybrid simulations coupling an EMT
simulator with a TS simulator. As EMT models lead to very costly simulations, such an
approach aims at reducing the area represented with EMT models. In particular, it tries
to get a compromise between accuracy and performances by using the advantages of the
two simulations kinds:

• As TS models are very suited to investigate large-scale phenomena, the idea is to
simulate most of the system with a TS simulator.

• As EMT models are much more accurate, an EMT simulator is used for simulating
the area of interest.

Then, hybrid simulations combine a TS program, which is classicaly based on fundamental
frequency, positive sequence, phasor-type data (or dynamic-phasor data as implemented
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more recently in [45]), and an EMT program, which is based on the 3-phase instantaneous
waveform data and especially includes several frequency components [39].

3.2.1 Common principles (space/time-slicing)

The idea of hybrid simulations is to exploit the limited EMT propagation in the space
and time domain. Simulating the whole system with EMT models, which are much more
accurate than TS models and thus require much higher computing resource, can seem
inappropriate and inefficient. This is why hybrid simulations consist in combining these
two types of modeling and especially aims at reducing as much as possible the EMT do-
main size. The arising technical and scientific challenges have been introduced in [54][2].

Two types of slicing can be distinguished :
1. The geographical slicing, which consists in dividing the whole power system into

two areas: the domain of interest is described by the accurate EMT model while
the rest of the system is described by a TS model.

2. The time-domain slicing, which consists in alternating between a pseudo-phasor
model, based on the Time Domain Transformation, and an accurate EMT model
for simulating transients occurring after a discrete event.

Then, the common problem to tackle for these two types of domain decomposition is the
definition of the interface between the EMT and the TS modeling. Indeed, the goal is to
find an optimal cutting which respects the system dynamics, i.e. the least proportion of
the geographical or time domain beyond which the electromagnetic transient is negligible.

The interaction between the EMT and TS simulation is maintained via data interface
buses. Parameters that are generally available for measurement include active and reactive
power, voltage, current through interface bus, and also phase angle information in the case
of different reference frames. The information transferred from one program to the other
must determine the power flow in or out of the interface bus. Another major concern is how
to properly pass the interface variables between the TS and the EMT programs. Thus, to
connect these two programs types, two data converter functionalities are needed: phasor-
to-waveform and waveform-to-phasor[39]. The phasor-to-waveform converting block is a
signal generator controlled by amplitude, phase, and frequency [40]. The waveform-to-
phasor converter uses digital signal processing techniques as curve fitting [3], Fast Fourier
Transform (FFT) [40] [71], or digital filtering [73] while the FFT method requires samples
of exactly one cycle to correctly produce the phasor quantities. Thus, after the detailed
system has recovered from a fault or a large disturbance it takes one complete cycle for
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the FFT method to compute the right value of phasors. This delay in data preparation
causes problems for the TS program [39]

3.2.2 Geographical slicing

Most of the time, the geographical domain decomposition is defined before the simula-
tion, as illustrated in 3.2, and is not dynamically changed during the execution time.
This cutting is empirically decided from expert assessment inferring on the EMT tran-
sients propagation into the connected components. For instance, if lightning strikes a
transmission line, the transient-overvoltage is propagated until a certain distance, beyond
which the interface can be set. In [77], the authors also consider events in the TS part.
However, the interface choice is really difficult and there is currently no proper mathemat-
ical way to infer ex ante on its location. Similar problems are encountered in multi-rate
time-stepping techniques [31] which aim at separating the global system into several sub-
systems (associated to different dynamics) in order to perform their numerical integration
using different time step sizes.

Figure 3.2: Illustration of the concept of hybrid simulation with geographical slicing.

The interface boundary conditions rigorous management is also a open question [3]. The
difficulty is that these two systems have to dynamically exchange information to ensure
the resolution stability while being solved in parallel. Since EMT and TS programs
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have different time steps (microsecond versus millisecond), a parallel interaction protocol
is especially required to coordinate the information exchange and update the external
system representation. For convenience, the TS simulator step size is an integer multiple
of the EMT simulator one, and the information exchange occurs at common points in
time, which conventionally are the TS simulator time steps. The data dependencies
are then solved by representing the connected system by its equivalent. As it is only
valid for a system in steady-state, it may be seen as an explicit coupling scheme which
is generally unstable. In order to stabilize the interface problem, more implicit schemes
have been proposed, for instance using a relaxation method [52][51] for iteratively refining
the external systems equivalents. Another enhancement consists in complexifying the
external system equivalent representation, as in [37]. To finish, since a purely explicit
parallel interaction protocol (as illustrated in 3.3) generally leads to an unstable parallel
resolution, more elaborate protocols based on data redundancy have been proposed in
order to stabilize the resolution [64][68].

Figure 3.3: Example of explicit parallel protocol for the geographical slicing.

3.2.3 Time-domain slicing

In the time-domain slicing, presented in [26] and illustrated in 3.4, the interfacing consists
in globally alternating between EMT and TS simulators. It consists in two steps:

1. When a discrete event occurs, the simulator switches from the pseudo-phasor model
based on the Time Domain Transformation (as presented in section 3.1.3) to the
full time domain EMT model. This transition is simply done by setting the last
state of the TDT system as initial condition for the EMT solver.

2. When the solver detects that the system is in quasi-steady-state, the simulator
switches back to the TDT system. As for the first transition, this one is done by
setting the initial condition on x from the last state of the EMT system. Then, δx

is simply obtained from its definition: δx(t) = ẋ(t)
ωs

= f(t,x(t))
ωs

.

29



3. Review of the relevant literature

Figure 3.4: Illustration of the concept of hybrid simulation with time-domain slicing (on
the abscissa: time in seconds, on the ordinate: three-phase system in arbitrary units).

As for the geographical slicing, the main difficulty is to detect if the system is in quasi-
steady-state or if the EMT model is still necessary. It is also done from expert heuristics
instead of more general and robust mathematical criteria. A possible enhancements might
be to consider overlapping transitions between the TS and EMT models by using Schwarz
based approaches, as it is done in [53][7] for time-domain decomposition.

3.3 Numerical approaches for oscillatory solutions

Contrary to the previously presented approaches, several numerical methods aim at accel-
erating the simulation of oscillatory solutions while solving the original equations system.

However, in most of the existing numerical methods for oscillatory solutions, these oscil-
lations are structural, i.e. they are due to dynamical systems properties and especially
their eigenvalues. A review of these methods can be found in [50]. Among these schemes,
those based on the geometric numerical integration are especially suited to Hamiltonian
systems [27][57] and enable to preserve dynamical invariant. For instance, they are used
in astronomical applications such as stationary orbits simulation as they enable to pre-
serve orbits and especially avoid artificial deviations. In this domain, other approaches
have been developed in order to accelerate the computations by exploiting the trajectory
periodicity, such as in the multirevolution algorithm [70] which consists in enhancing the
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prediction step by taking into account the last orbits data for the interpolation polyno-
mial construction. Encke’s method [21], focusing the computations on the deviation to
a stationary trajectory, has been also implemented for accelerating the computations in
[5], which confirms the potential of such an approach. However, as for the numerical
integration schemes, all these approaches are mainly designed for structural oscillations
and their step sizes would always to be oscillation period multiples [50] .

On the contrary, in [48], Petzold proposed an envelope tracking method for the circuit
analysis which is also suited to oscillations due to an oscillating forcing term. This method
consists in taking into account the signal expected T -periodicity in order to rewrite the
numerical scheme so that it focuses on the signal envelope. The idea is to exploit the fact
that if the envelope is equal to the signal value at a given time t, it is also for t + kT

where k is a positive integer. As for harmonic domain methods, larger step sizes can used
for integrating the associated equations as the high frequency signal is then substituted
by a low frequency variable. In order to take into account possible system frequency
variations, Petzold proposed a least-squares estimator for the period T , that has been
optimized in [44]. However, in spite of the envelope-tracking approach notable efficiency,
it does not seem really suited to our applications since it focuses on the envelope. In
particular, an additional integration process is required to compute the true solution
from the computed quasi-envelope value, which is used as initial condition. As a result,
the step size adjustment used for computing the quasi-envelope seems to possibly neglect
inner-cycle dynamics. On the contrary, even if our objective is to use larger step sizes
in steady-state, our method aims at directly computing the original problem solution
and especially not neglecting inner-cycle dynamics thanks to a very flexible step size
adjustment strategy.

3.4 Conclusion

In conclusion, modeling approaches such as dynamic phasors, FAST, the dynamic har-
monic domain and the time domain transformation have the main drawback to entirely
change the dynamical system modeling in non-equivalent way which prevents from prop-
erly controlling the simulation error. In particular, the harmonics choice is not a parameter
free of these methods. The time domain transformation has also the drawback to have
an important computational cost due to the resolution of a linear system for evaluating
time-derivative of the non-oscillating algebraic variables.

Hybrid simulations are also attractive notably on large networks but they are also not
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parameter free, as the exchange of data needs conversions and the conversion from wave-
form to phasors needs sophisticated interpolation introducing some delay. In addition,
properly managing the interface is very difficult, especially for inferring on its location
and choosing an appropriate interaction protocol. It presents the same problem as for
frequency-domain modeling since the original model is also affected by the solving process.

To finish, some numerical methods directly solving the original DAE system already ex-
ist but they do not seem suited to our applications. In particular, most of them are
based on the dynamical system eigenvalues for taking advantage of structural oscillations.
Other approaches such as the multirevolution algorithm used in orbits prediction and the
envelope-tracking method use the solution periodicity to enhance the predictor-corrector
scheme by focusing on the solution envelope or expected steady-state behavior. How-
ever, the underlying step size adjustment strategy do not seem flexible enough for our
applications as the step size is strongly linked to the signal period. Moreover, an internal
integration process is required for deducing the solution instantaneous value from the
envelope, i.e. the inner-cycle dynamics do not seem properly considered.
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As exposed in the chapter 3, the existing methods common flaw is that they require to
change the modeling by rewriting the original differential algebraic equations describing
the EMT system in order to simplify its resolution. On the contrary, the method that we
developed and implemented focuses on solving the original system and is only implemented
at the solver level. The Sinusoidal Predictor Method (SPM) consists in fitting a sinusoid
corresponding to (2.4) for the oscillating components of the system and to correct it with
an adaptive step size integration scheme.

4.1 Concept

We recall that the system to solve is a set of differential algebraic equations in semi-explicit
form (2.2): ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ(t) = f(t, x(t), y(t))

0 = g(t, x(t), y(t))

(x(t0), y(t0)) = (x0, y0)

whose solution X contains oscillating (referred as Xs, let Is be the associated set of
indexes) and non-oscillating (referred as Xns) components. (x0, y0) are consistent initial
conditions so that g(t0, x0, y0) = 0.
The SPM idea is to decompose the solution as the sum of a periodic part and a correction

35



4. SPM presentation

term. This additive decomposition is done for each time integration interval [tn, tn+1]:

X(t) = X̄n(t)︸ ︷︷ ︸
periodic part

+ δ(t)︸︷︷︸
correction term

(4.1)

In this equation, which is illustrated in figure 4.1:
• X̄n is the periodic part of the solution. It corresponds to the steady-state solution

for the oscillating components, i.e. it is defined by

X̄n(t) = un sin(ωt) + vn cos(ωt) (4.2)

Then, it is a sinusoid with constant Fourier coefficients. For each time interval
[tn, tn+1], the set of Fourier coefficients is fixed and so X̄n is a parametric function
depending only on the time. The Fourier coefficients are updated by parametric
estimation. Therefore, the SPM periodic function is locally defined since the Fourier
coefficients are piecewise constant and so their values change for each considered
time interval [tn, tn+1].

• δ is the correction term on which the problem is rewritten from the original DAE
system. This correction term is very flexible as it can catch both errors on the os-
cillating components envelope and stronger EMT transients as offsets or harmonics,
etc. It is computed by integrating the differential algebraic equations corresponding
to the deviation between the global solution and the periodic part. As the above
mentioned sets of Fourier coefficients are fixed for each time interval [tn, tn+1], δ

and the associated problem are locally defined. However, the global solution and
especially the associated problem do not depend on the local Fourier coefficients.
So, in the numerical integration, the process consists in injecting the local Fourier
coefficients, solving the local problem with its initial condition associated to the
local correction term, deducing the global solution and finally estimating the next
local Fourier coefficients to use. There is an alternation between the local point-
of-view associated to the Fourier coefficients and the correction term, and a global
point-of-view corresponding to the global solution.

When considering a system containing both oscillating and non-oscillating components
(as mentioned above), the non-oscillating components of the solution are not decomposed
as in (4.1). Thus, their periodic part is set to zero i.e.

(un, vn)i = (0, 0) if i ∈ Ins (4.3)

Which means that, for the non-oscillating components of the solution, the correction term
is directly equal to the global solution:

δi(t) = Xi(t) if i ∈ Ins (4.4)
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Figure 4.1: Illustration of the SPM decomposition (on the abscissa: time in second,
on the ordinate: solution, Fourier coefficients and SPM components in arbitrary units).
In this example, the theoretical solution (full blue line) is a centered sinusoid whose
amplitude (dashed blue line) decreases. The SPM periodic function (full red line) is given
by its sequence of piecewise constant Fourier coefficients (dashed red line). The correction
term (full green line), which is equal to the difference between the solution and the periodic
function, is then a sinusoid which catches the envelope variations. Thus, it decreases as
the solution tends toward steady-state. At each interface between two time intervals,
we can see a jump of the correction term. Indeed, the SPM Fourier coefficients and the
resulting periodic function are locally defined, which also leads to a local definition of the
correction term.

Of course, by using the same approach for all the components (i.e. (un, vn)i = (0, 0) ∀i =
1, ..., d), the SPM can be switched off for simulating the entire system with a classical
integration scheme, e.g. during strong EMT transients. Indeed, in such situations, as the
solution could behave in a particularly erratic way, the SPM could fail to fit a fundamen-
tal mode sinusoid. Hence, using a classical method for solving the DAE system during
this period could be much more efficient since additional mathematical operations are
required for estimating the SPM Fourier coefficients. Then, once the system would come
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back to standard operations i.e. once the EMT phenomenon would have been cleared,
the SPM could be switched on once again. During this PhD thesis, this point has not
been addressed but it could be in future developments. As for the hybrid simulations
with time slicing, the most difficult challenge when building such approaches is to have
a sufficiently robust criterion for inferring on the system state: finding the appropriate
time for reactivating the SPM requires to properly detect the standard operations.

Hence, the SPM objective is to catch as much as possible the sinusoidal behavior of
the solution X into the parametric function X̄n, so that the correction term is damped in
steady-state for the oscillating components. By this way, the correction term tends toward
constant values in steady-state as the correction associated with oscillating components
should be close to zero while those of non-oscillating components should be close to their
asymptotic values. As a result, large step sizes could be used as the simulated variable
has no dynamics.

To summarize, for each time interval [tn, tn+1], the method consists in (see figure 4.2):
1. Fixing the parameters (un, vn) of the oscillating part X̄;
2. Integrating the equations on the correction δ with an adaptive step size scheme;
3. Deducting the global solution X from (4.1);
4. Updating the oscillating part X̄ by estimating (un+1, vn+1) .

4.2 Problem reformulation

At time tn, we assume that we have an approximation of the solution Xn = (xn, yn) and
the Fourier coefficients (un, vn). Our objective is to approximate the solution and the
Fourier coefficients at the next time step tn+1 = tn + hn, i.e. Xn+1 = (xn+1, yn+1) and
(un+1, vn+1). In addition, we assume that we have the modified Nordsieck vector [46]
associated to the history of the solution �Xn. In this presentation of the method, this
vector contains three components as we use the Adams-BDF2 scheme, presented in [4],
which is a second-order method. It is defined by

�Xn =

⎡
⎢⎢⎢⎣
Xn

Ẋn

Ẍn

⎤
⎥⎥⎥⎦ (4.5)

The first step of the SPM is to deduce the local problem associated to the correction
term by injecting the local sinusoidal function into the original problem associated to
the global solution. This corresponds to the first block in the figure 4.2. Hence, first
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Figure 4.2: Overview of the SPM. For each time step, the SPM consists in 4 steps.
Firstly, the periodic part parameters are fixed in order to rewrite the local DAE system
on the correction term. This implies to compute consistent initial conditions on the
correction term from the global solution and the local value of the periodic function. Then,
the system is integrated with the chosen adaptive stepsize predictor-corrector scheme in
order to get the correction term value at next time step. After this integration part,
the global solution at next time step is deduced from the correction term value and the
periodic part evaluation. To finish, the Fourier coefficients are updated by parametric
estimation. Hence, as the parametric estimation is performed from data computed within
the integration step, the entire method stability is to consider with the possible feedback
effects. Indeed, numerical integration errors may be injected within the estimator, which
may finally reintroduce estimation errors into the integrator, and so on. This point is
discussed in more details in the next chapter.

of all, the Fourier coefficients (un, vn) are set to get the parametric function X̄n(t). By
this way, for the considered time interval [tn, tn+1], the periodic function X̄n depends only
on the time, which enables to define the local problem associated to the correction term δ.

Then, the equations (2.2) can be rewritten on the correction term δ from (4.1):

δ̇x(t) = f(t, δx(t) + x̄n(t), δy(t) + ȳn(t)) − ˙̄xn(t) (4.6)

0 = g(t, δx(t) + x̄n(t), δy(t) + ȳn(t)) (4.7)
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Let us define Φn : R × Rdx × Rdy → Rdx , the associated right-hand-side function for the
differential equation, and Γn : R×Rdx ×Rdy → Rdy , the associated algebraic constraints,
such as:

δ̇x(t) = Φn(t, δx(t), δy(t)) (4.8)

0 = Γn(t, δx(t), δy(t)) (4.9)

Then, a first advantage of the used additive decomposition is that the Jacobian matrix
associated to the local problem on the correction term is directly equal to those of the
global problem on the solution, i.e.

JΦn(t, δx(t), δy(t)) = Jf (t, δx(t) + x̄n(t), δy(t) + ȳn(t)) (4.10)

JΓn(t, δx(t), δy(t)) = Jg(t, δx(t) + x̄n(t), δy(t) + ȳn(t)) (4.11)

with

Jf (t, x(t), y(t)) =
[

∂f(t, x(t), y(t))
∂x

∂f(t, x(t), y(t))
∂y

]
(4.12)

Jg(t, x(t), y(t)) =
[

∂g(t, x(t), y(t))
∂x

∂g(t, x(t), y(t))
∂y

]
(4.13)

Indeed
∂f(t, δ(t) + x̄n(t))

∂δ
= ∂f(t, δ(t) + x̄n(t))

∂x

∂x

∂δ︸︷︷︸
=1

(4.14)

Then, as these equations depend on (un, vn) for each interval [tn, tn+1], the following
relations have to be verified to ensure the regularity of the solution X at times tn and
tn+1:

δ+(j)
n = X(j)

n − X̄(j)
n (tn) (4.15)

δ
−(j)
n+1 = X

(j)
n+1 − X̄(j)

n (tn+1) (4.16)

where the exponent (j) refers to the j-th time derivative with j = 0, 1, 2, X(j)
n approx-

imates X(j)(tn), δ+(j)
n approximates the tn-right-value of the correction term δ+(j)(tn),

and δ
−(j)
n+1 approximates the tn+1-left-value of the correction term δ−(j)(tn+1). Indeed,

X+(j)
n = X−(j)

n (= X(j)
n ) ⇔ δ+(j)

n + X̄(j)
n (tn) = X(j)

n . This particular treatment of the cor-
rection term discontinuity can be seen in figure 4.1 as the jumps of the Fourier coefficients
are clearly visible.

4.3 Reformulated equations numerical integration

In the first step, the local DAE corresponding to the problem on the correction has been
deduced from the original equations on the global solution and the local value of the
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Fourier coefficients. In addition, local consistent initial values have been derived for the
correction in order to prepare its numerical integration in a second time. This second step
corresponds to the second block in the figure 4.2.

First of all, the DAE system (4.8)-(4.9) is completed by initial conditions on δ+(j)
n at time

tn by applying (4.15) (step 1 in figure 4.2). Then, a predictor-corrector with time step
hn is applied in the interval [tn, tn+1] to compute δ

−(j)
n+1 , j = 0, ..., k (step 2 in figure 4.2).

In the following description, the used method is the TR-BDF second-order scheme as
introduced in [4].

For recall, a predictor-corrector scheme with adaptive step size generally consists in the
three following steps [28] :

1. Prediction: computing a coarse approximation of the solution at the next time step
by extrapolating a polynomial built from the solution history. It corresponds to the
chosen explicit integration scheme. We will denote the associated variables by an
hat: X̂n+1 and δ̂−

n+1;
2. Correction: computing a more precise approximation of the solution at the next time

step by solving the fixed-point problem associated to the chosen implicit integration
scheme. We will note these variables Xn+1 and δ−

n+1;
3. Step size adjustment from the fixed tolerance and the difference between the pre-

diction and the correction.

In Nordsieck’s formalism [46] , the solution history (represented by �X for X, �δ+ for δ+

and �δ− for δ−) is stored as an approximation of its Taylor development which is actually
equivalent to the chosen multistep method [28]:

�Xn =

⎡
⎢⎢⎢⎣
Xn

Ẋn

Ẍn

⎤
⎥⎥⎥⎦ ≈

⎡
⎢⎢⎢⎣
X(tn)
Ẋ(tn)
Ẍ(tn)

⎤
⎥⎥⎥⎦ (4.17)

Let hn be the step size such as tn+1 = tn + hn. Then, the prediction is simply obtained
by extrapolating the Taylor polynomial that is based on the Nordsieck vector of δ+

n , i.e.

δ̂n(t) = δ+
n + δ̇+

n (t − tn) + δ̈+
n

(t − tn)2

2 (4.18)

at next time step tn+1:

δ̂−
n+1 = δ+

n + δ̇+
n hn + δ̈+

n

h2
n

2 (4.19)
˙̂
δ−

n+1 = δ̇+
n + δ̈+

n hn (4.20)
¨̂
δ−

n+1 = δ̈+
n (4.21)
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Once this prediction is computed, the correction can be obtained by solving the following
fixed-point problem on δ−

n+1 (with the Newton-Raphson algorithm [74] for instance) which
corresponds to the TR-BDF scheme:

δ−
x,n+1 = δ+

x,n + hn

2 (Φn(tn, δ+
x,n, δ+

y,n) + Φn(tn+1, δ−
x,n+1, δ−

y,n+1)) (4.22)

0 = Γn(tn+1, δ−
x,n+1, δ−

y,n+1) (4.23)

Whose Jacobian matrix is given by

Jn(δ−
n+1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Idx − hn

2
∂Φn(tn+1, δ−

x,n+1, δ−
y,n+1)

∂δx

−hn

2
∂Φn(tn+1, δ−

x,n+1, δ−
y,n+1)

∂δy

∂Γn(tn+1, δ−
x,n+1, δ−

y,n+1)
∂δx

∂Γn(tn+1, δ−
x,n+1, δ−

y,n+1)
∂δy

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.24)

which can be directly derived from the original system Jacobian, as seen in the equations
(4.10)-(4.11).

Once the fixed point algorithm has converged, the Nordsieck vector of δ−
n+1 can be updated

from the following formula for each component i = 1, ..., d:

�δ−
i,n+1 = �̂

δ−
i,n+1 +�lNordsieck

i,n Δ−
i,n+1 (4.25)

where
Δ−

i,n+1 = δ−
i,n+1 − δ̂−

i,n+1 (4.26)

is the error of prediction and

�lNordsieck
i,n =

⎧⎪⎨
⎪⎩

[1, 2
hn

, 2
h2

n
]T if i ∈ Ix

[1, 3
2hn

, 1
h2

n
]T if i ∈ Iy

(4.27)

Finally, the solution and its Nordsieck vector are directly obtained (step 3 in fig.4.2) from
the SPM decomposition (4.1) (verifying (4.16) by construction):

X
(j)
n+1 = X̄(j)

n (tn+1) + δ
−(j)
n+1 (4.28)

To finish, the step size is updated, for instance from the following formula which corre-
sponds to the already mentioned simplest strategy [47]

hnew = ks
3

√
tol

||en+1||︸ ︷︷ ︸
def
= αn

hn (4.29)

where
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• tol is the solver tolerance on the local truncation error (e.g. 10−6)
• ks ∈]0, 1[ is a security coefficient (empirically fixed, for instance ks = 0.65)
• en+1 is an approximation of the local truncation error. It can be computed from the

prediction error Δ−
n+1 = δ−

n+1 − δ̂−
n+1 with the formula

en+1 = cn||Δ−
n+1|| (4.30)

where cn is a coefficient associated to the integration scheme.

The cubic root in this step size strategy is due to the use of a second order scheme since the
local truncation error of a q-order method is given by en+1 = O(hq+1

n ). Then, if ||en+1|| <

tol, the step size is accepted and increased for the next time step: hn+1 = hnew ≥ hn. In
the contrary, if ||en+1|| > tol, the step size is rejected and decreased: hn ← hnew < hn.
This prediction - correction - step size adjustment process is repeated until the step size
hn is validated.

4.4 Parameters update

In the previous step, the numerical integration has been performed on the correction term
to compute δ−

n+1 and the step size has been adjusted in order to reach a tolerance target
tol from the estimated error on the correction term en+1. This corresponds to the second
step in figure 4.2. Once the step size is validated, this integration step is achieved. Then,
from the integrated correction term and the evaluation of the local periodic function X̄n+1

at next time step tn+1, the global solution Xn+1 has been deduced during the third step
in figure 4.2. Therefore, the SPM is finally completed by the parametric estimation for
updating the Fourier coefficients (un+1, vn+1) within the fourth step in figure 4.2. This last
step enables to update the periodic function X̄n+1(t) for the next time interval [tn+1, tn+2].

In the initial version of the method, the Fourier coefficients were estimated (step 4 in
figure 4.2) from the classical Fourier estimator:

u∗
n+1,i = 2

T

∫ tn+1

tn+1−T
Xi(t) sin(ωt)dt (4.31)

v∗
n+1,i = 2

T

∫ tn+1

tn+1−T
Xi(t) cos(ωt)dt (4.32)

with i ∈ Is. However, this formula led to numerical instabilities which were due to the
coupling between the integration and estimation steps. Indeed, as the estimation is done
from previously computed data, their integration errors are injected into the estimator,
whose resulting error is then re-injected into the integrator and so on. As a result, the
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process was unstable and a relaxation parameter θuv ∈]0, 1[ was introduced to solve this
instability:

(un+1, vn+1) = θuv(u∗
n+1, v∗

n+1) + (1 − θuv)(un, vn) (4.33)

Then, the method performances with this estimator were completely driven by this pa-
rameter choice, that was done empirically for each test case as a theoretical adjustment
would have been very fastidious. In general, using small values for this relaxation param-
eter (e.g. θuv = 0.1) enabled to reduce the estimator variability and so seemed to offer a
greater stability. However, the resolution was still unstable in steady-state as the Fourier
coefficients did not converge which led to erratic oscillations of the step size. Consequently,
the SPM was not able to use large time steps in a stable way. Several unsuccessful ap-
proaches have been tested in order to enhance this outcome but the underlying heuristics
were generally not suited for industrial applications. This stability issue and the tested
stabilization methods are presented in more details in chapter 5.

That’s why the final estimator aimed at avoiding such kind of hazardous heuristics.
Finally, the idea behind the estimation process is to compute the Fourier coefficients
(un+1, vn+1) that minimize an energy-function measuring the stationarity of the simu-
lated system defined by:

R(u, v) =
∫ tn+1+T

tn+1
||ρ̄(t)||2dt (4.34)

with ||x||2 = xT x and

ρ̄(t) = F

⎛
⎝t,

⎡
⎣ X̄s(t)
Xns,n+1

⎤
⎦ ,

⎡
⎣ ˙̄Xs(t)

0

⎤
⎦
⎞
⎠ (4.35)

in which X̄s(t) = u sin(ωt)+v cos(ωt) and ˙̄Xs(t) = ω(u cos(ωt)−v sin(ωt)). The objective-
function (5.53) is derived from the power systems steady-state properties described in
chapter 2. Indeed, the motivation here is to compute the Fourier coefficients of oscillating
components corresponding to the system in steady-state. Thus, it is assumed that, for
t ≥ tn+1, the solution oscillating components are sinusoids with constant Fourier coeffi-
cients, i.e. Xs(t) ≈ un+1 sin(ωt) + vn+1 cos(ωt) and that the non-oscillating components
are constant Xns(t) ≈ Xns,n+1, the approximation of Xns at time tn+1, and so Ẋns(t) ≈ 0.

To compute the Fourier coefficients, they are expressed in an incremental way, i.e.⎡
⎣un+1

vn+1

⎤
⎦ =

⎡
⎣un

vn

⎤
⎦+

⎡
⎣Δu

n+1

Δv
n+1

⎤
⎦ (4.36)

Then, the problem is linearized around the guessed steady-state trajectory
⎡
⎣X̄s,n(t)
Xns,n+1

⎤
⎦

which leads to the following linear system (5.66). It corresponds to Euler’s equation
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applied to the linearized optimization problem:⎡
⎣Huu

n Huv
n

Hvu
n Hvv

n

⎤
⎦
⎡
⎣Δu

n+1

Δv
n+1

⎤
⎦ = −

⎡
⎣gu

n

gv
n

⎤
⎦ (4.37)

Since the estimation is done in the future (interval [tn+1, tn+1 + T ] instead of [tn+1 −
T, tn+1]), the estimation is much less coupled to the integration process. Actually, the
only links between the integration step and the estimation step are the non-oscillating
components of the solution.

The last estimator is presented in more details in chapter 5, which further develops the
crucial role of the Fourier coefficients estimator on the entire method performances. In-
deed, in addition to the potential step size limitation due to an incomplete absorption of
the sinusoidal behavior within the SPM periodic part, we explain its effect on the global
SPM stability. By making some assumptions that limit the operational usability of such
a study, we will see that the global error amplification can be modeled with a linear
system, whose amplification matrix eigenvalues, and especially its spectral radius, give
the method stability. We will then present the different tested heuristics to stabilize the
initial estimator that finally led us to the final estimator design and development.

4.5 Algorithm

In this section, the SPM algorithm is summarized in pseudo-code. It mainly focuses on
the integrator point-of-view in order to give hints for the implementation of our method
into a reference solver. This point is detailed in the chapter 7 which presents the integra-
tion of the SPM into SUNDIALS IDA.
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Algorithm 1: Sinusoidal Predictor Method (Nordsieck implementation)
Input data: X0, (u0, v0), Is, TOL, hmax ;

while tn < tfinal AND n ≤ Nmax do
while acceptable = FALSE (step size not accepted) do

tn+1 = tn + hn;

Continuity condition (4.15): δ+(j)
n = X(j)

n − X̄(j)
n (tn) ;

Prediction step (4.19): δ̂
−(j)
n+1 = δ̂(j)

n (tn+1) ;

Correction step : Solving (4.22)-(4.23)⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Hn(δ−
n+1) =

⎡
⎢⎣δ−

x,n+1 − δ+
x,n − hn

2
[
δ̇+

x,n + Φn(tn+1, δ−
x,n+1, δ−

y,n+1)
]

Γn(tn+1, δ−
x,n+1, δ−

y,n+1)

⎤
⎥⎦ = 0

δ−
n+1(0) = δ̂−

n+1

;

Prediction error computation (4.26): Δ−
n+1 = δ−

n+1 − δ̂−
n+1 ;

LTE estimation (4.30): en+1 = cn||Δ−
n+1|| ;

Step size update coefficient (4.29): αn = ks
3

√
TOL

en+1
;

if LTE < TOL then
hn+1 = min(αnhn, hmax) ;

acceptable = TRUE ;

δ Nordsieck vector update (4.25):
�δ−

n+1,i = �̂
δ−

n+1,i +�lNordsieck
n,i Δ−

n+1,i for i = 1, ..., d ;

X Nordsieck vector update (4.16): X
(j)
n+1 = δ

−(j)
n+1 + X̄(j)

n (tn+1) ;

Periodic part update (4.36): (un+1, vn+1) parametric estimation ;

n = n + 1 ;
else

hn = αnhn ;

acceptable = FALSE ;
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In order to update the periodic part of the solution X̄n+1(t), the SPM uses a parametric
estimator for computing the Fourier coefficients (un+1, vn+1). In this chapter, we further
develop the importance of this estimator and especially its impact on the global method
behavior. In particular, as the SPM combines a numerical integrator with a paramet-
ric estimator within a closed-loop system, their coupling can make the entire solving
process unstable. The estimator choice thus drives the global method performances, es-
pecially when the simulated system is in steady-state. Indeed, as the oscillating variables
Fourier coefficients should then tend toward constant values, our objective is that the SPM
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Fourier coefficients also converge toward these theoretical asymptotic values. By this way,
the correction term would be damped and large time steps could be used for integrating it.

As our initial estimator led to such unstable behaviors, several optimization strategies
and even other estimators have been tried. They will be briefly presented in this chapter.
Therefore, in a first time, we introduce different implemented strategies for stabilizing the
initial estimator from a relaxation method. The main difficulty of this approach was to
find optimal values for the relaxation parameter. That’s why it did not enable to effi-
ciently solve the SPM stability issue. Then, an other estimator based on a trigonometric
representation of the correction term has been tried. The motivation was to ensure its
convergence when introducing perfect data, which was not verified with the initial estima-
tor. However, when introducing real data, i.e. coming from the numerical integration, it
was even more unstable than the initial estimator and so the convergence results were not
satisfying. A first real enhancement was obtained by developing an acceptation-rejection
criterion for filtering the Fourier coefficients from a measurement of the system station-
arity.

Finally, by directly computing the Fourier coefficients from this concept, excellent con-
vergence results have been obtained. The corresponding final estimator is detailed, along
with a few choice rules and the associated methodology are proposed for inferring on the
a priori properties of an estimator.

5.1 Framework

5.1.1 Considered problem

In this chapter, we use a manufactured solution:

Xth(t) = uth(t) sin(ωt) + vth(t) cos(ωt) (5.1)

with

uth(t) = u∞ + (u0 − u∞)eλt (5.2)

vth(t) = v∞ + (v0 − v∞)eλt (5.3)

λ < 0 (5.4)

By computing the time-derivative of (5.1), we can derive the studied linear ODE with an
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Figure 5.1: Theoretical solution and envelope (on the abscissa: time in second, on the
ordinate: solution in arbitrary units).

oscillating forcing term b̄: ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ẋ(t) = λX(t) + b̄(t)

X(0) = X0

with λ < 0

(5.5)

where
b̄(t) = −(λu∞ + ωvth(t)) sin(ωt) − (λv∞ − ωuth(t)) cos(ωt) (5.6)

In this case, the correction term catches the envelope time variation since the sinusoidal
predictor is based on piecewise-constant Fourier coefficients. Let us define the theoretical
periodic part of the solution with piecewise-constant parameters:

X̄th,n(t) = uth(tn)︸ ︷︷ ︸
uth,n

sin(ωt) + vth(tn)︸ ︷︷ ︸
vth,n

cos(ωt) (5.7)

As previously mentioned, the local theoretical correction, which is based on the piecewise-
constant Fourier coefficients model, catches the local envelope variation between times tn

and t, with t ∈ [tn, tn+1], as it is defined by

δth,n(t) = Xth(t) − X̄th,n(t) (5.8)

= (uth(t) − uth,n) sin(ωt) + (vth(t) − vth,n) cos(ωt) (5.9)
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whose time-derivative is given by

δ̇th,n(t) = u̇th(t) sin(ωt) + v̇th(t) cos(ωt) (5.10)

+ ω [(uth(t) − uth,n) cos(ωt) − (vth(t) − vth,n) sin(ωt)] (5.11)

As a result, this system enables to simply evaluate the SPM performances. In particular,
in steady-state, (uth(t), vth(t)) → (u∞, v∞) and so δth,n(t) → 0. The SPM objective
is then to fit the periodic steady-state solution by properly estimating the asymptotic
Fourier coefficients in order to damp the correction term. By this way, large time steps
could be used.

5.1.2 Notations

In this chapter, we will focus on the scalar ordinary differential equation (5.5) whose
solution is oscillating. Then, the following notations will be used:

• Xth(tn) is the theoretical solution at time tn. Let Xn be its approximation by the
SPM. Hence, εn = Xn − Xth(tn) is the global error on the solution at time tn;

• (uth,n, vth,n) = (uth(tn), vth(tn)) are the theoretical Fourier coefficients at time tn. Let
(un, vn) be their approximation by the SPM. Hence, (εu

n, εv
n) = (un − uth(tn), vn −

vth(tn)) is the global error on the Fourier coefficients at time tn;
• X̄th,n(t) = uth,n sin(ωt) + vth,n cos(ωt) is the theoretical local periodic part of the

solution in the time interval [tn, tn+1]. Let X̄n = un sin(ωt) + vn cos(ωt) be the ap-
proximated periodic function used by the SPM. Hence, X̄εuv

n
(t) = X̄n(t)−X̄th,n(t) =

εu
n sin(ωt)+εv

n cos(ωt) is the error of periodic function in the interval [tn, tn+1], i.e. the
periodic function whose parameters are equal to the error on the Fourier coefficients
(εu

n, εv
n);

• δth,n(t) = Xth(t) − X̄th,n(t) is the theoretical local correction term. For instance, if
Xth(t) is a phasor-like solution i.e. Xth(t) = uth(t) sin(ωt) + vth(t) cos(ωt), then the
theoretical local correction term catches the envelope variation δth,n(t) = (uth(t) −
uth,n) sin(ωt) + (vth(t) − vth,n) cos(ωt). Let δ+(j)

n and δ
−(j)
n+1 be respectively the right

value of the j-th time-derivative of the correction term computed by the SPM at
time tn and the left value of the j-th time-derivative of the correction term computed
by the SPM at time tn+1. Hence, εδ+

n = δ+
n − δth,n(tn) and εδ−

n+1 = δ−
n+1 − δth,n(tn+1)

are respectively the error on the correction term at time tn and at time tn+1;
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5.2 Impact of the estimator on the performances

5.2.1 Impact of the Fourier coefficients error on the step size
limitation

As mentioned in the previous sections, the step size is limited by the simulated variables
frequency. For instance, if the trapezoidal formula is used for numerical integration, we
recall that the maximum usable step size can be roughly approximated by

hn = 3

√√√√12TOL

||X(3)
n ||

(5.12)

For instance, if X(t) is an oscillating variable in steady-state, ||X(3)
n || = ω3||Xn|| where

||Xn|| is the sinusoid amplitude. Similarly, an approximation of the maximum step size
resulting from the application of the SPM is given by

hn = 3

√√√√12TOL

||δ+(3)
n ||

(5.13)

So, let us consider a sinusoidal solution in steady-state i.e.

X(t) = uth,∞ sin(ωt) + vth,∞ cos(ωt) (5.14)

If the Fourier coefficients used in the periodic part of SPM have an error (εu
n, εv

n) i.e.

X̄n(t) = un sin(ωt) + vn cos(ωt) (5.15)

= (uth,∞ + εu
n) sin(ωt) + (vth,∞ + εv

n) cos(ωt) (5.16)

Then the theoretical local correction term associated to the input Fourier coefficient
(un, vn) is given by

δth|(un,vn)(t) = X(t) − X̄n(t) = −X̄εuv
n

(t) = −εu
n sin(ωt) − εv

n cos(ωt) (5.17)

which means that the maximum usable step size can be approximated by

hn = 3

√√√√ 12TOL

ω3
√

(εu
n)2 + (εv

n)2
(5.18)

In the figure 5.2, we can see that the SPM is particularly sensitive to the error on the
Fourier coefficients: even for an error being hundred times smaller than the tolerance,
the step size cannot reach high values, i.e. in the range of the second. In conclusion, the
SPM Fourier coefficients have to be very accurately approximated in steady-state for the
method to be efficient.
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Figure 5.2: Illustration of the effect of the Fourier coefficients error on the step size used
by the integration scheme with a tol=1.e-6 (on the abscissa: time in seconds, on the or-
dinate: step size in seconds). To produce this graph, at each time step, the exact Fourier
coefficients are injected and perturbed with a fixed value (εuv

n = {10−4, 10−6, 10−8, 10−10}).
When the solution is in transients, we can see that this perturbation does not signif-
icantly impact the used step size. Indeed, during this phase, the Fourier coefficients
time-derivatives are not negligible and so are greater than the introduced perturbation.
On the contrary, when the system is in steady-state, this perturbation directly affects the
used step size as it becomes prevailing.

5.2.2 Impact of the estimator on the entire method stability

In the previous section, the effect of the Fourier coefficients error on the step size has been
presented. This first limitation is directly linked to the control of the integration error by
the adaptive step size strategy. In addition to this direct effect, choosing an inappropriate
estimator can lead to numerical instabilities. Indeed, we recall that the SPM roughly
consists in two main steps:

• The numerical integration of the DAE system on the correction. In this step, the
local equations on the correction term are obtained by injecting the last computed
Fourier coefficients into the global equations on the whole solution. Hence, the
error on the Fourier coefficients adds a contribution to the integration error on the
correction and so to the integration error on the entire solution.

• The parametric estimation of the Fourier coefficients, which is based on the previ-
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ously computed data. Then, the integration errors on the solution are injected into
the estimator. This contributes to the Fourier coefficients bias

In figure 5.3, the resulting error re-injection cycle is presented. Indeed, as the two below-
presented steps are performed within a global closed-loop solving process, the error result-
ing from the integration step is injected into the estimation step, and vice versa. As we
want to avoid deep modifications of the underlying basic integration scheme, our objective
has been to develop an estimator that does not introduce too much numerical instabilities
in order to keep the whole process stable. This instability is particularly illustrated in
the following section about the initial estimator. Such an instability limits the maximum
step size usable by the method [58].

Figure 5.3: Illustration of the coupling between the integration and estimation steps.
εn+1 and εu,v

n+1 respectively stand for the error on the solution and on the Fourier coefficients
at time tn+1. The numerical errors resulting from the numerical integration are introduced
into the estimator and impact the Fourier coefficients bias which is then re-injected into
the numerical integrator. Hence, the estimator choice has to be made such as the entire
process is stable for the Fourier coefficients to converge in steady-state.

Then, as a first approximation, the error amplification between time steps tn and tn+1

can be modeled with the following linear system:⎡
⎢⎢⎢⎣

εn+1

εu
n+1

εv
n+1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

AXX
n AXu

n AXv
n

AuX
n Auu

n Auv
n

AvX
n Avu

n Avv
n

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
def
= An

⎡
⎢⎢⎢⎣

εn

εu
n

εv
n

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

en

eu
n

ev
n

⎤
⎥⎥⎥⎦ (5.19)

In the matrix An, the upper-left part containing only AXX
n corresponds to the ampli-

fication coefficient of the integration scheme. For instance, for the trapezoidal formula

this coefficient is equal to AXX
n =

1 + hnλ

2
1 − hnλ

2

. The lower-right part constituted of the sub-

matrices Auu
n , Auv

n , Avu
n and Avv

n could be seen as the amplification matrix corresponding

53



5. Estimator choice

to the autonomous dynamics of the Fourier coefficients estimator. In section 3.1.3, the
presented heuristic for stabilizing the initial Fourier coefficients estimator uses this ma-
trix eigenvalues in order to amortize its bias. The sub-matrices AXu

n , AXv
n , AuX

n and AvX
n

correspond to the coupling between the integration and estimation steps.

5.2.3 Estimator expected properties

The whole method performances being directly influenced by the periodic solution ac-
curacy, this estimator should be unbiased. More precisely, it should be consistent, par-
ticularly in steady-state,. i.e. if hn → 0 then εu

n+1, εv
n+1 → 0. As a result, it should

converge for perfect input data, i.e. when δ
−(j)
n+1 = X

(j)
th (tn+1) − X̄(j)

n (tn+1). In addition,
the Fourier coefficients increment should decrease with the step size, i.e. (Δu

n+1, Δv
n+1) =

(un+1, vn+1) − (un, vn) → (0, 0) for hn → 0.

By this way, the estimator would have properties close to those of the basic predictor-
corrector in order to ensure the error damping and so the convergence in steady-state for
being able to use high step size. Indeed, as reducing the step size used for the integration
enables a better computation of δ

−(j)
n+1 by consistence of the integration scheme, the Fourier

coefficients estimator should imperatively have the same property in order the SPM to
globally enhance the solution and so to reach optimal performances.

For instance, in figure 5.4, some results obtained with the initial estimator and the use
of the relaxation strategy for smoothing the Fourier coefficients variations are presented.
For producing these results, theoretical data have been injected into the estimator, i.e.
δ−(j)

n = X
(j)
th (tn)−X̄(j)

n (tn), but we can see that the estimator does not converge in steady-
state. By reducing the proportion of Fourier coefficients update, i.e. by using smaller
θ with (un+1, vn+1) = θ(u∗

n+1, v∗
n+1) + (1 − θ)(un, vn), the variability is less important

but the estimator still seems unstable and so non-convergent. That is why the final
estimator should ideally present a much smoother and more controlled behavior, even if
the convergence is a bit slower.

5.3 SPM Fourier coefficients estimator optimization

In this section, we present some tried strategies for optimizing the parametric estimator
and so the SPM performances.
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Figure 5.4: Results obtained with the initial estimator using different fixed relaxation
parameters when theoretical data are introduced, i.e. when δ−(j)

n = X
(j)
th (tn) − X̄(j)

n (tn).
Top: Fourier coefficients error (on the abscissa: time in seconds, on the ordinate: Fourier
coefficients error in arbitrary units), down: step size (on the abscissa: time in seconds, on
the ordinate: step size in seconds). We can see that the estimator does not converge and
seems particularly unstable.

5.3.1 Initial estimator

For enhancing the initial estimator corresponding to the classical Fourier coefficients for-
mula, we have introduced a relaxation coefficient in order to smooth and control their
variations. Hence, in this subsection, we present in more details the initial estimator, the
basic idea of the relaxation coefficient and, to finish, an automatic adjustment heuristic
that we have tried.

5.3.1.1 Initial estimator presentation

At first glance, the parameters have been updated with the classical Fourier coefficients
formulas:

un+1,i = 2
T

∫ tn+1

tn+1−T
Xi(t) sin(ωt)dt (5.20)

vn+1,i = 2
T

∫ tn+1

tn+1−T
Xi(t) cos(ωt)dt (5.21)
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where i ∈ Is. Then, in order to lower the CPU time per iteration and, thus, to preserve
the method efficiency, the Fourier coefficients are computed from explicit formulas which
are only based on the already computed points and not on a re-sampling of the signal.
Let us illustrate our strategy by detailing the computation of un+1.

First of all, we substitute X by its approximate full parametric representation :

X(t) ≈ X̄(t) + δ̂(t) (5.22)

Where δ̂(t) is the second order polynomial representing the predictor on δ, which is defined
by the method and corresponds in our case to the second order Adams-Bashford scheme.
Then, the integrals to compute are :

σX̄ = 2
T

∫ tn+1

tn+1−T
X̄(t) sin(ωt)dt (5.23)

σδ = 2
T

∫ tn+1

tn+1−T
δ̂(t) sin(ωt)dt (5.24)

un+1 = σX̄ + σδ (5.25)

For a general interval [a, b], with a, b ∈ R+, the former is given by :

σX̄ = 2
T

∫ b

a
u sin2(ωt) + v sin(ωt) cos(ωt)dt (5.26)

This integral is calculated using common trigonometric formulae, while the latter is com-
puted using the fact that δ̂(t) is a second order polynomial. Thus, using the integration
by parts formula, we have

σδ = 2
T

[
δ̂(t)− cos(ωt)

ω
+ ˙̂

δ(t)sin(ωt)
ω2 + ¨̂

δ(t)cos(ωt)
ω3

]b

a

(5.27)

On the equations above, the n index is not specified on both X̄ and δ̂ since the model is
piecewise defined, and so the calculation is split between the different solver intervals. In
the following equations, let q be the index such as tn+1 − T ∈ [tq, tq+1]. Then, the integral
on the whole interval [tn+1 − T, tn+1] is decomposed as below :∫ tn+1

tn+1−T
X(t) sin(ωt)dt =

∫ tq+1

tn+1−T
X(t) sin(ωt)dt

+
n∑

j=q+1

∫ tj+1

tj

X(t) sin(ωt)dt

Then, for each interval [tj, tj+1], we have∫ tj+1

tj

X(t) sin(ωt)dt = 2
T

∫ tj+1

tj

uj sin2(ωt)dt

+ 2
T

∫ tj+1

tj

vj sin(ωt) cos(ωt)dt

+
∫ tj+1

tj

δ̂j(t) sin(ωt)dt
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Finally, by calculating the associated explicit formulas, updating the Fourier coefficients
only requires fast analytic formulas evaluations, especially since the sum of local Fourier
integrals part (i.e. the integrals whose interval is [tj, tj+1]) can be stored. However,
even if this estimator is very efficient in terms of computational time thanks to these
optimization possibilities, it leads to a global unstable solving process. As the integration
errors coming from the integration of the equations on the correction term are injected
into the estimator, they are then re-injected within the next time step because of their
impact on the Fourier coefficients errors. Even when introducing perfect input data, this
estimator has an unstable and non-convergent behavior in steady-state (see figures 5.4).

5.3.1.2 Relaxation parameter introduction

In order to stabilize the previously presented estimator, a relaxation parameter has been
introduced in order to smooth the Fourier coefficients evolution. Then, two temporary
Fourier coefficients estimations u∗

n+1,i and v∗
n+1,i are first computed from the previously

exposed formulas (respectively (5.20) and (5.21)) and the associated methodology. In a
second time, the relaxation is applied to average (u∗

n+1,i, v∗
n+1,i) and (un, vn) in order to

smooth the evolution between two consecutive time steps:

un+1,i = θu∗
n+1,i + (1 − θ)un,i (5.28)

vn+1,i = θv∗
n+1,i + (1 − θ)vn,i (5.29)

where θ ∈ [0, 1]. If θ = 1, the effect of the relaxation is suppressed and we get the initial
estimator. The value of the relaxation parameter θ is empirically fixed as a theoretical op-
timal value is hard to determine. From our tests whose results are presented in figures 5.5
and 5.4, using high values for θ leads to a high sensitivity of the method to Fourier coeffi-
cients variations and so to important instabilities. Indeed, for high values (e.g. θ ∈ [0, 1

2 ]),
an important variability of the Fourier coefficients can be observed, even when the system
is in steady-state. On the contrary, for smaller values (e.g. θ ∈]0, 1

2 [), the variability is less
important. Then, the Fourier coefficients could seem to converge toward their asymptotic
values in steady-state, but instabilities are also noted for large time steps. In addition,
the "optimal" value of θ seems really problem-dependent and, particularly, the effect of
the relaxation parameter is not linear at all: one could imagine that setting θ to a very
small value such as θ = 0.01 leads a slower but surer convergence, but it is not verified
in practical applications. Moreover, tuning this parameter is very sensitive, then even if
two values give good results, using the mid-value may lead to radically different results.

In addition, in figure 5.4, we can see that this estimator is not convergent for perfect input
data. On the contrary, it seems like the convergence is even worse than when using the
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normal data in output of the integrator.

Figure 5.5: Performances comparison when using the relaxation with fixed θ values.
Top: Fourier coefficients error (on the abscissa: time in seconds, on the ordinate: Fourier
coefficients error in arbitrary units), down: step size (on the abscissa: time in seconds, on
the ordinate: step size in seconds). The different colored lines correspond to the different
tested values. The only configuration almost leading to the convergence of the Fourier
coefficients and the use of large step sizes is for θ = 0.1. However, we can see that the
computations still seem unstable as the step size fluctuates for high values.

5.3.1.3 Relaxation parameter automatic adjustment

As fixing the relaxation parameter seemed inefficient, another tried optimization has been
to automatically adjust the parameter θ used for smoothing the Fourier coefficients evo-
lution.

In order to design such an automatic adjustment of the relaxation parameter, we make
the following assumptions:

• The system is in steady-state: Xth(t) = X̄th,∞(t) = u∞ sin(ωt) + v∞ cos(ωt) ;
• The step size is greater or equal to one period: hn ≥ T ;
• The input data are perfect: δ+(j)

n = X
(j)
th (tn) − X̄(j)

n (tn) ;
• In order to obtain a linear amplification system, we assume that there is an error

on the Fourier coefficients (un, vn) at time tn, i.e. un = u∞ + εu
n, vn = v∞ + εv

n and
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X̄n(t) = un sin(ωt) + vn cos(ωt).
The objective is to adjust the relaxation parameter in order to stabilize the estimation.
By using the second hypothesis, a simple recurrent formula can be used for describing the
Fourier coefficients error propagation. The third hypothesis enables to delete the coupling
phenomenon between the estimation process and the numerical integration of δ. In other
words, we consider the estimator "individual" stability as previously mentioned, which
leads to the study of the following linear system:⎡

⎣εu
n+1

εv
n+1

⎤
⎦ =

⎡
⎣Auu

n Auv
n

Avu
n Avv

n

⎤
⎦

︸ ︷︷ ︸
An(θ)

⎡
⎣εu

n

εv
n

⎤
⎦ (5.30)

For recall, the formula of the Fourier coefficients is given by (5.20) and (5.28). As hn ≥ T ,
tn+1 − T ∈ [tn, tn+1]. The estimator u∗

n+1 can then be written without summation of the
local Fourier integrals (now detailing the computations for un+1):

u∗
n+1 = 2

T

∫ tn+1

tn+1−T
[X̄n(t) + δ̂n(t)] sin(ωt)dt (5.31)

where

δ̂n(t) = δ+
n + δ̇+

n (t − tn) + δ̈+
n

(t − tn)2

2

δ+(j)
n = X

(j)
th (tn) − X̄(j)

n (tn) = −X̄
(j)
εuv

n
(tn) = − dj

dtj
(εu

n sin(ωtn) + εv
n cos(ωtn))

⇒ u∗
n+1 = un

2
T

∫ tn+1

tn+1−T
sin2(ωt)dt︸ ︷︷ ︸

=1

+vn
2
T

∫ tn+1

tn+1−T
sin(ωt) cos(ωt)dt︸ ︷︷ ︸

=0

+ 2
T

∫ tn+1

tn+1−T
δ̂n(t) sin(ωt)dt︸ ︷︷ ︸
≡σn

(5.32)
After the injection of the relaxation parameter θ, we have un+1 = un + θ 2

T
σn. As δ̂n is

polynomial, σn is simply calculated from integration by parts :

σn =
(
δ̂n(tn+1) − δ̂n(tn+1 − T )

) − cos(ωtn+1)
ω

−
( ˙̂

δn(tn+1) − ˙̂
δn(tn+1 − T )

) − sin(ωtn+1)
ω2

+
(¨̂

δn(tn+1) − ¨̂
δn(tn+1 − T )

) cos(ωtn+1)
ω3

with

δ̂n(tn+1) − δ̂n(tn+1 − T ) = T δ̇+
n + (hnT − T 2

2 )δ̈+
n

˙̂
δn(tn+1) − ˙̂

δn(tn+1 − T ) = T δ̇+
n

¨̂
δn(tn+1) − ¨̂

δn(tn+1 − T ) = 0
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Thus, after the injection of δ+(j)
n = −X̄

(j)
εuv

n
(t) and the simplification (let us introduce

sn = sin(ωtn) and cn = cos(ωtn)) :

un+1 = un + θ
2
T

[
+Tcncn+1 + Tsnsn+1 −

(
hnT − T 2

2

)
ωsncn+1

]
︸ ︷︷ ︸

Muu
n

εu
n (5.33)

+ θ
2
T

[
−Tsncn+1 + Tcnsn+1 −

(
hnT − T 2

2

)
ωcncn+1

]
︸ ︷︷ ︸

Muv
n

εv
n (5.34)

vn+1 = vn + θ
2
T

[
+Tsnsn+1 + Tcncn+1 +

(
hnT − T 2

2

)
ωcnsn+1

]
︸ ︷︷ ︸

Mvv
n

εv
n (5.35)

+ θ
2
T

[
−Tcnsn+1 + Tsncn+1 +

(
hnT − T 2

2

)
ωsnsn+1

]
︸ ︷︷ ︸

Mvu
n

εu
n (5.36)

Then, by subtracting u∞ (and respectively v∞) in the estimator of un+1 (and respectively
of vn+1), the linear system (5.30) describing the error on the Fourier coefficients can be
obtained in the form of: ⎡

⎣εu
n+1

εv
n+1

⎤
⎦ =

⎛
⎝Id + θ

⎡
⎣Muu

n Muv
n

M vu
n M vv

n

⎤
⎦
⎞
⎠
⎡
⎣εu

n

εv
n

⎤
⎦ (5.37)

For the estimator to be convergent, the idea is to minimize the modulus of the above ma-
trix eigenvalues. In particular, its spectral radius should be lower than 1, i.e. ρ(An(θ)) =
max (|ζi|, where ζi = eigenvalue of An(θ)) < 1. The eigenvalues of An(θ) are given by:

ζ± =
2 + θ(Muu

n + M vv
n ) ± θ

√
(Muu

n − M vv
n )2 + 4Muv

n M vu
n

2 (5.38)

By upper-bounding them such as they are lower than one, i.e. |ζ±|2 < 1, we finally deduce
the following objective function:

J(θ) =
(

(Muu
n )2 + (M vv

n )2

2 + |Muv
n M vu

n |
)

︸ ︷︷ ︸
>0

θ2 + (Muu
n + M vv

n )θ + 1 (5.39)

This formula actually corresponds to the case where the eigenvalues are complex, which is
sometimes not verified. However, our tests suggest that using this objective function leads
to better results compared to an objective function distinguishing the two cases (real or
complex eigenvalues). The second order coefficients being greater than one, the objective
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function is strictly elliptic. So, its minimum is given by the Euler’s equation J ′(θ) = 0.
That is to say

θopt = −(Muu
n + M vv

n )
(Muu

n )2 + (M vv
n )2 + 2|Muv

n M vu
n | (5.40)

Then, the proposed heuristic can be implemented as below
• The default relaxation parameter θ0 is fixed to an arbitrary value (low in order to

reduce the variability of u and v, e.g. θ0 = 0.10) ;

• If hn ≥ T , then θn = −(Muu
n + M vv

n )
(Muu

n )2 + (M vv
n )2 + 2|Muv

n M vu
n | ;

• Else, θn = θ0 ;
• un+1 = θnu∗

n+1 + (1 − θn)un and vn+1 = θnv∗
n+1 + (1 − θn)vn.

Figure 5.6: Performances comparison of the different versions of the initial Fourier coef-
ficients estimator when perfect input data are introduced (red: non-use of the relaxation,
green: use of the relaxation with a fixed parameter, use of the relaxation with an auto-
matically adjusted parameter). Top: Fourier coefficients error (on the abscissa: time in
seconds, on the ordinate: Fourier coefficients error in arbitrary units), down: step size
(on the abscissa: time in seconds, on the ordinate: step size in seconds). In this case,
the adjustment strategy seems really efficient as it is the configuration which leads to the
convergence of the Fourier coefficients and so to the use of large step sizes.

In figure 5.6, we can see that the adjustment of the relaxation parameter θ is particularly
efficient when we inject perfect input data to the estimator. Indeed, the error on the
Fourier coefficients is significantly reduced and in a very regular way. So the step size
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Figure 5.7: Performances comparison of the different versions of the initial Fourier coef-
ficients estimator without introducing perfect input data (red: non-use of the relaxation,
green: use of the relaxation with a fixed parameter, use of the relaxation with an au-
tomatically adjusted parameter). Top: Fourier coefficients error (on the abscissa: time
in seconds, on the ordinate: Fourier coefficients error in arbitrary units), down: step
size (on the abscissa: time in seconds, on the ordinate: step size in seconds). In this
case, the relaxation parameter adjustment does not significantly enhance the convergence
performances.

increases to reach the expected high values without the oscillations that are observed
without the adjustment of θ. However, as soon as real input data are used for the in-
tegration as in figure 5.7, the performances are significantly deteriorated and using this
strategy does not seem to give gains of performances. This is logical since the adjustment
heuristic of θ is based on the hypothesis that the input data are perfect. In order to
enhance this result, we also tried to use different relaxation parameters for u and v but
the outcomes are quite similar. Furthermore, in this case, as the objective function is
not elliptic anymore, the resolution is more complex and so requires more computational
resources. A solution could be to optimize the spectral radius of the global linear system
introduced in section 2.2, taking account of the error on the solution, i.e.⎡

⎢⎢⎢⎣
εn+1

εu
n+1

εv
n+1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
AXX

n AXu
n AXv

n

AuX
n Auu

n Auv
n

AvX
n Avu

n Avv
n

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

εn

εu
n

εv
n

⎤
⎥⎥⎥⎦ (5.41)
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In this equation, the bold elements are those taken into account in the presented method.
However, such a global approach would be extremely costly as the dimension of AXX

n would
be equal to the global simulated system dimension. Hence, computing its eigenvalues
could not be done in an analytic way, contrary to the method presented here. Finally,
computing the optimal smoothing parameter would also require important computational
resources.

5.3.2 Estimator based on a correction term trigonometric rep-
resentation

From the previously exposed requirements and especially those on the consistency, we
also tried to implement a very simple estimator based on a trigonometric representation
of the correction term δ. The idea is to assume, but only for the estimation step, that the
solution is a centered sinusoid and so that the correction term catches the error on the
envelope. Hence, in this estimator, the correction term is seen as a sinusoid whose Fourier
coefficients are piecewise constant and, in particular, equal to the difference between the
instantaneous value of the theoretical Fourier coefficients at the next time step and the
used Fourier coefficients, i.e.

δth|(un,vn)(t) = (uth(t) − un) sin(ωt) + (vth(t) − vn) cos(ωt) (5.42)

Then, at next time step, the correction term would be equal to

δn+1 ≈ (un+1 − un) sin(ωtn+1) + (vn+1 − vn) cos(ωtn+1) (5.43)

whose time-derivative can be approximated by neglecting the Fourier coefficients time-
variation as

δ̇n+1 ≈ ω [(un+1 − un) cos(ωtn+1) − (vn+1 − vn) sin(ωtn+1)] (5.44)

By this way, if the oscillating solution is truly a centered sinusoid, the estimator should
be exact in steady-state when injecting perfect values for δ. However, it will be obviously
biased when the system is in transient as the Fourier coefficients time-derivative is ne-
glected. Then, the two equations (5.43) and (5.44) can be summarized in a linear system
coupling them, as below⎡

⎣ sin(ωtn+1) cos(ωtn+1)
ω cos(ωtn+1) −ω sin(ωtn+1)

⎤
⎦
⎡
⎣Δu

n+1

Δv
n+1

⎤
⎦ =

⎡
⎣δn+1

δ′
n+1

⎤
⎦ (5.45)
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Δu
n+1 and Δv

n+1 are computed by inverting this linear system, which leads to

⇒
⎡
⎣Δu

n+1

Δv
n+1

⎤
⎦ =

⎡
⎣ sin(ωtn+1) cos(ωtn+1)
ω cos(ωtn+1) −ω sin(ωtn+1)

⎤
⎦−1 ⎡⎣δn+1

δ̇n+1

⎤
⎦

=
⎡
⎣sin(ωtn+1) 1

ω
cos(ωtn+1)

cos(ωtn+1) − 1
ω

sin(ωtn+1)

⎤
⎦
⎡
⎣δn+1

δ̇n+1

⎤
⎦

Finally, the Fourier coefficients are updated from the formulas: un+1 = un + Δu
n+1 and

vn+1 = vn + Δv
n+1.

Figure 5.8: Results obtained with the estimator based on a trigonometric representation
of the correction term with injection of perfect data. Top: Fourier coefficients error (on
the abscissa: time in seconds, on the ordinate: Fourier coefficients error in arbitrary
units), down: step size (on the abscissa: time in seconds, on the ordinate: step size in
seconds).

As previously mentioned, when perfect data is injected in input, i.e. δ
−(j)
n+1 = X

(j)
th −

X̄(j)
n (tn+1), we can see in the upper figure of 5.8 that the Fourier coefficients converge as

wanted in steady-state. In particular, the estimation error can be upper-bounded by the
neglected term envelope, associated to the Fourier coefficients time-variation:

εu,v
n+1 =

√
(εu

n+1)2 + (εv
n+1)2 ≤

√
(u̇th,n+1)2 + (v̇th,n+1)2

ω
≡ ||u̇n+1, v̇n+1|| (5.46)
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Figure 5.9: Results obtained with the estimator based on a trigonometric representation
of the correction term without injection of perfect data. Top: Fourier coefficients error
(on the abscissa: time in seconds, on the ordinate: Fourier coefficients error in arbitrary
units), down: step size (on the abscissa: time in seconds, on the ordinate: step size in
seconds).

So, the error tends toward zero when the system returns in steady-state since u̇th,n+1

and v̇th,n+1 tend toward zero. Unfortunately, when the numerical data coming from the
numerical integration is used for the estimation, its performances are completely reduced:
the estimator does not converge and the time step remains at a very low value (close
to one period). This can be observed in the lower figure in 5.9. This estimator seems
particularly unstable. Indeed, as for the initial estimator, the numerical errors due to
the integration step on δ are directly re-injected into the estimator. That’s why a fixed
relaxation strategy has also been tried for this estimator by setting:

(un+1, vn+1) = (un, vn) + θ(Δu
n+1, Δv

n+1) (5.47)

But, as for the initial estimator, our results suggest that it does not solve the instability
issue. However, this estimator gave us the idea of taking into account the sinusoidal
behavior of the solution in a more analytic way during the estimation step.
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5.3.3 Acceptation-rejection criterion

As the Fourier coefficients updates computed by the previously presented estimators intro-
duced numerical instabilities, our idea has been to filter the estimated Fourier coefficients
at each time step. Therefore, we implemented an acceptation-rejection criterion in order
to choose if the Fourier coefficients should be updated from the last estimation or if we
should keep their previous value. The underlying idea is that, if the Fourier coefficients
are exact when the system is in steady-state, then Xth(t) = X̄th,∞(t) ≡ X̄th(t), thus X̄th

is the solution of the differential equation, i.e.

˙̄Xth(t) = f(t, X̄th(t)) (5.48)

Which enables to define the following residual function and, as a consequence, computing
more accurate Fourier coefficients should enable to reduce its magnitude:

ρ̄(t) =
˙̄Xth(t) − f(t, X̄th(t))

ω
≈ 0 (5.49)

Indeed, as ρ is possibly a oscillating function, the objective is to reduce its magnitude and
not only its instantaneous value. In the other case, if we only considered its instantaneous
values, the zero-crossing due to the oscillations would completely suppress the validity of
such a measure. Furthermore, the division by ω is done to have a per unit quantity.

Then, the idea is to compute the RMS measurement of ρ̄(t) for the different tested Fourier
coefficients and to use it as a norm in our acceptation-rejection method:

Rn+1(un+1, vn+1) =
√

1
T

∫ tn+1+T

tn+1
ρ̄2

n+1(t)dt with ρ̄n+1(t) =
˙̄Xn+1(t) − f(t, X̄n+1(t))

ω
(5.50)

In this equation, for some practical reasons and for ensuring the generality of our approach,
the integral present in Rn+1 is computed with a numerical quadrature rule. We chose the
trapezoidal formula (where K is the sample size), so

Rn+1(un+1, vn+1) ≈
√√√√√ 1

T

K∑
j=1

T

K

ρ̄2
n+1

(
tn+1 + (j − 1) T

K

)
+ ρ̄2

n+1

(
tn+1 + j T

K

)
2

Finally, the chosen Fourier coefficients are those reducing Rn+1. Moreover, on a scalar
linear case, we can easily prove that the minimum of Rn+1 is reached for (un+1, vn+1) =
(uth, vth).
To recap, the acceptation-rejection criterion is used from the following procedure:

1. The past Fourier coefficients (un, vn) are known.
2. The estimation is performed to compute (un+1, vn+1).
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3. Rn+1 is computed for these two sets of Fourier coefficients, i.e.

Rn+1(un+1, vn+1) =
√

1
T

∫ tn+1+T

tn+1
ρ̄2

n+1(t)dt with ρ̄n+1(t) =
˙̄Xn+1(t) − f(t, X̄n+1(t))

ω

(5.51)

Rn+1(un, vn) =
√

1
T

∫ tn+1+T

tn+1
ρ̄2

n(t)dt with ρ̄n(t) =
˙̄Xn(t) − f(t, X̄n(t))

ω
(5.52)

4. Finally, Rn+1(un+1, vn+1) and Rn+1(un, vn) are compared to select the Fourier coef-
ficients:

• If Rn+1(un+1, vn+1) ≤ Rn+1(un, vn), the lastly estimated Fourier coefficients are
accepted.

• Else, if Rn+1(un+1, vn+1) > Rn+1(un, vn), the lastly estimated Fourier coeffi-
cients are rejected. Then, (un+1, vn+1) = (un, vn).

Figure 5.10: Results obtained with (blue) and without (red) the Fourier coefficients
acceptation-rejection criterion when the estimation method is the initial estimator with
a constant relaxation parameter θ = 0.1. Top: Fourier coefficients error (on the abscissa:
time in seconds, on the ordinate: Fourier coefficients error in arbitrary units), down: step
size (on the abscissa: time in seconds, on the ordinate: step size in seconds).

In figures 5.10 and 5.11, we can see that the acceptation-rejection criterion drastically
increases the tested estimators performances. Indeed, even for those based on the trigono-
metric representation of the correction which is particularly unstable, the Fourier coef-
ficients convergence is relatively fast and so it enables to use large time step. However,
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Figure 5.11: Results obtained with (blue) and without (red) the Fourier coefficients
acceptation-rejection criterion when the estimation method is the estimator based on the
trigonometric representation of the correction term (without relaxation). Top: Fourier
coefficients error (on the abscissa: time in seconds, on the ordinate: Fourier coefficients
error in arbitrary units), down: step size (on the abscissa: time in seconds, on the ordinate:
step size in seconds).

even if this acceptation-rejection criterion seems attractive, using it in this way would
not be suited for an industrial implementation. Indeed, its application to a vector case
would require to test each combination of old and new Fourier coefficients, leading to
an unsustainable computational cost because of the exponentially increasing number of
combinations to test. That said, since this methodology is efficient with two radically
different estimators and for different values of the relaxation parameter θ, it seems to
indicate a good direction for computing the Fourier coefficients. This assessment led us
to implement the final estimator.

5.4 Final estimator

In the previous section, we presented several heuristics that were implemented to sta-
bilize the initial estimator, derived from the classical Fourier coefficients formula. On
the contrary, as mentioned in the SPM presentation, the objective of the method final
version was actually to avoid such kinds of hazardous heuristics. The different tested
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approaches presented limitations for industrial applications as they generally required nu-
merous assumptions especially on the input data to be efficient. However, in spite of its
limitation to scalar cases, the last presented acceptation-rejection criterion offers a real
improvement of our estimators convergence. In particular, this convergence seems very
regular, which is the real problem to address. Then, we deduced that this criterion gave
the good "direction" for the Fourier coefficients estimator to converge. Hence, instead of
using it for filtering the Fourier coefficients estimated by a chosen estimator, the idea has
been to directly compute the Fourier coefficients from this acceptation-rejection criterion.
In other words, as the minimum of the objective-function corresponding to this criterion
seems to be reached for the exact Fourier coefficients, they could be computed by finding
the root of its gradient.

Therefore, the idea behind the estimation process is to compute the Fourier coefficients
(un+1, vn+1) that minimize an energy-function measuring the simulated system stationar-
ity defined by:

R(u, v) =
∫ tn+1+T

tn+1
||ρ̄(t)||2dt (5.53)

with ||X||2 = XT X and

ρ̄(t) = F

⎛
⎝t,

⎡
⎣ X̄s(t)
Xns,n+1

⎤
⎦ ,

⎡
⎣ ˙̄Xs(t)

0

⎤
⎦
⎞
⎠ (5.54)

where

X̄s(t) = u sin(ωt) + v cos(ωt) (5.55)
˙̄Xs(t) = ω(u cos(ωt) − v sin(ωt)) (5.56)

so that we can define the residual associated to the computed Fourier coefficients (un+1, vn+1),
i.e. to the periodic function X̄s,n+1, as below:

ρ̄n+1(t) = F

⎛
⎝t,

⎡
⎣X̄s,n+1(t)

Xns,n+1

⎤
⎦ ,

⎡
⎣ ˙̄Xs,n+1(t)

0

⎤
⎦
⎞
⎠ (5.57)

The objective-function (5.53) is derived from (2.4)-(2.5)-(2.6)-(2.7). Indeed, the motiva-
tion here is to compute the Fourier coefficients of the oscillating components corresponding
to the system in steady-state. Thus, it assumes that, for t ≥ tn+1

Xns(t) ≈ Xns,n+1 (5.58)

where Xns,n+1 is the approximation of the non-oscillating components Xns at time tn+1

and so, as they are assumed to be constant

Ẋns(t) ≈ 0 (5.59)
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In order to minimize the objective-function (5.53), numerous strategies could be imple-
mented. Here, we present a first approach which consists in solving the associated lin-
earized optimization problem. So, first of all, the new Fourier coefficients are decomposed
as the sum of the previous one (un, vn) and an increment (Δu

n+1, Δv
n+1), i.e

un+1 = un + Δu
n+1 (5.60)

vn+1 = vn + Δv
n+1 (5.61)

Let us define X̄s,Δuv
n+1

the oscillating function corresponding to this increment such as
X̄s,n+1(t) = X̄s,n(t) + X̄s,Δuv

n+1
(t), i.e. X̄s,Δuv

n+1
= Δu

n+1 sin(ωt) + Δv
n+1 cos(ωt). Then, using

this decomposition, ρ̄n+1(t) can be linearized around the predicted a priori steady-state
trajectory which is associated to the past periodic function for the solution oscillating
components, i.e. X̄s,n(t), and the last computed value for the solution non-oscillating
components, i.e. Xns,n+1. This linearization leads to:

ρ̄n+1(t) ≈
[
sin(ωt)∂Xs ρ̄n(t) + ω cos(ωt)∂Ẋs

ρ̄n(t)
]

Δu
n+1 (5.62)

+
[
cos(ωt)∂Xs ρ̄n(t) − ω sin(ωt)∂Ẋs

ρ̄n(t)
]

Δv
n+1 (5.63)

+ ρ̄n(t) (5.64)

where

ρ̄n(t) = F

⎛
⎝t,

⎡
⎣X̄s,n(t)
Xns,n+1

⎤
⎦ ,

⎡
⎣ ˙̄Xs,n(t)

0

⎤
⎦
⎞
⎠ (5.65)

Finally, after the injection of this formula into (5.53) and the computation of the resulting
objective-function gradient, Δu

n+1 and Δv
n+1 are simply obtained by solving the linear

system (5.66) which corresponds to Euler’s equation (∇R(un+1, vn+1) = 0) applied to the
linearized problem: ⎡

⎣Huu
n Huv

n

Hvu
n Hvv

n

⎤
⎦
⎡
⎣Δu

n+1

Δv
n+1

⎤
⎦ = −

⎡
⎣gu

n

gv
n

⎤
⎦ (5.66)
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The linear system (5.66) coefficients are then given by

Huu
n =

∫ tn+1+T

tn+1

[
sin(ωt)∂Xs ρ̄n(t) + ω cos(ωt)∂Ẋs

ρ̄n(t)
]T

[
sin(ωt)∂Xs ρ̄n(t) + ω cos(ωt)∂Ẋs

ρ̄n(t)
]

dt

Huv
n =

∫ tn+1+T

tn+1

[
sin(ωt)∂Xs ρ̄n(t) + ω cos(ωt)∂Ẋs

ρ̄n(t)
]T

[
cos(ωt)∂Xs ρ̄n(t) − ω sin(ωt)∂Ẋs

ρ̄n(t)
]

dt

Hvu
n =

∫ tn+1+T

tn+1

[
cos(ωt)∂Xs ρ̄n(t) − ω sin(ωt)∂Ẋs

ρ̄n(t)
]T

[
sin(ωt)∂Xs ρ̄n(t) + ω cos(ωt)∂Ẋs

ρ̄n(t)
]

dt

Hvv
n =

∫ tn+1+T

tn+1

[
cos(ωt)∂Xs ρ̄n(t) − ω sin(ωt)∂Ẋs

ρ̄n(t)
]T

[
cos(ωt)∂Xs ρ̄n(t) − ω sin(ωt)∂Ẋs

ρ̄n(t)
]

dt

gu
n =
∫ tn+1+T

tn+1

[
sin(ωt)∂Xs ρ̄n(t) + ω cos(ωt)∂Ẋs

ρ̄n(t)
]T

ρ̄n(t)dt

gv
n =
∫ tn+1+T

tn+1

[
cos(ωt)∂Xs ρ̄n(t) − ω sin(ωt)∂Ẋs

ρ̄n(t)
]T

ρ̄n(t)dt

Thus, we have to compute several integrated quantities as In+1 =
∫ tn+1+T

tn+1 φ(t)dt. In our
current implementation, they are computed from the trapezoidal quadrature rule, i.e.

In+1 =
K−1∑
j=0

T

K

φ(tn+1 + j T
K

) + φ(tn+1 + (j + 1) T
K

)
2 (5.67)

where K is the sample size, whose choice is arbitrary. Finally, a drawback of this estimator
is its possible computational cost since it requires to perform several linear operations such
as:

1. Matrix restrictions for reducing the partial-derivatives of the DAE residual function
to the oscillating components, which is done by selecting the corresponding columns:
∂X ρ̄n(t) → ∂Xs ρ̄n(t) and ∂Ẋ ρ̄n(t) → ∂Ẋs

ρ̄n(t);
2. Scaling by sin(ωt), cos(ωt), ω sin(ωt) and ω cos(ωt).
3. Matrix sums between the scaled matrices based on ∂Xs ρ̄n(t) and ∂Ẋs

ρ̄n(t) in the
integral whose integration interval is [tn+1, tn+1 + T ].

4. Transposition of the resulting matrices for the matrix-matrix and matrix-vector
products.

5. Matrix-matrix products between the transposed resulting matrices and the non-
transposed resulting matrices in the integral;
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6. Matrix-vector products between the transposed resulting matrices and the evalua-
tion of the DAE residual function in the integral;

7. Matrix sums between the final matrices at the different sample times of the integra-
tion interval [tn+1, tn+1 + T ] due to the trapezoidal formula estimation. However,
even if K affects the quadrature rule accuracy, a few number of samples is required,
e.g. K = 5. Finding a good compromise between the precision and computa-
tional cost is determinant for the entire method performances. In particular, using
a too large number of sample points could lead to drastically increase the estima-
tor computational cost. Our strategy is to exploit the incremental convergence of
the estimator and thus our objective is to limit the individual cost of each estima-
tion. Indeed, as the main performances limitation is due to the system deviation to
steady-state conditions, transient phases (even soft transients) lead to an important
number of iterations and so of estimations wherein the Fourier coefficients may be
biased since the objective function is based on a measure of the system stationarity.

In order to optimize the SPM performances, a possible enhancement could be to compare
the system stationarity measurement using the past Fourier coefficients, i.e. R(un, vn),
with a threshold to determine. By this way, they could be eventually reused in order to
avoid the estimator linear system construction and resolution which is computationally
expensive.

In figure 5.12, the results obtained with final estimator are presented. We can see that it
leads to a very fast and particularly regular convergence of the Fourier coefficients. When
the system is in steady-state, the estimation error tends toward zero and so very large
time steps can be used. Using this estimator, the resolution seems really stable as there
is no oscillation of the step size and notably when it reaches very high values.

This approach could be generalized by not linearizing (5.57) and using a more general op-
timization procedure to compute (un+1, vn+1). The current estimator actually corresponds
to the application of a modified Newton’s algorithm iteration for solving the optimization
problem associated to the objective function (5.53) using the previous Fourier coefficients
as initial guess. Indeed Newton’s algorithm m-th iteration for solving Euler’s equation is
defined as: ⎡

⎣Δu
n+1(m)

Δv
n+1(m)

⎤
⎦ = −

[
∇2R(un+1(m), vn+1(m))

]−1 ∇R(un+1(m), vn+1(m)) (5.68)

(un+1(m+1), vn+1(m+1)) = (un+1(m), vn+1(m)) + (Δu
n+1(m), Δv

n+1(m)) (5.69)

where R(un+1(m), vn+1(m)) is computed by injecting (un+1(m), vn+1(m)) into the residual,
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Figure 5.12: Performances obtained with the final estimator. Top: Fourier coefficients
error (on the abscissa: time in seconds, on the ordinate: Fourier coefficients error in
arbitrary units), down: step size (on the abscissa: time in seconds, on the ordinate: step
size in seconds). When the system is in steady-state, the Fourier coefficients convergence
is really fast and regular which enables to reach high step sizes.

i.e. ρ̄n+1(m), which is then defined from (5.57) as:

ρ̄n+1(m)(t) = F

⎛
⎝t,

⎡
⎣X̄s,n+1(m)(t)

Xns,n+1

⎤
⎦ ,

⎡
⎣ ˙̄Xs,n+1(m)(t)

0

⎤
⎦
⎞
⎠ (5.70)

with X̄s,n+1(m)(t) = un+1(m) sin(ωt) + vn+1(m) cos(ωt). Thus our implemented estimator
finally consists in setting (un+1(0), vn+1(0)) = (un, vn) and applying a Newton’s algorithm
iteration using the exact gradient value i.e.

∇R(un+1(m), vn+1(m)) = 2
∫ tn+1+T

tn+1
∇ρ̄n+1(m)(t)T ρ̄n+1(m)(t)dt (5.71)

and approximating the Hessian matrix by neglecting the residual second-order partial-
derivatives terms, i.e.

∇2R(un+1(m), vn+1(m)) ≈ 2
∫ tn+1+T

tn+1
∇ρ̄n+1(m)(t)T ∇ρ̄n+1(m)(t)dt (5.72)

where

∇ρ̄n+1(m)(t) = ∇F

⎛
⎝t,

⎡
⎣X̄s,n+1(m)(t)

Xns,n+1

⎤
⎦ ,

⎡
⎣ ˙̄Xs,n+1(m)(t)

0

⎤
⎦
⎞
⎠ (5.73)
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with

∇uρ̄n+1(m)(t) = sin(ωt)∂XsF

⎛
⎝t,

⎡
⎣X̄s,n+1(m)(t)

Xns,n+1

⎤
⎦ ,

⎡
⎣ ˙̄Xs,n+1(m)(t)

0

⎤
⎦
⎞
⎠

+ ω cos(ωt)∂Ẋs
F

⎛
⎝t,

⎡
⎣X̄s,n+1(m)(t)

Xns,n+1

⎤
⎦ ,

⎡
⎣ ˙̄Xs,n+1(m)(t)

0

⎤
⎦
⎞
⎠

∇vρ̄n+1(m)(t) = cos(ωt)∂XsF

⎛
⎝t,

⎡
⎣X̄s,n+1(m)(t)

Xns,n+1

⎤
⎦ ,

⎡
⎣ ˙̄Xs,n+1(m)(t)

0

⎤
⎦
⎞
⎠

− ω sin(ωt)∂Ẋs
F

⎛
⎝t,

⎡
⎣X̄s,n+1(m)(t)

Xns,n+1

⎤
⎦ ,

⎡
⎣ ˙̄Xs,n+1(m)(t)

0

⎤
⎦
⎞
⎠

However, the resulting estimator computational cost might be very high because of the
estimator linear system construction and resolution which are computationally expensive.

5.5 Estimators comparison

In figure 5.13, the results obtained with different estimators are presented. We compare
the different implemented estimators within their best configuration:

• the initial estimator using the fixed relaxation strategy (θ = 0.1) and the acceptation-
rejection criterion ;

• the estimator based on the trigonometric representation of the correction term using
the acceptation-rejection criterion ;

• the final estimator.
For all these estimators, the Fourier coefficients converge but the final error significantly
differ depending on the used estimator. For the initial estimator, the error remains at a
non-negligible value which finally limits the maximum used step size. On the contrary,
the final error with the estimator based on the trigonometric representation of the cor-
rection term is sufficiently low for using high step sizes. The best results are obtained
with the final estimator, which leads to a very fast and regular convergence of the Fourier
coefficients and so to the use of very large time steps.

In table 5.1, the results obtained within different tested configurations are summarized.
Several indicators are then presented:

• Nite: number of time steps;
• tCP U : computational time;
• hmean and hmax: respectively the mean and maximum used step size;
• εuv

Nite
: Fourier coefficients error at the simulation final time;
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Figure 5.13: Performances comparison between the different tested estimators (red:
initial estimator with the use of the acceptation-rejection criterion and the relaxation,
green: estimator based on the trigonometric representation of the correction term with the
use of the acceptation-rejection criterion but without the relaxation, blue: final estimator).
Top: Fourier coefficients error (on the abscissa: time in seconds, on the ordinate: Fourier
coefficients error in arbitrary units), down: step size (on the abscissa: time in seconds, on
the ordinate: step size in seconds). When the system is in steady-state, the convergence
of the final estimator is really fast and regular which enables to reach high step sizes.

• stable: indicates if the solver has a globally stable behavior in steady-state (no
oscillation of the step size, etc).

These results prove that exploiting the system stationarity, with the acceptation-rejection
criterion or more directly in the final estimator, is a very efficient strategy for getting good
performances in terms of Fourier coefficients convergence and so of number of iterations.
The highest step size is reached with the final estimator whose maximum used step size
is equal to 10, which is the solver maximum step size set by the user. In addition, the
final Fourier coefficients error with this estimator is equal to zero.
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Estimator Nite tCP U hmean hmax εuv
Nite

stable
Initial / θ = 0.1 / without AR 2908 81.84 3.49e-3 2.102e-1 5.26e-8 no
Initial / θ = 0.5 / without AR 3480 93.26 2.88e-3 7.73e-2 6.38e-7 no
Initial / θ = 1.0 / without AR 3681 98.88 2.72e-3 2.92e-2 8.45e-7 no
Initial / θ adj. / without AR 2811 76.13 3.61e-3 2.68e-1 9.75e-8 no
Trigo / θ = 0.1 / without AR 2801 11.42 3.58e-3 5.98e-2 3.52e-7 no
Trigo / θ = 0.5 / without AR 2518 10.05 3.98e-3 6.18e-2 2.73e-7855 no
Trigo / θ = 1.0 / without AR 2382 9.63 4.20e-3 3.28e-1 1.26e-7 no
Initial / θ = 0.1 / with AR 2757 94.92 4.24e-3 1.40 3.04e-9 yes
Initial / θ = 0.5 / with AR 2584 86.30 4.49e-3 9.67e-1 2.22e-9 yes
Initial / θ = 1.0 / with AR 2599 85.91 4.27e-3 8.92e-1 1.13e-8 yes
Initial / θ adj. / with AR 2769 91.84 3.67e-3 4.85e-1 4.07e-8 no
Trigo / θ = 0.1 / with AR 2282 24.20 4.70e-3 7.90e-1 4.29e-9 no
Trigo / θ = 0.5 / with AR 2049 21.41 7.22e-3 2.87 1.84e-9 yes
Trigo / θ = 1.0 / with AR 1995 20.60 9.25e-3 5.65 7.16e-10 yes

Final 2373 26.75 1.22e-2 10 0 (machine) yes

Table 5.1: Results obtained with the different implemented estimators and several con-
figurations.
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In this chapter, the numerical properties of the Sinusoidal Predictor Method are inves-
tigated. In addition to classical numerical properties such as the consistency and the
stability, a special focus is given on comparing its behavior when the system is in steady-
state and during transients. Ideally, the step size adjustment strategy used in the SPM
should enable to reduce it for catching fast transient phenomena and considerably in-
crease it for optimizing the simulations computational cost in steady-state. To perform
this study, we use the same linear ordinary equation with an oscillating forcing term
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obtained from a manufactured solution as in the previous chapter about the estimator
optimization. In this equation, the linear coefficient enables to control the problem stiff-
ness. The underlying solution corresponds to a phasor-like transient as it consists in an
envelope variation. Then, this theoretical study will focus on several important aspects:
quantifying the global error of the method due to the integration part when the Fourier
coefficients error is known, investigating the behavior of the Fourier coefficients estima-
tor, with a particular attention to its convergence in steady-state and its error-bounding
during transients, and, to finish, the step size adaptation during the simulation. In other
words, our objective is to theoretically validate the SPM potential by verifying that it
enables to use very large time steps in steady-state while being able to accurately catch
transient phenomena.

6.1 Considered problem

In general, the used equation for the numerical schemes theoretical study is the Dalhquist
equation Ẏ (t) = ΛY (t), where Λ ∈ C. Then, to assess the stability properties of the
considered numerical scheme, the common methodology [29] consists in injecting this
equation into the numerical scheme in order to substitute the time-derivatives. By this
way, the method characteristic polynomial is obtained and so the objective is to verify that
the error amplification ratio modulus is lower than 1. It especially enables to determine if
a method is A-stable, i.e. if the above-mentioned property is verified for all Λ whose real
part is negative, and A-unstable, i.e. if it is not verified for all Λ whose real part is positive.

However, in the SPM context, this equation is not appropriate as oscillations are not
structural but generally come from an oscillating forcing term. That’s why, we use the
same example as for the previous chapter on the estimator optimization, i.e. Ẋ(t) =
λX(t)+ b̄(t) where λ ∈ R and b̄(t) is an oscillating forcing term. In addition, this equation
enables to study the SPM global behavior and especially investigating the evolution of its
performances when the system comes back to steady-state after having faced a transient
phase.

6.2 SPM expected properties

As mentioned in this chapter introduction, our final objective is to have a flexible method
enabling to optimize the computational cost of time-domain simulations by using large
time steps in steady-state while finely controlling the numerical error, especially during
transients. In this section, some expected properties of the SPM are exposed. A spe-
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cial focus is given on its particular behavior in steady-state and during transients. To
summarize, the SPM is expected to have the properties mentioned in table 6.1 below.

Transient Steady-state
Estimator εuv

n =
√

(εu
n)2 + (εv

n)2 high but bounded convergence: εuv
n → 0

Integrator Error control: reduction of hn for compensating εuv
n hn → hmax

Performances Limited High

Table 6.1: Summary of the SPM expected properties

6.2.1 Equivalence between the problem rewritten on the correc-
tion term and the original problem

The idea of the SPM is to optimize time-domain simulations of AC power systems by
enriching the solver. In contrast with most of the existing approaches, which focus on
the modeler, the underlying main objective of our methodology is to finely control the
computational error while making possible the use of larger integration step sizes. As
computational errors are considered to only come from the solver in our approach, a
special attention is given on its numerical properties. That’s why the first aspect to verify
is that the problem rewritten on the correction term δ is equivalent to the problem on the
global solution X. Indeed, as previously mentioned, if a step size adjustment strategy is
used but on a non-equivalent problem, controlling the computational error has no sense.
This property is proven in the section 6.3.1.

6.2.2 Performances when the system is in steady-state

In steady-state, the solution oscillating components are expected to tend toward centered
sinusoids with constant Fourier coefficients, i.e. if we consider a scalar problem

Xth,s(t) → X̄∞(t) = u∞ sin(ωt) + v∞ cos(ωt) (6.1)

Then, the SPM should have the following behavior:
• The Fourier coefficients estimated by the SPM should tend toward their theoretical

asymptotic values, i.e. (un, vn) → (u∞, v∞), so that the SPM periodic part tends
toward the theoretical sinusoid: X̄n(t) → X̄∞(t) = Xth,s(t). This property is proven
in the section 6.4.2.

• By this way, as X̄∞(t) = Xth,s(t), the correction term of the SPM decomposition
should be damped, i.e. δ(t) → 0.

• Finally, as the dynamics of the correction term, which is the integrated variable,
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should be completely damped, the step size should consequently increase, i.e. hn →
hmax.

6.2.3 Control of the error during transients

During transients, the oscillating components of the solution may be significantly different
from sinusoids with constant Fourier coefficients, i.e. Xth,s(t) �= X̄s,∞(t). In particular,
we can distinguish two cases:

1. If the system is in smooth transients, corresponding to phasor-like dynamics, the
solution may be a sinusoid with time-varying Fourier coefficients. The SPM should
be able to cope with this envelope variation. This property is proven in the section
6.4.3.

2. If the system is in stronger transients, corresponding to EMT-like dynamics, the
solution may contain an offset, higher-order harmonics or even present a more dy-
namical behavior. As the solution might radically differ from a sinusoid, the SPM
should probably be switched off in order to avoid unnecessary additional cost due
to SPM-specific mathematical operations such as the estimation step, etc.

In addition, the step size used for integrating the correction term should ideally be de-
creased so that the global error on the complete solution remains lower than the chosen
tolerance. By this way, the step size adjustment strategy can enable to compensate the
erroneous periodic part. This point is discussed in the section 6.3.4.

6.3 Integration error analysis

The role of the SPM correction term integration can be seen as compensating potential
errors coming from the periodic part. Therefore, we firstly show that the problem rewrit-
ten on the correction term is well equivalent to the original one on the global solution,
contrary to most of the existing approaches. This property is the basis for theoretically
validating the error control within our method. In a second time, our study focuses on
the numerical error due to the integration step at the local level first and then at the
global level. Finally, we propose a methodology for investigating in more details the step
size adjustment during the simulation.
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6.3.1 Equivalence between the problem on the correction term
and those on the global solution

Proposition 1. At each time step of the SPM, i.e. for each time interval [tn, tn+1],
the local problem rewritten on the correction term δ is equivalent to the original system
of differential equations on the global solution X at the continuous level.

Proof. Let us consider an ordinary differential equation whose form is Ẋ(t) = f(t, X(t)).
We recall that, by injecting the local values of the Fourier coefficients (un, vn) for the time
interval [tn, tn+1], the local equation on the correction term is given by

δ̇(t) = Φn(t, δ(t)) = f(t, δ(t) + X̄(t)) − ˙̄Xn(t) (6.2)

Therefore, the local problem on the correction term δ and the global problem on the
complete solution are equivalent by construction. Indeed, if we consider the Picard integral
form of the above-mentioned equation, we have

δ(tn+1) + X̄n(tn+1) = δ(tn) +
∫ tn+1

tn

Φn(t, δ(t))dt + X̄n(tn+1)

= δ(tn) +
∫ tn+1

tn

f(t, δ(t) + X̄n(t)) − ˙̄Xn(t)dt + X̄n(tn+1)

= δ(tn) +
∫ tn+1

tn

Ẋ(t) − ˙̄Xn(t)dt + X̄n(tn+1)

= δ(tn) + X(tn+1) − X(tn) − X̄n(tn+1) + X̄n(tn) + X̄n(tn+1)

= X(tn+1)

6.3.2 Local truncation error and consistency

In this section, we compare the numerical solutions coming from a classical solver
and from the SPM. To do this, we inject the global solution theoretical values as
input data in order to compute their local truncation error, i.e. X(j)

n = X
(j)
th (tn).

Indeed, even if the local problem rewritten on the correction term is equivalent to
the original one on the global solution at the continuous level, the numerical solution
computed by the SPM and so the resulting local truncation error slightly differ from
those of a classical scheme. In particular, the SPM introduces a specific residual term
which is directly due to the SPM decomposition and is associated to the periodic function.
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Proposition 2. The SPM with the trapezoidal formula as basic integration scheme is
second-order consistent as its local truncation error is given by

en+1 = −h3
n

12δ(3)|(un,vn)(tn) + O(h4
n) (6.3)

where δ(3)|(un,vn)(tn) = h3
n

12(X(3)
th (tn) − X̄(3)

n (tn)) is the third time-derivative at time tn

of the correction term associated to the used local values of the Fourier coefficients
(un, vn).

Proof. If we apply the Trapezoidal formula to the local differential equation on the cor-
rection term (6.2), we obtain:

δn+1 = δn + hn

2 (Φn(tn, δn) + Φn(tn+1, δn+1)) (6.4)

where

δn+1 = Xn+1 − X̄n(tn+1) (6.5)

δn = Xn − X̄n(tn) (6.6)

Φn(tn, δn) = f(tn, Xn) − ˙̄Xn(tn) (6.7)

Φn(tn+1, δn+1) = f(tn+1, Xn+1) − ˙̄Xn(tn+1) (6.8)

Inserting these values into the equation (6.4) leads to the following global solution formula:

Xn+1 = Xn + hn

2 (f(tn, Xn) + f(tn+1, Xn+1))︸ ︷︷ ︸
=XT R

n+1

+X̄n(tn+1) − X̄n(tn) − hn

2 ( ˙̄Xn(tn) + ˙̄Xn(tn+1))︸ ︷︷ ︸
=eSP M

n+1

(6.9)
Where one can identify the solution obtained by applying the classical trapezoidal formula
to the original differential equation to compute the global solution at the time tn+1 :

XT R
n+1 = Xn + hn

2 (f(tn, Xn) + f(tn+1, Xn+1)) (6.10)

which leads to the following local truncation error if X(j)
n = X

(j)
th (tn):

eT R
n+1 = −h3

n

12X(3)
n + O(h4

n) (6.11)

In addition, we can note the presence of a residual term eSP M
n+1 due to the numerical

integration scheme (in this example, the Trapezoidal Formula) which is implicitly applied
to the solution periodic part, thus

eSP M
n+1 = −h3

n

12 X̄(3)
n (tn) + O(h4

n) = ω3h3
n

12 (un cos(ωtn) − vn sin(ωtn)) + O(h4
n) (6.12)
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In other words, by injecting identical input data, the SPM computes the same solution as
the classical trapezoidal scheme with the add of an O(h3

n) term. Thus, the second order
consistency of the SPM is locally ensured:

en+1 = Xth(tn+1) − (XT R
n+1 + eSP M

n+1 )

= −h3
n

12X
(3)
th (tn) + h3

n

12 X̄(3)
n (tn) + O(h4

n)

= −h3
n

12(X(3)
th (tn) − X̄(3)

n (tn)) + O(h4
n)

= −h3
n

12δ(3)|(un,vn)(tn) + O(h4
n)

In this equation, it is important to note that δ(3)|(un,vn)(tn) may differ from the previously
defined theoretical local correction term δth,n(t) which is associated to the theoretical
Fourier coefficients (uth,n, vth,n).

6.3.3 Derivation of the global error formula

In the previous section, the impact of using the SPM has been highlighted at the local
level. Indeed, we have seen that integrating the differential equation with the SPM leads
to the introduction of a specific residual term that is associated to the used periodic
function. Hence, in a second time, our objective is to quantify the global error of the
SPM and particularly when, at each time step, an error is introduced on the Fourier
coefficients (un, vn) i.e.

(un, vn) = (uth,n, vth,n) + (εu
n, εv

n) (6.13)

By representing the Fourier coefficients in such a way, the objective is to model the
injection of Fourier coefficients estimation errors into the integrator and especially to
highlight its contribution.

Proposition 3. For the equation (5.5), the global error of the SPM with the trape-
zoidal formula as basic integration scheme can be described by the following recurrence
formula:

εn+1 = ηnεn + μn

[
LTEδth,n

n − LTE
X̄εuv

n
n

]
(6.14)
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where

ηn =
1 + hnλ

2
1 − hnλ

2
(6.15)

μn = 1
1 − hnλ

2
(6.16)

LTEδth,n
n = h3

n

12δ
(3)
th,n(tn) + O(h4

n) (6.17)

LTE
X̄εuv

n
n = h3

n

12 X̄
(3)
εuv

n
(tn) + O(h4

n) (6.18)

Thus, in this particular case, as δth,n tends toward zero, the SPM is stable if the peri-
odic function associated to the Fourier coefficients error X̄εuv

n
is regularly damped and

independent from the global error εn.

Proof. The periodic solution can be decomposed into two parts:

X̄n(t) = X̄th,n(t) + X̄εuv
n

(t) with

⎧⎪⎨
⎪⎩

X̄th,n(t) = uth,n sin(ωt) + vth,n cos(ωt)

X̄εuv
n

(t) = εu
n sin(ωt) + εv

n cos(ωt)
(6.19)

First, we define the local theoretical correction which is based on the piecewise-constant
Fourier coefficients model: δth,n(t) = Xth(t) − X̄th,n(t) = (uth(t) − uth,n) sin(ωt) + (vth(t) −
vth,n) cos(ωt). Furthermore, the local ODE associated to δ is derived from the original
ODE as below:

Φn(t, δ(t)) = f(t, X̄n(t) + δ(t)) − ˙̄Xn(t) = λδ(t) + λX̄n(t) + b̄(t) − ˙̄Xn(t) (6.20)

where we can define the local oscillating forcing term b̄n which is directly linked to
the difference between the original equation oscillating forcing term b̄(t) = −(λu∞ +
ωvth(t)) sin(ωt) − (λv∞ − ωuth(t)) cos(ωt) and the periodic function used by the SPM
X̄n(t):

b̄n(t) = b̄(t) + λX̄n(t) − ˙̄Xn(t) (6.21)

In addition, let us introduce b̄εn , the oscillating forcing term associated to the perturbation
on the Fourier coefficients:

b̄εn = λX̄εuv
n

(t) − ˙̄Xεn(t) (6.22)

Therefore, the ODE RHS function Φn can be rewritten as a linear function of δ with an
oscillation forcing term:

Φn(t, δ(t)) = λδ(t) + b̄n(t) (6.23)

First, we have to bring out the theoretical time-derivative of δth,n, i.e. δ̇th,n(t). So, in a
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first time, let us consider the oscillating forcing term associated to the correction (6.21):

b̄n(t) = b̄(t) + λX̄n(t) − ˙̄Xn(t)

= b̄(t) + λ
[
X̄th,n(t) + X̄εuv

n
(t)
]

−
[ ˙̄Xth,n(t) + ˙̄Xεn(t)

]
= u̇th,n sin(ωt) + v̇th,n cos(ωt) + ω [(uth(t) − uth,n) cos(ωt) − (vth(t) − vth,n) sin(ωt)] + b̄εn(t)

= δ̇th,n(t) − [u̇th(t) − u̇th,n] sin(ωt) − [v̇th(t) − v̇th,n] cos(ωt) + b̄εn(t)

Hence, if we use the fact that u̇th(t) − u̇th,n = λ(uth(t) − u∞) − λ(uth,n − u∞) = λ(uth(t) −
uth,n) and, similarly, v̇th(t) − v̇th,n = λ(vth(t) − vth,n), we have

Φn(t, δth,n(t)) = λδth,n(t) + b̄n(t)

= λ(uth(t) − uth,n) sin(ωt) + λ(vth(t) − vth,n) sin(ωt) + δ̇th,n(t)

− λ(uth(t) − uth,n) sin(ωt) + λ(vth(t) − vth,n) + b̄εn(t)

= δ̇th,n(t) + b̄εn(t)

In addition, we can readily prove the following formulas, which are important for the next
developments:

Φn(tn, δ+
n ) = Φn(tn, δth,n(tn) + εδ+

n ) = Φn(tn, δth,n(tn)) + λεδ+
n

Φn(tn+1, δ−
n+1) = Φn(tn+1, δth,n(tn+1) + εδ−

n+1) = Φn(tn+1, δth,n(tn+1)) + λεδ−
n+1

Then, from the SPM decomposition, the global error can be also decomposed as

εn+1 = Xn+1 − Xth(tn+1)

= (X̄n(tn+1) + δ−
n+1) − (X̄th,n(tn+1) + δth,n(tn+1))

= X̄εuv
n

(tn+1) + εδ−
n+1

The objective is now to quantify εδ−
n+1:

εδ−
n+1 = δ−

n+1 − δth,n(tn+1)

= δ+
n +

hn

2

[
Φn(tn, δ+

n ) + Φn(tn+1, δ−
n+1))

]
− δth,n(tn+1)

= δth,n(tn) +
hn

2

[
δ̇th,n(tn) + δ̇th,n(tn+1))

]
− δth,n(tn+1)︸ ︷︷ ︸

=Residual of the Trapezoidal Formula=LT E
δth,n
n

+εδ+
n +

hn

2

[
λ(εδ+

n + εδ−
n+1) + b̄εn(tn) + b̄εn(tn+1)

]

where

LTEδth,n
n = h3

n

12δ
(3)
th,n(tn) + O(h4

n)
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Consequently

εδ−
n+1 = ηnεδ+

n + μn

[
LTEδth,n

n + hn

2 (b̄εn(tn) + b̄εn(tn+1))
]

where

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ηn =
1 + hnλ

2
1 − hnλ

2

μn = 1
1 − hnλ

2

(6.24)

Then, by injecting εδ+
n = δ+

n − δth,n(tn) = εn − X̄εuv
n

(tn) into this equation, the relation
(6.14) is finally obtained:

εn+1 = ηnεn︸ ︷︷ ︸
classical numerical damping

+ μn

[
LTEδth,n

n − LTE
X̄εuv

n
n

]
︸ ︷︷ ︸

local error (specific to the SPM)

If we look more closely to this recursive sequence, we can see that the formula is divided
into two parts:

1. ηnεn corresponding to the previous global error damping, which is similar to those
of a classical integration scheme.

2. μnLTE
δth,n
n − μnLTE

X̄εuv
n

n which is the local error injection. Concerning this local
error several comments can be done:

• Both LTE
δth,n
n and LTE

X̄εuv
n

n are O(h3
n) terms, which means that the method

is second-order consistent, as wanted.
• LTE

δth,n
n corresponds to the theoretical correction which is defined in reference

to the chosen periodic function. For instance, in our developments, it was
a sinusoid oscillating at a fixed fundamental frequency, without harmonics,
and with piecewise constant Fourier coefficients. So the theoretical periodic
function was this function with the theoretical values of the Fourier coeffi-
cients evaluated at the left bound of the integration interval. Then, the the-
oretical correction was a sine function with time-varying Fourier coefficients,
corresponding to the difference between time-varying and the constant en-
velopes, i.e. (uth(t) − uth(tn), vth(t) − vth(tn)). Therefore we can deduct that,
if the system comes back to steady-state, this difference tends toward zero as
u̇th(t), v̇th(t) → 0. Finally, this means that the theoretical correction naturally
tends towards zero and so the corresponding injection of error.

• LTE
X̄εuv

n
n corresponds to the injection of error due to the error done on the

Fourier coefficients which could be large during transients but should tend
toward zero when the system comes back to steady-state. It is thus necessary to
have an accurate and especially a convergent estimator of the Fourier coefficient
in order to get optimal performances.
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This recursive sequence can be rewritten as

εn+1 = ηnηn−1...η0ε0 + ηnηn−1...η1μ0LTESP M
0 + ηnηn−1...η2μ1LTESP M

1 + ...

+ ηnμn−1LTESP M
n−1 + μnLTESP M

n

with LTESP M
n = LTE

δth,n
n − LTE

X̄εuv
n

n . By introducing the convention ηn+1 = 1, this sum
can be rewritten in a more compact form as

εn+1 =
n+1∑
k=1

⎡
⎣n+1∏

j=k

ηj

⎤
⎦μk−1LTESP M

k−1 +
⎡
⎣n+1∏

j=0
ηj

⎤
⎦ ε0 (6.25)

Therefore, as λ < 0, the global error can be upper-bounded by a constant which is
independent from the step size since there exists η̃ > maxj ηj such as η̃ ≤ 1 and
μ̃ > maxj μj such as μ̃ ≤ 1.

Furthermore, the formula (6.14) enables to compare the SPM with the classical trapezoidal
formula, whose global error is given by

εT R
n+1 = ηnεT R

n + μnLTEXth
n (6.26)

Actually, if we use the same step sequence for the classical Trapezoidal formula and the
SPM (which is never done in practice as the aim of the SPM is to use larger steps rather
than to be more precise, since we use an adaptive step size strategy which adapts the
time step to keep the global error close to a fixed tolerance), we only have to compare the
local injection of error of each method, i.e.

eSP M
n+1 = LTEδth,n

n − LTE
X̄εuv

n
n

eT R
n+1 = LTEX

n = LTEδth,n
n + LTEX̄th,n

n

So, if we assume that the relative error on the Fourier coefficients is small enough i.e.
if ||εuv

n || �
√

u2
th,n + v2

th,n, which is generally true, the SPM is more accurate than the
trapezoidal formula. Indeed, if the Fourier coefficients used in the SPM are too biased
or noisy, it would likely mean that the system is facing a strong EMT transient, which
the SPM is not designed for. However, as mentioned above, this actually means that the
SPM will use larger step size than the classical trapezoidal formula since it is based on
an adaptive step size strategy.

6.3.4 Step size adaptation

In this part, we present hints for investigating the step size adaptation in response to
Fourier coefficients errors. We will focus on the local truncation error, so we assume
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that the global error at time tn is equal to zero, i.e. εn = 0 and X(j)
n = X

(j)
th (tn). Our

objective is to verify if the local adjustment of the step size hn enables the integration
step on the correction term δ to compensate the Fourier coefficients error (εu

n, εv
n) so that

the local truncation error on the global solution remains under the chosen tolerance, i.e.
||εn+1|| < TOL. To do this, we could use the following methodology:

1. Considering the above-described input data: the global solution is exact at time tn so
that X(j)

n = X
(j)
th (tn) and the erroneous Fourier coefficients (un, vn) = (uth,n, vth,n) +

(εu
n, εv

n).
2. The local initial correction term have an error which is equal, in steady-state, to

εδ+
n = −Xεn(tn).

3. Compute the correction term at next time tn+1, i.e. δ+
n+1, and deducing the associ-

ated integration error εδ−
n+1.

4. By assuming that the step size adjustment enables to accurately control the global
error on the correction term, evaluating the maximum step size hn+1 such as |εδ−

n+1| ≤
TOL.

5. Deducing the global error on the complete solution εn+1 from those on the correc-
tion term εδ−

n+1 and those on the periodic function X̄εuv
n

(tn+1) with the estimated
maximum step size hn+1 and verifying that ||εn+1|| ≤ TOL.

6.4 Theoretical results on the final estimator

The results obtained in the previous section partially show that the adaptive step size
integration performed on the correction term enables to control the global error. In
particular, the methodology is done so that it can compensate the error introduced by
the periodic function, for instance when the Fourier coefficients are biased, which may
be the case when the system is in transients. Hence, in this section, we focus on the
estimator, by deriving a global formula for the Fourier coefficients updates when it is
applied to our test equation at first and then deducing its particular behavior when the
system is in steady-state and in transients. Indeed, in the considered case, the global
formula suggests that the Fourier coefficients updates can be decomposed into two parts:
one involving the difference with their asymptotic value and the other corresponding to
a transient term.

6.4.1 Derivation of the global formula

Our objective is firstly to derive a global formula for the Fourier coefficients when the
SPM is applied to the studied equation. By this way, the estimator particular behavior
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in steady-state and during transients could then be deduced.

Let us recall the final estimator formula⎡
⎣un+1

vn+1

⎤
⎦ =

⎡
⎣un

vn

⎤
⎦−

⎡
⎣Huu

n Huv
n

Hvu
n Hvv

n

⎤
⎦−1 ⎡⎣gu

n

gv
n

⎤
⎦ (6.27)

where Hn and gn are respectively an approximation of the Hessian matrix of the objective
function R(u, v) defined in (5.53) and its gradient, whose formulas are introduced in the
section 5.4.

Our scalar equation with an oscillating forcing term (5.5) can be rewritten in implicit
form as

F (t, X(t), Ẋ(t)) = Ẋ(t) − λX(t) − b̄(t) (6.28)

By injecting the current periodic function X̄n(t) into this residual function, we obtain
the residual function corresponding to the stationarity measurement with reference to the
prior steady-state trajectory:

ρ̄n(t) = ˙̄Xn(t) − λX̄n(t) − b̄(t) (6.29)

And the partial-derivatives of the DAE residual function, that are used in the estimator,
are given by

∂Xs ρ̄n(t) = −λ (6.30)

∂Ẋs
ρ̄n(t) = 1 (6.31)

Hence, when applied to the differential equation (5.5), the matrix corresponding to the
Hessian matrix of the objective function within the estimator linear system is composed
of

Huu
n =

∫ tn+1+T

tn+1
[−λ sin(ωt) + ω cos(ωt)]2 = T

2 (λ2 + ω2) (6.32)

Hvv
n =

∫ tn+1+T

tn+1
[−λ cos(ωt) − ω sin(ωt)]2 = T

2 (λ2 + ω2) (6.33)

Huv
n =

∫ tn+1+T

tn+1
[−λ sin(ωt) + ω cos(ωt)] [−λ cos(ωt) − ω sin(ωt)] = 0 (6.34)

Hvu
n = Huv

n = 0 (6.35)
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And the vector corresponding to its gradient is given by

gu
n =

∫ tn+1+T

tn+1
[−λ sin(ωt) + ω cos(ωt)]

[ ˙̄Xn(t) − λX̄n(t) − b̄(t)
]

dt (6.36)

= T

2 (λ2 + ω2)(un − u∞) + g̃u
n (6.37)

gv
n =

∫ tn+1+T

tn+1
[−λ cos(ωt) − ω sin(ωt)]

[ ˙̄Xn(t) − λX̄n(t) − b̄(t)
]

dt (6.38)

= T

2 (λ2 + ω2)(vn − v∞) + g̃v
n (6.39)

where g̃u
n and g̃v

n are transient terms that tend toward zero when the system returns to
steady-state. Indeed, the oscillating forcing term defined in (5.6) can be rewritten as a
sinusoid with time-varying Fourier coefficients, i.e. b̄(t) = ub̄(t) sin(ωt) + vb̄(t) cos(ωt).
More precisely, its Fourier coefficients contain a constant term, associated to the steady-
state, and a time-varying term, since

ub̄(t) = −λu∞ − ωv∞ − ω(v0 − v∞)eλt

vb̄(t) = −λv∞ + ωu∞ + ω(u0 − u∞)eλt

To distinguish them, we introduce ũb̄(t) = −ω(v0 −v∞)eλt and ṽb̄(t) = ω(u0 −u∞)eλt. Let
us detail the computation of g̃u

n. So, we can show that

g̃u
n = λ

∫ tn+1+T

tn+1
ũb̄(t) sin2(ωt)dt + λ

∫ tn+1+T

tn+1
ṽb̄(t) sin(ωt) cos(ωt)dt

− ω
∫ tn+1+T

tn+1
ũb̄(t) sin(ωt) cos(ωt)dt − ω

∫ tn+1+T

tn+1
ṽb̄(t) cos2(ωt)dt

= λ

[
ũb̄(t)

λ2(1 − cos(2ωt)) − λ(2ω sin(2ωt)) + 4ω2

2(λ3 + 4λω2)

]tn+1+T

tn+1

+ λ

[
ṽb̄(t)

λ sin(2ωt) − 2ω cos(2ωt)
2(λ2 + 4ω2)

]tn+1+T

tn+1

− ω

[
ũb̄(t)

λ sin(2ωt) − 2ω cos(2ωt)
2(λ2 + 4ω2)

]tn+1+T

tn+1

− ω

[
ṽb̄(t)

λ2(1 + cos(2ωt)) + λ(2ω sin(2ωt)) + 4ω2

2(λ3 + 4λω2)

]tn+1+T

tn+1

Then, for simplifying this equation, we use the fact that the time-derivative of ũb̄ and
ṽb̄ are given by: ˙̃ub̄(t) = λũb̄(t) and ˙̃vb̄(t) = λṽb̄(t). In addition, we have the following
relations between these Fourier coefficients and those of the theoretical solution: ũb̄(t) =
−ω(vth(t) − v∞) and ṽb̄(t) = ω(uth(t) − u∞). To finish, the difference between the value
of the theoretical Fourier coefficients and their asymptotic value is linked to their time-
derivative by: uth(t) − u∞ = u̇th

λ
and vth(t) − v∞ = v̇th

λ
. Finally, the different terms of g̃u

n
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can be rewritten as:

g̃u
n = λ

2(λ3 + 4λω2)

[
−ω(1 − cos(2ωt))v̈th(t) + (2ω2 sin(2ωt) − 4ω3

λ
)v̇th(t)

]tn+1+T

tn+1

+ λ

2(λ2 + 4ω2)

[
(ω sin(2ωt) − 2ω2 cos(2ωt)

λ
)u̇th(t)

]tn+1+T

tn+1

− ω

2(λ2 + 4ω2)

[
(−ω sin(2ωt) + 2ω2 cos(2ωt)

λ
)v̇th(t)

]tn+1+T

tn+1

− ω

2(λ3 + 4λω2)

[
ω(1 + cos(2ωt))üth(t) + (2ω2 sin(2ωt) + 4ω3

λ
)u̇th(t)

]tn+1+T

tn+1

Identically, we can prove that

g̃v
n = λ

2(λ2 + 4ω2)

[
(−ω sin(2ωt) + 2ω2 cos(2ωt)

λ
)v̇th(t)

]tn+1+T

tn+1

+ λ

2(λ3 + 4λω2)

[
ω(1 + cos(2ωt))üth(t) + (2ω2 sin(2ωt) + 4ω3

λ
)u̇th(t)

]tn+1+T

tn+1

+ ω

2(λ3 + 4λω2)

[
−ω(1 − cos(2ωt))v̈th(t) + (2ω2 sin(2ωt) − 4ω3

λ
)v̇th(t)

]tn+1+T

tn+1

+ ω

2(λ2 + 4ω2)

[
(ω sin(2ωt) − 2ω2 cos(2ωt)

λ
)u̇th(t)

]tn+1+T

tn+1

So, in this form, we can see that these terms directly depend on the theoretical Fourier
coefficients time-derivatives u

(j)
th (t) and v

(j)
th (t), that tend toward zero when the system is

in steady-state.

6.4.2 Convergence in steady-state

Proposition 4. In steady-state, the final SPM estimator applied to the problem (5.5)
is convergent which means that its bias tends toward zero, i.e. (εu

n, εv
n) → 0.

Proof. From the global estimator formula, we can deduce that the estimator is exact
in steady-state. Indeed, as u

(j)
th (t), v

(j)
th (t) → 0 for j ≥ 1, the terms g̃u

n and g̃v
n vanish in

steady-state. The Fourier coefficients updates computed by the estimator are finally given
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by:
⎡
⎣Δu

n+1

Δv
n+1

⎤
⎦ = −

⎡
⎣Huu

n Huv
n

Hvu
n Hvv

n

⎤
⎦−1 ⎡⎣gu

n

gv
n

⎤
⎦ (6.40)

= − 2
T (λ2 + ω2)

⎡
⎣T

2 (λ2 + ω2)(un − u∞)
T
2 (λ2 + ω2)(vn − v∞)

⎤
⎦ (6.41)

=
⎡
⎣u∞ − un

v∞ − vn

⎤
⎦ (6.42)

i.e. the estimated Fourier coefficients are exact since

(un+1, vn+1) = (un, vn) + (u∞ − un, v∞ − vn) = (u∞, v∞) (6.43)

6.4.3 Behavior during transients

From the previously proven formula, we also can see that the estimated Fourier coeffi-
cients are biased during transients. This result is logical since the idea of this estimator is
to compute Fourier coefficients minimizing an energy corresponding to a measurement of
the system stationarity. However, the formula also shows that the bias with reference to
the asymptotic values can be majored by the time-derivatives of the theoretical Fourier
coefficients. Hence, the estimator remains stable.

Proposition 5. During transients, the Fourier coefficients update transient term com-
puted by the final SPM estimator applied to the problem (5.5) is bounded and decays so
that it tends toward zero when the system tends toward steady-state.

Proof. From the global formula derived in the first subsection, we can deduce the following
bound for the transient term g̃u

n:

|g̃u
n| ≤ |λ|ω|v0 − v∞|eλtn+1 |2λ2 + 2ω|λ| + 4ω2

|λ|3 + 4|λ|ω2

+ |λ|ω|u0 − u∞|eλtn+1 | |λ| + 2ω

λ2 + 4ω2

+ ωω|v0 − v∞|eλtn+1 | |λ| + 2ω

λ2 + 4ω2

+ ωω|u0 − u∞|eλtn+1 |2λ2 + 2ω|λ| + 4ω2

|λ|3 + 4|λ|ω2
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and identically

|g̃v
n| ≤ |λ|ω|v0 − v∞|eλtn+1 | |λ| + 2ω

λ2 + 4ω2

+ |λ|ω|u0 − u∞|eλtn+1 |2λ2 + 2ω|λ| + 4ω2

|λ|3 + 4|λ|ω2

+ ωω|v0 − v∞|eλtn+1 |2λ2 + 2ω|λ| + 4ω2

|λ|3 + 4|λ|ω2

+ ωω|u0 − u∞|eλtn+1 | |λ| + 2ω

λ2 + 4ω2

As an opening, for further developments, the problem would be also to properly define
the error on the Fourier coefficients in transients:

• Instantaneous value, i.e. uth(tn+1) and vth(tn+1)
• Mean value, i.e. ūth(tn+1) =

∫ tn+1+T
tn+1 uth(t)dt and v̄th(tn+1) =

∫ tn+1+T
tn+1 vth(t)dt

To finish, by considering a test containing a perfect generator, a transmission line and a
variable resistance, we can show that the computed Fourier coefficients are directly linked
to the classical phasor solution. Indeed, in the objective function, the non-oscillating
components are replaced by their last instantaneous value while, for the oscillating com-
ponents, the Fourier coefficients are assumed to be constant and so their time-derivative
are set to zero.

6.5 Numerical results

In this section, we present SPM performances results on the studied test case (5.5). The
used linear coefficient value of the associated equation is set to λ = −1

5T
. For recall,

its solution is a sinusoid whose envelope exponentially decays. Therefore, it enables to
illustrate the investigated properties of the SPM since the system is in transients at the
beginning of the simulation and then progressively goes to steady-state. As explained in
this chapter, the main objective of the SPM is to optimize the simulations performances
by enabling the use of large time steps when the system is in steady-state while keeping
a fine control on the numerical error, especially when the system is in transient during
which the performances of the method are thus expected to be dramatically reduced.

Our results focus on three main aspects:
• The convergence of the Fourier coefficients: the bias of the estimated Fourier coeffi-

cients is expected to be potentially high during the transient phase of the simulation
but should then decay as the time-derivatives of the theoretical Fourier coefficients
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Figure 6.1: Results obtained with the SPM for TOL = 1.e-6. Top: Fourier coefficients
and global solution error (on the abscissa: time in seconds, on the ordinate: Fourier
coefficients and global solution error in arbitrary units), down: step size (on the abscissa:
time in seconds, on the ordinate: step size in seconds).

tend toward zero. Consequently, in steady-state, the estimated Fourier coefficients
should be very close to the theoretical asymptotic values.

• The global error: it should remain lower or close to the chosen tolerance. More
precisely, in the light of the results presented in the section 6.3.3, the local numerical
error injection should be the highest during transients because of the contributions
of, on the one hand, the theoretical local correction term time-variations and, on
the other hand, the Fourier coefficients error which might be important. On the
contrary, when the system is in steady-state, the local error injection should be very
low and so the global error should be progressively damped by the solver.

• The step size adjustment: when the system is in transients, the step size should be
low in order to compensate the potentially high local error injection as mentioned
above. In a second time, the step size should progressively increase to reach high
values while the system tends toward its steady-state since the Fourier coefficients
estimator bias and so the correction term should be damped.

Then, the figure 6.1 is divided into two parts:
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• The illustration at the top shows the Fourier coefficients error (in blue) and the
global error (in red) during the simulation time with reference to the chosen tolerance
(in black) in order to highlight the control of the numerical error by the SPM.

• The illustration at the bottom shows the step size during the simulation which
should reach high values when the Fourier coefficients error and so the global error
are significantly lower than the chosen tolerance in the figure at the top.

Figure 6.2: Results obtained with the SPM for several tolerances (green: 1.e-3, blue:
1.e-4, black: 1.e-5, red: 1.e-6). Top: Fourier coefficients error (on the abscissa: time
in seconds, on the ordinate: Fourier coefficients error in arbitrary units), middle: global
error (on the abscissa: time in seconds, on the ordinate: global error in arbitrary units),
down: step size (on the abscissa: time in seconds, on the ordinate: step size in seconds).

Then, the presented results indicate that the SPM has the wanted global behavior.
Indeed, we can see that the Fourier coefficients error dramatically decay when the
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system reaches is in steady-state and so the step size increases to reach very high
values. In particular, figure 6.2 shows that this behavior is obtained for all the tested
tolerances. In this figure, an other interesting point to note is that the Fourier coefficients
error does actually not seem correlated to the used tolerance. This result is logical
since the considered scalar test case only contains an oscillating solution. Then, the
Fourier coefficients updates only depend on their previous value and on problem-related
theoretical quantities (e.g. the theoretical Fourier coefficients, their time-derivatives
and their asymptotic values) but not on numerically integrated data, which would be
affected by the tolerance choice. That is why further developments should consider a
vector test case composed of both oscillating and non-oscillating components. Indeed,
in such a system, as the non-oscillating components play the role of parameters in the
optimization problem that is approximately solved by our estimator, the computed
Fourier coefficients updates might be impacted by the tolerance choice. The optimization
problem sensitivity to the non-oscillating components precision could then be investigated.

Concerning the control of the error, we can see that the step size varies within a wide
range of values: in the beginning of the simulation, as the system is in transients, it
remains very low in order the method to catch the solution envelope dynamics and
it progressively increases while the system tend toward its steady-state. When the
theoretical Fourier coefficients time-derivatives are negligible, the step size reaches its
maximum value (hmax = 10s). However, our results (see figure 6.3) also show that the
global error can be greater than the chosen tolerance during transients. This tolerance
crossing is particularly visible when using low tolerances such as TOL=1.e-6. Thus, the
step size adjustment strategy should probably be modified, for instance by changing
the error constant used for estimating the local truncation error within the numerical
integrator, in order the method to better damps the local injection of numerical error
during transients. But it means that a potentially much higher number of iterations is
to expect. In spite of this tolerance crossing issue, the error seems controlled in that
sense that it remains stable and the convergence of the numerical solution toward the
theoretical solution is regular.

To conclude, in our theoretical and numerical results light, the SPM has the expected
properties on the system (5.5). In particular, even if some tuning might be necessary
still, the step size adaptation globally enables to catch the investigated transients in the
beginning of the simulation and to drastically optimize the solver performances once the
system is in steady-state. The step size varies within a very wide range of values as it
can decrease until a few tens of microseconds while its maximum value is ten seconds.
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Figure 6.3: Up: Ratio between the global error and the tolerance (on the abscissa: time
in seconds, on the ordinate: global error scaled by the tolerance in arbitrary units) for
different tested tolerances. Down: idem with a focus on the beginning of the simulation
(during transients). This quantity should ideally remain lower than one.

This results from the particularly fast Fourier coefficients estimator convergence. As an
opening, this theoretical SPM validation could be pursued considering non-linear systems
with both oscillating and non-oscillating solutions and also aim at developing a robust
mathematical criterion for switching from a classical solver to the SPM (and vice versa)
in order to efficiently deal with strong EMT phenomena.
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In this chapter, IDASPM, our implementation of the SPM into IDA, is presented. IDA
is the implicit differential algebraic equations solver from the SUNDIALS library [34]. It
has been developed by the Lawrence Livermore National Laboratory, which still main-
tains its implementation. It is a modern version of the solver DASSL [49], which is an
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industrially validated implementation of the adaptive step size Backward-Differentiation-
Formula (BDF) [6]. That’s why IDASPM also uses the BDF as basic integration scheme.
As it does not require a particular type of predictor or corrector, the SPM method can
actually be implemented in any adaptive time step solver. For instance, a Scilab code has
been written for testing the SPM based on the mixed Trapezoidal Formula - Backward-
Differentiation-Formula, as presented in the previous part. For implementing the SPM
into SUNDIALS IDA, the idea has been to apply the classical integration procedure to
the SPM correction term in order to solve the local DAE problem associated to the local
SPM periodic function for deducing the global solution in a second time. SPM-specific
functions have been implemented separately, e.g. for the Fourier coefficients estimator.
At this chapter end, some optimizations made to the implementation focusing on the
estimator and the Jacobian evaluation function are presented.

7.1 Basic integration scheme modification

In SUNDIALS IDA, whose algorithm is detailed in [33], the DAE system to solve is
expressed in full-implicit form:

F (t, X(t), Ẋ(t)) = 0 (7.1)

The first step is to inject the SPM decomposition for the time interval [tn, tn+1] in order
to obtain the local DAE system on the correction term δ. So, first of all, as mentioned
in chapter 3, the Fourier coefficients un and vn are fixed for the time interval [tn, tn+1].
Then, we can define Φn : R × Rd × Rd → Rd, the local DAE function associated to the
equations on δ:

Φn(t, δ, δ̇) = F (t, X̄n(t) + δ, ˙̄Xn(t) + δ̇) (7.2)

The q-order adaptive step size BDF consists in substituting the time derivative of the
solution by the following approximation:

Ẋn+1 ≈ 1
hn

q∑
i=0

αn,iXn+1−i (7.3)

where hn = tn+1−tn. As for the classical BDF, the fixed-point problem on δn+1 is obtained
by applying the BDF discretization formula (7.3) to approximate δ̇n+1:

δ̇n+1 ≈ 1
hn

q∑
i=0

αn,iδn+1−i (7.4)

In this equation, δn+1−i = Xn+1−i − X̄n(tn+1−i). Indeed, the DAE function associated to
the correction term is locally defined as it depends on the Fourier coefficients un and vn.
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Hence, at the beginning of each time step, the history of δ is updated for taking into
account the Fourier coefficients new values. By this way, the consistency of δ is ensured
with Φn.

By injecting the discretization (7.3) of Ẋn+1 into (7.1), the solution at next time step tn+1

can be obtained by solving the following fixed-point problem:

G(Xn+1) = F
(

tn+1, Xn+1,
αn,0

hn

Xn+1 + βn

)
(7.5)

where βn = 1
hn

∑q
i=1 αn,iXn+1−i corresponds to the predicted part of Xn+1 time derivative.

The Jacobian of this residual function is given by

JG(Xn+1) = ∂F

∂X

(
tn+1, Xn+1,

αn,0

hn

Xn+1 + βn

)
(7.6)

+ αn,0

hn

∂F

∂Ẋ

(
tn+1, Xn+1,

αn,0

hn

Xn+1 + βn

)
(7.7)

Similarly by applying this integration scheme (7.4) to the differential algebraic equation
(7.2), the implicit problem associated to the correction term is gotten:

Γn(δn+1) = Φn

(
tn+1, δn+1,

αn,0

hn

δn+1 + βδ
n

)
(7.8)

= F
(

tn+1, X̄n(tn+1) + δn+1,
˙̄Xn(tn+1) + αn,0

hn

δn+1 + βδ
n

)
(7.9)

where βδ
n = 1

hn

∑q
i=1 αn,iδn+1−i and whose Jacobian matrix can be directly evaluated from

those of the original system:

JΓn(δn+1) = ∂F

∂X

(
tn+1, X̄n(tn+1) + δn+1,

˙̄Xn(tn+1) + αn,0

hn

δn+1 + βδ
n

)
(7.10)

+ αn,0

hn

∂F

∂Ẋ

(
tn+1, X̄n(tn+1) + δn+1,

˙̄Xn(tn+1) + αn,0

hn

δn+1 + βδ
n

)
(7.11)

Once δn+1 is computed, the global solution Xn+1 is directly obtained from the SPM
decomposition:

Xn+1 = X̄n(tn+1) + δn+1 (7.12)

103



7. SPM integration into SUNDIALS IDA

 

 

 

 
 

 

  

 

 

 

 

 

 

 

 

 
 

 
 

 

Figure 7.1: Modification of the IDA general algorithm for integrating the SPM: the
left part in blue corresponds to the standard IDA algorithm and the right part in green
details the SPM-specific operations. As we can see IDASPM really relies on the IDA
algorithm for the integration step. The only difference with IDA is that this integration
is performed on δ instead of X, in order to deduce this latter in a second time. The only
really SPM-specific operations are the Fourier coefficients loading and estimation, the
continuity condition and the call to the extended Jacobian evaluation function in order
to compute the partial-derivatives of the DAE residual function.
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7.2 IDA algorithm modification

In the previous section, we focused on the impact of the SPM on the IDA integration
scheme, from a mathematical point-of-view. The resulting modifications (that are sum-
marized in the figure 7.1) mainly affect the variable on which the integration is performed
as the idea is essentially to apply the standard IDA integration process to δ instead of X.
Some additional operations are required, e.g. for the continuity condition, the global solu-
tion deduction and the Fourier coefficients estimation. In this section, the SPM algorithm
is presented within the history storage formalism that is used by IDA. This affects the
expression of classical operations performed by the adaptive step size predictor-corrector
solver. Then, we present the estimator algorithm and finish with the global IDASPM
algorithm.

7.2.1 history storage specificity

In IDA, the solution history is stored from modified divided-differences [23], that are
referred as φn:

φn,j =
⎡
⎣ j∏

l=0
ψn,l

⎤
⎦ [Xn, Xn−1, ..., Xn−j] (7.13)

with

ψn,j =

⎧⎪⎨
⎪⎩

tn − tn−j = ∑j−1
l=0 hn−l if j ≥ 1

1 if j = 0
(7.14)

[Xn, Xn−1, ..., Xn−j] is the divided-difference, whose construction rule is

[Xn] = Xn (7.15)

[Xn, Xn−1] = Xn − Xn−1

tn − tn−1
(7.16)

[Xn, ..., Xn−j] = [Xn, ..., Xn−j+1] − [Xn−1, ..., Xn−j]
tn − tn−j

(7.17)

For the SPM implementation into SUNDIALS IDA, the main difficulty concerning the
integration step was to properly adapt the SPM to the history storage used in IDA.
Indeed, in our initial SPM implementation, the history was not stored in the modified
divided-differences formalism but in Nordsieck’s formalism [46], which consists in storing
an approximation of the Taylor development of the solution:

�Xn+1 =
[
Xn+1 hnẊn+1

h2
n

2 Ẍn+1 . . .
hq

n

q! X
(q)
n+1

]T

(7.18)

In this vector, X
(j)
n+1 is an approximation of the j-th time-derivative of Xn+1, with

j = 1, ..., q, whose expression is given by the used integration scheme. For recall, in
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the SPM, the solution is decomposed as the sum of a periodic parametric function that
we note X̄n and a correction term δ for each time integration interval, i.e. for t ∈ [tn, tn+1],
X(t) = X̄n(t) + δ(t) with X̄n(t) = un sin(ω0t) + vn cos(ω0t). And so, when the Fourier
coefficients (un, vn) change, in order to ensure the continuity of the interpolation poly-
nomial corresponding to the integration scheme, the Nordsieck’s history vector has to be
updated from the following formula that we refer as continuity condition:

�δn = �Xn − �̄Xn (7.19)

where �Xn is the global solution history which comes from the numerical integration and
is globally defined, and �̄Xn is periodic function history which is locally defined and simply
obtained by evaluating the periodic function and its time-derivatives at time tn:

�̄Xn =
[
X̄n(tn) hn

˙̄Xn(tn) h2
n

2
¨̄Xn(tn) . . .

hq
n

q! X̄(q)
n (tn)

]T

(7.20)

which is very straightforward as the Fourier coefficients are locally considered as constant
values, so X̄(j)

n (t) is simply given by

X̄(j)
n (t) = ωj

[
un sin

(
ωt + j

π

2

)
+ vn cos

(
ωt + j

π

2

)]
(7.21)

The history �Xn, or �δn in the SPM context, enables to construct the interpolation polyno-
mial corresponding to the chosen predictor-corrector integration scheme. Once the inte-
gration step with the predictor-corrector scheme has been performed and so the correction
term δn+1 has been computed, the correction term Nordsieck vector �δn+1 is updated from
the approximation formulas (4.25) seen in chapter 4. These formulas are generally based
on the prediction error Δn+1 = δn+1 − δ̂n+1. To finish, the solution Nordsieck vector �Xn+1

can be directly deduced by applying the SPM decomposition:

�Xn+1 = �δn+1 + �̄Xn+1 (7.22)

where the Nordsieck vector corresponding to the periodic part of the solution �̄Xn+1 is
simply evaluated at next time step tn+1 as below:

�̄Xn+1 =
[
X̄n(tn+1) hn

˙̄Xn(tn+1)
h2

n

2
¨̄Xn(tn+1) . . .

hq
n

q! X̄(q)
n (tn+1)

]T

(7.23)

These mathematical operations can be done since Nordsieck’s formalism enables to per-
form linear operations, which is due to the linearity of the time-differentiation operator.
Then, �xn +�yn = �(x + y)n. The same linearity property is verified in the modified divided-
difference formalism, i.e. φx

n +φy
n = φx+y

n . Thus, for integrating the SPM into SUNDIALS
IDA, the continuity relation and the global solution update can be rewritten using the
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modified divided-difference vectors of the solution, the periodic function and the correc-
tion term:

φδ
n = φX

n − φX̄n
n (7.24)

φX
n+1 = φδ

n+1 + φX̄n
n+1 (7.25)

In addition, the periodic function modified divided-difference vector can be decomposed as
below by separating the Fourier coefficients from the time-dependent sine and cosine func-
tions. More precisely, the idea is to store the modified-differences vector of the sine and
cosine functions separately and to multiply them by their respective Fourier coefficients:

φX̄n
n = unφs̄n

n + vnφc̄n
n where

⎧⎪⎨
⎪⎩

φs̄n
n,j = ∏j

l=1 ψn,l[sin(ωtn), sin(ωtn−1), ..., sin(ωtn−j)]

φc̄n
n,j = ∏j

l=1 ψn,l[cos(ωtn), cos(ωtn−1), ..., cos(ωtn−j)]
(7.26)

and

φX̄n
n+1 = unφ

s̄n+1
n+1 +vnφ

c̄n+1
n+1 where

⎧⎪⎨
⎪⎩

φ
s̄n+1
n+1,j = ∏j

l=1 ψn+1,l[sin(ωtn+1), sin(ωtn), ..., sin(ωtn+1−j)]

φ
c̄n+1
n+1,j = ∏j

l=1 ψn+1,l[cos(ωtn+1), cos(ωtn), ..., cos(ωtn+1−j)]
(7.27)

From this decomposition, applying the change of Fourier coefficients is straightforward.
However, this approach is not valid anymore if we consider a varying angular frequency,
i.e. ωn instead of ω.

Finally, our strategy for integrating the SPM methodology into SUNDIALS IDA algorithm
is simply to perform the classical operations of IDA (interpolating polynomial construc-
tion, prediction, correction, step size adjustment, ...) on the correction term δ instead of
the global solution X and then to deduce the global solution X from this correction term
and the current periodic function X̄n.

7.2.2 Prediction step

Thanks to the previously presented continuity condition (7.19), the consistency of the
interpolation polynomial δ̂n with the local DAE problem Φn can be ensured. In Nordsieck’s
formalism, this interpolating polynomial just corresponds to the Taylor development of
the solution:

δ̂n(t) = δn + (t − tn)δ̇n + (t − tn)2

2 δ̈n + ... + (t − tn)q

q! δ(q)
n (7.28)
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In IDASPM, the interpolating polynomial on δ is based on the divided-difference storage
and is expressed as:

δ̂n(t) = δn + (t − tn)[δn, δn−1] + ... + (t − tn)(t − tn−1)[δn, δn−1, δn−2] + ... (7.29)

+ (t − tn)(t − tn−1)...(t − tn−q+1)[δn, δn−1, δn−2, ..., δn−q] (7.30)

whose j-th term is equal to

δ̂n,j(t) =
⎡
⎣j−1∏

l=0
(t − tn−l)

⎤
⎦ [δn, δn−1, δn−2, ..., δn−j] (7.31)

By using the previously defined quantities in the modified divided-differences formalism,
this term can be rewritten as:

δ̂n,j(t) =
⎡
⎣j−1∏

l=0

t − tn−l

ψn,l+1

⎤
⎦φδ

n,j (7.32)

Then, the prediction consists in extrapolating the interpolation polynomial based on the
data available until time tn to the time tn+1. In other words, the predictions of δn+1 and
δ̇n+1 are computed as below:

δ̂n+1 = δ̂n(tn+1) =
q∑

j=0
φδ∗

n+1,j with φδ∗
n+1,j = βn+1,j+1φ

δ
n,j (7.33)

˙̂
δn+1 = ˙̂

δn(tn+1) =
q∑

j=0
γn+1,j+1φ

δ∗
n+1,j (7.34)

where

βn+1,j =

⎧⎪⎪⎨
⎪⎪⎩

1 if j = 1∏j
l=1

ψn+1,l

ψn,l

else
(7.35)

and

γn+1,j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if j = 1
1
hn

if j = 2
∏j−1

l=1
1

ψn+1,l

else

(7.36)

Finally, the prediction for the global solution is deduced from the SPM decomposition:

X̂n+1 = δ̂n+1 + X̄n(tn+1) (7.37)
˙̂

Xn+1 = ˙̂
δn+1 + ˙̄Xn(tn+1) (7.38)
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7.2.3 Correction step

The correction step consists in solving the previously exposed fixed-point problem, e.g.
with a Newton type algorithm. The classical associated residual function is defined by

G(Xn+1) = F (tn+1, Xn+1, αnXn+1 + β) (7.39)

with
αn = −αs

hn

where αs = −
q∑

j=1

1
j

(7.40)

and
β = ˙̂

Xn+1 − αnX̂n+1 (7.41)

Its Jacobian matrix is given by

JG(Xn+1) = ∂XF (tn+1, Xn+1, αnXn+1 + βn) + αn∂ẊF (tn+1, Xn+1, αnXn+1 + βn) (7.42)

Therefore, in IDASPM, this residual function is equal to

Γn(Xn+1) = Φn(tn+1, δn+1, αnδn+1 + βδ
n) (7.43)

= F (tn+1, δn+1 + X̄n(tn+1), αnδn+1 + βδ
n + ˙̄Xn(tn+1)) (7.44)

with
βδ

n = ˙̂
δn+1 − αnδ̂n+1 (7.45)

And its Jacobian matrix is given by

JΓn(Xn+1) = ∂XF (tn+1, δn+1 + X̄n(tn+1), αnδn+1 + βδ
n + ˙̄Xn(tn+1)) (7.46)

+ αn∂ẊF (tn+1, δn+1 + X̄n(tn+1), αnδn+1 + βδ
n + ˙̄Xn(tn+1)) (7.47)

The previously computed prediction is then used as starting value for the fixed-point algo-
rithm in order to accelerate its convergence, especially as a sufficiently good approximation
is necessary for the Newton algorithm to converge. In addition, an other particularity of
IDA is to use a quasi-Newton algorithm in order to lower the number of Jacobian evalua-
tions. This strategy aims at finding a compromise between the computational cost of the
Jacobian evaluation and the convergence speed. Hence, the Jacobian matrix is updated
if

• The ratio between the current and the previous α coefficients is out of a fixed
interval. As we generally fix the maximum order to 2, this criterion is equivalent to
monitoring the step size variation ratio in our case. By default, this condition is:

αcurrent

αlast update
/∈
[3
5 ,

5
3

]
.
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• The convergence failed non-fatally with the old Jacobian J , for instance if the resid-
ual function norm is greater than the solver tolerance when the maximum number of
iterations is reached which can be due to a small convergence rate. Indeed, the idea
of such a criterion is to avoid that the used Jacobian data lead to an unreasonable
number of Newton iterations.

In output of Newton algorithm, we obtain the corrected solution Xn+1 which enables to
evaluate the prediction error Δn+1 = Xn+1 − X̂n+1 = δn+1 − δ̂n+1. From this quantity, the
history vector can be updated from the formula:

φδ
n+1,q = φδ∗

n+1,q + Δn+1 (7.48)

φδ
n+1,j = φδ∗

n+1,j + φδ
n+1,j+1 for j = q − 1, ..., 0 (7.49)

The global solution history is then deduced from φX
n+1 = φδ

n+1 + φX̄n
n+1.

7.2.4 Step size adjustment

In the adaptive step size q-order BDF, the Local Truncation Error can be roughly esti-
mated by

en+1 =
[
αn,q+1 + αs − α0

n

]
φn+1,q+1 + O(hq+2

n ) (7.50)

≈
[
αn,q+1 + αs − α0

n

]
Δn+1 (7.51)

The step size is accepted by IDA if

max
{
αn,q+1, |αn,q+1 + αs − α0

n|
}

||Δn+1|| ≤ 1 (7.52)

with
α0

n = −
q∑

j=1
αn,j (7.53)

The step size is then updated by multiplying it by the following step size ratio:

r = hnew

hold

= 1
(2En,k)1/q+1 (7.54)

where En,q is the error estimate and is given by

En,q = σn,q+1||φn+1,q+1|| = σn,q+1||Δn+1|| (7.55)

The coefficient σn,q+1 is defined as

σn,q+1 = hq+1
n q!∏q+1

l=1 ψn,l

(7.56)

However, in some cases, the step size adjustment strategy may be more sophisticated.
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7.2.5 Fourier coefficients estimator

Once the integration step has been performed, the Fourier coefficients of the SPM
periodic part can be updated. In our current implementation, this update is done using
the final estimator presented in the end of chapter 5 (section 5.4). Let us recall its basic
principle and the resulting linear system.

The Fourier coefficients are expressed in an incremental form, i.e. un+1 = un + Δu
n+1 and

vn+1 = vn + Δv
n+1, where Δu

n+1 and Δv
n+1 are the updates to compute with the estimator.

As previously exposed, these updates could be computed from any optimizer but, in
the current version of the method, they are computed using a linearization approach
around a prior steady-state trajectory. Finally, our estimation process consists in applying
an iteration of the modified Newton algorithm for minimizing a measurement of the
stationarity of the system, i.e. the objective function is

R(u, v) =
∫ tn+1+T

tn+1

∥∥∥∥∥∥F
⎛
⎝t,

⎡
⎣ X̄s(t)
Xns,n+1

⎤
⎦ ,

⎡
⎣ ˙̄Xs(t)

0

⎤
⎦
⎞
⎠
∥∥∥∥∥∥

2

dt

where X̄s(t) = u sin(ωt) + v cos(ωt) so that the computed Fourier coefficients (un+1, vn+1)
minimize the above objective function. In this equation, R : R2ds → R. We recall that
this estimator leads to the resolution of the following linear system:⎡

⎣Huu
n Huv

n

Hvu
n Hvv

n

⎤
⎦
⎡
⎣Δu

n+1

Δv
n+1

⎤
⎦ = −

⎡
⎣gu

n

gv
n

⎤
⎦

where the sub-matrices Huu
n , Huv

n , Hvu
n , Hvv

n ∈ Rds×ds correspond to an approximation of
the components of the above objective-function Hessian matrix and the right-hand-side
vector composed of gu

n, gv
n ∈ Rds corresponds to its gradient. In consequence, these

components require the evaluation of the DAE system residual function, i.e. F , and
its partial-derivatives, i.e. ∂XF and ∂ẊF . However, as IDA uses the Jacobian matrix
only for the correction step, the evaluation function computes the entire Jacobian
JG = ∂XF + cj∂ẊF and so these two partial-derivatives are not directly accessible.
To tackle this limitation which leads to multiple computationally expensive Jacobian
matrix evaluations, we implemented an extended Jacobian evaluation function which
returns the full Jacobian matrix and the two partial-derivatives in a single call. This
optimization is even more efficient that, at the modeler-level in RTE’s simulation engine,
the two partial-derivatives are computed separately and then added to compute the
entire Jacobian matrix. In order to lower the number of calls to this costly function, we
also chose to update the partial-derivatives used for the estimator only when the main
IDA integration algorithm updates its Jacobian matrix. This point is discussed in more
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details in the next section.

In the SPM specific module, the estimator is implemented as follows:
Algorithm 2: IDASPM estimator algorithm
Non-oscillating components evaluation: Xns ← Xns,n+1 and Ẋns ← 0 ;
for i = 0, i ≤ K, i + + (loop on the time-sample) do

Time-sample: t ← tn+1 + i T
K

where T = 2π
ω

;
Weight for the quadrature rule: w ← T

2K

(
1 + 1i=0|i=K

)
;

Oscillating components evaluation: Xs ← un sin(ωt) + vn cos(ωt) and
Ẋs ← ω(un cos(ωt) − vn sin(ωt)) ;
Residual function evaluation: F ← F (t, X, Ẋ);
Elementary matrices computation: Mu ← sin(ωt)∂XsF + ω cos(ωt)∂Ẋs

F and
Mv ← cos(ωt)∂XsF − ω sin(ωt)∂Ẋs

F ;
Estimator linear system components update: Huu ← Huu + wMT

u Mu ;
Huv ← Huv + wMT

u Mv ;
Hvu ← Hvu + wMT

v Mu ;
Hvv ← Hvv + wMT

v Mv ;
gu ← gu + wMT

u F ;
gv ← gv + wMT

v F ;
Linear system resolution (matrix factorization only if the Jacobian has been updated by

IDA):
⎡
⎣Δu

n+1

Δv
n+1

⎤
⎦ = −

⎡
⎣Huu Huv

Hvu Hvv

⎤
⎦−1 ⎡⎣gu

gv

⎤
⎦

Fourier coefficients update application:
⎡
⎣un+1

vn+1

⎤
⎦ =

⎡
⎣un

vn

⎤
⎦+

⎡
⎣Δu

n+1

Δv
n+1

⎤
⎦
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7.2.6 IDASPM algorithm

Algorithm 3: IDASPM algorithm
initialization: get the user context and the initial condition (t0, X0, Ẋ0) ;
if first step then

check the input data, adjust initial step size h0 ;
initialize the history array: φ0,1 = h0Ẋ0 and φδ

0,1 = h0δ̇0 with δ̇0 = Ẋ0 − ˙̄X0(t0) ;
else

tests: zero-crossing and stop ;
while final time not reached do

if too much time steps performed then exit;
if too much accuracy requested then exit;
update Fourier coefficients (un, vn) ;
while step size not validated do

compute the coefficients of the method ψn+1, αn, αs, α0, βn+1, γn+1, σn+1 ;
update the history array φδ∗

n+1 and φ∗
n+1 ;

set tn+1 = tn + hn ;
prediction: δ̂n+1 and ˙̂

δn+1 ;
global solution deduction: X̂n+1 = δ̂n+1 + X̄n(tn+1) and
˙̂

Xn+1 = ˙̂
δn+1 + ˙̄Xn(tn+1) ;

compute the initial residual F (tn, X̂n+1,
˙̂

Xn+1) ;
initialize the data for Newton’s algorithm: m = 0 and en+1(0) = 0 ;
while Newton’s algorithm not converged do

compute the correction: εn+1(m) = JG(Xn+1(m))−1G(Xn+1(m)) ;
apply the correction: Xn+1(m+1) = Xn+1(m) − εn+1(m) and
Ẋn+1(m+1) = Ẋn+1(m) − αnεn+1(m) ;
compute the total correction: en+1(m+1) = en+1(m) − εn+1(m) ;
compute the residual norm and test the convergence ;
m = m + 1 ;

if step size not accepted then
restore the data: tn, ψn, φn and φδ

n ;
reduce the step size ;

else
exit the step size acceptability loop ;

update the step size, update the data φδ
n+1 and deduce φn+1;
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7.3 Implementation

After having presented the modifications made into the IDA underlying integration scheme
and their effect on its algorithm, this section focuses on the resulting implementation.
The IDASPM architecture and the main data-structures are first introduced and, then,
its impact on the code modules is more detailed. To finish, we present a typical program
skeleton for explaining how to use IDASPM as a solver from the user point-of-view.

7.3.1 Global structure overview

The figure 7.2 gives an IDASPM structure overview. To summarize, the main IDA solver is
implemented within the ida module which contains the integration algorithm (prediction,
correction, step size adjustment, etc) and the solver data are contained in a central data-
structure which is defined in the ida_impl file. At the main solver level, IDA can call
different modules, e.g. for the initial conditions calculation (ida_ic) and the input/output
interface ida_io. Hence, at this general algorithm level, our implementation has mainly
consisted in applying the integration algorithm on the correction term δ instead of the
global solution X.

Figure 7.2: General structure of IDASPM. The blue and yellow boxes respectively
correspond to the modules that are already present in the standard implementation of
IDA and those that have been particularly implemented for the SPM. However, some
modifications have also been made in the initially present modules for instance for applying
the IDA integration scheme on the equations rewritten on the correction term.

One of IDA’s greatest features is to propose a wide variety of linear solvers for solving
the linear systems that arise in Newton-Raphson iterations. In particular, IDA contains
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an implementation of the KLU solver for sparse matrices, which is particularly suited for
power systems applications [11]. The interface between the general IDA algorithm and
the linear solvers is illustrated in the figure 7.3.

Figure 7.3: General structure of the IDA interface with the linear solvers. As IDASPM
requires to access to the Jacobian matrix for the Fourier coefficients estimation step,
its implementation uses either the DENSE or the KLU module. For power systems
applications and especially in RTE’s simulation engine, the KLU is preferred.

Hence, in the correction step, the general solver algorithm executes the Newton-Raphson
iterations by calling generic functions for building and solving the linear system:
initialization, setup and solve. The idea is to store a pointer to the linear solver data
and to call virtual functions corresponding to the elementary operations. Then, from
the appropriate linear solver module, a cast is done for converting this generic pointer
to the chosen linear solver format and specifying these functions (e.g. Jacobian memory
allocation, evaluation, linear system factorization for the direct linear solvers and linear
system resolution). That is why the solver also communicates with specific modules
corresponding to the different usable solvers, e.g. ida_dense and ida_klu. For instance,
in the direct solvers, the linear system setup evaluates the Jacobian matrix and performs
its factorization, and the solve function applies the matrix numerical factorization on the
input right-hand-side vectors. An other important point to note is that these operations
depend on the Jacobian matrix storage format: for instance, a Compressed-Sparse-Row
storage is used for the KLU solver. Hence, for implementing the SPM into IDA,
modifications have been made at the general algorithm level and at the matrix-specific
level for taking into account these two architecture levels of IDA and the specificity of
the matrix storage formats.

Moreover, two additional modules have been implemented: ida_spm and ida_spm_impl.
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The former, ida_spm, contains the SPM-specific functions such as the estimator which
can then be called by IDA at the general solver level. The latter, ida_spm_impl, contains
the main SPM data-structure in which the SPM data are stored, e.g. the oscillating
components index, the system frequency, the Fourier coefficients, etc. A pointer to this
data-structure has been added to the main solver data-structure implemented in ida_impl
for making the interface and enabling the interactions between the standard and SPM-
specific functions and data. This point is presented in more details in the next subsection.

Finally, the most challenging task has been to implement the Fourier coefficients estimator,
which is located in the SPM specific module ida_spm as mentioned above. Indeed, as the
estimator uses the DAE system Jacobian matrix, its implementation depends on the
matrix storage format. That’s why it has been coded for the dense and KLU solvers
but, as this function has to be called from the general integration algorithm, this latter
actually calls a pointer to a generic function for performing the estimation which is then
specified, as it is done for the linear solver operations. In particular, as it requires to solve
a linear system based on the partial-derivatives of the DAE residual function, the interface
with the appropriate linear algebra module is necessary. In our case, as we use a direct
linear solver, we already knew that the linear solver module would automatically store
the Jacobian matrix in order to perform the factorization. Then, the storage format was
either dense or Compressed-Sparse-Row (CSR) leading respectively to the LU or KLU
factorization algorithm.

7.3.2 Main data-structures

As mentioned above, we added a pointer to the SPM data-structure (void *spm_mem) to
the main solver data-structure IDAMem, which contains:

• Problem specification data: DAE residual function, user data, ...
• Solver storage data for the current iteration and the history: divided-differences ar-

ray, associated minor arrays for the previously introduced scalars and the N_Vectors
for the solution, its time-derivative, the Newton correction, the vector distinguishing
the differential and algebraic variables, ...

• Step data: order, step size, discretization coefficients, ...
• Linear solver functions prototypes (initialization, setup, resolution, performances

measurement and memory deallocation) and pointer to the appropriate data-
structure (which depends on the Jacobian matrix storage format and of the chosen
linear solver).

• The variables for computing consistent initial conditions.
• Several counters for checking solver performances.
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• Root-finding data for zero-crossing functions, etc.

Hence, *spm_mem is a generic pointer to a SPM-specific data structure (SPMMem) containing
all the data needed for the SPM, i.e.

• Additional problem specifications such as the number of oscillating components and
the system nominal frequency;

• The SPM solver storage for the iteration and history: divided-differences arrays for
the correction term, the periodic function and the sine/cosine functions, N_Vectors
for the correction term, the periodic part and their time-derivatives, for the Fourier
coefficients and for the vector distinguishing oscillating and non-oscillating compo-
nents.

• Estimator data: N_Vectors for the sampled state, its time-derivative, the resid-
ual function and the objective-function gradient. All these data do not de-
pend on the Jacobian matrix storage. In addition, we introduced generic point-
ers for taking into account the dense or KLU cases: one to the matrix data-
structure *est_mat_mem and another to the estimator update function void
(*idaspmupdatepriormodelparameters)(IDAMem IDA_mem).

To initialize this data-structure, the user only has to properly set the above-mentioned
boolean vector and pulsation, which can be done from a configuration file, as it will be
discussed in the next chapter. In addition, as for any IDA application, the user has to
choose the linear solver to use (dense or KLU).

7.3.3 Brief description of the IDA files impacted by the imple-
mentation of the SPM

In this section, the modifications made for implementing the SPM into the IDA code are
presented in more details. These modifications impacted the following modules:

• include/ida/ida.h and src/ida/ida_io.c: declaration and definition of in-
put/output functions

• include/ida/ida_spm.h: introduction of initialization functions headers to be
used at user-level. In particular, int IDASPMKLUFromFile(void *ida_mem, FILE
*fileptr, int nnz, int sparsetype) is defined. This function initializes the
SPM-specific data-structure of the IDA memory block (void *ida_mem) from the
pointer to a configuration file (FILE *fileptr). The two other parameters (int
nnz and int sparsetype) correspond to KLU-specific data.

• src/ida/ida_impl.h: introduction of the pointer to the SPM data-structure void
*spm_mem into the IDA main data-structure typedef struct IDAMemRec *IDAMem.

• src/ida/ida_spm_impl.h: SPM main file which contains the definition of the SPM-
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specific data-structure and functions
– typedef struct SPMMemRec *SPMMem: previously presented data structure

containing all the SPM-specific data.
– typedef struct EstMatKLUMemRec *EstMatKLUMem: data structure contain-

ing the estimator data for the CSR format with KLU solver. It contains sparse
matrices corresponding to the partial derivatives of the DAE system (∂XF and
∂ẊF ) and work-space for the computations (Mu

n , M v
n for building Hn). To

finish, it contains KLU data used for the solving the associated linear system.
– void IDASPMEvaluateybarkd(IDAMem IDA_mem, realtype tt, int kd,

N_Vector ybarkd): evaluates the periodic function kd-th time derivative
X̄(k)

n (t) at time tt.
– void IDASPMEvaluatePriorModel(IDAMem IDA_mem, realtype tt) and

void IDASPMEvaluatePriorModelphi(IDAMem IDA_mem): respectively evalu-
ates the periodic function (and its time-derivative) and its modified-divided
differences vector.

– void IDASPMEvaluateSolution(IDAMem IDA_mem) and void
IDASPMEvaluateSolutionphi(IDAMem IDA_mem): respectively deduces
the whole solution (and its time-derivative from those of the periodic function
and the correction term) and its modified-differences vector (from those of the
periodic function and the correction term).

– void IDASPMContinuityCondition(IDAMem IDA_mem) and void
IDASPMContinuityConditionphi(IDAMem IDA_mem): respectively applies the
continuity condition to the correction term and its time-derivative (from the
whole solution, the correction term and their respective time-derivative) and
to its modified divided-difference vector (from those of the entire solution and
the periodic function).

– int IDASPMInitSharedFromFile(IDAMem IDA_mem, SPMMem spm_mem,
FILE *fileptr): initializes the SPM data which do not depend on the
Jacobian format from the given configuration file pointer.

– int IDASPMInitEstMemKLU(SPMMem spm_mem, int nnz, int sparsetype):
initializes the estimator data of the SPM which is associated to the KLU
solver (i.e. CSR matrix storage format).

– void IDASPMUpdatePriorModelParameters(IDAMem IDA_mem): update the
periodic function by estimating the Fourier coefficients. It actually uses the
void (*idaspmupdatepriormodelparameters)(IDAMem IDA_mem) pointer to
call the appropriate estimation function, depending on the Jacobian storage
format and solver.

118



7. SPM integration into SUNDIALS IDA

– void IDASPMUpdatePriorModelParametersKLU(IDAMem IDA_mem): specifi-
cation of the above-mentioned function which estimates the Fourier coefficients
by solving the associated linear system with the KLU solver.

• src/ida/ida_spm.c: definition of the above-mentioned functions.
• src/ida/ida.c: modifications of several IDA functions

– void *IDACreate(void): initialization the SPM data-structure in addition.
– static int IDAStep(IDAMem IDA_mem): introduction of the different opera-

tions corresponding to the SPM: Fourier coefficients estimation and loading,
continuity condition, integration of the local DAE on the correction term and
global solution and history update.

– static void IDASetCoeffs(IDAMem IDA_mem, realtype *ck): builds the
interpolation polynomial corresponding to the predictor for the correction term
δ instead of the global solution X.

– static int IDANls(IDAMem IDA_mem): application of the variable step size
predictor-corrector BDF on the correction term instead of the entire solution.

– static void IDAPredict(IDAMem IDA_mem): prediction step on the correc-
tion term δ̂−

n+1 and deduction of the prediction of the entire solution X̂n+1.
– static int IDANewtonIter(IDAMem IDA_mem): correction step on the cor-

rection term for computing δ−
n+1 and deduction of the correction of the entire

solution Xn+1.
– static int IDATestError(IDAMem IDA_mem, realtype ck, realtype

*err_k, realtype *err_km1): local truncation error test on the correction
term instead of the global solution for updating the step size.

– static void IDARestore(IDAMem IDA_mem, realtype saved_t): restores
the correction term modified-difference array for deleting the effect of
IDASetCoeffs above-mentioned.

– static void IDACompleteStep(IDAMem IDA_mem, realtype err_k,
realtype err_km1): updates the step size and order when the result-
ing local truncation error on the correction term passes the error test. In
addition, it prepares the data for the next time step.

– int IDAGetSolution(void *ida_mem, realtype t, N_Vector yret,
N_Vector ypret): computes the whole solution for use at the user-level from
the modified divided-differences arrays of the correction term and the periodic
function.

• src/ida/ida_klu.c: modification of static int IDAKLUSetup(IDAMem
IDA_mem, N_Vector yyp, N_Vector ypp, N_Vector rrp, N_Vector tmp1,
N_Vector tmp2, N_Vector tmp3) for computing the partial-derivatives of the
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DAE system residual function in addition to the entire Jacobian. In particular,
it calls an SPM-specific function (jaceval_expanded(tn, cj, yyp, ypp, rrp,
JacMat, est_matklu_mem->JFnts, est_matklu_mem->JFntsdot, jacdata,
tmp1, tmp2, tmp3)) which enables to computes these three matrices (J = JacMat,
∂XF = est_matklu_mem->JFnts and ∂Ẋ = est_matklu_mem->JFntsdot) in
a single call. Then, it required to define a special Jacobian matrix evaluation
function prototype for extending the initial one (jaceval(tn, cj, yyp, ypp,
rrp, JacMat, jacdata, tmp1, tmp2, tmp3)).

• src/ida/CMakeLists.txt: addition of the ida_spm_impl.h file in the installation
directory include/ida for use in user-level applications.

7.3.4 Program skeleton for using IDASPM

For using IDASPM, the classical procedure of IDA [35] is extended with some specific
operations:

1. Classical IDA parameters: problem dimension d, initial time t0, final time tfinal,
DAE residual evaluation function evalF, DAE Jacobian evaluation function evalJ,
vector distinguishing differential and algebraic variables Id, initial guess for the
consistent initial conditions X0 and X0d, maximum step size hmax, initial step size
h0, relative tolerance relAcc and vector of tolerances vAcc

2. Specific IDASPM parameters (within a text file): the system pulsation omega, vector
distinguishing the solution oscillating and non-oscillating components Is and DAE
extended Jacobian function evalJExtended

3. Creation of the IDA data-structure: IDASPMMem = IDACreate()
4. Initialization of the IDA solver for providing the problem properties (DAE resid-

ual function, initial time and approximation of consistent initial conditions):
IDAInit(IDASPMMem, evalF, t0, X0, X0d)

5. Set the solver tolerance: IDASVtolerances(IDASPMMem, relAcc, vAcc).
6. Set the solver parameters: IDASet*(IDASPMMem, *) (UserData for the user data,

StopTime for the final time tfinal, MaxStep for the maximum step size hmax,
InitStep for the initial step size h0, MaxOrd for the maximum integration scheme
order which is equal to two in our applications, Id for the vector distinguishing the
differential and algebraic variables, ...).

7. Attach the appropriate linear solver, e.g. IDAKLU(IDASPMMem, d, d*d, CSR_MAT);
8. Provide the SPM parameters: IDASPMKLUFromFile(IDASPMMem,

initSPM_fileptr, d*d, CSR_MAT) where initSPM_fileptr is the pointer
to the SPM configuration file in output to fopen("initSPM.txt", "r").

9. Provide the Jacobian matrix evaluation function and its ex-
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tended version: IDASlsSetSparseJacFn(IDASPMMem, evalJ) and
IDASlsSetSparseJacFnExtended(IDASPMMem, evalJExtended) where evalJ
computes J = ∂XF + cj∂ẊF and evalJExtended also returns ∂XF and ∂ẊF , which
is due to the use of the SPM.

10. Refine the initial conditions: IDACalcIC(IDASPMMem, IDA_YA_YDP_INIT,
hIC) where hIC is the step size used for discretizing the time-derivative
Ẋ0. The output consistent initial conditions can then be extracted with
IDAGetConsistentIC(IDASPMMem, X0, X0d).

11. Time loop: for each time step from t0 to tfinal, the function
IDASolve(IDASPMMem, tout, &tret, Xret, Xdret, IDA_ONE_STEP) is called.
tout is the last output point (thus beginning at t0) and tret is the target next
time (which can be adjusted by IDA, that’s why its pointer is given in input). Xret
and Xdret are respectively the output state and its time-derivative at time tret.

12. Free memory: IDAFree(&IDASPMMem) for the solver and N_VDestroy(...) for the
vectors.

7.4 Optimization

With the initial IDASPM implementation, gains of performances did not come up to
our expectations because of its too important computational time by iteration. Finally,
there was no speed up compared to a classical integration with IDA while the number of
iterations was drastically reduced. For instance, on an IEEE 14-bus inspired test case,
using IDASPM led to a greater computational time while the number of iterations was
divided by 400. Moreover, on a Simple Electrical Grid (SEG) test case, the speedup was
significant but could be enhanced. The table 7.1 presents some results for the initial
performances of IDASPM after its interfacing with RTE’s simulation engine. These two
test cases (Simple Electrical Grid and IEEE 14-bus) are further developed in the chapter
9 which contains the results obtained with our implementation.

tol Method SEG IEEE 14-bus
IDA 62822 it. (2.47 sec) 48504 (3.27 sec)

1.e-4 IDASPM 157 it. (0.37 sec) 174 (12.03 sec)
IDA/IDASPM 400 (6.67) 279 (0.27)

IDA 112026 it. (5.26 sec) 116705 (7.90 sec)
1.e-5 IDASPM 290 it. (0.43 sec) 306 (13.76 sec)

IDA/IDASPM 386 (12.23) 381 (0.57)

Table 7.1: Performances obtained with the initial version of IDASPM
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If we consider the computational time by iteration, we can see that it was
• for SEG, 2.4 ms/it. with tol.=1.e-4 and 1.5 ms/it. with tol.=1.e-5;
• for IEEE, 69 ms/it. with tol.=1.e-4 and 45 ms/it. with tol.=1.e-5.

So, our implementation was very sensitive to the problem dimension. One can note that
the computational time is lower when reducing the tolerance on average. This is due to the
IDA management of Jacobian updates. Indeed, while the number of iterations is almost
twice when passing from tol=1.e-4 to tol=1.e-5, there are only 2 additional Jacobian
updates. Then, we used KCacheGrind [72] to profile our implementation performances
and it revealed that two functions almost covered the totality of the solving process:

1. The linear solver setup function, which performs the Jacobian evaluation and fac-
torization. The setup function represented 24.64% of the global computational cost.
In particular, the relative cost of the Jacobian evaluation was 23.02%, i.e. about
93.43% of the setup.

2. The Fourier coefficient update function represented 75.29% of the global computa-
tional cost. In particular the relative cost of the matrix factorization, that is made
for solving the estimator linear system, was 67.20%, i.e. 89.25% of the estimator
cost.

Therefore these results made obvious that, for optimizing the computational cost by
iteration and so the global performances of IDASPM, we had to reduce:

• the computational cost of the estimator linear system construction and resolution;
• the number of calls to the Jacobian matrix evaluation function.

By applying these different optimizations to IDASPM, the computational time by iteration
has been drastically reduced, which has enabled to get much more important speed-
ups with the current version of our implementation. The chapter 9 presents the results
obtained with our industrial implementation prototype and compares the non-optimized
and optimized versions of IDASPM.

7.4.1 Estimator linear system construction and resolution

As previously exposed, the first optimization area aimed at reducing the computational
cost due to the estimator linear system construction and resolution in IDASPM. This
important computational cost was actually due to an insufficient exploitation of the DAE
system Jacobian matrix sparsity in our initial implementation. Let us recall the linear
system appearing in our Fourier coefficients estimator:⎡

⎣Huu
n Huv

n

Hvu
n Hvv

n
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where, for instance

Huu
n =

∫ tn+1+T

tn+1

[
sin(ωt)∂Xs ρ̄n(t) + ω cos(ωt)∂Ẋs

ρ̄n(t)
]T [

sin(ωt)∂Xs ρ̄n(t) + ω cos(ωt)∂Ẋs
ρ̄n(t)

]
dt

The other sub-matrices are built in a similar way, the only difference being the scaling
of the partial-derivatives of ρ (evaluated from those of F ). As the DAE system Jacobian
matrices are commonly very sparse in power system applications, the estimator linear
system matrix is also very sparse since it is based on ∂XsF and ∂Ẋs

F . As a result, our
objective was to change the estimator construction algorithm for better exploiting the
matrices sparsity and to solve the estimator linear system resolution with an efficient
sparse linear solver.

In the initial implementation, a dense matrix was filled for constructing the estimator
linear system from the system sparse Jacobian matrix and so, this linear system
was also built without taking into account the sparsity of ∂XF and ∂ẊF . More
precisely, the construction of the sub-matrices

[
sin(ωt)∂Xs ρ̄n(t) + ω cos(ωt)∂Ẋs

ρ̄n(t)
]

and[
cos(ωt)∂Xs ρ̄n(t) − ω sin(ωt)∂Ẋs

ρ̄n(t)
]

was performed using global loops on all the rows
and columns of , i.e. row = 1, ..., d and col = 1, ..., d, which explored all the matrices
components. Then, a test was done to assess if the corresponding components ∂XFrow,col

and ∂ẊFrow,col were different from zero and, if it was the case, mathematical operations
were executed. Consequently, O(d2) operations were performed while the proportion
of non-zero components in the Jacobian matrix may be less than 1%. For instance, in
one of our test cases, the system dimension was 574, leading to 568516 loop iterations,
while the number of non-zero components was inferior to 2000. That’s why, in the
IDASPM optimized version, the corresponding loop on the Jacobian matrix compo-
nents has been rewritten in order to only explore the non-zero components of the matrices.

In addition, an important computational time has been saved by solving the estimator
linear system with the KLU solver [12], which is a sparse direct solver particularly suited
for power system applications, as sugested in the PEGASE report [11].

7.4.2 Reduction of the number of Jacobian evaluation

In time-domain simulations, evaluating the DAE system Jacobian matrix is generally
a performances bottleneck. This is particularly true in our Modelica-language-based
framework as it requires to call a modeler-level function which then calls Adept for
computing it from an automatic differentiation algorithm. Thus, reducing at the most
the number of calls to the Jacobian evaluation function was an important lever for
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enhancing our implementation performances.

In particular, on the one hand, our Fourier coefficients estimator requires the two partial
derivatives of F , ∂XF and ∂ẊF but, on the other hand, the Jacobian matrix of the DAE
system is given by the formula JF = ∂XF + cj∂ẊF in the native version of IDA and so
the partial derivatives ∂XF and ∂ẊF are not directly accessible. As a result, the initial
implementation of IDASPM called the Jacobian matrix evaluation three times: once
for evaluating the solver full Jacobian which is used for the integration process (with
the cj coefficient of the integrator) and twice for evaluating the two partial derivatives
(with cj = 0 for the X partial derivative and with cj = −1 for preparing the Ẋ partial
derivative extraction). In addition, once the Jacobian evaluations had been made for the
estimator, some matrix operations were required for extracting the Ẋ partial derivative.
Finally, the computational cost of these operations was extremely important, especially
as each Jacobian evaluation calls the above-mentioned costly modeler-level function.
Calling several times the entire Jacobian evaluation function was all the more paradoxical
as, at the modeler level, the two sub-matrices of the partial-derivatives are independently
evaluated and then assembled by exactly using the formula J = ∂XF + cj∂ẊF . Thus, our
first optimization idea consisted in introducing an extended Jacobian evaluation function
which directly fills these three matrices (J , ∂X and ∂ẊF ) from their pointer in a single
call. The main difficulty has been to consequently propagate the corresponding function
prototype and call within the modeler without interfering with the modeler operations.
This point is detailed in chapter 8. But, as it has been done using an extended function
prototype, our strategy enables not to impact the code and so the execution of the
standard modeler and solver. By this way, an important computational time has been
saved as the number of calls to the Jacobian evaluation function has been directly divided
by 3.

However, even after this optimization and despite the Jacobian matrix used in the esti-
mator is updated only when IDA updates its Jacobian matrix, we noted that there were
significantly more Jacobian updates when using IDASPM in comparison with IDA. Gen-
erally, the Jacobian matrix is updated by the estimator when the Newton algorithm fails
to converge, which can be due to major changes in Jacobian matrix. However, there is
no reason for the Jacobian matrix of IDASPM to change more than those of IDA. The
only difference is that IDASPM possibly uses a much wider range of step sizes, which
can affect the discretized Jacobian, but the dynamics and so the eigenvalues of the sys-
tem should not be affected by the use of the SPM. In addition, updating the Jacobian
requires to perform a new factorization for the Newton iterations which is very costly.
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Thus, we tuned the parameters of the quasi Newton algorithm [24] for accepting wider
step size variations and so avoiding unnecessary Jacobian updates. In counterpart, we
also increased the maximum number of Newton algorithm iterations. Finally, the number
of Jacobian evaluations has well been significantly reduced.
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In this chapter, we present how IDASPM has been integrated into RTE’s simulation
engine [25]. This work has been simplified by the simulator architecture since it clearly
distinguishes modeler and solver aspects. So, in the first section, we recall the RTE’s
simulation engine global work-flow in order to introduce the Modelica-based modeler and
the solver module particularities in next sections. A focus is given on the used approach
for providing it the input data. To finish, we present the additional features that were
implemented for propagating the extended Jacobian function optimization exposed in the
previous chapter into the simulator and especially the modeler.

8.1 Global work-flow

In RTE’s simulation engine, the idea is to have independent the modeling and solving part
of the simulation. A simulation is then performed several steps, which are summarized in
8.1:

1. The model writing, which is done using C++ or Modelica [20]. Modelica is generally
the preferred solution as it enables to write models in equation-based style. As
the simulation engine is written in C++, Modelica models are compiled using a
customized OpenModelica compiler to generate a C++ code corresponding to the
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Figure 8.1: RTE’s simulation engine global work-flow overview: the unit-models models
are written with C++ or Modelica and given in input to the Modeler which builds the
global system by assembling them using their connections. Then, the DAE system is built
and solved with the chosen solver (e.g. IDASPM).

system to simulate. In addition to these unit-models, connections between them are
also to provide.

2. The system assembling and building by the modeler. The objective of this module
is to generate the DAE system to solve from the input models and connections.
So, it contains a template class corresponding to the general definition of a model
(input variables, associated DAE system and Jacobian matrix, external variables,
...), implementations of this class (vector of models, sub-model, ...) and connectors
features. The Jacobian matrix of C++ models is generally provided in the associated
C++ file. For Modelica models, as this Jacobian matrix is not provided, an external
program called Adept [36] enables to compute it using an automatic-differentiation
algorithm. In output of these different modules, the residual function of the global
DAE system is generated for integration with the solver module.

3. The solver which performs the numerical integration of the DAE system in output
of the modeler. It contains several solvers including IDA and IDASPM, our IDA
implementation of the SPM. These modules initialize the data structure of the
chosen solver from the input data provided by the user and by the modeler. In
particular, it provides the DAE system written in full-implicit form, the function for
evaluating the Jacobian matrix (formal or automatic-differentiation) and the vector
distinguishing differential and algebraic variables. For IDASPM, additional data
is provided for initializing the SPM data structure: the vector distinguishing the
oscillating and non-oscillating components of the solution, and the simulated system
nominal frequency. Then, consistent initial conditions for the DAE system are
computed. Once the system and its initial conditions are determined, the integration
is performed using the chosen solver. At each time step, RTE’s simulation engine
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performs tests to detect if discrete events have occurred during the last time step.

Consequently, the majority of our interfacing work with RTE’s simulation engine has been
performed within the Solver module.

8.2 Modeler based on Modelica

OpenModelica [19] is an open-source suite based on Modelica language [20], which is
used for the modeling and simulation of complex systems. Modelica is an object-oriented,
formal and non-causal language for writing models in an equation-based style. Further-
more, OpenModelica contains a compiler which enables to generate simulation files, that
are compatible with IDA, from a Modelica model file. In particular, Modelica enables
to clearly separate the modeling and solving aspects. The European projects PEGASE
[11] and then iTesla [69] have introduced and proved the industrial potential of Modelica
for time-domain simulations of transmission grids. The latter resulted in the idea of
developping a standard open-source Modelica library for power system analysis. Then,
RTE’s time-domain simulation tool team implemented a new simulation engine [25]
which is based on this framework. It especially enables to easily connect models with
solvers to perform simulations in a very flexible way.

Figure 8.2: Illustration of a model written with Modelica. It consists in a global model
containing two sub-models. Each model is described in a separate file and the global
model specifies their connection.

In our framework, Modelica is used for the modeling part of the simulation. Our objective
is to implement the simulated system model with the Modelica language and to perform
the simulation with IDASPM from RTE’s simulation engine. As illustrated in the figure
8.2, constructing a global model with Modelica generally consists in connecting several
unit-models that are written in a equation-based style. So each sub-model contains both
internal variables, equations and relations to external variables. It is thus very convenient
for modeling system and performing time-domain simulations.
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Once a model is written, it can be compiled for instance with OpenModelica Compiler
whose compilation process is illustrated in figure 8.3. This compilation process roughly
consists in constructing a global system of differential algebraic equations, referred as
flat model, by injecting those of all the sub-models with their connections and then in
generating an executable code in order to enable the simulation of the resulting system.

Figure 8.3: Illustration of the OpenModelica Compiler process. To sum up, the Mod-
elica model containing the sub-models and their connections is written by the compiler
which constructs a flat model in which all the equations are assembled within a large
system. Then, if this option is selected, OpenModelica Compiler sorts and tries to reduce
the number of equations, for instance by directly injecting the trivial relations into the
appropriate equations. To finish, a C code containing the output system of equations is
generated for its resolution.

8.3 Solver module

In order to access to our solver from RTE’s simulation engine, we had to generate
the solver library corresponding to IDASPM and then to implement a customized
solver module which properly initializes the data structures of IDASPM. It is done in
SolverIDASPM::init.

This function executes the following procedure in order to initialize IDASPM, which
roughly corresponds to the program skeleton proposed in section 7.3.4:

• Creation of the solver data structure;
• Internal memory allocation for the solver data structure;
• Initialization: attaching the residual function evaluation to the data structure and

giving the initial conditions;
• Solver settings: solver tolerance, stop time, minimum and maximum acceptable step

size, initial step size, maximum order for the integration scheme;
• Distinction between differential and algebraic variables from a boolean vector;
• Choice of the linear solver (e.g. KLU);
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• Attaching the Jacobian matrix evaluation function and, in particular for the SPM,
its expanded version which also returns the partial-derivatives of the DAE system
residual function;

• Providing SPM-specific input data: vector distinguishing oscillating and non-
oscillating variables of the system and its nominal frequency;

• Attaching the root evaluation function;

Then, as IDASPM properly initializes the data structures associated to its standard
integration algorithm and those corresponding to the SPM features, the simulation can
be launched as for the classical IDA solver: computation of initial conditions and loop
on the time step until the final time or the detection of a discrete-event.

So, as mentioned in the procedure description, an SPM-specific function has been imple-
mented within the solver module for extending the Jacobian matrix evaluation function.
This function enables in particular to compute the partial-derivatives of the DAE system
residual function. Indeed, in IDA, the Jacobian is directly computed for taking into ac-
count the discretization of the time-derivative. Then, the Jacobian matrix used in the
correction step is computed as JG(X) = ∂F

∂X
+ cj

∂F
∂Ẋ

since the correction is defined by
G(X) = F (t, X, cjX + β). As the estimation step requires ∂F

∂X
and ∂F

∂Ẋ
in order to build

the linear system associated to the correction of the Fourier coefficients, several linear
algebra operations and Jacobian matrix evaluations with different parameters cj were
necessary for extracting these two matrices from the complete Jacobian matrix. This is
why the evalJtExpanded function has been implemented at two levels: within the mod-
eler module which performs the actual computation and at the solver model for interfacing
with IDASPM.

8.4 Input data for IDASPM

As above mentioned, in order to properly initialize the periodic function of the SPM,
IDASPM requires two inputs:

• The vector distinguishing the solution oscillating and non-oscillating components;
• The system nominal frequency.

These two inputs are provided to IDASPM from a configuration file which has to be
inserted into the considered test case folder. Then, in addition to the .iidm, .dyd,
.crv and .jobs files which are the classical input files for RTE’s simulation engine, the
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initSPM.txt is included. It simply corresponds to a vector of data defined as
⎡
⎢⎢⎢⎢⎢⎢⎣

ω

isAC1
...

isACd

⎤
⎥⎥⎥⎥⎥⎥⎦ (8.1)

where isAC ∈ {0, 1}d is a boolean vector indicating the oscillating and non-oscillating
variables. Then, isACj = 1 if the j-th components is an oscillating component of the
solution.

This configuration is currently filled by the user from its prior knowledge of the system to
simulate. Generally, the assumed oscillating components of the solution are the network
voltages and currents. Two enhancements of our methodology could be done:

• Automatically filling the configuration file from the modeler. For instance, the
oscillating variables could be tagged in their respective Modelica model. Then,
the modeler could detect this tag in order to fill either the configuration file or
directly a data structure corresponding to the vector isAC, as it is currently done
for distinguishing the differential and algebraic variables. An automatic procedure
could use the same approach for distinguishing the oscillating and non-oscillating
components of the solution at the modeler level.

• Deducing variables with possibly higher-order harmonics. For instance, in the model
of synchronous machines, variables projected in the dq0 reference frame with the
Park transformation can contain second order harmonics when the three phase abc
input signals are unbalanced [14]. Then, there is both an offset component cor-
responding to the balanced conditions and a second-order harmonics due to this
unbalance. In addition, non-linear transformations of fundamental harmonics oscil-
lating components can lead to higher-order harmonics.

To finish, our implementation does not require the initial Fourier coefficients to be set
during the initialization. They are computed directly during the simulation. This is
why performances are generally lower during the first time steps, even if the system is in
steady-state. Indeed, as one can see in the results presented in chapter 9, some iterations
are required for the Fourier coefficients to converge and consequently for the step size to
increase. On the one hand, such a result is encouraging as it shows the method robustness
and the estimator accuracy. But, on the other hand, as the step size remains at low values
during this initial step, this means that a possibly great computational is consumed while
the system is already in steady-state. In order to compute these initial Fourier coefficients,
an additional module based on KINSOL [10] could use the initial load-flow to deduce the
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initial Fourier coefficients. By this way, even if this only provides a coarse estimation of
the Fourier coefficients, this could enable to reduce the number of lost initial step sizes
by giving a quite accurate starting point for the estimator.

8.5 Additional features due to the IDASPM
evalJtExpanded optimization

In the previous chapter, we mentioned the optimization that we implemented consisting
in computing the Jacobian matrix of the DAE system for the integration part and
its partial-derivatives for the estimation part of the SPM. To do this, a non-standard
evaluation function has been introduced. It contains the pointers to the sparse matrices
corresponding to these three matrices instead of only those of the full Jacobian matrix.
By this way, the computation is much more efficient as at low-level operations, the two
partial derivatives are evaluated and then added within the full Jacobian matrix. Thus,
filling the partial-derivatives theoretically does not introduce additional computational
time as the data are directly accessible.

This optimization then required to propagate the addition of the evalJExpanded func-
tion prototype and operations at the different levels of RTE’s simulation engine 8.4, in
particular within the following files:

• Solvers/SolverIDASPM/DYNSolverIDASPM.cpp: the solver-level function int
SolverIDASPM::evalJExpanded has been implemented. This function is the in-
terface between the solver IDASPM and RTE’s simulation engine.

• Modeler/Common/DYNModel.h: the template function virtual void
evalJtExpanded has been added. This function is called within int
SolverIDASPM::evalJExpanded with the instruction model->evalJtExpanded. It
is the interface between the solver-level and the modeler-level of RTE’s simulation
engine. Then, depending on the type of model, the appropriate extended Jacobian
evaluation can be called.

• Modeler/Common/DYNModelMulti.cpp/.h: the function void evalJtExpanded it-
erates on the different sub-models in order to call their respective extended Jacobian
evaluation function.

• Modeler/Common/DYNSubModel.cpp/.h: the function evalJtExpanded computes
the considered sub-model Jacobian matrix and partial-derivatives. It is a template
function which enables to have different Jacobian matrix method depending on the
type of sub-model. For instance, as our models are written with Modelica, this
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function uses the ModelManager class.
• Modeler/ModelManager/DYNModelManager.cpp/.h: the function

ModelManager::evalJtExpanded calls ModelManager::evalJtAdeptExpanded for
computing the Jacobian matrix and the partial-derivatives with Adept [36]. Thus,
ModelManager::evalJtAdeptExpanded is the interface between RTE’s simulation
engine and Adept which finally calls adept::Stack::jacobian.

Figure 8.4: Callstack during the call to evalJExpanded within IDASPM. Modifications
have been made at the SolverIDASPM level for calling the virtual function associated
to the model. Then, within the ModelMulti class a loop is performed on the different
SubModels. Finally, as our unit-models are fully written with Modelica, the ModelManager
class calls Adept for computing the automatic-differentiation Jacobian matrix.
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In this chapter, we present the results obtained with our customized version of RTE’s
simulation engine using the IDASPM solver. When comparing the implementation based
on IDASPM and those based on IDA, our results tend to prove that using IDASPM
enables to dramatically reduce the number of iterations needed to simulate AC power
systems, especially in steady-state. However, they also bring to light that a special focus
is to give on the computational cost of SPM additional features and particularly those of
the estimator. In our first implementation, the computational time by iteration was so
important that the final speed-up did not come up to our expectations. By analyzing
the code with a profiling tool, it gave us the optimization areas that have been presented
within the chapter dedicated to IDASPM. These optimizations, which mainly focused on
the estimator and the Jacobian matrix evaluation function, have enabled to divide the
computational time by more than 10. In the end, the implementation based on IDASPM
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is significantly more efficient than those based on IDA. The most notable aspect is the
maximum step size reached by IDASPM in steady-state, which can be in the range of
seconds while those of a classical implementation based on IDA is lower than a millisecond.

The presented results have been obtained on two simple electrical system configurations,
with respectively 4 and 14 buses, mainly composed of classical linear components such
as resistors, inductors and capacitors. Indeed, important issues have been encountered
for implementing more realistic tests systems containing synchronous machines or
grid-feedings. In particular, the initialization is really difficult within the OpenModelica
environment, even more for setups containing non-linear elements. Especially, as the
steady-state assumption Ẋ0 = 0 is not valid in the context of EMT simulations because
of the presence of oscillating components represented in full-waveform, important
pre-processing treatments should be applied in order OpenModelica for enabling to
compute consistent initial conditions.

These results have been obtained from a Fedora Virtual Machine (launched from Virtu-
alBox) running with 2 processors (CPU: Intel i5-5257U @2.7GHz, cache=3MB) and 4GB
of RAM.

9.1 Results on a small power system

In this section, we present the results obtained with our implementation on a small test
case consisting in a three-phase power system with 4 nodes.

9.1.1 Test case presentation

In figure 9.1, our 4-buses power system is presented.
This test case contains :

• 3 perfect generators that are modeled with a trivial algebraic equation:

V∞(t) =

⎡
⎢⎢⎢⎣

A∞ cos(ωt + φ∞)
A∞ cos(ωt + φ∞ − 2π

3 )
A∞ cos(ωt + φ∞ + 2π

3 )

⎤
⎥⎥⎥⎦ (9.1)

• 1 time-varying resistive load modeled as

Rc(t) =

⎧⎪⎨
⎪⎩

R0 if t < te

R∞ + (R0 − R∞)eλ(t−te) if t ≥ te

(9.2)
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V1

V2 V3
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I12 I13
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I24 I34

Figure 9.1: Simple Electrical Grid test case

where R0 and R∞ are respectively the initial and asymptotic resistance values, λ

is the decay constant and te is the time of the discrete-event. Therefore, there are
three main time intervals:

– From the initial time t0 to the discrete-event time te, the system is in steady-
state as the resistance is fixed to a constant value R0;

– In the few times after the discrete-event te, the system is in transients as the
resistance is subject to an exponential decay;

– In the farther times after the discrete-event te, the system returns to steady-
state since the resistance tends towards its asymptotic value R∞.

• 5 transmission lines modeled as RL branches, i.e.⎡
⎢⎢⎢⎣
VL,a(t)
VL,b(t)
VL,c(t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
RL,a 0 0

0 RL,b 0
0 0 RL,c

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
IL,a(t)
IL,b(t)
IL,c(t)

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

LL ML ML

ML LL ML

ML ML LL

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
İL,a(t)
İL,b(t)
İL,c(t)

⎤
⎥⎥⎥⎦ (9.3)

where IL = (IL,a, IL,b, IL,c) is the three-phase current of the transmission line,
VL = (VL,a, VL,b, VL,c) is the difference between the line input and output three-
phase voltages, RL,a, RL,c and RL,c constitutes the line resistance matrix, LL and
ML are respectively the line self- and mutual-inductance.

In our framework, this model results in a system of 188 equations including 15 differential
equations. The simulation is performed from the initial time t0 = 0s to the final time
tfinal = 10s with an exponential decay of the electrical load at time tevent = 1s. The
solution in the neighborhood of te is shown in figure 9.2.

137



9. Results obtained with our implementation

Figure 9.2: Solution computed with IDA (tolerance = 1.e-4) in the neighborhood of
time te = 1s (on the abscissa: time in seconds, on the ordinate: solution in arbitrary
units). The black line corresponds to the time-varying resistance which is subject to an
exponential decay. The blue, red and green lines correspond to the three-phase current
through the line connecting the bus 3 to the bus 4. The transient resulting from the
resistive load variation is a change of the three-phase current envelope.

9.1.2 Numerical results

In this section, we present the validation results for the optimized version of IDASPM
and compare the numerical performances of the optimized and non-optimized versions of
IDASPM with IDA.

9.1.2.1 Validation

The figures 9.3 and 9.4 show the solution computed with IDA and with the non-optimized
and optimized versions of IDASPM. In both figures, the blue line and the red crosses
respectively correspond to the solution computed with IDA and with IDASPM (optimized
or non-optimized). Only one phase among the three-phase signal is shown for a better
readability. Since the discrete event happens at time te = 1s, our figures focus on the
neighborhood of that particular time in order to illustrate the step size adaptation. We
can see that IDASPM has the expected behavior as the distance between the computed
points varies as wanted: in the neighborhood of the discrete event, the time steps become
closer in order to accurately catch the envelope variation and then larger when the system
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returns to steady-state. For both versions of IDASPM, the solution accurately fits those
computed with the IDA standard implementation.

Figure 9.3: Comparison of the solutions obtained with IDA (blue linked crosses) and the
non-optimized version of IDASPM (red crosses) on the Simple Electrical Grid test case
with the tolerance set to tol = 1.e-4 (on the abscissa: time in seconds, on the ordinate:
solution in arbitrary units).

9.1.2.2 Numerical performances

In figure 9.6, the step sizes used by IDA and IDASPM are compared.
We can see that the SPM globally enables to integrate the DAE with much larger time
steps. As expected, the step size used with the SPM reaches high values when the system
is in steady-state. Hence, as previously mentioned, one can identify three time intervals:

1. From the beginning of the simulation to the event, the step size increases regularly.
At the very beginning, the SPM uses small time steps as the Fourier coefficients are
initialized to zero. Then, some iterations are required for them to converge.

2. During the load variation, the step size remains at low values. As the estimator
is designed from the assumption that the system is in steady-state, this step size
limitation is logical.

3. When the system returns to steady-state, the step size increases again and reaches
high values.

Table 9.1 summarizes the performances obtained with IDA and with the two versions of
IDASPM (optimized and non-optimized) using tolerances from 1.e-3 to 1.e-6. We can see
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Figure 9.4: Comparison of the solutions obtained with IDA (blue linked crosses) and
the optimized version of IDASPM (red crosses) on the Simple Electrical Grid test case
with the tolerance set to tol = 1.e-4 (on the abscissa: time in seconds, on the ordinate:
solution in arbitrary units).

that, for all the tested tolerances, significant speed-up are obtained using both versions
of IDASPM. However, the optimized version of IDASPM requires almost two times more
iterations for performing the simulation than the non-optimized version. This increase
is logical since one of the implementation optimizations of IDASPM consists in reducing
the number of Jacobian evaluations by tuning the parameters of the Jacobian update
rule. In spite of this number of iterations increase, the final speed-up is three to four
times higher with the optimized versions of IDASPM as the average computational time
by iteration is about five times lower in the optimized version of IDASPM. In addition,
we can note that the speed-up drastically increases with the reduction of the tolerance
which is explained by the fact that the number of iterations using IDA is much higher
while those using IDASPM remains low. Actually, it seems like the increase factors are
quite similar between all the solvers but, as the ranges of the starting value are radically
different (about 25000 for IDA compared to about 100-150 for IDASPM), the final results
completely differ. To finish, an important point to notice is that the maximum step size
used in IDASPM is not sensitive to the change of tolerances, which can also be seen in
figure 9.7.
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Figure 9.5: Comparison on the step size used by IDA (blue line) and the non-optimized
version of IDASPM (red line) on the Simple Electrical Grid test case with with the
tolerance set to tol = 1.e − 4 (on the abscissa: time in seconds, on the ordinate: step size
in seconds).

Figure 9.6: Comparison on the step size used by IDA (blue line) and the optimized
version of IDASPM (red line) on the Simple Electrical Grid test case with the tolerance
set to tol = 1.e−4 (on the abscissa: time in seconds, on the ordinate: step size in seconds).
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Tolerance Solver Niterations tCPU hmean hmax

IDA 24707 1.08 0.0004047 0.0005
1.e-3 IDASPM 87 0.23 0.1149425 3.39813

IDASPM_OPTI 142 0.08 0.0704225 3.12262
IDA 62822 2.47 0.0001592 0.0002001

1.e-4 IDASPM 157 0.37 0.0636943 4.47579
IDASPM_OPTI 266 0.084 0.0375940 3.97862

IDA 112026 5.26 0.0000893 0.0001296
1.e-5 IDASPM 290 0.43 0.0344828 3.22227

IDASPM_OPTI 483 0.107 0.0207039 3.06773
IDA 238807 11.65 0.0000419 0.00006

1.e-6 IDASPM 575 0.65 0.0173913 4.17677
IDASPM_OPTI 998 0.16 0.0100200 3.48291

Table 9.1: Performances comparison between IDA and IDASPM (optimized and non-
optimized versions) on the SEG test case

Figure 9.7: Step sizes used by the optimized version of IDASPM on the Simple Electrical
Grid test case for different tolerances (red: 1.e-6, black: 1.e-5, blue: 1.e-4, green: 1.e-3).
On the abscissa: time in seconds, on the ordinate: step size in seconds.
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9.2 Results on a customized version of the IEEE 14-
bus reference test case

After having obtained interesting results with the previous small Simple Electrical Grid
example, our implementation has been tested on a larger power system with 14 nodes.
The objective was then to significantly increase the considered test case dimension in
order to assess the SPM scalability. As seen in chapter 7 about IDASPM, it led to the
presented IDASPM optimization.

9.2.1 Test case presentation

Figure 9.8 represents the one-line diagram of our second example inspired from the IEEE-
14 bus reference test case.

Figure 9.8: IEEE 14-bus test case (figure from [1])

However, as said in the chapter introduction, this test case has been simplified as our
Modelica library did not contain models for PQ-loads, transformers and synchronous
machines:

• The PQ-loads have been replaced by resistive loads;
• The transformers are considered as ideal transformers, i.e. constituted of RL-

branches;
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• The synchronous machines have been substituted by perfect generators. Indeed,
our model of synchronous machine led to important stability issues, especially as
the initialization process, which is complex to perform in a proper way in the Open-
Modelica environment, has not been addressed during this thesis.

Finally, it contains 5 perfect generators, 11 resistive loads, connections with transmission
lines modeled with RL branches and ideal transformers. In our framework, this model
results in a system of 754 equations including 51 differential equations. Therefore, in spite
of the above-mentioned modeling simplifications, this test case has enabled to perform a
first scalability assessment of the SPM. Then, this system is subject to an exponential
increase of the electrical load attached to Bus 4 at time te = 1s. Figure 9.9 shows the
three-phase current through the transmission line connecting the buses 4 and 5. As in
the previous test case, the transient consists in an envelope variation.

Figure 9.9: Solution computed with IDA (tolerance = 1.e-4) in the neighborhood of time
te = 1s (on the abscissa: time in seconds, on the ordinate: solution in arbitrary units).
The blue, red and green lines correspond to the three phases of the current through the
line connecting the bus 4 to the bus 5. As in the previous test case, the transient resulting
from the variation of the resistive load is a change of the three-phase current envelope.
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9.2.2 Numerical results

9.2.2.1 Validation

In figures 9.10 and 9.11, the solutions obtained with IDA and IDASPM are compared. As
for the previous test case, the solution computed with IDASPM accurately fits computed
with the standard implementation of IDA.

Figure 9.10: Comparison of the solutions obtained with IDA (blue linked crosses) and
the non-optimized version of IDASPM (red crosses) on the IEEE 14-bus inspired test case
with the tolerance set to tol = 1.e − 4 (on the abscissa: time in seconds, on the ordinate:
solution in arbitrary units).

9.2.2.2 Numerical performances

In figures 9.12 and 9.13, the step sizes used by the standard implementation of IDA and
respectively the non-optimized and optimized version of our IDASPM implementation
are compared. As for the previous test case, we can see that the step size varies as
wanted for IDASPM since it decreases at the time of the discrete-event and increases
again until reaching very high values when the system returns to steady-state.

Table 9.2 summarizes the performances obtained with the three solvers. Similar gains
of performances can be noted concerning the number of iterations using both versions of
IDASPM. However, with this test case, we can observe that the computational time of
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Figure 9.11: Comparison of the solutions obtained with IDA (blue linked crosses) and
the optimized version of IDASPM (red crosses) on the IEEE 14-bus inspired test case
with the tolerance set to tol = 1.e − 4 (on the abscissa: time in seconds, on the ordinate:
solution in arbitrary units).

Figure 9.12: Comparison on the step size used by IDA (red line) and the non-optimized
version of IDASPM (blue line) on the IEEE 14-bus inspired test case with the tolerance
set to tol = 1.e−4 (on the abscissa: time in seconds, on the ordinate: step size in seconds).
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9. Results obtained with our implementation

Figure 9.13: Comparison on the step size used by IDA (red line) and the optimized
version of IDASPM (blue line) on the IEEE 14-bus inspired test case with the tolerance
set to tol = 1.e−4 (on the abscissa: time in seconds, on the ordinate: step size in seconds).

the non-optimized version of IDASPM is greater than those of the standard IDA imple-
mentation. This is why the optimized version of IDASPM has been implemented. Indeed,
the computational time by iteration of the non-optimized version of IDASPM was so high
that it finally covers the expected gains of performances due to the reduction of the num-
ber of iterations. On the contrary, using the optimized version of IDASPM, we can see
that important speed-up are obtained, especially for the least tolerance (tol=1.e-6), for
which the simulation with this final implementation of our solver is about 10 times faster
than with IDA. In addition, as for the previous test case, the maximum step size is not
affected by the reduction of the tolerance. This can be seen in figure 9.14 which shows
the evolution of the step size used by the optimized version of IDASPM with different tol-
erances. Therefore, low tolerances such as tol=1.e-6 could be used in order to accurately
catch fast transient phenomena while being able to use large time steps when the system
is in steady-state.
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Tolerance Solver Niterations tCPU hmean hmax

IDA 22241 1.66 4.50e-4 5.00e-4
1.e-3 IDASPM 90 8.68 1.11e-1 3.69

IDASPM_OPTI 138 0.85 7.25e-2 3.69
IDA 48504 3.27 2.06e-4 2.20e-4

1.e-4 IDASPM 174 12.03 5.75e-2 3.55
IDASPM_OPTI 252 0.96 3.97e-2 3.57

IDA 116705 7.90 8.57e-5 9.50e-5
1.e-5 IDASPM 306 13.76 3.27e-2 3.29

IDASPM_OPTI 516 1.27 1.94e-2 4.15
IDA 207563 14.58 4.82e-5 5.31e-5

1.e-6 IDASPM 593 22.50 1.69e-2 3.40
IDASPM_OPTI 948 1.69 1.05e-2 3.93

Table 9.2: Performances comparison between IDA and IDASPM (optimized and non-
optimized versions) on the SEG test case

Figure 9.14: Step sizes used by the optimized version of IDASPM on the IEEE 14-bus
inspired test case for different tolerances (red: 1.e-6, black: 1.e-5, blue: 1.e-4, green:
1.e-3). On the abscissa: time in seconds, on the ordinate: step size in seconds.
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In the next decades, mid-to-long term electromagnetic time-domain simulations of power
systems will be required to ensure the transmission systems security of supply while
introducing new components. The main limit to fast simulations is due to the presence
of oscillating components whose behavior is paradoxically trivial in steady-state as they
tend toward simple sinusoids. In the currently existing numerical methods, this property
is not taken into account or in a non-flexible way. Therefore, the step size is generally
fixed to very small values, significantly lower than the sinusoids period. The numerical
method proposed in this PhD aims at unlocking the potential of adaptive step size
numerical methods in EMT simulations context. Such a scheme enables both to reduce
the time step when the system is in transients for catching fast phenomena arising in
EMT simulations and to increase it when the system is in steady-state in order to reduce
simulation’s computational cost.

The developed Sinusoidal Predictor Method, which consists in splitting the solution into
a periodic function completed by a correction term, combines a parametric estimator
for the periodic function with a classical adaptive step size scheme for integrating the
correction term. Thanks to the SPM theoretical analysis, we have shown the importance
of the estimator choice. In addition to its bias direct effect on the maximum usable step
size, its indirect impact on the entire solving process stability has been highlighted. In
a first implementation, this stability issue resulted in a step size limitation, particularly
in steady-state when the method should be able to use very large time steps. Finally,
with our predictive Fourier coefficients estimator based on the minimization of an
energy function associated to the system stationarity, Fourier coefficients are accurately
estimated in steady-state. By this way, the correction term is reduced to a constant
term, i.e their asymptotic value for the non-oscillating components and zero for the
oscillating components of the solution. Thus, very high step sizes can be used, even for
low tolerances on the local truncation error. In addition, this leads to an important
integration method flexibility as a very wide range of step sizes is used. It can especially
vary from the micro-second to a few tens of seconds.
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Moreover, an implementation of this methodology within a framework distinguishing
modeler and solver aspects has been achieved. To do so, the reference solver SUNDIALS
IDA has been firstly modified to introduce features corresponding to the SPM. Then,
this solver has been successfully interfaced with RTE’s simulation engine, enabling to
implement models with Modelica. Finally, using this implementation, tests have been
conducted on examples inspired by reference IEEE test cases. In particular, RTE’s
simulation engine with IDASPM has been tested on a simplified version of the IEEE
14-buses reference test case. The results firstly obtained on this test case enabled
to highlight several optimization areas for our implementation concerning the DAE
system Jacobian matrix evaluation and our estimator. By implementing these different
optimizations, important speedups have been obtained. For instance, the computational
time has been divided by 10 for the IEEE 14-buses inspired test case with a tolerance of
10−6.

In further developments, methodological and industrial aspects could be enhanced.

Concerning the methodology, the SPM could be extended for taking into account multiple
harmonics, as it is done within dynamic phasor approaches, and variations of the system
frequency. When considering test cases involving synchronous machines, the reference
system frequency may be significantly different from its nominal value. However, such
an extension should be studied in the angle of a compromise between the iterations
number and their individual cost. Indeed, using an optimizer to solve the arising fitting
problem could be costly and lead to reduce the overall performances. In addition, if
the frequency is reasonably different from its fixed assumed value, the resulting residual
oscillations should have a low frequency and so the step size should keep quite high values.

For the industrial aspects, several tasks should be done to manage to prove the method
potential: continuing the solver implementation optimization in order to increase the
speed up and testing the method on industrial test cases containing realistic power sys-
tems components such as synchronous machines, etc. Concerning the former point, the
estimator implementation could still be enhanced by optimizing the linear system con-
struction. For the latter point, implementing a reference library for EMT applications
with OpenModelica would be necessary. In addition, new dedicated features should be
implemented within OpenModelica in order to solve the initialization issues due to this
environment current rigidness for power system applications.
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Appendix

A Time Domain Transformation: numerical compar-
ison with TR-BDF and the SPM

A.1 System in steady-state

Method Niterations tCP U tCP U/ite hmean hmax

TR-BDF 2825 39.50 0.014 3.5e-4 3.8e-4
TDT 5 0.47 0.094 0.25 0.65

Ratio TR-BDF/TDT 565 84 0.15 1.4e-3 5.9e-4
SPM 4 0.94 0.23 0.33 0.65

Ratio TR-BDF/SPM 706 42 0.060 1.1e-3 5.9e-4

A.2 System in slow-evolution

Method Niterations tCP U tCP U/ite hmean hmax

TR-BDF 14425 199.32 0.014 3.47e-4 3.8e-4
TDT 496 71.92 0.14 0.010 0.058

Ratio TR-BDF/TDT 29 3 0.095 0.034 6.6e-3
SPM 981 11.75 0.012 5.1e-3 0.092

Ratio TR-BDF/SPM 15 17 1.15 0.068 4.2e-3

A.3 System following a scenario

Method Niterations tCP U tCP U/ite hmean hmax

TR-BDF 30446 422.66 0.014 3.28e-4 3.84e-4
TDT 1106 107.07 0.097 9.1e-3 0.65

Ratio TR-BDF/TDT 28 3.95 0.14 0.036 5.9e-4
SPM 4213 55.49 0.013 2.4e-3 0.95

Ratio TR-BDF/SPM 7 7.62 1.05 0.14 4.0e-4
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